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This article details the motivation and design of an experiment to investigate the effects of artificially 
intelligent cognitive assistive agents on coordination efforts in manufacturing teams. As automation 
solutions become more accessible and products rapidly grow in complexity, there are significant calls to 
leverage abilities of both artificial agents and human workers to maximize team functioning and product 
output. As such, we propose an experimental design where we introduce a cognitive agent with two levels 
of autonomy (low, and high) into a team of participants during an assembly task. We hypothesized that 
cognitive assistive technologies would enhance coordination within assembly teams, leading to higher 
productivity and reduced errors, with initial data suggesting trends in support of these hypotheses. We seek 
to demonstrate the value of cognitive agents in augmenting human workers, allowing manufacturers to see 
the benefit of increased productivity while retaining value and relevance of human labor in the face of 
technological development. 

 

INTRODUCTION 

The field of manufacturing has seen fairly consistent 
advancement throughout history, a trend punctuated by 
particularly disruptive developments. The mechanization of 
production was followed by electrification and, in turn, by 
automation. At present, manufacturing facilities benefit from 
the large-scale use of data in connecting systems to improve 
their capability and their responsiveness to changes throughout 
the production process. Throughout all of these changes, 
however, the presence of a human workforce in manufacturing 
has persisted. Assembly tasks continue to see a large degree of 
human involvement, as high levels of variability and 
complexity often render automation efforts prohibitively 
expensive and highlight limitations of their capability. This 
has driven a persistent interest in improving the abilities of 
human workers. Consequently, developing systems where 
human workers work collaboratively with artificially 
intelligent agents is often regarded to hold critical importance 
in further developing manufacturing. 

Although the mechanisms by which human teams form 
and operate have been the subject of a large body of research, 
how they relate to human-autonomy teams (HATs) is less 
studied. Accordingly, this research investigates the effect of an 
artificially intelligent cognitive assistive agent with varying 
levels of capability on a team's coordination when performing 
a manufacturing task, and what effect that has on the team's 
productivity. 

The purpose of this paper is twofold. First, we provide a 
summary of relevant concepts. This topic is, by nature, 
interdisciplinary. As such, it bears inclusion of an overview of 
concepts critical to understanding human-autonomy teams. 
Second, we detail an experiment in which teams of two 
humans and one agent must engage in an assembly task, 
varying the level of agent autonomy (i.e., high, moderate, 
low). 

BACKGROUND 

Artificial Intelligence 

The phrase "Artificial Intelligence" (AI) originated 
with the 1956 Dartmouth Summer Research Program, to 

describe a machine capable of thought: that is, a machine 
which is able to make decisions without having received 
specific instruction regarding those decisions. Since 1956, 
work in AI has been essentially continuous, though 
advancement in the field has seen a variety of upsurges and 
downturns. At present, AI research is undergoing an 
"explosion" driven by improvements in information 
technology and big data (Wang et al., 2021), which is in turn 
driving efforts to support the practical implementation of 
artificially intelligent systems in multiple domains. To date, 
excepting a relatively small number of applications including 
predictive maintenance and quality control (Demlehner et al., 
2021), this implementation has not been achieved on an 
appreciable scale in manufacturing processes. This is 
attributed partially to difficulties finding usable data (Peres et 
al., 2020) and a lack of collaboration (Trakadas et al., 2020). 

The implementation of artificially intelligent systems 
in manufacturing settings can take several different forms: 
namely, as a physical or cognitive agent, differentiated by 
their interactions with human workers. Physical agents interact 
with their human counterparts through physical means (e.g., a 
collaborative robot positioning parts or supplying humans with 
necessary components). By contrast, a cognitive agent 
facilitates communication and the sharing of information (e.g., 
offering adaptive instructions in response to humans' actions). 
In either case, their use contributes to a more collaborative 
environment than does traditional automation, a point of 
significant interest in industry (Trakadas et al., 2020). 

Beyond the form of an artificial agent, consideration 
of its capabilities is important. A simple cognitive agent may, 
for example, be capable of detecting and marking 
inconsistencies in images recorded for quality control. 
Another may detect specific types of errors during the 
manufacturing process and communicate the need to correct 
them to a human operator. O’Neill and colleagues (2020) 
define a scale characterizing these levels of autonomy. On the 
low end, a system only responds to decisions made and input 
by a human operator. A case with partial agent autonomy 
generates alternatives and presents these to the human to make 
the decision, and a high autonomy agent makes the decision 
itself, perhaps not even involving a human in the process. 
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Behavioral Processes in HATs 

The advancement of artificial intelligence has sparked 
interest in the transition of an agent used as a teammate rather 
than a tool, particularly in manufacturing environments, in 
order to meet increasingly complex production needs. Teams 
are often conceptualized as two or more members working 
interdependently towards a common goal (Salas et al., 1992). 
In recent years, this notion of teaming has expanded to include 
at least one artificial agent, evolving into the distinct subfield 
of Human-Autonomy teaming. Researchers are exploring what 
constitutes an artificial teammate and how this affects 
affective, behavioral, and cognitive states of teams (see 
O’Neill et al., 2020 for a review). While affective states have 
garnered much attention (Glikson & Woolley, 2020; Hancock 
et al., 2011), behavioral processes (e.g., coordination) and 
cognitive states (e.g., team cognition) remain understudied in 
HATs (O’Neill et al., 2020). 

Behavioral processes in teams are vital to team 
performance (Salas et al., 2015). One key process in teams is 
coordination: “the enactment of behavioral mechanisms 
necessary to perform a task and transform resources into 
outcomes” (Sims & Salas, 2007). Coordination is a main 
driver of team effectiveness (Rousseau et al., 2006; Stewart, 
2006), and manifests in various forms (e.g., implicit, explicit). 
Explicit coordination reflects intentional efforts of team 
members to address interdependencies between roles and 
tasks, using mechanisms such as direct communication. 
Conversely, implicit coordination refers to the management of 
interdependencies through a common ground that the team 
achieves by adjusting behaviors without instruction (Rico et 
al., 2008). HATs tend to rely on explicit coordination due to 
increased workloads and need for role clarity (Fiore et al., 
2005). However, there are consistent calls to better understand 
implicit coordination in HATs (McNeese et al., 2018). 

Implicit Coordination 

Metacognitive activities of team members enable 
implicit coordination. Transactive memory systems (TMSs) 
are a key part of metacognitive activities in teams. Namely, 
TMSs enable teams to leverage a shared understanding of 
what should be done, when, and by whom, forthcoming needs 
and behaviors can be anticipated and acted upon (Fiore et al., 
2005; Klimoski & Mohammed, 1994). TMSs are 
multidimensional in nature, comprised of three dimensions: 
specialization (e.g., team members hold various specialties), 
credibility (e.g., team members can rely on others for said 
specialties), and general coordination processes (e.g., team 
members can leverage others’ specialties and credibility to 
enhance intra-team behavioral processes; Lewis, 2003). 

This underscores the two critical factors of implicit 
coordination: anticipation and dynamic adjustment. When 
coordinating implicitly, a team must anticipate actions and 
needs of teammates and task demands as well as dynamically 
adjust behavior to meet these needs without communicating or 
planning directly (Cannon-Bowers et al., 1993; Espinosa et al., 
2004). 

Implicit coordination notably leads to improved team 
performance beyond explicit coordination, particularly when 

 
teams are actively engaging in tasks (Rico et al., 2008). 
Despite this, current use of autonomous agents often depends 
on explicit coordination. In a manufacturing context, agents 
often send parts to human teammates after a request is made, 
representing explicit coordination in the team. Conversely, 
there are industry calls to explore applications of highly 
autonomous agents. As such, the goal of this experiment is to 
test how varying levels of autonomy affect the performance of 
manufacturing teams. 

Given that high autonomy agents can engage in 
behaviors consistent with implicit coordination (e.g., 
anticipation of team needs), and that implicit coordination is 
related to higher performance, we hypothesize that: 

 
H1: Teams in the high autonomy condition will 
perform better than those in the low condition such 
that these teams will take less time to accurately 
complete the task. 

 
Moreover, highly autonomous agents exhibit 

characteristics across the three dimensions of TMSs. Such 
agents can demonstrate mastery of a function (i.e., 
specialization), perform with high accuracy (i.e., credibility), 
and demonstrate both physical and cognitive behaviors to aid 
in progression towards team goals (i.e., general coordination 
processes). That is, highly autonomous agents can exhibit 
factors consistent with human teammate functioning, resulting 
in our hypothesis that: 

 
H2: Teams in the high autonomy condition will report 
higher perceived levels of implicit coordination than the 
low condition. 

 
METHODOLOGY 

 
Participants 

Participants are undergraduate students enrolled in 
psychology courses at a public university in the Southeastern 
United States. They are recruited through Sona Systems and 
offered participatory research credits in line with course 
requirements upon completion of the study. Each team 
includes two participants in addition to one artificial agent. 

Design 

Teams of two humans and one assistive agent will 
complete an assembly task of building three carts using 
Funphix building toys. One cart is divided into three sub- 
assemblies: upper frame, lower frame, and body. Teams are 
instructed to build three carts sequentially, so they must 
complete one full build before moving onto the next cart. 

The role of the agent is to send kits to participants from 
the warehouse area to the build area. The warehouse area is 
dedicated storage space for all parts and houses the agent 
whereas the build area is designated space for participants to 
complete the assembly task – resembling a physical setup 
commonly found in manufacturing plants (Figure 1). Level of 
autonomy is manipulated across two levels (i.e., low, high). 
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Figure 1: Experiment Set-Up. Image on the top shows the 
warehouse area that houses the agent and Funphix materials. 
Image on the bottom shows the end of the conveyor in the build 
area, where participants can retrieve parts sent by the agent. 

 
Procedure 

Teams in both conditions engage in an assembly task: 
building three carts. After completing informed consent 
protocols, the participants are trained to familiarize themselves 
with Funphix materials and agent interaction. During training, 
participants practice creating a frame using Funphix tubes as 
well as become familiar with agents used in the study during 
training. All kits are sent down a conveyor, with a physical 
agent (e.g., robotic arm) picking and placing the kit onto the 
line. This process is demonstrated to participants during 
training so that they are aware of the contributions made by 
the assistive agent. Participants are then shown the cameras 
that function as the visual system for the cognitive agent, 
which are used for the systems monitoring functionality of the 
cognitive agent. 

Once training is complete, participants receive 
instructions for their condition as well as images of the final 
product to aid building. When the team finishes their builds, 
the task is complete, and the participants engage in a post- 
survey. 

Manipulations and Measures 

Levels of Autonomy. Teams are randomly assigned to one 
of two conditions: low and high autonomy. The low autonomy 

 
condition consists of human participants and an agent with 
only physical capabilities. The high autonomy condition is 
manipulated using a “Wizard of Oz” approach in which a 
trained experimenter performs system monitoring behaviors 
from another room. In the high autonomy condition, the 
“agent” monitors progress. As the team concludes building the 
current kit, the agent sends the next kit and only informs the 
team after it was sent. 

Team Roles. Assembly teams are typically composed of 
individuals with general core competencies as well as 
specialized roles. To model this phenomenon, we imposed 
team roles for the human participants: the blue role and the red 
role. While all participants can engage with yellow, green, and 
black parts, only the blue role can use blue parts while only 
the red role can use red parts. The agent specializes in 
transportation of parts, as well as selection of parts in the high 
autonomy condition. In addition to modeling specialization in 
assembly teams, these roles encourage collaboration during 
building as the kits will come in assorted colors. 

Transactive Memory Systems. TMSs are assessed 
using a 5-point Likert scale that contains items across the three 
dimensions (e.g., specialization: “Different team members are 
responsible for expertise in different areas.”; credibility: “I 
was comfortable accepting procedural suggestions from other 
team members”; general coordination: “Our team worked 
together in a well-coordinated fashion”; Lewis, 2003). 

Implicit Coordination. Implicit coordination is 
assessed through a self-report measure by human participants. 
Participants are asked about implicit coordination efforts 
across four items using a 7-point Likert scale (e.g., “my team 
proactively helped individual members when they needed 
assistance” Fisher et al., 2012). 

Team Efficiency. Coordination is frequently 
indirectly measured through time-based metrics (Harbers et 
al., 2011; O’Neill et al., 2020). As such, we also measure team 
efficiency by looking at the time taken to accurately complete 
the task in addition to the number of errors a team makes. 

 
Materials 

Funphix. Funphix building toys are used to build the 
carts and frames, consisting of tubes (long and short), 
connectors (three-way, four-way, T-style), wheels, panels, 
screws, and screw keys. Parts can be black, blue, green, 
yellow, or red. The parts provided are separated into three kits: 
upper frame, lower frame, and body. Each kit contains only 
the relevant parts for that portion of the build. All kits are 
created prior to the experiment to ensure the same kits are 
provided across sessions. 

Assistive agent. To model assembly processes and 
restrict participants’ view of the human experimenter selecting 
kits, a roller conveyor is used to send kits to participants from 
a warehouse area. Once the correct kit is selected and placed 
in a staging area by the experimenter, a Universal Robots 
UR16 collaborative robot manipulates the kit, placing it on the 
conveyor. 
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RESULTS 

Though full data collection is underway, initial results 
provide insight on emerging trends. The following discusses 
preliminary trends of the data in a descriptive manner, 
consisting of data from seven teams (NHigh = 4; NLow = 3). 

Consistent with H1, teams in the high autonomy 
condition appear to perform better (Figure 2). That is, teams 
exhibit faster performance time (i.e., minutes to complete task) 
and better accuracy (i.e., make less errors). 

 

 
Figure 2. Average Performance Indicators by Autonomy 
Condition 

 
Initial trends also appear to be consistent with H2. 

That is, teams in the high autonomy condition are reporting 
higher levels of perceived implicit coordination (Figure 3). 

 

Figure 3. Average Self-Reported Implicit Coordination by 
Autonomy Condition 

To better understand these emerging trends, we also 
assessed the three facets of TMSs by autonomy condition 
(Figure 3). Interestingly, it appears that perceived general 
coordination and credibility may not differ by condition; 
however, specialization might. 

 

 
Figure 4. Average Transactive Memory System Facets by 
Autonomy Condition 

 
DISCUSSION 

Initial results suggest that, like in human-human 
teams, implicit coordination may in fact improve performance 
of human-autonomy teams. The “agent” with high autonomy 
sends the parts as needed, reducing the need for participants to 
multitask between building, performance monitoring, and part 
selection. We propose this directly reduces the overall time to 
complete the building task, while also allowing for further 
focus on building in order to improve accuracy. This is of 
particular importance for industries such as manufacturing, in 
which both build time and accuracy function as key 
performance indicators to build a competitive edge. 

While there is a difference in self-reported perceived 
implicit coordination, with teams in the high autonomy 
condition reporting higher averages, the difference is small. 
Given this, we conducted exploratory descriptive analyses to 
better understand factors at play. Though credibility and 
coordination seem to remain consistent, specialization is 
notably higher for teams in the high autonomy condition. 
Perhaps, it is the notion of more teamwork behaviors (e.g., 
systems monitoring, backup behaviors) that results in higher 
perceptions of specialization. That is, the agent may appear to 
hold unique capabilities that other teammates do not, in this 
case part selection and transportation, resulting in a 
specialized contribution to the team. Future research should 
focus on disentangling these perceptions across the various 
dimensions in addition to relationships with performance, to 
address both academic and industry calls for expanding 
beyond explicit coordination in HATs. 

 
IMPLICATIONS 

The results of this experiment promise to hold relevance 
in a number of different contexts: both in a purely academic 
sense, and as relating to continuing efforts to develop AI and 
manufacturing systems well suited for use with one another. 
Taking a strict academic view, this work contributes to 
building a body of knowledge regarding human teaming with 
artificial agents: specifically, how the sort of coordination 
commonly found in effective human teams develops in the 
presence of an artificially intelligent agent. Knowledge about 
the formation of teams can also inform how their creation is 
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facilitated, both in industrial settings and in continued 
experimentation. Furthermore, this information can influence 
the direction pursued in the development of real artificial 
agents (in contrast to the simulated agent used in this setting) 
by clarifying which approaches provide a benefit to 
manufacturing processes. 
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