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This article details the motivation and design of an experiment to investigate the effects of artificially
intelligent cognitive assistive agents on coordination efforts in manufacturing teams. As automation
solutions become more accessible and products rapidly grow in complexity, there are significant calls to
leverage abilities of both artificial agents and human workers to maximize team functioning and product
output. As such, we propose an experimental design where we introduce a cognitive agent with two levels
of autonomy (low, and high) into a team of participants during an assembly task. We hypothesized that
cognitive assistive technologies would enhance coordination within assembly teams, leading to higher
productivity and reduced errors, with initial data suggesting trends in support of these hypotheses. We seek
to demonstrate the value of cognitive agents in augmenting human workers, allowing manufacturers to see
the benefit of increased productivity while retaining value and relevance of human labor in the face of

technological development.

INTRODUCTION

The field of manufacturing has seen fairly consistent
advancement throughout history, a trend punctuated by
particularly disruptive developments. The mechanization of
production was followed by electrification and, in turn, by
automation. At present, manufacturing facilities benefit from
the large-scale use of data in connecting systems to improve
their capability and their responsiveness to changes throughout
the production process. Throughout all of these changes,
however, the presence of a human workforce in manufacturing
has persisted. Assembly tasks continue to see a large degree of
human involvement, as high levels of variability and
complexity often render automation efforts prohibitively
expensive and highlight limitations of their capability. This
has driven a persistent interest in improving the abilities of
human workers. Consequently, developing systems where
human workers work collaboratively with artificially
intelligent agents is often regarded to hold critical importance
in further developing manufacturing.

Although the mechanisms by which human teams form
and operate have been the subject of a large body of research,
how they relate to human-autonomy teams (HATS) is less
studied. Accordingly, this research investigates the effect of an
artificially intelligent cognitive assistive agent with varying
levels of capability on a team's coordination when performing
a manufacturing task, and what effect that has on the team's
productivity.

The purpose of this paper is twofold. First, we provide a
summary of relevant concepts. This topic is, by nature,
interdisciplinary. As such, it bears inclusion of an overview of
concepts critical to understanding human-autonomy teams.
Second, we detail an experiment in which teams of two
humans and one agent must engage in an assembly task,
varying the level of agent autonomy (i.e., high, moderate,
low).

BACKGROUND

Artificial Intelligence

The phrase "Artificial Intelligence" (Al) originated
with the 1956 Dartmouth Summer Research Program, to

describe a machine capable of thought: that is, a machine
which is able to make decisions without having received
specific instruction regarding those decisions. Since 1956,
work in Al has been essentially continuous, though
advancement in the field has seen a variety of upsurges and
downturns. At present, Al research is undergoing an
"explosion" driven by improvements in information
technology and big data (Wang et al., 2021), which is in turn
driving efforts to support the practical implementation of
artificially intelligent systems in multiple domains. To date,
excepting a relatively small number of applications including
predictive maintenance and quality control (Demlehner et al.,
2021), this implementation has not been achieved on an
appreciable scale in manufacturing processes. This is
attributed partially to difficulties finding usable data (Peres et
al., 2020) and a lack of collaboration (Trakadas et al., 2020).
The implementation of artificially intelligent systems
in manufacturing settings can take several different forms:
namely, as a physical or cognitive agent, differentiated by
their interactions with human workers. Physical agents interact
with their human counterparts through physical means (e.g., a
collaborative robot positioning parts or supplying humans with
necessary components). By contrast, a cognitive agent
facilitates communication and the sharing of information (e.g.,
offering adaptive instructions in response to humans' actions).
In either case, their use contributes to a more collaborative
environment than does traditional automation, a point of
significant interest in industry (Trakadas et al., 2020).
Beyond the form of an artificial agent, consideration
of its capabilities is important. A simple cognitive agent may,
for example, be capable of detecting and marking
inconsistencies in images recorded for quality control.
Another may detect specific types of errors during the
manufacturing process and communicate the need to correct
them to a human operator. O’Neill and colleagues (2020)
define a scale characterizing these levels of autonomy. On the
low end, a system only responds to decisions made and input
by a human operator. A case with partial agent autonomy
generates alternatives and presents these to the human to make
the decision, and a high autonomy agent makes the decision
itself, perhaps not even involving a human in the process.
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Behavioral Processes in HATs

The advancement of artificial intelligence has sparked
interest in the transition of an agent used as a teammate rather
than a tool, particularly in manufacturing environments, in
order to meet increasingly complex production needs. Teams
are often conceptualized as two or more members working
interdependently towards a common goal (Salas et al., 1992).
In recent years, this notion of teaming has expanded to include
at least one artificial agent, evolving into the distinct subfield
of Human-Autonomy teaming. Researchers are exploring what
constitutes an artificial teammate and how this affects
affective, behavioral, and cognitive states of teams (see
O’Neill et al., 2020 for a review). While affective states have
garnered much attention (Glikson & Woolley, 2020; Hancock
et al., 2011), behavioral processes (e.g., coordination) and
cognitive states (e.g., team cognition) remain understudied in
HATSs (O’Neill et al., 2020).

Behavioral processes in teams are vital to team
performance (Salas et al., 2015). One key process in teams is
coordination: “the enactment of behavioral mechanisms
necessary to perform a task and transform resources into
outcomes” (Sims & Salas, 2007). Coordination is a main
driver of team effectiveness (Rousseau et al., 2006; Stewart,
2006), and manifests in various forms (e.g., implicit, explicit).
Explicit coordination reflects intentional efforts of team
members to address interdependencies between roles and
tasks, using mechanisms such as direct communication.
Conversely, implicit coordination refers to the management of
interdependencies through a common ground that the team
achieves by adjusting behaviors without instruction (Rico et
al., 2008). HATs tend to rely on explicit coordination due to
increased workloads and need for role clarity (Fiore et al.,
2005). However, there are consistent calls to better understand
implicit coordination in HATs (McNeese et al., 2018).

Implicit Coordination

Metacognitive activities of team members enable
implicit coordination. Transactive memory systems (TMSs)
are a key part of metacognitive activities in teams. Namely,
TMSs enable teams to leverage a shared understanding of
what should be done, when, and by whom, forthcoming needs
and behaviors can be anticipated and acted upon (Fiore et al.,
2005; Klimoski & Mohammed, 1994). TMSs are
multidimensional in nature, comprised of three dimensions:
specialization (e.g., team members hold various specialties),
credibility (e.g., team members can rely on others for said
specialties), and general coordination processes (e.g., team
members can leverage others’ specialties and credibility to
enhance intra-team behavioral processes; Lewis, 2003).

This underscores the two critical factors of implicit
coordination: anticipation and dynamic adjustment. When
coordinating implicitly, a team must anticipate actions and
needs of teammates and task demands as well as dynamically
adjust behavior to meet these needs without communicating or
planning directly (Cannon-Bowers et al., 1993; Espinosa et al.,
2004).

Implicit coordination notably leads to improved team
performance beyond explicit coordination, particularly when

teams are actively engaging in tasks (Rico et al., 2008).
Despite this, current use of autonomous agents often depends
on explicit coordination. In a manufacturing context, agents
often send parts to human teammates after a request is made,
representing explicit coordination in the team. Conversely,
there are industry calls to explore applications of highly
autonomous agents. As such, the goal of this experiment is to
test how varying levels of autonomy affect the performance of
manufacturing teams.

Given that high autonomy agents can engage in
behaviors consistent with implicit coordination (e.g.,
anticipation of team needs), and that implicit coordination is
related to higher performance, we hypothesize that:

HI1: Teams in the high autonomy condition will
perform better than those in the low condition such
that these teams will take less time to accurately
complete the task.

Moreover, highly autonomous agents exhibit
characteristics across the three dimensions of TMSs. Such
agents can demonstrate mastery of a function (i.c.,
specialization), perform with high accuracy (i.e., credibility),
and demonstrate both physical and cognitive behaviors to aid
in progression towards team goals (i.e., general coordination
processes). That is, highly autonomous agents can exhibit
factors consistent with human teammate functioning, resulting
in our hypothesis that:

H2: Teams in the high autonomy condition will report
higher perceived levels of implicit coordination than the
low condition.

METHODOLOGY

Participants

Participants are undergraduate students enrolled in
psychology courses at a public university in the Southeastern
United States. They are recruited through Sona Systems and
offered participatory research credits in line with course
requirements upon completion of the study. Each team
includes two participants in addition to one artificial agent.

Design

Teams of two humans and one assistive agent will
complete an assembly task of building three carts using
Funphix building toys. One cart is divided into three sub-
assemblies: upper frame, lower frame, and body. Teams are
instructed to build three carts sequentially, so they must
complete one full build before moving onto the next cart.

The role of the agent is to send kits to participants from
the warehouse area to the build area. The warehouse area is
dedicated storage space for all parts and houses the agent
whereas the build area is designated space for participants to
complete the assembly task — resembling a physical setup
commonly found in manufacturing plants (Figure 1). Level of
autonomy is manipulated across two levels (i.e., low, high).
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Figure 1: Experiment Set-Up. Image on the top shows the
warehouse area that houses the agent and Funphix materials.
Image on the bottom shows the end of the conveyor in the build
area, where participants can retrieve parts sent by the agent.

Procedure

Teams in both conditions engage in an assembly task:
building three carts. After completing informed consent
protocols, the participants are trained to familiarize themselves
with Funphix materials and agent interaction. During training,
participants practice creating a frame using Funphix tubes as
well as become familiar with agents used in the study during
training. All kits are sent down a conveyor, with a physical
agent (e.g., robotic arm) picking and placing the kit onto the
line. This process is demonstrated to participants during
training so that they are aware of the contributions made by
the assistive agent. Participants are then shown the cameras
that function as the visual system for the cognitive agent,
which are used for the systems monitoring functionality of the
cognitive agent.

Once training is complete, participants receive
instructions for their condition as well as images of the final
product to aid building. When the team finishes their builds,
the task is complete, and the participants engage in a post-
survey.

Manipulations and Measures

Levels of Autonomy. Teams are randomly assigned to one
of two conditions: low and high autonomy. The low autonomy

condition consists of human participants and an agent with
only physical capabilities. The high autonomy condition is
manipulated using a “Wizard of Oz” approach in which a
trained experimenter performs system monitoring behaviors
from another room. In the high autonomy condition, the
“agent” monitors progress. As the team concludes building the
current kit, the agent sends the next kit and only informs the
team after it was sent.

Team Roles. Assembly teams are typically composed of
individuals with general core competencies as well as
specialized roles. To model this phenomenon, we imposed
team roles for the human participants: the blue role and the red
role. While all participants can engage with yellow, green, and
black parts, only the blue role can use blue parts while only
the red role can use red parts. The agent specializes in
transportation of parts, as well as selection of parts in the high
autonomy condition. In addition to modeling specialization in
assembly teams, these roles encourage collaboration during
building as the kits will come in assorted colors.

Transactive Memory Systems. TMSs are assessed
using a 5-point Likert scale that contains items across the three
dimensions (e.g., specialization: “Different team members are
responsible for expertise in different areas.”; credibility: “I
was comfortable accepting procedural suggestions from other
team members”’; general coordination: “Our team worked
together in a well-coordinated fashion”; Lewis, 2003).

Implicit Coordination. Implicit coordination is
assessed through a self-report measure by human participants.
Participants are asked about implicit coordination efforts
across four items using a 7-point Likert scale (e.g., “my team
proactively helped individual members when they needed
assistance” Fisher et al., 2012).

Team Efficiency. Coordination is frequently
indirectly measured through time-based metrics (Harbers et
al., 2011; O’Neill et al., 2020). As such, we also measure team
efficiency by looking at the time taken to accurately complete
the task in addition to the number of errors a team makes.

Materials

Funphix. Funphix building toys are used to build the
carts and frames, consisting of tubes (long and short),
connectors (three-way, four-way, T-style), wheels, panels,
screws, and screw keys. Parts can be black, blue, green,
yellow, or red. The parts provided are separated into three kits:
upper frame, lower frame, and body. Each kit contains only
the relevant parts for that portion of the build. All kits are
created prior to the experiment to ensure the same kits are
provided across sessions.

Assistive agent. To model assembly processes and
restrict participants’ view of the human experimenter selecting
kits, a roller conveyor is used to send kits to participants from
a warehouse area. Once the correct kit is selected and placed
in a staging area by the experimenter, a Universal Robots
URI16 collaborative robot manipulates the kit, placing it on the
conveyor.
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RESULTS

Though full data collection is underway, initial results
provide insight on emerging trends. The following discusses
preliminary trends of the data in a descriptive manner,
consisting of data from seven teams (Nuigh = 4; NLow = 3).

Consistent with H1, teams in the high autonomy
condition appear to perform better (Figure 2). That is, teams
exhibit faster performance time (i.e., minutes to complete task)
and better accuracy (i.e., make less errors).
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Figure 3. Average Self-Reported Implicit Coordination by
Autonomy Condition

To better understand these emerging trends, we also
assessed the three facets of TMSs by autonomy condition
(Figure 3). Interestingly, it appears that perceived general
coordination and credibility may not differ by condition;
however, specialization might.
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Autonomy Condition

DISCUSSION

Initial results suggest that, like in human-human
teams, implicit coordination may in fact improve performance
of human-autonomy teams. The “agent” with high autonomy
sends the parts as needed, reducing the need for participants to
multitask between building, performance monitoring, and part
selection. We propose this directly reduces the overall time to
complete the building task, while also allowing for further
focus on building in order to improve accuracy. This is of
particular importance for industries such as manufacturing, in
which both build time and accuracy function as key
performance indicators to build a competitive edge.

While there is a difference in self-reported perceived
implicit coordination, with teams in the high autonomy
condition reporting higher averages, the difference is small.
Given this, we conducted exploratory descriptive analyses to
better understand factors at play. Though credibility and
coordination seem to remain consistent, specialization is
notably higher for teams in the high autonomy condition.
Perhaps, it is the notion of more teamwork behaviors (e.g.,
systems monitoring, backup behaviors) that results in higher
perceptions of specialization. That is, the agent may appear to
hold unique capabilities that other teammates do not, in this
case part selection and transportation, resulting in a
specialized contribution to the team. Future research should
focus on disentangling these perceptions across the various
dimensions in addition to relationships with performance, to
address both academic and industry calls for expanding
beyond explicit coordination in HATs.

IMPLICATIONS

The results of this experiment promise to hold relevance
in a number of different contexts: both in a purely academic
sense, and as relating to continuing efforts to develop Al and
manufacturing systems well suited for use with one another.
Taking a strict academic view, this work contributes to
building a body of knowledge regarding human teaming with
artificial agents: specifically, how the sort of coordination
commonly found in effective human teams develops in the
presence of an artificially intelligent agent. Knowledge about
the formation of teams can also inform how their creation is
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facilitated, both in industrial settings and in continued
experimentation. Furthermore, this information can influence
the direction pursued in the development of real artificial
agents (in contrast to the simulated agent used in this setting)
by clarifying which approaches provide a benefit to
manufacturing processes.
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