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Abstract. This paper compares different distributed control approaches
that enable a team of robots search for and track an unknown number
of targets. The robots are equipped with sensors which have limited
field of view (FoV) and are required to explore the environment. The
team uses a distributed formulation of the Probability Hypothesis Den-
sity (PHD) filter to estimate the number and the position of the targets.
The resulting target estimate is used to select the future search locations
for each robot. This paper compares Lloyd’s algorithm, a traditional
method for distributed search, with two typical stochastic optimization
methods, Particle Swarm Optimization (PSO) and Simulated Annealing
(SA). PSO and SA are traditionally used to find a single global maxi-
mum, therefore this paper describes novel formulations of PSO and SA
to solve the problem of multi-target tracking. These new methods more
effectively trade off between exploration and exploitation. Simulations
demonstrate that the use of these stochastic optimization techniques im-
proves coverage of the search space and reduces the error in the target
estimates compared to the baseline approach.

Keywords: Multi-target tracking, Stochastic optimization, Distributed
control

1 Introduction

Multi-robot, multi-target tracking (MR-MTT) encompasses many traditional
robotics problems, including search and rescue [19], surveillance [10], and map-
ping [9]. All of these scenarios require a team of robots to search across an
environment to detect, identify, and track individual objects. A generic solution
to the MR-MTT problem consists of two parts: 1) an estimation algorithm to de-
termine the number and states of all targets targets and 2) a control algorithm to
drive the robots to seek out undetected targets as well as track detected targets.
These problems are extensively studied in multi-robot systems [29].

1.1 Related Work

Multi-target tracking (MTT) is a problem wherein one or more sensors seek to
determine the number of targets in a space and the state of each individual
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target. Often the number of targets is unknown a priori and in many cases the
targets are not uniquely identifiable. One of the main challenges in MTT is
the data association problem, i.e., matching measurements to potential targets.
Stone et al. [25] discuss this problem in their book, and survey existing solutions,
such as the Multiple Hypothesis Tracker (MHT) [1], Joint Probabilistic Data
Association (JPDA) [12], and the Probability Hypothesis Density (PHD) filter
[17]. Each of these different methods solve data association in a different way.
We pick the PHD filter due to its relative simplicity and good performance.

Multi-robot search is another well studied problem in the literature, with
many methods existing methods, such as those discussed in the survey [22].
In recent years, Multi-Agent Deep Reinforcement Learning (MADRL) has been
popular to learn agent coordination policies [21, 30]. Some examples use partially
observable Monte-Carlo planning [14] or perform a joint optimization of target
assignment and path planning [20]. However, one main challenge in MADRL is
many of the methods are based on centralized policy and global information. One
of the most widely classical techniques is Lloyd’s algorithm [11], a decentralized
algorithm which iterative partitions the environment and drives the robots using
a gradient descent controller. Due to its wide popularity, we will use Lloyd’s
algorithm as our baseline approach for comparison.

In this paper, we will examine the use of other numerical optimization al-
gorithms to drive MR-MTT. These fall into two broad categories: deterministic
and stochastic. Deterministic methods often suffer from local optima entrap-
ment, especially for the gradient-based methods which require the knowledge of
the whole search space [18], which we do not have in our setting because the
target locations are unknown a priori. On the other hand, stochastic optimiza-
tion methods do not rely on the gradient descent which makes these particularly
fitted for solving problems with unknown search spaces. Based on the number
of candidates solutions, there are individual-based and population-based algo-
rithms. In the context of numerical optimization, these techniques are typically
used to find a single global extremum of a function. However, in the MR-MTT
problem, we instead wish to find all local maxima (i.e., all target locations).
Thus, we will need to reformulate these techniques to suit our problem.

In the family of the individual-based methods, there are Tabu Search [13],
Hill Climbing [7], and simulated annealing (SA) [16]. The SA algorithm is widely
used in solving unconstrained and bound-constrained optimization problems.
This method models the physical activity of heating and tempering in material
process. It is likely to accept worse solutions with a scale proportional to the
temperature. This enables SA explore broad search space and escape from local
optima, which will allow the robots to better explore the environment. People
proposed different versions of distributed control with SA based on a variety of
objective functions. One similar work is to minimize the total travel distance
under Boolean specification using SA [24]. Their scenario is similar to that in
Travelling salesman problem (TSP), which enumerates the trajectories. The tra-
jectories are the combination of different nodes.
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PSO [15] is one of the most successful in population-based algorithms. Derr
et al. [8] proposed one decentralized version of PSO for MR-MTT, but in their
experiment, the targets are mobile phones. This makes the problem much simpler
since the sensors have unlimited range (i.e., are able to detect the signal strength
everywhere in the environment) and there is no ambiguity in data association.
Tang et al. [26] proposed methods in the environment with obstacles, but the
optimization function is still predefined, which means the global importance
weight is known to each robot (i.e., target locations are known). Our solution
differs from these other works in two key ways: 1) the objective function or the
global importance weight of the map is unknown and 2) the robots have a limited
field of view.

1.2 Contributions

In this paper, we propose two novel reformulations of traditional stochastic opti-
mization algorithms, SA and PSO, to solve the MR-MTT problem. We compare
these against Lloyd’s algorithm, a traditional method for multi-robot search. In
all cases we keep the distributed MTT algorithm constant, so the only difference
in performance is due to the search strategy. Our results show that the new
techniques result in more complete coverage of the search space and lower errors
in the target estimate. We also see that SA and PSO yield qualitatively different
search patterns as a result of their different structures.

2 Problem Formulation

We have a team of R robots exploring a convex environment E ⊆ R2 to search
for unknown number of targets. The set of targets are Xt = {xt

1,x
t
2, . . .}, where

xt
i is the state of the ith target at time t. At each time step, robot r receives a

set of measurements Zt
r = {zt1,r, zt2,r, . . .}. The number of measurements depends

upon the number of targets within the robot’s field of view (FoV) as well as the
chance of receiving a false negative or false positive detection.

2.1 PHD Filter

The PHD filter [17] models the sets X and Z above as realizations of Poisson
random finite sets (RFSs), which are sets composed of independently and identi-
cally distributed (i.i.d.) elements where the number of elements follows a Poisson
distribution. The likelihood of such an RFS X is

p(X) = e−λ
∏
x∈X

v(x) (1)

where v(x) is the PHD and λ =
∫
E
v(x)dx. The PHD is a density function over

the state space of the targets, and the expected cardinality of X is the integral
of the PHD over E.
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The PHD filter recursively updates v(x), which completely encodes the dis-
tribution over sets, using the measurement sets collected by the robots and the
motion model of targets. The PHD filter uses six models. 1) The target mo-
tion model f(xt | xt−1) characterizes the state transition model of x. 2) The
birth PHD b(xt) describes both of the number of targets and their location at
t. 3) The survival probability, ps(x

t−1), models the existence of a target with
state xt−1. 4) The detection model is pd(x

t | q) describes the targets’ detected
states xt with a sensor state q. 5) The measurement model, g(z | xt;q), de-
scribes the probability of a robot with state q receiving measurement z from a
detected target with state xt. Combining this with the detection model yields
ψz,q(x

t) = g(z | xt,q)pd(x
t | q), which characterizes the probability of receiving

measurement z from a target with state xt by a sensor locating at q. 6) Finally,
the clutter model c(z) is another PHD describing the number and states of false
positive detections. With these targets and sensor models, the prediction and
update of the PHD filter are:

v̄t(xt) = b(xt) +

∫
E

f(xt | xt−1)ps(x
t−1)vt−1(xt−1) dxt−1 (2)

vt(xt) = (1− pd(x
t | q))v̄t(xt) +

∑
z∈Zt

ψz,q(x
t)v̄t(xt)

ηz(v̄t(xt))
(3)

ηz(v) = c(z | q) +
∫
E

ψz,q(x
t)vt(xt) dxt (4)

Here, ηz(v) is a normalization factor, though note that
∫
E
v(x) dx = λ, i.e., the

expected number of targets in the search space, rather than 1, which is standard
in single-target tracking.

Since the PHD v(x) is a density function in the state space of targets, we
need to make an additional assumption to parametrically represent it in a manner
that is amenable to computations. The two traditional methods are as a set of
weighted particles [28] or a mixture of Gaussians [27]. We use the former, as this
allows for arbitrarily non-linear sensing and target models.

2.2 Lloyd’s Algorithm

Lloyds’ algorithm [3] iterative partitioning the environment and navigating the
robots towards the weighted centroid of their Voronoi cell. This process locally
minimizes the function:

H(q1,q2, ...,qR) =

∫
E

min
r∈{1,...,R}

f(d(x,qr))ϕ(x)dx, (5)

where d(x,q) measures the distance between elements in E, f(·) is a mono-
tonically increasing function, and ϕ(x) is a non-negative weighting function. A
general choice is f(x) = x2. The inside of the integral approaches the mini-
mum when the environment is continuously divided using the Voronoi partition.
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Vi = {x | d(x,qi) ≤ d(x,qj), ∀i ̸= j} where Vi is the Voronoi cell for robot i.
The minimum with respect to robot’s position is

(qi)∗ =

∫
Vi

xϕ(x) dx∫
Vi
ϕ(x) dx

, (6)

This is a distributed control algorithm since if each robot knows the positions
of its neighbors, the robot is able to compute its Voronoi cell and move to the
weighted centroid of its Voronoi cell. In our case, the PHD serves as weighting
function ϕ(x), converting the traditional coverage problem into a search and
tracking problem.

2.3 Distributed PHD Filter

We utilize the distributed PHD filter from our previous work [6]. The key to
this is that each robot maintains the portion of the PHD within its own Voronoi
cell and exchanging the data with its Voronoi neighbors. There are then three
algorithms that account for the motion of Voronoi cells (i.e., motion of robots),
motion of targets across cell boundaries, and measurements within other robots’
cells. This estimation process is described and the convergence is proved in the
previous work [6]. Since the distributed estimation method is same, we will
focus on the distributed control method. Also note that since all teams use
the distributed PHD filter, all use the same Voronoi-based partitioning scheme
regardless of the choice of search strategy.

2.4 Assumptions

Throughout this work, the first assumption is the each robot knows its own
position. This is a strong assumption but it is easily achieved with localization
algorithm in indoor environment[4] and GPS receivers in outdoor environment.
Additionally, we have shown that the distributed PHD filter can work well even
with some bounded uncertainty in the pose estimates [6].

Another assumption is that all robots can communicate with all of their
Voronoi neighbors, a necessary assumption under Lloyd’s algorithm (and nec-
essary for our distributed PHD filter formulation). In a practical setting, this
problem might be solved by using robots as communication relay or using multi-
hop communication strategies.

3 Distributed Control

As is mentioned in the introduction, stochastic optimization algorithm can be di-
vided into population-based algorithm and individual-based algorithm according
the number of candidate solutions. In this paper, we pick one typical method
from each family and compare these methods with the standard baseline of
Lloyd’s algorithm. Specifically, we use SA as an example of individual-based
algorithms and PSO as an example of population-based algorithms.
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Additionally, in traditional optimization, algorithms attempt to find a single
global maximum of some function. However, in the multi-target tracking case
we instead wish to find all the local maxima. In the context of PHD, the local
maxima represents the PHD peaks in search space, which correspond to the
targets’ location.

3.1 Simulated Annealing

Simulated annealing takes inspiration from the annealing process in manufac-
turing, where materials are slowly cooled to allow them to come to a sta-
ble configuration. In SA, at each iteration, a new candidate point locating at
q̂t+1 is randomly generated near the last solution point qt, where the distance
δ = |q̂t+1 − qt| is proportional to the “temperature” T . Suppose we seek to
maximizing the objective function. The solution then moves to the new location
if the value is better at the new location or with some probability if the value is
worse. This probability of accepting a suboptimal solution is given by:

Paccept ∼ Bernoulli

(
1

1 + exp ( δ
max(T ) )

)
(7)

which allows the solution to escape from local optima to hopefully reach a global
optimum, with the probability of a jump decreasing over time as the temperature
cools.

The rules governing simulated annealing correspond to a single searching
agent. Thus, in a multi-robot setting, each agent selects actions on its own,
based on the information stored in the shared, distributed PHD. Our approach
is outlined in Algorithm 1. First, robot r expands its Voronoi cell V̂r and exchange
the particles PHD with its neighbor (line 1-5). The weight cold is from the sum
of PHD of the particles in the overlapped area between V̂r and its FoV. Robots
then search for the best action, from a finite set of actions composed of angles θ
following discrete uniform distribution and fixed step size d (line 7). Then robot
r searches over potential new locations (line 8), where T is the temperature, R
is a rotation matrix, and d is a standard step. For each potential location, the
robot predicts the weight it may obtain when it move around using the sum of
PHD of the particles in the overlapped area between V̂r and its potential future
location (line 9). The movement θ∗ leading to the max ∆c will be selected as
the next movement step (line 11). Robot r will move to the new position q̂t+1

only if the ∆c > 0 or rand(0, 1) < Paccept (lines 12-17). Otherwise, the robot
falls back to the standard Lloyd’s algorithm (line 19).

3.2 Particle Swarm Optimization

In PSO, a collection of particles P move on the search space and the algorithm
evaluate the objective value at each particle. These particles are the candidate
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Algorithm 1 Distributed control with SA for Robot r

1: V̂r = Vr ⊕ B(d) ▷ Expand the Voronoi Cell
2: for i ∈ N (r) do ▷ This step can be combined with particle exchange in estimation
3: Compute ∆Vi,r = Vi ∩ Vr

4: Send particles in ∆Vi,r to robot i
5: end for
6: Compute cold =

∑
V̂r∩FoV r(qr)

v(x)

7: for θ ∈ [0 : ∆θ : 2π] do
8: q̂t+1(θ) = qr + TR(θ)d
9: ∆c(θ) =

∑
V̂r∩FoV r(q̂t+1(θ)) v(x)− cold

10: end for
11: θ∗ = argmaxθ c(θ)
12: if ∆c(θ∗) > 0 then
13: qt+1

r = q̂t+1(θ∗)
14: T = Tinit ▷ Tinit = 1 in experiment
15: else if rand(0, 1) < Paccept then ▷ Paccept from (7)
16: qt+1

r = q̂t+1(θ∗)
17: T := 0.95T ▷ 0.95 is a typical cooling factor
18: else
19: Set qt+1

r according to (6).
20: T := 0.95T
21: end if

solutions where the particle i locates at qi
t at time t. The velocity vi

t of particle
i is updated with the algorithm evaluation function.

qt
i = qt−1

i + vt
i

vt
i = wvt−1

i + c1r1(q
∗
i,b − qt

i) + c2r2(q
∗
i,g − qt

i)
(8)

where r1 and r2 are random numbers between 0 and 1, c1 and c2 are predefined
constant numbers in PSO. And w is called as the inertia term. qi∗

i,b is the position
of particle i in which the objective function get the best value (i.e., a local best).
And q∗

i,g is the position where the best objective function value in the history
(i.e., a global best).

PSO is a metaheuristic method which generates multiple candidate solution
in search space at the same time. This has a natural analog in multi-robot
search, where each robot represents a single particle. However, slightly different
from standard PSO, a robot can measure the value of points everywhere in its
FoV instead of a single point. Additionally, we do not want to find a single
global best value for the objective function, but rather to find all local maxima.
Thus, we need to redfine the meaning of q∗

·,g and q∗
·,b. In Algorithm 2, we set

q∗
·,g equal to the weighted center of Voronoi cell (i.e., the location from Lloyd’s

algorithm). And if the robots obtains the highest weight in the history at current
location, then it will set q as the q∗

·,b. The highest weight in the history whistory

is initialized as the obtained weight at t = 1 and then it is updated with the
current weight wt if wt ≥ whistory. Since r1, r2 ∼ rand(0, 1), the robot moves
with random trade off between q∗

·,b and q∗
·,g.
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Algorithm 2 Distributed control with PSO for Robot r

1: Compute local wt =
∑

x∈FoV v(x) at time t.
2: Set q∗

g according to (6)
3: if wt ≥ whistory then
4: q∗

r,b = qr ▷ Current robot location
5: whistory = wt

6: end if
7: vt

r = wvt−1
r + c1r1(q

∗
r,b − qt

r) + c2r2(q
∗
r,g − qt

i) ▷ Experiments set w, c1, c2 = 1
8: qt+1

r = qt
r + vt

r ▷ Robot moves to qt+1

3.3 Communication and Complexity

All teams use the distributed PHD filter for MTT regardless of the search strat-
egy. This is the limiting factor when it comes to both computational complexity
and communication bandwidth as it requires robots to exchange ownership of
portions of the PHD density function as the Voronoi partitions shift [6, Algorithm
1], exchange information about targets that may move across the boundaries of
Voronoi cells [6, Algorithm 2], and exchange measurements about targets viewed
in neighboring Voronoi cells [6, Algorithm 3]. The standard PHD filter equations
scale linearly in complexity with the number of targets (i.e., measurements) [6,
eq. (4)]. The complexity and communication load of the distributed PHD filter
depends upon the situation. For example, the particle exchange step [6, Algo-
rithm 1] depends upon the amount of area changing ownership, which can be
large when the entire team is tightly packed into one area (yielding very large
Voronoi cells for boundary robots). The PHD update [6, Algorithm 3] scales
linearly with the number of robots who can see into one another’s Voronoi cells,
again making the tightly packed case difficult. When all robots are evenly dis-
tributed in the space then the complexity and communication bandwidth will
be minimal. Note also the distributed PHD filter assumes that all robots can
communicate with their Voronoi neighbors, have lossless communication chan-
nels, and ignores the effects of latency. Addressing these real-world factors will
be the subject of future work.

The different control policies (Lloyd’s algorithm, SA, and PSO) all utilize
the resulting PHD estimate to find the goal location. Since robots compute their
goal locations using only the PHD within its own Voronoi cell, no additional
communication is required for the control computations.1 Additionally, the con-
trol computations are all quite straightforward and have constant complexity
with respect to team size and target count.

Lastly, it should be noted that the “particles” used within our SA and PSO
algorithms are actually individual robotic agents in the team. Thus, while it is
well known that the performance of SA and PSO is dependent upon the number
of particles, in our case this simply means it is a function of team size.

1 This assumes that, per the note in Algorithm 1, line 2, the Voronoi computations
are combined with the distributed PHD filter step.
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4 Experimental Results

In this section, we conduct a set of simulated experiments using Matlab so as
to 1) evaluate the correctness and 2) demonstrate the efficacy of the proposed
distributed estimation and control algorithm by comparing with the distributed
methods used in our previous work [6].

The environment is an open 100×100m area with no obstacles. For simplicity,
we represent PHD using a uniform grid of particles with 1m spacing. The initial
weight for each grid is wi = 1 · 10−4 so the initial number of expected targets
in the environment is 1. The robots have a maximum velocity of 2m/s and are
holonomic. The sensor collects the data at 2Hz and the sensor specification are:

pd(x | q) =

{
0.8 ∥x− q∥ ≤ 5m

0 else

g(z | x,q) = N (z | x− q, 0.25I2)

c(z | q) = 3.66 · 10−3

(9)

The expected number of clutter detections per scan is
∫
FoV

c(z | q) dz = 0.287.
Note, these values do not represent any specific real-world situation, but could
represent a team of drones equipped with downward facing cameras. For a real
situation, one could follow the procedures outlined in our other work to carefully
characterize the sensor models [5, 2].

4.1 Evaluation Metric

To evaluate the results we use the Optimal SubPattern Assignment (OSPA)
metric [23], which is widely used in the PHD literature. The OSPA between two
sets X,Y , where |X| = m ≤ |Y | = n without loss of generality, is

d(X,Y ) =

(
1

n
min
π∈Πn

m∑
1

dc(xi, yπ(i))
p + cp(n−m)

) 1
p

(10)

where c is the cutoff distance where we set c = 10m. The dc(x, y) = min(c, ∥x−
y∥) and the Πn is the set of permutations of {1, 2, 3, ..., n}. We set p = 1 as the
p-norm. Since the OSPA can fluctuate due to false negative and false positive
detections, we use the median of the OSPA over the last 100 s of each trial to
obtain a steady estimate in each experiment and measure the variance of the
OSPA to evaluate the stability of the tracker.

4.2 Stationary Targets

In our first set of experiments we assume all targets are static, so the transition
model is the identity map, the survival model is 1, and the birth model is 0. We
use teams 10 to 100 robots (in steps of 10) searching for 10, 30, or 50 targets and
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compare the new SA and PSO control methods against our previous work that
uses Lloyd’s algorithm alone [6]. The target positions are drawn uniformly at
random while the robots all begin in a 20× 10m rectangle at the bottom center
of the environment. For each configuration of target number, robot number, and
control algorithm we run 10 trials. Note, to ensure consistency in the results, we
use identical target distributions across all team/control methods, i.e., there are
10 different randomized target distributions for each configuration.

Tracking Accuracy Figure 1 shows the statistics of the median OSPA error
over the ten trials using our original function (PHD), PSO, and SA respectively.
We see in all cases that as the size of the team increases and surpasses the
number of targets, the OSPA error reaches a minimum and does not decrease,
even with the addition of more robots. The OSPA error of around 0.8 indicates
that almost all targets have been detected and tracked with higher accuracy
than the PHD grid (1m). This empirical minimum is based on the accuracy of
the sensors, the particle spacing, and our method for extracting target locations
(i.e., finding peaks in the PHD density function [6]).

We see that the PSO and SA based algorithm both have a much lower OSPA
error when the number of robots is smaller than the targets number, with the
PSO algorithm having a lower average value than SA or PHD. The difference
between the new methods and PHD is especially evident in the 10-robot, 10-
target case, where the original method fails to find about half of the targets (i.e.,
OSPA about halfway between the minimum of 0.8 and maximum of c = 10).
We also see that the spread in the OSPA values is smallest for the SA case,
indicating that it offers the most reliable performance across all three approaches.
In summary, PSO offers the lowest average OSPA, SA offers the most consistent
results, and the original is not the best in any category.

Coverage We also wish to examine how well each algorithm explores the en-
vironment, as this is another indicator of success. Figure 2 show the robots’
trajectories in the 10-robots, 10-targets case, where the orange diamonds are
the targets location and the lines in different colors are the robots’ trajectories.
We can observe that in all cases most of the robots eventually find targets and
oscillate around them. However, the paths they take to get there are different.
Lloyd’s algorithm, in Fig. 2a, spends the least time exploring the space, which
contributes to it having the highest OSPA error. In this figure, two targets are
not detected. The robots move directly to their weighted Voronoi Center and
become idle once they have arrived at the goal point. This is a great waste of
the searching resource. We see in Fig. 2b that the robots cover much more of the
search space in the same amount of time. Thus, the addition of the new local
best term (since the global best is identical to Lloyd’s), causes the robots to
explore more. We also see that the robot paths are relatively smooth, a result of
the inertia term in (8) causing the heading direction to remain somewhat con-
sistent. We see in Fig. 2c that these robots take more of a random walk. This is
because the annealing process drive the robots oscillate between the best point
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Fig. 1. Boxplots shows the median OSPA statistics over 10 runs for teams of 10-100
robots and 10, 30, and 50 static targets for original PHD, PSO, and SA respectively.



12 Pujie Xin and Philip Dames

(a) PHD (b) PSO (c) SA

Fig. 2. Robots’ trajectories using different control methods. Robots all begin in the
dashed box at the bottom of the environment.

Fig. 3. Percent of undetected area over time over 10 runs for 10-robot, 10-target case,
where the solid curves show the mean value and the shaded areas show the range.

Fig. 4. Boxplots show the percent of undetected area at the end of the experiment over
10 runs for teams of 10-100 robots and 50 static targets for the original PHD, PSO,
and SA search strategies.
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and the potential point. However, since the temperature keeps decreasing, the
oscillation range is smaller than that of PSO.

We can look at these trends in a quantitative manner by plotting the per-
centage of unexplored area over time for each method in Fig. 3. We see that
the average exploration speed is similar across all methods over the first 100 s,
with SA showing a larger range. After that, we see how the Lloyd’s algorithm
exploration levels off around 0.35 due to robots getting stuck. The other meth-
ods both have ways of escaping local minima, with SA yielding the highest and
most consistent exploration rate as time increases.

Figure 4 shows the statistics for the final unexplored area in the 50 target
case. We see here that the trends are slightly different, with SA tending to have
the most unexplored area. This seems to occur because the robots frequently get
stuck in local minima due to the higher density of targets in the environment.
Once the number of robots exceeds the number of targets, all yield similar results
and cover more than 99% of the environment for ≥ 60 robots in the allotted time.
This is because there are free robots to continue to explore the remainder of the
space even when each target has a robot assigned to track it.

Fig. 5. Boxplots shows the median OSPA statistics over 10 runs for teams of 10-100
robots in tracking moving targets for original PHD, PSO, and SA respectively.

4.3 Dynamic Targets

We also conduct a set of experiments with moving targets. Target have a max
velocity 1m/s and may enter or leave the environment by moving across the
boundary. When a new target crosses the boundary, it moves along a random
direction. Targets become inactive if they move out of the environment. To
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model the birth of the targets, we set the birth PHD to be non-zero near the
map boundary (∂E)

b(x) =

{
5.26× 10−5 ∥x− ∂E∥ ≤ 5m

0 else
(11)

This model expects one new target to appear per 10 s. Based on the appearance
and disappearance of targets, the number of targets reaches a steady state of
around 30 targets regardless of the initial number of targets.

Figure 5 shows the median steady state OSPA value, as measured by the
average over the final 200 out of 1000 time steps. We see that in all cases that
the OSPA decreases as the number of robots increases and appears to reach an
asymptote. However, the PHD method yields the highest OSPA error when the
number of robots is small, but has the lowest asymptote when the number of
robots is high. We see that the PSO and SA methods are quite similar with 10-40
robots. However, above that we see that PSO reaches a higher asymptote and has
a higher variance in the OSPA, meaning it is both less accurate and less reliable
than SA. This is similar to the static target case, where Lloyd’s algorithm get
stuck tracking one target while PSO and SA can both escape these local minima
to switch to another target. This escape behavior is very beneficial when there
are fewer robots than targets but slightly harmful to tracking performance when
there are more robots than targets.

5 Conclusion

In this paper, we examined the performance of different search strategies to
solve the MR-MTT problem. All methods share a common structure with two
components: 1) an estimation algorithm based on the distributed PHD filter
and 2) a control strategy combining the stochastic optimization algorithm with
Voronoi-based control. The robots use the estimate from the distributed PHD
filter to weight the relative importance of the area within their Voronoi cell
and select an action. We compare the standard Lloyd’s algorith with two new
methods based of standard stochastic optimization algorithms, namely simulated
annealing (SA) and particle swarm optimization (PSO). Both these new methods
allows robots to trade-off between a global goal and other local areas known to
contain targets, unlike Lloyd’s algorithm which only uses local information. We
see that the new stochastic methods enable the robot team to explore more
search area and yield better tracking results when there are fewer robots than
targets. In other words, the robots make a better trade-off between exploration
and exploitation.
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