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Abstract

We present a new software package called M-Chem that is designed from scratch in C++ and parallelized
on shared-memory multi-core architectures to facilitate efficient molecular simulations. Currently, M-
Chem is a fast molecular dynamics (MD) engine that supports the evaluation of energies and forces
from two-body to many-body all-atom potentials, reactive force fields, coarse-grained models, combined
quantum mechanics molecular mechanics (QM/MM) models, and external force drivers from machine
learning, augmented by algorithms that are focused on gains in computational simulation times.
M-Chem also includes a range of standard simulation capabilities including thermostats, barostats,
multi-timestepping, and periodic cells, as well as newer methods such as fast extended Lagrangians and
high quality electrostatic potential generation. At present M-Chem is a developer friendly environment in
which we encourage new software contributors from diverse fields to build their algorithms, models, and
methods in our modular framework. The long-term objective of M-Chem is to create an interdisciplinary
platform for computational methods with applications ranging from biomolecular simulations, reactive
chemistry, to materials research.



1 Introduction

Computer simulations are undoubtedly established as one of the main pillars of modern research, accelerating
scientific progress in the molecular sciences including biomolecular modeling, computational quantum
chemistry, and materials science research. Each of these scientific domains are supported by a variety of
codes that incorporate a combination of software efficiencies and new algorithms that avoid bottlenecks
and/or reduce unfavorable scaling, thereby allowing for exploration of ever increasing system sizes and
longer timescales. This opens up the question - why is there a need for another simulation software package?

We believe there are three primary reasons. The first is that simulation codes are siloed into scientific
domains that insufficiently bridge across different simulation communities. Software packages such as
Amber!, Charmm?, NAMD?, and GROMACS* are popular in the biomolecular simulation community,
whereas LAMMPS is viewed primarily as a materials research code®, and many quantum chemistry codes%?
are not particularly compatible with classical simulations and/or require plane wave implementations
to describe electronic structure. A second reason is that software implementations for advanced force
fields comprising many-body potentials or reactive force field models are insufficiently optimized, thereby
limiting their wider adoption by consumers of molecular simulation software.” Finally it is well appreciated
that large software packages benefit greatly from ground up rewrites, creating new opportunities for
software efficiency, ease of development and use, exploiting new hardware paradigms, and seamless software
integration and interoperability.

In that spirit we present a new software package called M-Chem that is designed to facilitate efficient
molecular simulations on shared-memory multi-core architectures to address these issues. M-Chem, like all
new software packages, is incomplete and yet is rapidly expanding its simulation capabilities. Hence some
users may find that their research objectives may well be met with many of the features that we describe
here. At present M-Chem enables users to run efficient MD simulations for molecular liquids using pairwise
to many-body non-reactive force fields® 1, ReaxFF simulations!!:!2 coarse-grained electron (C-GeM)!3
and monoatomic-water (mW) simulations!*, and forces derived from machine learning models created
with PyTorch by utilizing the Torch C++ library. Standard, but critical, MD algorithms include periodic
boundary conditions, particle mesh Ewald!®, targeted ensembles such as NVT and NPT using velocity
scaling Berendsen thermostats, as well as extended system Nose-Hoover thermostats and barostats. 16
There is an emergent analysis toolkit of simulated properties, including the ability to generate electrostatic
potentials at protein surfaces using C-GeM, whose accuracy is comparable to some of the best ab initio
charge partitioning methods at orders of magnitude less cost.!” Furthermore, we introduce Q-Force as an
automated approach to small molecule force field development for M-Chem utilizing ab initio quantum
chemistry calculations.!® Both standard conjugate gradient self-consistent field (CG-SCF)!? and extended
Lagrangian formulations®® are available to solve the many-body energy and force solutions, including
iEL/0-SCF?! and SC-XLMD?? that are iteration-free algorithms for classical polarizable and ReaxFF
models, respectively. M-Chem also has multi-scale capabilities with mechanical and simple electrostatic
(point charge) embedding, exploiting some of the common libraries between M-Chem and Q-Chem such
that the interface is internal to M-Chem. All of these features are described in some detail below.

Finally, M-Chem is an attractive developer platform and environment. The M-Chem package is entirely
written in C++, with an overall architecture that facilitates excellent transferability and code readability.
M-Chem is composed of independent modules (libraries) and a developer can decide which libraries they
want to include in their project, which makes the code cleaner and reduces the compilation and linking
time. From the computational software engineering perspective, the M-Chem project follows software
best practices including extensive unit testing and full documentation. M-Chem has been optimized for
excellent on-node parallel performance on modern hardware architectures using OpenMP, even on desktop
machines, and thus provides a solid basis for extending the paradigm to efficient Graphical Processing
Units (GPUs) and multi-node parallelization with the Message Passing Interface (MPI) in the future. As



we show, M-Chem strives for both accuracy and greater tractability, utilizing novel methodology alongside
code optimization that provides faster turnaround and greater interoperability capabilities compared to
other software packages. This manuscript serves the primary purpose as an open invitation to software
developers who will receive M-Chem source code in exchange for software contributions that builds up
capabilities that further benefit developers and users across multiple scientific domains.

2 Biomolecular, Chemical, and Materials Force Fields in M-Chem

The vast majority of all-atom MD simulation studies use classical pairwise fixed-charge electrostatics
because the MD engine is so well-tuned and optimized for such force fields. M-Chem fully supports such
partial charge models for liquids such as water or chain molecules such as proteins. Even so, the failures
of pairwise additivity have been made clear in a number of simulation studies.?326 Therefore classical
potential energy surfaces are evolving towards more intricate models based on the following energy (and
force) contributions

Eing = Evalence + Eelec + EPauli + Edisp + Epol (1)

where Eyalence corresponds to geometric terms that are designed to capture chemical connectivity but
not reactivity, and the FEeec, Epaui, Eaisp, and Epq terms correspond to the non-bonded permanent
electrostatics, Pauli repulsion, dispersion, and polarization energies, respectively. These terms are the
accepted areas for accuracy improvements of advanced force fields. 2% Furthermore, most many-body
force fields have neglected certain interactions such as charge penetration and charge transfer, and thus
they rely on, but do not always demonstrate, how cancellation of errors occurs among the remaining
molecular interactions accounted for such as exchange repulsion, electrostatics, and polarization. Our
recent (many-body) MB-UCB force field for water!® and ions?” explicitly accounts for the decomposed
molecular interactions commensurate with the variational absolutely-localized molecular orbitals (ALMO)
analysis?®?? including charge penetration and transfer, and makes force field design choices that reduce the
computational expense while remaining accurate. We have completed a bottom to top software creation of
a MD engine in C++ in M-Chem that encompasses both simple partial charge and advanced non-reactive
force fields with point multipole electrostatics and many-body polarization as developed in force fields
such as AMOEBA 93031 and AMOEBA +32, EFP33, GEM 3435 HIPPO?36, SIBFA37, MB-Pol3839 and the
MB-UCB force-field 19:27:40,

Another addition to the model suite in M-Chem is the reactive force-field, ReaxFF.5!2 We have
implemented the ReaxFF model based on the 2008 description of the force field%', and it is thoroughly
validated against the implementation of the same force field in LAMMPs*2. We also verified the integrity
of the implementation through extensive testing of all gradient terms on a wide variety of test systems.
Originally, ReaxFF utilized the electronegativity equalization method (EEM) method** 4% which manifests
charge rearrangements by adopting atomic electronegativity and atomic hardness as fitting parameters to
DFT derived Mulliken charges. 44> The 2008 ReaxFF model in M-Chem supports the EEM extension
developed by Rappé and Goddard by replacing the standard Coulomb potential with a shielded electrostatic
term, and using experimental atomic ionization potentials, electron affinities, and atomic radii as the
input data for optimizing the charge rearrangements in response to nuclear displacements. % We have
also developed a ReaxFF model that replaces EEM with the novel Coarse-Grained Electron Model (C-
GeM). 1347 The C-GeM model represents atoms in terms of a core-shell model, with nuclei being positive
cores surrounded by separable electronic shells, with both described by Gaussian charge distributions. This
greatly improves the accuracy of the ReaxFF force field without any significant increase in computational
time. At this point in time, the ReaxFF energy and gradient terms are all complete, but the code is
being optimized, so we have not extensively timed it against other implementations. Additionally, we wish
to incorporate recently introduced corrections®® which smooth slight discontinuities in ReaxFF, thereby



greatly improving energy conservation in the microcanonical ensemble.

Finally, M-Chem aims to be an open platform development for coarse-grained models. To illustrate,
we have implemented the monoatomic-water (mW) model develop by Molinero and co-workers, which is
a single site water model that exhibits both cooperativity and directional hydrogen-bonding of water in
various phases'44973! based on the Stillinger Weber Potential for tetrahedral systems®2. The mW model is
found to be in good agreement with experimental data on water energetics, density, structure, and phase
14 “and in the limit of high cooperativity phase separation of liquid water itself was observed in
the supercooled state. Recently the mW water model was combined with a CG protein model to study
antifreeze proteins. 3?4 In this case the coarse-grained model is comprised of an attractive 2-body potential
with a (1/r*) distance dependence screened with an exponential, and a repulsive 3-body potential with a
cosine squared angular dependence that penalizes non-tetrahedral configurations, and a product of two
scaled exponentials with exp(1/r?) distance dependence. This approach of coarse-graining to effective
potentials has been shown to agree well with all-atom potentials for force matching.®> 63

transitions

3 Performance of Non-Reactive Force Fields on Multicore Nodes

Software implementations of models such as AMOEBA and MB-UCB, when insufficiently optimized, limit
their greater adoption by consumers of molecular simulation software.” This is because the fastest MD codes
for fixed charge models such as CHARMM %4, NAMD? and GROMACS* efficiently exploit heterogeneous
computing, and hence define the aspirational goals for M-Chem to improve scaling performance for advanced
many-body potentials and forces. Shared-memory CPUs are an obvious target for a new software platform
given widely available computing resources ranging from mid-range compute clusters, cloud computing, and
even supercomputer centers. This is recognized by the NAMD?3 and GROMACS* teams, whose software
packages are leaders in performance in the 10-200-core regime as demonstrated in a recent comparison %4.

However, both packages lack the optimization for advanced force fields that utilize multipolar electro-
statics and point dipole polarization, core-shell models such as C-GeM, and overall advanced force fields
often scale poorly on multicore architectures. This limitation is significant since recent hardware offerings
that arrived in late 2019, the 2nd generation AMD EPYC processors, can now support up to 128 CPU
cores per node. With two-way simultaneous multithreading, with each core doubling the current peak
rate to 33.6 GFLOPS, the tripling of the core count of previous generation CPU configurations is a great
opportunity for modernized parallel software.

Parallel efficiency of codes is most commonly measured in terms of weak scaling. But as recently stated
by Abraham and co-workers for CPU optimization of European-based GROMACS: "When studying a
protein system with 30,000 atoms, it is not relevant that a virus comprising 10 million atoms would scale
better. Therefore, weak scaling performance is typically not of primary concern."* We therefore consider
not just weak but strong scaling performance as well for the two most time-consuming parts of evaluation
of an MD step in the many-body models: the fixed-radius nearest neighbor search and force field evaluation
whose kernel is the non-bonded forces. In this section we compare parallel scaling benchmarks for the MD
engine of M-Chem utilizing OpenMP on a single node and compared to the high-performance TINKER-HP
software package developed by the European group of Piquemal and co-workers%®, and written in Fortran
with MPI parallelization.

OpenMP parallelization of fixed-radius nearest neighbor evaluations. Due to the computational com-
plexity of the nonbonded terms in force fields, neighbor lists are essential to attain them with linear cost
scaling by only evaluating a subset of atom pairs located within a defined cutoff radius. In particular, the
real-space Ewald and van der Waals pair list need to be evaluated with a reasonable frequency to account
for atoms’ movement during updates through integration of the equations of motion. When the pair list
is evaluated for the whole system, the computational complexity becomes significant and therefore well
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Figure 1: Strong scaling performance of neighbor list evaluation comparing M-Chem and
Tinker-HP. A: Total execution time of a single fixed-radius neighbor list evaluation per number of cores
on a large water system. B: Tinker-HP /M-Chem execution time ratio.

scaling algorithms become critical. Additionally, due to the nature of the AMOEBA force field, positions
of atomic centers for certain atoms evaluated with the van der Waals interaction are scaled with respect to
the atomic centers, which effectively means that two pair lists need to be evaluated.

Designing an efficient parallel fixed-radius nearest neighbor (fRNN) algorithm with O(n) memory cost
scaling and O(nlogn) computational scaling is difficult, however we are able to lean on recent developments
for similar algorithms for image and volumetric data processing that have not been used in molecular
simulation software previously.®® The execution time of a single neighbor list evaluation for a system of over
2 million atoms is shown in Figure 1, comparing M-Chem’s octree fRNN algorithm with the linked cells
fRNN method available in Tinker-HP. The execution time demonstrates that M-Chem’s implementation is
approximately 4-5 times faster than Tinker-HP’s for serial execution on a single core, and outperforming
TINKER-HP albeit with increasingly smaller gaps as core count increases. Even so, M-Chem yields a
factor of 2 and 1.4 improvement over Tinker-HP for 64 and 128 cores, respectively (numerical values are
provided in Table S1).

OpenMP parallelization of force field evaluations per MD step. Next we consider the parallelization
of the MD step, equivalent to the force evaluations based on Eq. (1). Provided that the topology of the
molecules are known, parallel algorithms that run in linear time are straightforward to implement for the
valence terms. Instead the rate-limiting step of Eq. (1) are the non-bonded interactions, especially the
long-range electrostatic terms that require computing multipole and induced dipole moments on a grid and
performing fast Fourier transforms (FFTs) to complete the Ewald model. !> While FFTs are also relatively
straightforward with existing high-performance software libraries%7:68 the electrostatic multipole moments
and inducible dipoles present several difficulties that requires a carefully designed algorithm. Our approach
is similar to other codes by using spatial localization to form batches of multipoles, and the grid assigned
to processors followed by parallel accumulation on the final grid. %971

The M-Chem strong scaling parallel performance of force-field evaluation using Eq. (1) is presented
in Table 1 in which we compare the timings of 20 iterations of energy and gradient evaluations against
Tinker-HP for methanol (978,000 atoms) and water (2,203,614 atoms). The liquid methanol system invokes
two sets of induced dipoles (treated with p- and d-scaling to separately evaluate intra- from intermolecular
polarization3?), and gives us a sense of what performance looks like for the proteinaceous component of a
protein-solvent system. We have found it worthwhile to optimize the water force field separately, which
only invokes p-scaling (i.e. no intramolecular polarization is operative), as it is almost always the relevant
solvent in simulation studies. M-Chem utilizes the fact that systems where all molecules belong to a single
polarization group can be evaluated in a significantly simplified and more efficient manner.



Table 1: Strong scaling execution time [s| of 20 iterations of the AMOEBA force field energy and gradient
evaluation across different systems and algorithms. The cutoffs for the van der Waals and real-space Ewald
terms were set to 12.0 and 7.0 A respectively. The induced dipole convergence was set to 1075 D.

978,000 atoms methanol box Ncpus
1 4 8 16 32 64 128
M-Chem iEL/0-SCF 2330.0 643.0 346.0 200.0 124.0 89.0 94.0
M-Chem CG-SCF 3054.0 834.0  447.0 259.0 150.0 110.0 108.0
Tinker-HP DC/JI DIIS 3478.0 1010.0 545.0 288.0 180.0 123.0 120.0
M-Chem Direct 2268.0 620.0 324.0 186.0 105.0 74.0 66.0
Tinker-HP Direct 2713.0 794.0 422.0 221.0 136.0 92.0 90.0
61,000 atoms methanol box Ncpus
1 4 8 16 32 64 128
M-Chem iEL/0-SCF 141.0 41.0 22.0 13.0 8.0 7.0 8.0
M-Chem CG-SCF 181.0 52.0 28.0 17.0 10.0 8.0 11.0
Tinker-HP DC/JI DIIS 183.0 49.0 30.0 15.0 10.0 7.0 -
M-Chem Direct 141.0 38.0 20.0 11.0 7.0 5.0 6.0
Tinker-HP Direct 144.0 40.0 22.0 12.0 7.0 7.0 -
2,203,614 atoms water box Ncpus
1 4 8 16 32 64 128
M-Chem iEL/0-SCF 5605.0 1529.0 791.0 438.0 250.0 167.0 162.0
M-Chem CG-SCF 6753.0 1855.0 972.0 545.0 301.0 213.0 215.0
Tinker-HP DC/JI DIIS 11008.0 3610.0 1692.0 713.0 522.0 369.0 388.0
M-Chem Direct 5095.0 1401.0 723.0 398.0 234.0 152.0 153.0
Tinker-HP Direct 8760.0 2899.0 1488.0 698.0 462.0 289.0 256.0
96,000 atoms water box Ncpus
1 4 8 16 32 64 128
M-Chem iEL/0-SCF 219.0 61.0 32.0 17.0 10.0 7.0 7.0
M-Chem CG-SCF 254.0 70.0 37.0 21.0 13.0 10.0 11.0
Tinker-HP DC/JI DIIS 282.0 77.0 43.0 22.5 14.0 11.0 -
M-Chem Direct 206.0 57.0 29.0 16.0 9.0 7.0 7.0
Tinker-HP Direct 225.0 61.0 34.0 18.0 11.0 7.0 -

It is important to note in this comparison that the SCF solution to polarization is evaluated differently

in the two codes. M-Chem is using conjugate gradients SCF (CG-SCF)!? with the electric field from fixed
multipoles as an initial guess, while Tinker-HP is evaluated with a divide-and-conquer Jacobi iterations
with direct inversion in the iterative subspace extrapolation (DC/JI-DIIS) " which is more efficient than
the CG-SCF method. Even so, and regardless of the number of cores used, M-Chem performs better. But
to consider a more direct comparison between the codes, we consider the evaluation of the AMOEBA force
field without mutual polarization, but just direct polarization as per the iAMOEBA model 7, such that
the rate-limiting step is the 2-body multipolar permanent electrostatics. Table 1 shows that the multipolar
electrostatics and corresponding evaluation of electric fields is ~30% faster for the methanol system and
~90-100% faster for the large water box.

Weak scaling performance for force field evaluations. The comparison of weak scaling between M-Chem



and Tinker-HP is presented in Figure 2 and Table S2; where the size of the system per CPU is approximately
15,000 atoms for methanol and 17,000 atoms for water. In the top panel of Figure 2 we first consider the
evaluation of AMOEBA with direct polarization (direct SCF in Table S2), such that the rate-limiting
step is again the 2-body multipolar permanent electrostatics. It is evident that the parallel efficiency for
M-Chem is superior to TINKER-HP with performance gains increasing with increasing core count, with
the best performance gains of 60% (methanol) and 90% (water) using 128 cores. For the timings with
polarization in the bottom panel of Figure 2, M-Chem outperforms Tinker-HP for all core counts, with
the biggest gap of 33 seconds on 128 cores for the ~1M atom methanol box, and saving 193 seconds and
approximately 90% of the time used by TINKER-HP for the 2 million atom water system (numerical values
are given in Table S2).

Often the overall performance of an MD code is measured in terms of number of ns of simulation
executed per day. The standard system used for such benchmarking is the prototypic dihydrofolate
reductase (DHFR) solvated in explicit water from the joint AMBER/CHARMM benchmark. Since a full
protein front-end features have not yet been fully implemented in M-Chem, we performed the benchmark
on a methanol box (23,556 atoms), and the best performance results using OpenMP were obtained on 64
cores, yielding the same performance of the MPI version of Tinker-HP using 64 cores of ~1.2 ns/day, and
a factor of 6X compared to the TINKER reference code. Even so, the next step for M-Chem is to pursue
hybrid OpenMP /MPI to improve on node performance and to advance to cross-node MPI parallelization
that will benefit large systems.

One of the goals of M-Chem is to also support a diverse set of models and algorithms to expand the
timescales and lengthscales of MD simulation and to provide necessary statistical mechanics capabilities.
The M-Chem MD engine is thus already imbued with standard velocity scaling including Nose Hoover
thermostats and barostats 6, periodic boundary conditions using cubic cells, and conjugate gradients for
minimization and appropriate pre-conditioners for conjugate gradients used in the self-consistent field step
for solving sets of linear equations (such as for polarization).

The choice of the algorithm to treat polarization or charge equilibration is of paramount importance to
overall efficiency of force field evaluation for non-reactive and reactive force fields. Albaugh and co-workers
have introduced a number of extended Lagrangian approaches that reduces SCF cycles by half (iEL/SCF) 20
or eliminates the self-consistent field step altogether (iEL/0-SCF)?2! for non-reactive force fields such as
AMOEBA or MB-UCB. Most recently we combined iEL/0-SCF with a stochastic integration scheme that
allows for a longer time step using a multi-time stepping algorithm, SIN(R), developed by Tuckerman and
co-workers. "7 Depending on system and desired accuracy, the iEL/0-SCF and SIN(R) combination yields
lower bound computational speed-ups of 6-8 relative to a standard Verlet integration step using a standard
SCF solver.”™ This benefits not only polarization, but the simple induction-like model for charge transfer
of the MB-UCB model. The results in Figure 2 show that, for the cases of both methanol and water,
M-Chem’s default extended Lagrangian integrator decreases execution time further (black dots) than the
SCF solver. Furthermore, the EEM or charge equilibration method (CEM or qEq) electrostatics of the
ReaxFF model in M-Chem can be solved using either a pre-conditioned conjugate gradient method, and
we are in the process of implementing the iEL/SCF ™ and SC-XLMD?? extended Lagrangian approaches
that should increase simulation timescales dramatically for ReaxFF simulations.

4 Interoperability in M-Chem: PyTorch and Q-Chem

Machine learning interfaces. The rise of machine-learned models in biology, chemistry, and materials
science "7 is tackling everything from materials property prediction to learning the energies and forces of
complex system with good to excellent ab initio quality. This exciting and burgeoning area has resulted in

many different neural network-based force field models 7?82, and hence we have defined a generic interface
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Figure 2: Weak scaling performance of AMOEBA force field components comparing M-Chem
and Tinker-HP. Total execution time per number of cores for 20 iterations of force-field evaluations
for a (A) methanol box (approx. 15,000 atoms per CPU) and (B) water box (approx. 17,000 atoms
per CPU), both with only direct polarization ", and largely probing timings for multipolar electrostatics.
Total execution time per number of cores for 20 iterations of the complete AMOEBA force-field (including
polarization) for a (C) methanol box (approx. 15,000 atoms per CPU) and (D) water box (approx. 17,000
atoms per CPU). The cutoffs for the van der Waals and real-space Ewald terms were set to 12.0 and 7.0 A
respectively. The induced dipole convergence was set to 10> D. This figure also compares different SCF
algorithms: CG-SCF and iEL/0-SCF for M-Chem and DC/JI DIIS for Tinker-HP.

for ML FF models built with the PyTorch framework.®3 This is made possible by the ability of PyTorch to
compile its own models into a byte-code representation which can then be loaded and evaluated by libtorch,
which is a full-featured front-end API for PyTorch written in C++. This means that all we need to do is
link against the libtorch library and we can evaluate ML models on CPUs, GPUs, or even mutliple GPUs
with minimal programming effort. Our aim is to allow users to write code within the PyTorch ecosystem
and use their models in M-Chem without having to write any C++ code.

We have done this successfully with NewtonNet 32, a message passing equivariant NN model, demon-
strating the viability of this approach. In order to ensure the interface has been implemented properly,
we compared timings of evaluating the force field 2000 times, including calculation of both energies and
gradients using the PyTorch version and the same model exported to C++ and run in MChem. To do this,
we used a version of NewtonNet trained on a hydrogen-combustion dataset®* and evaluated the model on
many configurations of HoO2(OH®). We find that evaluating energies and gradients with the model on
the CPU takes an average of 6.4 ms using libtorch as integrated into M-Chem as opposed to the 7.7 ms
using PyTorch. Similarly, on the GeForce GTX 1650 mobile GPU, which is not intended for fast double
precision arithmetic as required here, evaluation with libtorch/M-Chem takes 8.7 ms vs 10.2 ms using
PyTorch. Overall, by simply evaluating a neural network through the libtorch C++ API, we can evaluate



the model ~20% faster using the PyTorch Python API. While these relative timings will depend on the
structure of the model being used and the system being evaluated, we emphasize that it is reasonable to
expect moving your model to MChem is likely to slightly speed up a model rather than slow it down.

Furthermore, this interface opens many interesting possibilities. Indeed, one could implement an entire
force field of any kind using PyTorch (in python), serialize the model, load it into M-Chem, and use this
force field in MD simulations without having to write any C++. The refinement of a neural network force
field could also be accomplished on the fly, by backpropagating a NN model and updating the weights on
the C+-+ side. One can hence envision advanced QM /ML simulations in which the QM method can be
dynamically swapped in or out when a NN has low confidence in its prediction, allowing the ML model to
be updated based on the results of the QM calculation without stopping the simulation. This complex
type of simulation is still a work in progress but is the type of ML interface capabilities that MChem aims
to make routine, thereby creating an easy interface to create reference or prototype code, and would be
an excellent opportunity for a first contribution. In the future, we may explore similar interfaces with
TensorFlow, another popular ML library.

QM/MM mechanical and electrostatic embedding. Biologically or technologically relevant systems
are typically very large and thus computationally too demanding to be treated at any level of quantum
mechanical method that accounts for the explicit role of the electrons and have high predictive power.
At the same time, commonly used molecular mechanical force fields are not sufficiently flexible to model
processes that involve electronic rearrangement, e.g. bond formation/breaking and electronic excitations.
Fortunately, many chemical processes of interest occur in spatially localized regions and only a small region
must be treated at the quantum mechanical level. Therefore, one can overcome the limitations of both
methods by constructing an approximate reduced-dimensionality Hamiltonian. In such a hybrid scheme,
the system is divided into a small region of interest, which undergoes electronic rearrangement and is
treated quantum mechanically, and the remaining part, the environment, which is treated classically; the
so-called quantum mechanics/molecular mechanics framework. Utilizing such model Hamiltonians not only
makes the calculations computationally feasible, but also leads to a clear distinction between essential and
non-essential parts of the system. As a practical matter, for a successful QM /MM simulation, a molecular
dynamics software (here M-Chem) must be combined with an electronic structure software (here Q-Chem)
that requires coordination between many different pieces of code to enable various flavour of QM /MM
schemes. There are three QM /MM schemes, which describe the coupling between the QM and MM regions
to different extends; i) mechanical embedding, ii) electrostatic embedding, and iii) polarizable embedding.
Currently our QM /MM interface supports mechanical embedding. Work in the direction to more elaborate
embedding such as multi-polar electrostatic embedding and polarizable embedding are in progress in our
team.

5 Simulation Utilities in M-Chem: ESPs, FF Parameterization, and File
Formats

It is desirable for a single biomolecular simulation software package to support diverse models, methods,
and analysis tools beyond the MD engine itself. An important utility relevant for all kinds of chemical
applications is the ability to accurately create an electrostatic potential (ESP) on a molecular surface. ESPs
are used to help understand sites of biomolecular association and docking, drug binding, interfacial surface
potentials, and visualization of noncovalent interactions such as hydrogen bonding, halogen bonding, and
pi-pi interactions. Another example is that the point of transferable force field models is that protocols
must be developed that allow a systematic search for a consistent set of force field parameters for new
molecule chemistries. These software libraries associated with the M-Chem code are described here.
Electrostatic potentials using C-GeM. Although C-GeM is already part of the ReaxFF force field



implementation in M-Chem, it can also be run standalone for the fast generation of electrostatic potentials.
We have tested C-GeM against 600 molecules each with 10 separate configurations that are being used for
benchmarking empirical approaches for ESP rendering of drug molecules containing 30-65 atoms evaluated
at the B3LYP /6-311G** level of theory. C-Gem performed quite accurately across the data set with mean
absolute error (MAE) of 2.8 kcal/mol, compared to 7.2 kcal/mol MAE for the default EEM method used
in the docking software AutoDock, and slightly better than new machine learning approaches generated
by the Forli group. Compared to the original C-GeM model'” which works in gas phase, in the M-Chem
implementation we added dielectric settings to allow for electrostatics predictions in solvent. Figure 3
shows the C-GeM electrostatic potential surface for crambin in solvent(a) and in gas phase(b).
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Figure 3: Electrostatic potential surface predicted with C-GeM on crambin(1CRN) (a) with dielectric
constant for solution €5 = 78.54 and (b) in gas phase €; =1

It is our hope that, given the interface with Q-Chem, we can support alternative approaches such as the
rendering of fitted charges (ESPC) in which the partial charges on atoms are derived from a partitioning
scheme of an expensive electronic wave functions such as Mulliken®, Hirshfeld-18¢, DDEC/c3%7, or natural
population analysis®®. ESPC models are the main methods used in all the major biomolecular force fields
including AMBER! and CHARMM®’, and thus should also be supported here in M-Chem. Electrostatic
potential surfaces rendered from Poisson Boltzmann models are also possible, and the Head-Gordon lab has
developed PB-AM and PB-SAM in APBS”, but will be brought in-house in future versions of M-Chem.

QM-based force fields with @Q-Force. Fully QM-based force fields provide an alternative to atom-
types-based force fields with molecule-specific parameters that result in a good match between QM and
MM potential energy surfaces. The Q-Force toolkit ¥, which derives QM-based force fields through an
automated pipeline, is an open-source software that has been interfaced with M-Chem and Q-Chem.
Q-Force automatically derives standard MD models for any (novel) molecule based on QM Hessians, the
electrostatic potential, torsional scans and atomic bond orders used to parametrize these potentials. It
has been shown that such an approach can drastically improve the match between QM and MD potential
energy surfaces and consequently increase the predictive power of standard MD simulations without
additional computational cost after the initial parameterization. Additionally, the implemented molecular
fragmentation procedure allows parameterizing large molecules with significantly reduced computational
cost, which allowed Q-Force to be easily applied to a variety of technologically relevant applications.
Extending Q-Force to advanced force fields is currently an active research line in the Head-Gordon lab and
will be developed in M-Chem.
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File Formats. For saving trajectories, we use a storage mechanism based on the Hierarchical Data
Format version 5 (HDF5) standard. It is similar in spirit to the MDTraj HDF5 layout, in particular
with storing the topology alongside time-ordered information, such as coordinates and optional velocities.
However, due to the data requirements of non-traditional force fields such as ReaxFF and machine-learned
potentials, it is not a direct reimplementation of the MDTraj format. We instead define the data layout in
an extensible JSON Schema-like format called qarchive for which compile-time invariants on the layout are
enforced, with bindings to other languages forthcoming.

6 Discussion and Conclusions

Typically, and over time, software components and algorithms become tightly coupled into a monolithic
code that is difficult to port to a new platform or do not offer ease of entry for novel development work. It
is now understood that much better portability can be attained at a very modest performance trade-off,
with attention to modularity. Furthermore, present-day computers require careful algorithm design and
performance tuning to harness the power of multiple levels of parallelism: data-parallel instructions at
the lowest level, multitasking at the shared-memory multi-core level, and across-node distributed-memory
parallel code execution.

In summary, we have presented a current snapshot of the capabilities of the M-Chem software package,
a modular and feature diverse molecular simulation code written from the ground up in C++. M-Chem has
already optimized serial and on-node performance on multicore CPUs, but the resulting software design is
extensible to cross-node and GPU parallelization which defines the next phase of code optimization. The
M-Chem infrastructure has also led to software hooks and APIs that permit integration of diverse models
and methods such as a range of force fields, ML, and QM /MM capabilities. Our hope is that the ease with
which we can change the many-body electrostatic model associated with any of the above force fields, or to
interface or embed alternative ML and physics-based models, demonstrates our goal of making the physics
modular where possible without sacrificing accuracy or speed.

Of course M-Chem as a user-friendly code is far from complete in many ways including front-end user
interfaces to set up interfacial systems, large macromolecules, and extremely large all-atom simulations
(~500 million atoms) or back-end analysis tools that address the needs of diverse communities. M-Chem
is missing critical algorithms such as free energy calculations, Poisson Boltzmann solvers, Monte-Carlo
methods, other coarse-grained models, or advanced sampling methods. Even so, enough code capability is
present and useable such that M-Chem is a software platform ready for bringing in a completely new set of
developers of academic researchers and setting the stage for better informed partnerships with academic
users and industrial consumers of M-Chem.
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