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Abstract

In recent years, much effort has been devoted to under-
standing the three-dimensional (3D) organization of the
genome and how genomic structure mediates nuclear function.
The development of experimental techniques that combine
DNA proximity ligation with high-throughput sequencing, such
as Hi-C, have substantially improved our knowledge about
chromatin organization. Numerous experimental advance-
ments, not only utilizing DNA proximity ligation but also high-
resolution genome imaging (DNA tracing), have required
theoretical modeling to determine the structural ensembles
consistent with such data. These 3D polymer models of the
genome provide an understanding of the physical mechanisms
governing genome architecture. Here, we present an overview
of the recent advances in modeling the ensemble of 3D
chromosomal structures by employing the maximum entropy
approach combined with polymer physics. Particularly, we
discuss the minimal chromatin model (MiChroM) along with the
“maximum entropy genomic annotations from biomarkers
associated with structural ensembles” (MEGABASE) model,
which have been remarkably successful in the accurate
modeling of chromosomes consistent with both Hi-C and DNA-
tracing data.
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Introduction

Since the human DNA sequence was decoded [1] in the
early 2000s, significant efforts have been made to un-
derstand the three-dimensional (3D) organization of the
genome and how its structure is involved in the medi-
ation of nuclear function. Approximately 2 m of DNA
decorated with proteins and RNA, collectively called
chromatin, is contained within the nucleus of human
cells, which is just a few microns in diameter. Iz vivo, the
genome structural organization varies in different cell
types and these differences play a central role in gene
regulation and cell differentiation [2,3]. In addition,
interphase chromosomes in each cell type also show
large structural variability and are better represented by
an structural ensemble instead of a single dominant
native structure. Despite this structural diversity, per-
turbations to these structural ensembles nevertheless
affect cellular function and may lead to disease [4—7].

In the past decades, DNA-DNA ligation experiments
have opened the way to a systematic study of the
genome architecture [8—22] by reporting the frequency
that any pair of chromatin loci are observed to be in
spatial proximity. High throughput ligation assays, such
as Hi-C [12,23], revealed the existence of chromosome
territories in human cells and an overall genome orga-
nization described by two major compartments called
A and B, which can be further divided into sub-
compartments [23]. Compartment A is correlated with
euchromatin and the presence of genes whereas
compartment B is generally associated with hetero-
chromatin and transcriptional inactivity. Another key
organizational feature observed in these experiments are
CTCF-mediated loops, which are generated through a
motor-driven process called loop extrusion [23—25].
These loops frequently link promoters and enhancers,
indicating their key role in gene expression [26,27].

While Hi-C and related approaches have clearly revealed
important aspects of genome organization, determina-
tion of the 3D structural ensembles consistent with Hi-
C required the development of appropriate modeling.
Such models are not only necessary for providing a 3D
representation of the genome but also to discover
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the underlying mechanisms responsible for genome or-
ganization. Successful prediction of these 3D structural
ensembles could shed light not only on the genome
structural features and its degree of variability for
different cell types but could also provide the connec-
tion between genome structure and function (e.g.,
transcription [28]).

Bridging experimental data with theoretical polymer
models is, however, challenging. In recent vyears,
numerous polymer models have been used to describe
genome organization in three dimensions [29—37,
25,38—44]. In addition to providing 3D structures of
chromatin segments, these models also give insights
into the physical properties and mechanisms that guide
chromatin organization. Simulations employing data-
driven models or physics-based approaches reproduce
features observed in Hi-C maps (or other chromosome
conformation capture techniques), such as topologically
associating domains (TADs) [34—37], loop domains
[25,38,39], and compartments [40—44]. For example,
simulations help to better understand how the epige-
nome affects the phase separation of chromatin within
the inverted and conventional nuclei [45] and how the
motor activity of SMC complexes performs loop
extrusion of chromatin [25,24]. There are a variety of
theoretical models for describing chromatin dynamics
and function.

Here we focus on a particular set of data-driven models
for modeling chromosomes based on the maximum en-
tropy principle (MaxEnt) [46—48]. This approach is the
most straightforward way to create a least biased model
that is consistent with experimental observations. In
other words, when creating an energy function, once the
optimization of the parameters/weights is converged in
accordance with experimental constraints, the gener-
ated models should faithfully reproduce the experi-
mental observables [49—53,47,48,54,55]. MaxEnt
models combined with polymer physics have been
shown to accurately capture and predict the genome
organization within human cells [56—62,55]. Some ap-
proaches employing MaxEnt perform a direct inversion
of the Hi-C maps [63,56]. These approaches model the
interaction between chromatin loci 7 and 7 in a manner
that is consistent with the contact frequencies observed
in Hi-C experiment while making no assumptions
regarding the nature of compartmentalization (e.g., A/
B types).

We focus on one particular MaxEnt-derived polymer
model called the minimal chromatin model
(MiChroM) [57]. MiChroM describes compartmen-
talization observed in Hi-C maps as the phase sepa-
ration of biochemically distinct chromatin types. We
will also briefly discuss the MaxEnt-based approach
called MEGABASE (maximum entropy genomic

annotations from biomarkers associated with structural
ensembles) [62], which can be used to learn the
correlative relationships between the presence of his-
tone modifications along a particular stretch of chro-
matin and the likelihood of that such stretch being in a
particular sub-compartment. Combining both ap-
proaches (MEGABASE and MiChroM) led to the
creation of a computational pipeline that takes epige-
netic information (e.g., histone modification tracks) as
input and generates the 3D chromosomal structural
ensembles of individual chromosomal territories as
output [62,58].

In this review, we will discuss recent developments in
the physical modeling of chromosomes using MEGA-
BASE and MiChroM and the validation of the simulated
structures by comparing them to experimental struc-
tures obtained using microscopy (DNA tracing)
[61,64—69]. We will further discuss our perspectives on
the strengths and limitations of these structural models
and make suggestion and predictions about the future of
computational genome modeling.

Modeling chromosomes by integrating
theory and experiments

The minimal chromatin model (MiChroM)

The minimal chromatin model (MiChroM) [57] is a
coarse-grained polymer model of individual chromo-
somes that was trained on Hi-C data of human
lymphoblastoid cells (GM12878) [23] using the prin-
ciple of maximum entropy. This approach has been
widely used for modeling genome organization
[57,62,70,58—61]. The MiChroM energy function was
conceived based on three physical assumptions. The
first assumption is that the compartmentalization
observed in the DNA-DNA ligation maps result from
the phase separation of chromatin loci of distinct type.
These chromatin types were called Al, A2, B1, B2,
and B3, which give rise to the corresponding sub-
compartments observed in experiment [23]; an addi-
tional non-specific chromatin type called NA was also
modeled. The second assumption is that certain pairs
of loci (separated by kilobases to megabases) form the
anchor of a chromatin loop. It is generally understood
that these loops are formed by the structural mainte-
nance of chromosomes (SMC) protein complexes,
which extrude a loop until reaching a convergent pair
of CCCTC-binding factor (CTCF)—binding motifs
[23,24,71]. The final assumption is that for every pair
of chromatin loci that comes into spatial proximity,
there is arelative gain or loss of free energy v(#) that
depends on the genomic distance « that separates the
two loci. This assumption is referred to as the ideal
chromosome (IC) [57], capturing the translationally
invariant local structure of chromatin that exists even
in the absence of compartmentalization (phase sepa-
ration) and looping interactions.
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The energy function of MiChroM is given by:
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probability of crosslinking between chromatin loci 7 and

Figure 1

separated by a distance 7;. The Unp(7 describes the
connectivity of the polymer model while the remaining
terms with parameters &y, X, and Y(#) describe the phase
separation (compartmentalization), looping interactions,
and ideal chromosome, respectively. Obtaining the pa-
rameters 0, X, and y(4) requires an iterative optimization
procedure to produce a simulated DNA-DNA ligation map
that is consistent with the experimental map.

Figure 1 presents a schematic description of the
parameter optimization procedure for modeling chro-
mosomes. As a validation of the training procedure,
some features of the 7 sifico Hi-C map obtained from the
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Workflow for employing the maximum entropy approach and parameter optimization for modeling 3D chromosomal structures. An experimental Hi-C map
is used as input data. The observable parameter is associated with the loci contact frequency, that is, the higher the loci pair contact frequency, stronger is
the interaction between a pair of chromatin loci in the polymer model. An iterative training procedure determines these parameter values (See [57] for
additional details). Once the optimal parameters are obtained, they are used in the energy function for the production simulations. These simulations

generate an ensemble of 3D structures. The average of the contact probability over this ensemble of chromosomal structures presents an in silico Hi-C

map consistent with the experiments.
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optimized energy function are compared to the experi-
mental Hi-C map. These features include the contact
probability decay curve (polymer length scaling), the
eigenvector extracted from the correlation matrix (A/B
calling), correlation of the probabilities as a function of
the genomic separation, etc. Refer to the study by Di
Pierro et al. [57] for additional details of the MiChroM
potential as well as details of the parameter optimization
and validation.

MaxEnt models employed for chromosome modeling are
considered a top-down approach in which the physical
interactions are trained and calibrated to reproduce
experimental observables, such as the Hi-C data

[57,59,58,56]. The value of these interactions is fitted
to experimental data and therefore not computed from
first principles. On the other hand, untrained bottom-up
models can nevertheless be used to explore underlying
mechanisms of genome organization [40,72].

MEGABASE: Learning the correlative relationships
between epigenetic modifications and
compartmentalization

The MiChroM prediction of a 3D chromosomal struc-
tural ensemble given a sequence of chromatin subtypes
(A1,A2,B1, B2, and B3) is in some sense analogous to the
prediction of a protein fold given a sequence of amino
acids [73]. It was subsequently shown that a neural

Figure 2
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MEGABASE + MiChroM computational pipeline. MEGABASE uses as input epigenetic modification information (such as ChlP-seq tracks) to predict the
chromatin structural type (associated with sub-compartmentalization) for each locus. This sequence of chromatin types is loaded into the MiChroM
energy function which generates an ensemble of 3D structures. This predicted structural ensemble has been shown to be consistent with experimental
data from Hi-C and FISH [23,62]. The chromatin dynamics simulations and analyses are performed using the OpenMiChroM software package. The
OpenMiChroM platform performs chromosome simulations using GPUs via OpenMM Python API which allows the investigation of large systems, such as
the full nucleus of a human cell at 50 kilobase resolution. This approach was also successful in predicting the genome organization of multiple human cell
lines, capturing the high degree of structural variability of chromosomes in the interphase [61] consistent with DNA tracing [64]. An example of an open
dumbbell-like structure from simulation and experimental tracing, respectively, is shown in the bottom left. The MEGABASE + MiChroM computational
pipeline is available at the Nucleome Data Bank (NDB) [58], a web platform that stores 3D chromosomal structures from experiments (high-resolution
microscopy) and modeling and it is freely and publicly available at https:/ndb.rice.edu.
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network-based approach called MEGABASE [62] can
quantify the correlative relationship between the pres-
ence of particular histone modifications along a segment
of chromatin and the sub-compartmentalization of that
segment [23]. The inferred model of MEGABASE is a
statistical model of state vectors characterizing each
locus of chromatin /2 a(/) = (C()), Exp1()), ..., Exp;.(/)),
where ( is the sub-compartment annotation of locus /
from Hi-C experiments [23] and FExp, denotes the
discretized chromatin immunoprecipitation (ChIP-Seq)
signal from experiment for a particular histone modifi-
cation track. The resultant model allows for the infer-
ence of the chromatin structural types CGST(/)
(compartment annotation) given experimental data for
histone modifications:

CST(1) = argmax P(C‘Explqu(/ 20—, +1,/+ z))
(2)

In practice, the experimental ChIP-Seq signals from
adjacent chromatin loci/— 2,/ —1,/+ 1,and / + 2 are
used to predict the chromatin type of locus /. Figure 2
gives a  schematic  representation of  the
MEGABASE + MiChroM computational framework.
Refer to Ref: [62] for additional details of the MEGA-
BASE as well as details of the parameter optimization.

OpenMiChroM: A fast and scalable platform for
genome simulations

Another recent tool released for chromosome modeling
is the software package OpenMiChroM, a fast and
scalable platform that performs chromatin simulations
using GPUs via OpenMM Python API [74]. Open-
MiChroM chromatin dynamics simulations allow for the
investigation of larger systems, such as the full nucleus
of a human cell that has around 200,000 chromatin beads
at 50 kilobase resolution. In addition, OpenMiChroM
generates chromosome trajectories stored in a cudb file
format (binary version of the #4b file) and also provides
several built-in analysis tools. OpenMiChroM installa-
tion guide and tutorials can be found at https://open-
michrom.readthedocs.io. OpenMiChroM also performs
training and parameters optimization using first- or
second-order minimization methods.

As previously mentioned, the training of the MiChroM
energy function involves the optimization of a set of
parameters ¢y, X, and 7Y(#) that describe the phase
separation, looping interactions, and the ideal chromo-
some term. The phase separation parameters, 0y,
represent the energetic stabilization between loci of
chromatin type # and / when they are spatially proximal.
There are 21 different values of o corresponding to the
interaction between the 6 chromatin types described in
MiChroM (A1, A2, B1, B2, B3, and NA). A single value
of x is trained to describe the energetic stabilization

between chromatin loci that form a loop anchor. The
Y(d) parameter describes the ideal chromosome that
varies depending on the genomic separation between a
pair of chromatin loci, 4. A value of y(#) is trained for
each fixed value of # up to separations of hundreds of
beads. Using OpenMiChroM to reproduce MiChroM
training, the process takes a few hours if the simulations
are performed using a single desktop GPU.

Figure 3 shows examples of optimized energy functions

for chromosome modeling of different organisms and
cell phases during the cell cycle generated using the

Figure 3
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The OpenMiChroM platform can be used for modeling chromosomes of
different organisms. OpenMiChroM chromatin dynamics simulations
create an ensemble of 3D chromosomal structures [59]. The average of
the contact probability over this ensemble generates an in silico Hi-C map
(lower triangle) consistent with the 2D experimental Hi-C matrix (upper
triangle). The modeling can also be performed for different phases of the
cell cycle. On The top and bottom shows the human [23] and the mosquito
[75,76] maps, respectively. Both are modeled in the interphase. The
middle shows the chicken chromosome structure obtained for the prom-
etaphase [38].
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OpenMiChroM platform. Refer to Refs: [59,60] for
additional details of the OpenMiChroM as well as de-
tails of the optimization procedure.

MEGABASE and MiChroM: going from epigenetic
data to an ensemble of 3D chromosomal structures
The combined approaches of MEGABASE and
MiChroM have been shown to generate a 3D ensemble
of chromosomal structures that is consistent with pop-
ulation averaged Hi-C maps for chromosomes in the
interphase [62,61,58]. To date, MEGABASE and
MiChroM have made successful predictions of 3D
structures for many other human cell types that were
not considered in their respective training and optimi-
zation procedures [61,58]. This supports the hypothesis
that it is the phase separation of biochemically distinct
segments of chromatin that gives rise to compartmen-
talization that is observed in DNA-DNA ligation ex-
periments. Further, the distinct biochemical properties
of these marked segments of chromatin appear to be
directly related to the enrichment of chemical modifi-
cations to the histone tails (e.g., methylation or acety-
lation) along that segment.

Although MiChroM was trained on DNA-DNA ligation
maps and not calibrated using any time information, it
has nevertheless been able to correctly capture many of
the dynamical aspects of the genome. Active processes
and motors that act on the genome are not explicitly
included but approximated through a quasi-equilibrium
energy landscape. In particular, molecular simulations of
chromosomes using MiChroM capture the sub-diffusive
motion, spatial coherence, and viscoelasticity [70] of
chromatin consistent with experimental measure-
ments [77].

Interestingly, early analysis of our simulated chromo-
somes revealed that they exhibited a liquid-like, het-
erogeneous structural distribution [56,57]. This high
degree of structural heterogeneity was recently directly
observed using DNA tracing experiments, in which
chromatin structures were imaged using microscopy
[61,64—68,57,58,78,69]. It is becoming increasingly
clear that the observed structural variability is a hallmark
of chromatin in the interphase. A recent analysis [61]
comparing chromatin structures from imaging [64] and
computer simulation (MEGABASE and MiChroM)
revealed structural transitions of a ~2 megabase gene-
containing segment of chromatin between closed
structures and open dumbbell-like structures (See
Figure 2. Not only were the structures from experiment
and simulation observed to be consistent, but the
degree of structural variability was also in quantitative
agreement. In particular, the apparent free energy dif-
ference between open and closed structures remarkably
was found to be ~44p7 in both the experimentally
traced [64] and simulated structures. This shows that

our computational pipeline also captures the structural
variability observed in real chromatin and further dem-
onstrates that chromosomal structures can only truly be
described from the energy landscape (ensemble)
perspective. Understanding the structural features of
this ensemble and its connection to cell function, such
as gene expression and cell differentiation, remains a
current challenge in genome research.

Perspectives on future genomic modeling
MEGABASE and MiChroM could serve as important
tools for studying genome organization in a variety of cell
types and tissues. These models can be used to study
the global features of genome organization through dif-
ferentiation and development and can potentially be
used to examine structural perturbations associated
with certain diseases, such as cancers. MEGABASE and
MiChroM can also potentially be used to examine
genome architectures across the tree of life; similar tools
have been used to explore the emergence of different
genome architectures across different organisms [79] or
different phases of the cell cycle [38].

While MiChroM appears to accurately capture chromo-
somal organization at a resolution of 50 kilobases per
monomer, there exist several limitations in its current
implementation. In reality, the structures and functional
aspects of the genome are shaped by the action of various
motor proteins and active processes. The molecular de-
tails of these interactions become essential as the reso-
lution of the polymer model approaches base pair
resolution. In its current formulation, MiChroM de-
scribes these active processes using a quasi-equilibrium
approximation and coarse-grains the biomolecular in-
teractions that shape the genome in a statistical manner.
For example, the motor activity of condensin and cohesin
protein complexes are indirectly captured by the ideal
chromosome term of the MiChroM energy function (See
eq. 1), which describes the genomic distance-dependent
compaction and ordering that is attributed to the motor
activity of these protein complexes.

In principle, the MiChroM model can be trained and
calibrated for a polymer model at a finer resolution than
the current one of 50 kilobases per monomeric unit,
provided that a sufficiently high resolution DNA-DNA
ligation map is available. However, the statistical treat-
ment of biomolecular interactions along the DNA
polymer breaks down as the resolution approaches levels
of few base pairs. Fine resolution models of chromatin
require a detailed treatment of those biomolecules that
shape organization at those scales, such as histone
complexes, transcriptional machinery, motor proteins,
etc. Furthermore, modeling of gene expression regions
will also need to include DNA supercoiling effects,
which are not accounted for by the current
MiChroM model.
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Future work where chromatin models are created at a
finer resolution can still be constructed with MaxEnt by
incorporating finer resolution constraints during opti-
mization. Clearly, MiChroM will need to be revised as
we move toward these more detailed models. Future
MiChroM-related models can potentially be trained
with other data sources, such as the high-resolution
chromosome snapshots from DNA tracing.
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