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ABSTRACT
Slow slip is part of the earthquake cycle, but the processes controlling this phenomenon 

in space and time are poorly constrained. Hematite, common in continental fault zones, 
exhibits unique textures and (U-Th)/He thermochronometry data patterns reflecting differ-
ent slip rates. We investigated networks of small hematite-coated slip surfaces in basement 
fault damage of exhumed strike-slip faults that connect to the southern San Andreas fault in 
a flower structure in the Mecca Hills, California, USA. Scanning electron microscopy shows 
these millimeter-thick surfaces exhibit basal hematite injection veins and layered veinlets 
comprising nanoscale, high-aspect-ratio hematite plates akin to phyllosilicates. Combined 
microstructural and hematite (U-Th)/He data (n = 64 new, 24 published individual analyses) 
record hematite mineralization events ca. 0.8 Ma to 0.4 Ma at <1.5 km depth. We suggest
these hematite faults formed via fluid overpressure, and then hematite localized repeated 
subseismic slip, creating zones of shallow off-fault damage as far as 4 km orthogonal to the 
trace of the southern San Andreas fault. Distributed hematite slip surfaces develop by, and 
then accommodate, transient slow slip, potentially dampening or distributing earthquake 
energy in shallow continental faults.

INTRODUCTION
Exhumed fault rocks record time-integrated 

thermochemical and mechanical signatures of 
past deformation processes that also currently 
operate at depth over repeated earthquake 
cycles. Minerals and slip-surface textures may 
generate rheological contrasts that promote 
different slip behaviors (Collettini et al., 2009; 
Williams et al., 2021). In the shallow portion 
of continental faults, hematite is common and 
forms from interactions of oxidizing groundwa-
ter with Fe-rich minerals. Hematite textures and 
(U-Th)/He (hematite He) thermochronometry 
can document the timing, temperatures, depths, 
and/or rates of fault slip (Ault, 2020). Recent 
work from natural and experimental hematite 
faults shows clear evidence for earthquakes 
(McDermott et al., 2017; Ault et al., 2019; Cal-
zolari et al., 2020). However, other observa-
tions suggest hematite deforms subseismically 
(Moser et al., 2017; McDermott et al., 2021), 
implying hematite may accommodate a range 
of slip behaviors.

Fault slip is a continuum from earthquake 
to aseismic slip (Jolivet and Frank, 2020). This 
includes seismically and geodetically observed 
low- (and very low-) frequency earthquakes, 
tremor, slow-slip events, and creep events (Shelly 
et al., 2006; Peng and Gomberg, 2010; Beroza 
and Ide, 2011). We use slow slip as a general 
term for the release of elastic energy along faults 
at rates slow enough that radiated energy is not 
detected (Bürgmann, 2018; Jolivet and Frank, 
2020). The mechanisms that cause slow slip are 
complex, and may include mechanical effects of 
increased pore-fluid pressure or heterogeneous 
frictional, lithologic, or geometric fault proper-
ties (McCaffrey et al., 2008; Wei et al., 2013; 
French and Condit, 2019; Ikari, 2019). Accurate 
models of slow slip integrate geophysical and 
geologic data that inform earthquake hazards 
and require direct observations of fault zones 
that experience limited overprinting deformation.

Along the southernmost segment of the 
San Andreas fault (SAF) system (California, 
USA), a series of oblique strike-slip faults in 

the Mecca Hills connect to the southern SAF at 
depth in a positive flower structure (Sylvester 
and Smith, 1976; Fuis et al., 2017). Geophysi-
cal data show recent triggered and spontaneous 
shallow creep events along the southern SAF 
and other minor structures in the area (Allen 
et al., 1972; Lindsey et al., 2014; Tymofyeyeva 
et al., 2019; Parker et al., 2021). Prior work 
revealed hematite-coated slip surfaces in some 
basement fault zones in the Mecca Hills (Moser 
et al., 2017). Limited hematite He analyses iden-
tified Pleistocene hematite mineralization events 
at ∼1–2 km depth (Moser et al., 2017), plac-
ing these surfaces at the target depth range to 
evaluate whether they accommodated shallow 
slow slip in the past. Here we expand this Mecca 
Hills hematite He data set and integrate new 
field and microstructural results to document 
where, when, and how hematite fault damage 
forms and deforms, with implications for how 
deformation occurs at depth today in the south-
ern SAF system.

BASEMENT-HOSTED FAULT DAMAGE 
IN THE MECCA HILLS

Transpression on the SAF and other related 
faults initiated in the Pliocene, exhumed Pre-
cambrian crystalline basement and Orocopia 
Schist in the Mecca Hills, and formed adjacent 
sedimentary basins (Sylvester and Smith, 1976; 
Fattaruso et al., 2014; McNabb et al., 2017; 
Moser et al., 2017; Bergh et al., 2019; Spo-
tila et al., 2020). Oblique strike-slip faults cut 
basement and Pliocene–Pleistocene sedimentary 
rocks, delineating separate fault blocks (Fig. 1; 
Sylvester and Smith, 1976). Incised canyons 
expose fault zones <1 km wide, including the 
Painted Canyon fault (PCF) and Platform fault 
(PF), that bound the Platform block (Sylvester 
and Smith, 1976). We identified a map-scale, 
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low-angle normal fault in the Platform block that 
offsets different basement rock types. This fault 
does not deform the overlying sedimentary rock, 
and thus initial faulting predates this deposition 
(Fig. S1 in the Supplemental Material1).

Fe-oxide-coated slip surfaces are ubiquitous 
in basement damage zones of the PCF and PF 
and are locally observed in the Platform block. 
We focus on pure hematite surfaces amenable 
to (U-Th)/He analysis, which occur as networks 
of minor (1 cm2 to 1000 cm2 surface area) faults 
cutting chlorite-rich schistose gneiss and epi-
dote-rich granite (Figs. 1 and 2A; Table S1; 
Figs. S2 and S3). These dominantly north-
northwest– and northeast-striking surfaces are 
metallic, blue-gray, and curviplanar, with linear 
and/or curved slickenline orientations indicating 
oblique and dip slip with millimeter-scale offset. 
Newly observed mixed hematite-clay slip sur-
faces occur within and adjacent to layered clay 
gouge zones of map-scale faults.

MICROSTRUCTURAL 
CHARACTERIZATION

Scanning electron microscopy (SEM) with 
energy dispersive X-ray spectroscopy (EDS) was 
used to characterize 50-μm- to 2-mm-thick fault 
surfaces (n = 10) with nanometer-scale hematite 
plates that appear opaque in thin section (see the 
Supplemental Material for details; Fig. 2; Fig. 
S4). EDS data show some surfaces comprise 
interlayered and/or cross-cutting hematite veins 
with calcite and phyllosilicate veins (Fig. 2B). 
A subset of surfaces have cataclasite with a 
hematite matrix and clasts of host rock and/or 
reworked clasts of secondary calcite, phyllosili-
cate, or hematite veins (Fig. 2C). Foliated hema-
tite locally exhibits S-C fabrics, hematite-tailed 
clasts, and hematite “fish”, analogous to mica 
fish (Fig. 2F; Fig. S5). Some surfaces display 
∼10–100-μm-wide, ∼100-μm- to 1-mm-long 
hematite-filled injection veins into host rock or 
calcite oriented perpendicular to the fault surface 
(Fig. 2D; Fig. S5).

Foliated, high-aspect-ratio hematite plate-
lets are planar or cuspate in cross section with 
smooth or serrated grain boundaries (Fig. 2G; 
Fig. S6). Some surfaces also exhibit euhedral, 
hexagonal plates with equant c-axis-perpendicu-
lar cross sections (Fig. 2E; Fig. S6). For aliquots 
analyzed for thermochronometry, we quantified 
hematite plate-width distributions (n = 1567) 
from SEM images because this dimension is 
the minimum He diffusion domain length scale 

(see the Supplemental Material). Plate-width 
measurements display a left-skewed normal dis-
tribution of 12–87 nm with a mean of 31 nm 
(Fig. S7); plate lengths are ∼200 nm to 1 μm. 
Observed phyllosilicates exhibit similar dimen-
sions (Figs. S5 and S6).

HEMATITE (U-Th)/He DATA
Hematite aliquots were analyzed for He, 

U, and Th content at the Arizona Radiogenic 
Helium Dating Laboratory at the University of 
Arizona (Tucson, Arizona, USA) using apa-
tite lasing temperatures (to prevent U and Th 
volatilization) and modified zircon dissolution 
procedures (see the Supplemental Material for 
analytical details). We present 64 new individ-
ual hematite He dates from 17 samples on 15 
fault surfaces collected from eight sites (Table 
S2; Figs. S3 and S8) and combine these data 
with results previously reported by Moser et al. 
(2017; 24 aliquots from five surfaces; Fig. 1). We 
report mean dates ±1σ standard deviation for 
all samples because they yield <15% standard 
deviation, except for two samples at site D20-6 
(with a combined 26% standard deviation), 
where we report the range of individual aliquot 
dates with their 2σ analytical uncertainty (cf. 
Flowers and Kelley, 2011). We do not apply an 
alpha (α)–ejection correction to individual dates 
because α-ejection from one crystal is balanced 
by He implantation from another crystal in dense 
polycrystalline material, and ∼75–200-μm-thick 
aliquots were extracted from slip surfaces that 
developed within larger hematite veins. Con-
sideration of α-ejection from aliquot margins 
would at most increase dates by 12% (see the 
Supplemental Material). For samples with dates 
<1 Ma, variable [234U/238U] and [230Th/238U] 
activity ratios may cause <15% error on indi-
vidual analyses, within the standard deviation 
for most samples (cf. Farley et al., 2002; see the 
Supplemental Material).

We delineate four hematite He sample 
groups by structural position along a southwest-
northeast transect: (1) west of the main PCF near 
a faulted basement-sedimentary rock nonconfor-
mity, (2) within the voluminous PCF zone, (3) 
near the low-angle normal fault in the Platform 
block, and (4) near the PF (Fig. 3). Mean dates 
from samples in group 1 are 0.79 ± 0.01 Ma 
and 0.70 ± 0.09 Ma, those in group 2 range 
from 0.71 ± 0.03 Ma to 0.38 ± 0.01 Ma, 
those in group 3 are 0.42 ± 0.05 Ma and 
0.36 ± 0.02 Ma, and those in group 4 are 
0.63 ± 0.09 Ma (Fig. 3). Individual dates from 
site D20-6 in group 2 range from 2.2 ± 0.1 Ma 
to 0.99 ± 0.04 Ma.

SHALLOW PLEISTOCENE HEMATITE 
PRECIPITATION

Polycrystalline hematite has a (U-Th)/He 
closure temperature (Tc) of ∼25–250 °C (Far-
ley, 2018) that is controlled by the grain-size 

1Supplemental Material. Method details for SEM 
and grain-size analyses, hematite (U-Th)/He analyses, 
alpha-ejection correction derivation and calculations, 
as well as a discussion of data outliers and disequi-
librium; and three tables and 11 additional figures 
including field, sample, and aliquot photographs; SEM 
images; schematic for alpha-ejection calculation; and 
additional hematite (U-Th)/He data plots. Please visit 
https://doi​.org​/10​.1130​/GEOL.S.21183715 to access 
the supplemental material, and contact editing@geo-
society.org with any questions.

Figure 1.  Simplified geologic map of the Mecca Hills, California (USA), with site locations, 
modified from Fattaruso et al. (2014), McNabb et al. (2017), and Moser et al. (2017). Previously 
published hematite He (Moser et al., 2017) and apatite He (Moser et al., 2017; Spotila et al., 2020) 
are shown. SAF—San Andreas fault; SCF—Skeleton Canyon fault; PCF—Painted Canyon fault; 
PF—Platform fault; ECF—Eagle Canyon fault; A-A′—line of cross section shown in Figure 4A. 
White box shows Google Earth™ inset location with site details.

Downloaded from http://pubs.geoscienceworld.org/gsa/geology/article-pdf/doi/10.1130/G50489.1/5720577/g50489.pdf
by Utah State University Libraries user
on 21 October 2022

https://doi.org/10.1130/GEOL.S.21183715
https://doi.org/10.1130/GEOL.S.21183715


Geological Society of America  |  GEOLOGY  |  Volume XX  |  Number XX  |  www.gsapubs.org	 1445

distribution. Because hematite can precipitate at 
temperatures above or below its Tc, we interpret 
the significance of our hematite He data using Tc 
estimates from our plate half-width distributions 
and ambient thermal conditions constrained by 
adjacent basement apatite (U-Th)/He (apatite 
He) thermochronometry. Assuming the diffusion 
kinetics of Farley (2018), a spherical geometry 
that yields a conservative lower Tc (compared to 
plane-sheet geometry), and 10 °C/m.y. cooling 
rate, calculated hematite He Tc values are ∼60–
72 °C (Fig. S7). This Tc range overlaps with that 
of the apatite He system (Flowers et al., 2009), 
so dates from each system may be directly com-
pared (Fig. 3). Individual ca. 1.6–0.8 Ma apatite 
He dates across the Platform block record rapid 
exhumation through <1.5 km depth at that time 

(Moser et al., 2017; Spotila et al., 2020). Out-
side the Platform block, apatite He dates are 
ca. 18–3 Ma, implying slower and/or a lower 
magnitude of exhumation (Fig. 3).

Across our transect, most (91%) individual 
hematite He dates are younger than structur-
ally adjacent apatite He dates (Fig. 3) despite 
similar calculated Tc for all hematite aliquots 
and between the hematite He and apatite He 
systems. These patterns indicate mean hematite 
He dates from these samples do not record ambi-
ent cooling and instead record hematite forma-
tion from ca. 0.8 Ma to ca. 0.4 Ma at <1.5 km 
depth. Consideration of the maximum aliquot 
α-ejection correction factor or disequilibrium 
effects does not change these interpretations. 
Individual hematite He dates from site D20-6 

(group 2) overlap with nearby apatite He dates; 
these hematite He results reflect cooling due to 
exhumation, with a minimum formation age of 
ca. 2.2 Ma.

We interpret that mean hematite He dates 
record episodic mineralization events because 
variation in mean dates among samples 
(∼0.43 m.y.) exceeds the maximum intrasample 
data scatter (∼0.26 m.y.). Intrasample scatter 
may reflect that aliquots capture multiple Pleis-
tocene hematite generations (i.e., mixed ages). 
Within the PCF (group 2), mean dates from dif-
ferent slip surfaces within a site show broadly 
contemporaneous hematite formation (e.g., site 
D20-4) and distinct periods of mineralization 
(e.g., site D20-3/PCF28-PCF36; Fig. 3; Table 
S2). Group 3 hematite He dates are from minor 

A B C

F G

D

E

Figure 2.  (A) Hematite slip surfaces in the Painted Canyon fault (Mecca Hills, California, USA). (B–D) Backscatter electron (BSE) images of 
slip surface with interlayered hematite (hem), phyllosilicates (phy), and calcite (cal) (B); reworked clast (C); and hematite injection vein (D). 
(E–G) Secondary electron (SE) images of euhedral hematite plates and phyllosilicates (E); hematite S-C fabric (F), and anastomosing hema-
tite plates (G).

Figure 3.  Individual hema-
tite (U-Th)/He dates ±2σ 
analytical uncertainty. 
x-axis is position (not to 
scale) along the south-
west-northeast transect; 
top bar is the date group 
and structural context. 
New site labels are shown 
in italics. Squares (this 
study) and diamonds 
(Moser et  al., 2017) are 
colored by site; shades 
are different samples; 
sample mean ± standard 
deviation is shown. Com-
parison apatite He dates, 
circles (Moser et al., 2017; 
Spotila et  al., 2020), for 
each group are plotted 
to the left of hematite He 
dates. sed.—sedimentary; 
PCF—Painted Canyon 
fault; PF—Platform fault.
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slip surfaces in the damage zone of the low-
angle fault within the Platform block that likely 
predates the SAF. Collectively, these hematite 
data patterns support the episodic creation and 
reactivation of Pleistocene hematite fault dam-
age of larger structures linked to or not associ-
ated with the SAF.

REPEATED SLOW SLIP ON HEMATITE 
SLIP SURFACES

We suggest injection veins at the base of 
some slip surfaces reflect initial hematite pre-
cipitation during transient fluid overpressure 
events. Along other slip surfaces, fluid-rock 
interaction, including with lower-permeability 
clay minerals, mobilized Fe and precipitated 
hematite along precursor grain interfaces and 
in veins. Interlayered and cross-cutting hema-
tite and calcite veins, as well as clasts of older 
hematite veins, indicate repeated and episodic 
hematite precipitation on individual slip sur-
faces. Hematite textures, such as S-C fabrics, 
demonstrate ongoing slip occurred on these sur-
faces following hematite growth (Fig. 2).

Hematite grain morphologies along slip sur-
faces are distinct from polygonal or sintered 
grains associated with coseismic friction-gen-
erated heat (Ault et al., 2019; Calzolari et al., 
2020) or comminuted and recrystallized par-
ticles formed during propagation of seismic 
slip at shallow depths (Taylor et al., 2021) 
documented at other locations, indicating our 
observed textures did not form during seismic 
events. Our observed hematite plates have a 
similar aspect ratio to phyllosilicate sheets. 
The platy structure and crystal-bound water in 
phyllosilicates contribute to a low coefficient 
of friction and velocity-strengthening behavior 

that promote stable sliding (Moore and Lock-
ner, 2004; Collettini et al., 2009; French et al., 
2015). Phyllosilicate-rich rocks can produce 
transient slow-slip events in the lab (Ikari, 
2019). Although hematite does not contain crys-
tal-bound water, experimental data (Calzolari et 
al., 2020) reveal its coefficient of friction may 
be comparable to that of phyllosilicates, sug-
gesting similar frictional behavior.

Preserved plates, homogenous grain-size dis-
tributions, and foliated textures (Fig. 2) show 
hematite did not experience post-formation com-
minution and instead deformed by interplate 
sliding. Reproducible intrasample hematite He 
dates record hematite growth and indicate that 
repeated reactivation of these surfaces occurred 
at slip rates slow enough to not induce post-for-
mation He loss. These observations imply hema-
tite formed and continued to deform by slow slip.

GEOLOGIC CONTROLS ON SHALLOW 
TRANSIENT SLOW SLIP

Hematite He thermochronometry lacks the 
temporal resolution to characterize the time 
scale(s) of a slow-slip (or earthquake) cycle. 
However, these data bracket episodes of past 
fault damage creation and, when integrated with 
microstructures, inform transient aseismic slip 
processes, such as slow-slip events, that may 
occur at depth today along shallow continental 
faults including the SAF. In the Mecca Hills, 
we interpret that networks of small hematite slip 
surfaces, each with millimeters of cumulative 
offset, in damage zones of the PCF and PF and 
structures within the Platform block developed 
by repeated, transient slow slip at <1.5 km depth 
between ca. 0.8 Ma and 0.4 Ma. Transient slow 
slip was subsequently localized on these sur-

faces, likely even after ca. 0.4 Ma. Hematite fault 
damage is preserved as far as 4 km perpendicular 
to the main trace of the southern SAF, revealing 
the spatial scales of past transient slow slip in 
off-fault damage of the SAF system (Fig. 4A).

Development of hematite fault damage influ-
ences shallow fault rheology that may contribute 
to slow slip at depth in the southern SAF system 
(Fig. 4) and other continental faults worldwide 
(e.g., Calzolari et al., 2018; McDermott et al., 
2021). We suggest that hematite damage ini-
tially forms by pore-fluid overpressure and fluid-
rock interaction reflecting transient slow slip 
(Fig. 4B). Once formed, slip-surface networks of 
anisotropic, foliated hematite (Fig. 4B), which 
may be weaker than the surrounding basement 
rock, continue to deform by transient slow slip. 
Observations from the shallow rock record 
reveal hematite, like phyllosilicates, may play 
a role in accommodating the aseismic propaga-
tion of transient or triggered slow slip, poten-
tially distributing earthquake energy or facilitat-
ing arrest of earthquakes in the shallowest crust.
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