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Abstract

Phased arrays have been a cornerstone of non-destructive evaluation, sonar communications,
and medical imaging for years. Conventional arrays work by imparting a static phase gradient
across a set of transducers to steer a self-created wavefront in a desired direction. Most recently,
space-time-periodic (STP) phased arrays have been explored in the context of multi-harmonic
wave beaming. Owing to the STP phase profile, multiple scattered harmonics of a
single-frequency input are generated which propagate simultaneously in different directional
lanes. Each of these lanes is characterized by a principal angle and a distinct frequency
signature that can be computationally predicted. However, owing to the Hermitian (real) nature
of the spatiotemporal phase gradient, waves emergent from the array are still bound to
propagate simultaneously along up- and down-converted directions with a perfectly symmetric
energy distribution. Seeking to push this boundary, this paper presents a class of non-Hermitian
STP phased arrays which exercise a degree of unprecedented control over the transmitted waves
through an interplay between gain, loss, and coupling between its individual components. A
complex phase profile under two special symmetries, parity-time (PT) and anti-PT, is introduced
that enables the modulation of the amplitude of various harmonics and decouples up- and
down-converted harmonics of the same order. We show that these arrays provide on-demand
suppression of either up- or down-converted harmonics at an exceptional point—a degeneracy
in the parameter space where the system’s eigenvalues and eigenvectors coalesce. An
experimental prototype of the non-Hermitian array is constructed to illustrate the selective
directional suppression via time-transient measurements of the out-of-plane displacements of an
elastic substrate via laser vibrometry. The theory of non-Hermitian phased arrays and their
experimental realization unlock rich opportunities in precise elastoacoustic wave manipulation
that can be tailored for a diverse range of engineering applications.
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1. Introduction

With the advancement in computing technology, parallel
signal processors have become efficient and economical, and
have led to the development of advanced phased arrays.
Fundamentally, phased arrays consist of a set of wave-
transmitting or receiving devices (transceivers) arranged in a
specific geometrical pattern that allows efficient wave field
control. They can achieve precise beam forming, steering, and
focusing in their transmission mode and are capable of sensing
waves that are incident on the array from a given direction in
their reception mode [1]. Their working mechanism relies on
constructive and destructive wavefront interferences induced
by a prescribed (while transmitting) or inherent (while sens-
ing) phase delay. Phased arrays can be geometrically clas-
sified into 1D linear arrays [2], 2D planar arrays [3], or 3D
spherical arrays [4]. These could be further classified into
uniform or non-uniform depending on the inter-element dis-
tance or pitch [5]. Owing to their versatility, they have found
applications in RADAR [6], 5G communication [7-9], bin-
aural audio synthesis [10, 11], home audio [12—14], ultrasound
imaging [15, 16], structural health monitoring [17-24], acous-
tic levitation [25], and acoustic holography [26], to name a
few.

The individual transducers of a conventional phased array
are imposed with a static phase gradient which gives rise to
their wave beaming ability. Lately, and inspired by recent pro-
gress in temporally-modulated phononic metamaterials, the
notion of implementing a dynamic phase profile in a phased
array, i.e. one that varies spatially along the length of the array
but also simultaneously in time, has been shown to yield mul-
tiple beams which travel along different directions and within
different frequency channels, representing small harmonic
conversions of the fundamental and modulation frequencies
[27, 28] (see figure 1(a)). These space-time-periodic (STP)
arrays are described using Hermitian Hamiltonians, which
represent the dynamics of energy-conservative systems that
support real-valued energy spectra. Despite their appeal, the
different beams generated in an STP array maintain perfect
symmetry and possess identical energy amounts along the up-
and down-converted paths [29]. In this work, we present the
theoretical foundation and experimental realization of an STP
phased array which breaks such symmetry and achieves on-
demand suppression of a targetted harmonic by exploiting
the non-Hermitian dynamics of the proposed system, as envi-
sioned in figure 1(b).

Non-Hermitian Hamiltonians are used to depict the beha-
vior of dissipative systems that exhibit complex-valued energy
spectra. Bender and Boettcher showed that non-Hermitian sys-
tems which exhibit a special kind of symmetry, denoted parity-
time (PT) symmetry, can have real-valued eigen spectra under
certain conditions and be used to represent practical systems
[30]. Simply put, this implies that hermiticity is not a necessary
condition for a system to possess rcal-valued eigen spectra. PT-
symmetric systems are unique in the sense that they are non-
Hermitian systems with real-valued eigen spectra and show
phase transition at exceptional points (EPs). EPs are degen-
eracies in the parameter space where two or more eigenvalues

of the system coalesce. Numerous applications have been
developed that exploit the nature of the system at an EP to
observe intriguing wave phenomena such as unidirectional
invisibility [31], enhanced sensing [32], asymmetric wave
behavior in non-local metagratings [33], unidirectional excit-
ation of surface plasmon polaritons [34], and polarization-
sensitive optical field manipulation in metasurfaces [35].
Recently, Kawaguchi showed a non-reciprocal PT symmetry
breakage in a lossy magneto-optical ring resonator coupled
with a gain-loss ring resonator demonstrating a one-way EP
[36]. In the elastic metamaterial community, Riva showed
that a complex stiffness-modulated waveguide operates as
a phononic filter in the unbroken PT-symmetric phase, but
that as the modulation strength increases at the EP, the sys-
tem shows asymmetric scattering capabilities [37]. Another
effort by Moghaddaszadch et al explored the wave disper-
sion characteristics of a 1D continuous rod with PT-symmetric
STP elastic modulus [38]. As a counterpart to PT sym-
metry, Ge and Tiireci introduced the anti-PT-symmetric sys-
tem, which was achieved using a photonic structure with a
coupled balanced positive and negative-index material [39].
Yang et al showed significant variation in the transport prop-
erties at the phase transition from anti-PT-symmetric to broken
phase in a dissipatively coupled optical system [40]. Fan
et al showed anti-PT symmetry in a fully passive nano-
photonic platform consisting of coupled waveguides [41].
Intriguing phenomena such as power splitting, synchronized
amplitude modulation, and phase-controlled dissipation have
been explored by thermally tuning the nanophotonics platform
at the phase transition point. Zhang et al showed synthetic
phase transition from anti-PT symmetry to broken phase in a
single optical microcavity [42].

By exploiting PT- and anti-PT-symmetric STP phase pro-
files, this work seeks to break the symmetric transmission of
energy along the up- and down-converted harmonic channels
of an STP phased array. The proposed class of non-Hermitian
arrays maintains a degree of unprecedented control over the
transmitted waves under the two special symmetries. The non-
Hermitian phase profile enables the modulation of the amp-
litude of various harmonics and consequently, the decoupling
of up- and down-converted harmonics of the same order, thus
achieving on-demand suppression of either one at the system’s
EP. Following a comprehensive theoretical analysis, an exper-
imental prototype of the non-Hermitian array is developed to
illustrate the successful directional suppression via wave field
measurements and reconstruction. Non-Hermitian STP phased
arrays present an innovative approach to advancing acoustic
communication systems. As will be shown here, the proposed
array demonstrates the ability to communicate with multiple
carriers at different frequencies, while being simultaneously
capable of modulating the amplitude of specific directional
channels to ensure appropriate communication strength or
compensate for carriers (e.g. ships) at different proximity
levels. Inversely, we envision the use of the same technology
to identify the distance of a carrier based on signal strength.
In what follows, we detail the theoretical foundation and
experimental aspects of this class of non-Hermitian phased
arrays.
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Figure 1. Conceptualization of a Hermitian vs a non-Hermitian space-time-periodic (STP) phased array. Both arrays are comprised of a set
of transducers which are fed a space- and time-dependent voltage input via an equal set of phase shifters. (a) Hermitian STP phased array

with fundamental, up-, and down-converted harmonics. The up- and down-converted harmonics show symmetric wave propagation about the
broadside. (b) Non-Hermitian STP phased array with on-demand suppression of either the up- (fop) or down-converted (bottom) harmonics.

2. Non-Hermitian phased arrays

We start by imposing a complex phase profile i ina
phased array, where  and are the real and imaginary phase
components. The complex nature of the profile introduces a
gain-loss factor to the phase which manifests itself in the form
of an amplification or decay of the amplitude of the supplied
voltage to the nth transducer. Assuming a tonal input voltage
signal to the nth phase shifter given by v ¢ Vye' !, where

is the frequency of excitation and V| is the amplitude, the
phase shifted input voltage to the nth transducer can be derived
as follows:

i

v, t vie
: ey
Voe e !
Here, the imaginary component of the phase profile, "
, controls the amplitude decay or amplification of the phase-
shifted voltage signal while the real component, " ,

controls the phase of the output voltage. In the following
sections, we will analyze the behavior of a complex phase
showcasing PT and anti-PT symmetries by imposing certain
conditions on and , which will be outlined.

2.1. PT-symmetric phased arrays

Mathematically, a PT-symmetric system is one that simultan-

eously shows parity: and time:

symmetries, where  is an arbitrary function of an argument
,and  denotes its complex conjugate. Since PT-symmetric

systems represent a class of non-Hermitian systems, they are

still complex valued, i.e. R i ,where g

and ; are even and odd functions, respectively. A PT-STP

phase profile refers to the implementation of PT symmetry in
an STP phased array, which can be synthesized with periodic
functions for the nth transducer in a phased array with N ele-
ments as follows:

" cos , 1 sin , 2)
where and denote the modulation depths for the real and
imaginary periodic functions in the phase profile, and

mt m Qy is the space-time modulating argument where

m 18 the temporal modulation frequency, , 3 is the spa-
tial modulation frequency, and q, 3 is the spatial location
of the nth transducer. An expansion of equation (2) yields

3)

It can be seen from equation (3) that one term of the phase
profile will vanish at certain values of the modulation depths
(specifically, and ). As will be shown later, this
corresponds to full suppression of either an up- or down-
converted harmonic of the beamed wave. In an STP phased
array, the coupling of the space-time modulation with the
exponential phase term gives rise to a series of up- and down-
converted harmonics [29]. These harmonics can be computed
by first expanding the input voltage to the nth transducer in
equation (1) as follows:
Vo t vteicos,,eii sin (4)
The real-valued exponent in the last term of equation (4)
confirms that the imaginary component of the phase profile
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Figure 2. Top: Values of the mth order of the (a) Bessel J,, and

(b) modified Bessel I, functions of the first kind for an argument
X € [-2,2]. Bottom: Percentage energy E,, contained in the mth
order of the (c) Bessel and (d) modified Bessel functions of the first
kind for an argument X € [-2,2].

creates an amplitude, rather than a phase, variation; an obser-
vation which is consistent with equation (1). Using the Jacobi—
Anger expansion, the voltage signal for the nth transducer can
be expanded into a product of infinite Bessel functions via

g Al N (e (5a)
e—i(i‘y)sin.f,.: Z Jm(—i’}()eimE" (5b)

where J and I are the Bessel and modified Bessel functions,
respectively. By defining the percentage energy concentrated

in the mth order of the Bessel function as E, = % X
k=—21m

100 %, where B € [J,1], limiting our analysis to the second
order J and I functions ensures that no more than 20% of
energy is concentrated in higher-order Bessel functions, as
shown in figure 2, and constrains the values of the modula-
tion depths to 4,y € [2,2]. Using equations (4) and (5), the
expanded signal can therefore be described using a linear sys-
tem which is given by

va(f) = v(t) [Cor - ET(1)]

where Cpr and E are the amplitude and signal harmonic vec-
tors, respectively. These vectors are defined as

Gov= |G el e ]

(6)

(Ta)

Table 1. Amplitudes of various harmonics Cpr generated by the
PT-symmetric phase profile as a function of [, I, 4, and ~.

Amplitude Values

c.) J1() (v) — Jo(8) () — J2(6)To(v)

(o —J1(8)Lo(v) +Jo() L1 () +J1(8) L2 () + J2(8) i ()
o Jo(0)Io(y) +2J2(8)Ix(v)

haiy =J1(8)To(v) = Jo(S)Li (7) + 1 (8)Ia () — J2(8)1 (7)
(350 —J1 ()i () — Jo(8)Ta() — J2(8)Io ()

K= [3(2—) =(1=) 5(0) 2(1+) 3(2+}]_ (7b)

The amplitude values Cl(,’;-) , where h € [—2,2], are defined in
table 1 such that for example # =1 and h = —1 denote the first
up- and down-converted harmonics, respectively, #=2 and
h= —2 denote the second up- and down-converted harmon-
ics, respectively, and so forth. 2 is defined as e (“ni—"nd,)
A complete derivation of these coefficients is provided in the
supplementary material.

2.2. Anti-PT-symmetric phased arrays

Non-Hermitian systems that show space-time reflection anti-
symmetry are referred to as anti-PT-symmetric systems. Math-
ematically, a system represented by X' () = Ar(n) +i&;(n) is
considered anti-PT symmetric if it obeys X*(—n) = —X (7).
This can be achieved by setting the Az(n) and A;(n) as odd
and even functions, respectively. An anti-PT phase profile in
an STP phased array (or APT-STP phase profile) with peri-
odic functions for the nth transducer in a phased array with N
elements can be synthesized as follows:

¥n(a, B) = asin(§,) +ifcos(&) ®

where o and 3 denote the modulation depths for the real and
imaginary components of the APT-STP phase profile. Similar
to the expansion shown in equation (3), equation (8) can be
expanded as follows:

Un(oyB) = —2 [ 6] 4+ B [ 4 o]
2 2
. 9
. i€ —i&
=— [(@=B)e — (@ +B)e™]
and used to selectively suppress up or down-converted har-
monics, when a = 8 and a = —j3, respectively.
Similar to the PT-STP case, a series of harmonics are gener-
ated by applying an APT-STP phase profile to an input voltage
v(t). The phase-shifted voltage signal for the nth transducer is

defined as

vp(t) = v(t)e_iMiHE’“e_i(mm&". (10)

Following the Jacobi—Anger expansion, the phase-shifted
voltage signal at the nth transducer can be expanded into a
series of harmonics using the following relations:

e—iasin(&) _ Z ,]]m(—or)ei&" (11a)

m=—0C
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Table 2. Amplitudes of various harmonics Capr generated by the
anti-PT-symmetric phase profile as a function J, I, «, and 5.

Amplitude

Values

Clar J1(@)1i(8) + Jo(a)2(B) + J2(a)lo(8)
i J1(@)l(8) +Jo(e)Li(8) — Ji(a)L2(5) + J2(a) L (B)
Gl Jo(@)o(B) + 235(e)L(B)
Gy ~J1(@)Io(8) + Jo() (8) + 31 ()L:(B) +
J2(a)Li (5)
G ~J1(@)11(B) 4 Jo()I2(8) + J2(a)Io(B)

00
e—i(if)eos(En) _ Z Jm(_iﬁ)ei&

m=—0o0

(11b)

and the analysis is again limited to the second order J and I
functions. Here, the expanded signal can be described using a
linear system which is given by

V(1) = (1) [Capr - E7(1)] (12)

where Capr and E are the amplitude and signal harmonic vec-
tors, respectively. These vectors are defined as

Chr=[C57 Gl GG ¢ (13a)
E = [=(2-) g(1-) (0 z(+) E(2+)]_ (13b)

The amplitude values Cf:gr, where h € [-2,2], are defined
in table 2. A complete derivation of these coefficients is
provided in the supplementary material. In the remainder of
the manuscript, the subscripts (e)pr and (e)spr are omitted
for brevity.

2.3. Energy analysis of various harmonics

The amplitude and energy of various harmonic orders (/-
Order) is a nonlinear function of the two modulation depths,
namely (4,v) for PT-symmetric and (a,/) for anti-PT-
symmetric systems. The ratio of these two modulation depths
to one another plays a significant role in controlling the amp-
litude of the various harmonics and allows for the transition
into different phases of PT- and anti-PT symmetry, which will
be detailed next. This ~y/4 ratio for the PT-symmetric case and
3/« for the anti-PT-symmetric one is henceforth defined as
the hermiticity ratio. By tuning the hermiticity ratio, the amp-
litude and consequently the energy of various harmonics can
be varied.

Figure 3(a) depicts the variation in the amplitudes C*")
and percentage energy E(" for h & [—2,2] for different values
of 4 € [-2,2] for an STP phased array with a PT-symmetric
phase profile, where E® is defined as follows:

@]

Em—_ =
Th olC®

% 100 %. (14)

This is displayed for the following hermiticity ratios:
—1.5,—-1,-0.5,0,0.5,1, and 1.5. Figure 3(b) shows the cor-
responding behavior of an STP phased array with an anti-PT-
symmetric phase profile for different values of o € [—2,2]. It
can be observed that all down-converted harmonics are sup-
pressed when the hermiticity ratio hits unity (v/d = 1) for the
PT-symmetric system, while the same behavior takes place
when the hermiticity ratio hits negative unity (3/a=—1)
for the anti-PT-symmetric system. On the other hand, up-
converted harmonic suppression is achieved when /6 = —1
and 5/a=1. In figure 3, the backgrounds for these two
scenarios are uniquely shaded for convenience. The abil-
ity to selectively suppress up- or down-converted harmon-
ics is central to the non-Hermitian phased array. The spe-
cial values of the hermiticity ratio at which this happens
correspond to what is known as EPs for the PT- and anti-
PT-symmetric systems, which will be discussed in the next
section. As a control test, the energy contained in up- and
down-converted harmonics of various orders is identical when
the hermiticity ratio is zero, indicating the lack of dissipa-
tion and the return of the system to a Hermitian state. The
amplitude of the fundamental harmonic (= 0) is a non-linear
function of the zeroth and second order Bessel J and mod-
ified Bessel L. It is important to note that, for the selec-
ted values of 4, € [2,2], this amplitude never reaches
zero regardless of the hermiticity ratio, in both the PT- and
anti-PT-symmetric cases. Consequently, the fundamental har-
monic is never suppressed, and E(°)% is always greater than
Zero.

3. Eigen spectra analysis

Contrary to non-dissipative systems that are described by Her-
mitian Hamiltonians which exhibit real eigen spectra, dis-
sipative systems are typically associated with non-Hermitian
Hamiltonians which exhibit complex eigen spectra that depict
the non-conservative behavior of the system. Interestingly,
dissipative systems that show PT or anti-PT symmetry have
been shown to support real eigen spectra for a specific range
of modulation depth values. Both PT- and anti-PT-symmetric
systems show a phase transition from an exact phase to a
broken phase at the EP. The EP is defined as a degeneracy
in the parameter space for which two or more eigenvalues of
the system coalesce [43]. The eigen spectra of a PT-symmetric
system support real values in the PT exact phase. The EP
occurs when the hermiticity reaches unity and the eigenvalues
coalesce. Past the EP, the PT-symmetric system exhibits com-
plex eigen spectra. The exact opposite scenario takes place in
the case of an anti-PT-symmetric system.

The scattering matrix of an STP phased array can be utilized
to depict the system’s eigen spectra and illustrate the various
phase transitions. In the array’s transmission mode, the scat-
tering matrix S can be obtained from Vg = SETv for both PT-
and anti-PT-symmetric systems, with V, being a vector of the
various harmonics in the output voltage signal. The scattering
matrix can be defined as follows [27]:
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Figure 3. The amplitude C b and percentage energy E h

of the hth harmonic for (a) a PT-symmetric phase profile and (b) an

anti-PT-symmetric phase profile. The different harmonics in each subplot are color coded to reflect the value of 4. The yellow-shaded

scenarios depict a suppression of the up-converted harmonic when the hermiticity ratio is equal to

1 for the PT-symmetric system and 1

for the anti-PT-symmetric one. The pink-shaded scenarios depict a suppression of the down-converted harmonic when the hermiticity ratio

is equal to 1 for the PT-symmetric system and

co ¢! c? 0 0

c! co ¢! c? 0

c? c! cv ¢! Cc? (15)
0o c¢c* ¢! co ¢!

0 0o c* ¢! co

This matrix represents a fifth-order system which yields a
higher odd-order EP, where one eigenvalue always remains
real and the other four diverge in the complex domain as shown
in figure 4. All the eigenvalues coalesce at 1 for the
PT-symmetric system and 1 for the anti-PT-symmetric
system, enabling the transition from the exact to the broken
phase at the EP. Figures 4(a) and (c) display the real com-
ponent of the eigen spectra for the PT-symmetric and anti-PT-
symmetric systems, respectively, while figures 4(b) and (d)
display the imaginary component of the eigen spectra for a
hermiticity ratio ranging between 0 and 2. The plots are evalu-
ated at 135and 1 35, respectively. In figure 4(d),

1 for the anti-PT-symmetric one.

a second EP can be observed which is a feature of higher-order
Hamiltonians [44, 45], but is not a focus of this work.

4. Optimal modulation depths of maximizing /th
order non-suppressed harmonic

As eluded to in section 2, complete suppression of up- or
down-converted harmonics can be achieved at the EP for vari-
ous modulation depths. Additionally, the energy contained in
the various non-suppressed harmonics can be tuned by con-
trolling the same. Since the absolute value of the hermiticity
ratio is equal to one at the EP, controlling the real component
of the modulation depth only, i.e. for PT-symmetric and for
anti-PT-symmetric systems, is sufficient. Due to the nonlinear
relation between the energy of the non-suppressed harmon-
ics on one hand, and or at the EP on the other, a nonlin-
ear optimization problem can be formulated in order to find
the optimal modulation depths needed to maximize the Ath
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non-suppressed harmonic. The optimization problem can be
described as

max J

S.t. or 11 (16)

or 22

and can be solved using any established optimization
algorithm (Here, fmincon in MATLAB’s optimization tool-
box was utilized). Additional constraints can be added to
the optimization problem to control the energy of other non-
suppressed harmonic orders. Figures 5(a) and (b) show the
amount of energy contained in different harmonic orders for

1515 for the down-converted ( 1) and up-
converted harmonic suppression ( 1) cases for a PT-
symmetric phase profile. Similarly, figures 5(c) and (d) show
the amount of energy contained in different harmonic orders
for 15 15 forthe down-converted ( 1) and up-
converted harmonic suppression ( 1) cases for an anti-
PT-symmetric phase profile. For a complete suppression of
all down-converted harmonics and a maximization of the first
up-converted harmonic (A 1), the optimization algorithm
yields modulation depths values of 135 135 forthe

PT-symmetric phase profile and 135 135 for the
anti-PT-symmetric phase profile. Similarly, for a complete
suppression of all up-converted harmonics and a maximization
of the first down-converted harmonic (A 1), the optimal
modulation depths are found to be 135135 and

135 135 for the PT- and anti-PT-symmetric sys-
tems, respectively. Finally, figures S(e) and (f) show the per-
centage energy in the different harmonics at the optimal mod-
ulation depths for aforementioned scenarios.

5. Wave field derivation and analysis

In order to depict the suppressed harmonics in the wave beam-
ing patterns of the non-Hermitian phased array, an expression
for the wave field generated by the various harmonics due to
an input voltage signal needs to be derived. Here, we utilize
a phased array which is comprised of a series of piezoelectric
transducers bonded to an elastic medium (see figure 1).

5.1 Wave field generated by a single piezoelectric
transducer

The input voltage signal to the nth transducer is augmented
with a static phase gradient 3 to allow for the steering
of the various wave harmonics as shown below:

vt viel T a7

It should be noted that the PT- or anti-PT-symmetric nature
of the system arises from the complex-valued portion of the
STP phase profile, and that the inclusion of an additional static
phase gradient . does not alter this nature. Incorporating .
introduces an additional degree of tunability by enabling us to
adjust the direction of the array’s broadside.

Considering a tonal input signal v t  Vpe' , the voltage
signal for the nth transducer can be further expanded into har-
monic components as follows:

h
n

vt Vo et (18)

where  is the element of the amplitude matrix representing
the amplitude of the Ath harmonic. The frequency ( , ;) and
phase gradient ( ., ,,) terms can be grouped as follows:

vt Vo et Pt e hea (19)
which can be simplified to
T T A (20)
wherethe  ” denotes a frequency shift such that "
h . is the frequency of the hth harmonic, while ~ / denotes

a phase gradient shift as Ch ¢ h . Soforexample, the
first up- and down-converted harmonics would be represented
by ! mand ! m» Tespectively, in the
frequency domain, while their phase gradients would be rep-
resented by Cl c m and Cl c ms> respect-

ively. Lastly, the input voltage to the nth transducer is com-
2 k

puted as v, ¢ © aVn L.
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Figure 5. Percentage energy E b
profile (bottom). (a), (b) are evaluated using

contained in the Ath harmonic for a PT-symmetric phase profile (top) and an anti-PT-symmetric phase
15 15.(c), (d) are evaluated using

15 15.(e)and (f) show the energy of

different harmonics at the optimal modulation depths needed to maximize the first up/down-converted harmonic in the PT- and

anti-PT-symmetric systems, respectively.

In an elastic phased array, the nth piezoelectric trans-
ducer excites various modes of symmetric and anti-symmetric
Lamb waves in an elastic medium. Higher-order symmet-
ric and anti-symmetric Lamb waves can be neglected since
the excitation frequency is sufficiently low, thus only indu-
cing the fundamental symmetric Sy and antisymmetric Ag
modes [46]. The latter can be approximated as extensional
and flexural waves, respectively, for a sufficiently small
Rt 100 kHz mm, where h is the thickness of the
elastic substrate [29]. We henceforth focus on anti-symmetric
Lamb waves generated by the phased array since they rep-
resent the most dominant waves under 100 kHz [47] and to
facilitate our experimental measurements using out-of-plane
laser Doppler vibrometry, as will be detailed in section 7.
To ensure that the correct out-of-plane wave modes are
excited, the excitation piczoelectric transducers are attached
to only one face of the elastic substrate in both the FE
simulations and the experimental apparatus. This is dis-
cussed in detail in the supplementary section. Under the
aforementioned assumption, the hth order anti-symmetric
Lamb waves ,,h r ¢+ generated by the nth transducer
can be modeled as follows:

h
h Vo #B R A R S
T t —_— a e c n
n r, 12
n
, @
Vo WB" § o, Jrd Ml
I, 12

where the wavenumber for the Ath order anti-symmetric Lamb
waveis defined as 4" 2 h12 1 2 ER21+4

s.t. ah 3 withE, ,and denoting the elastic modulus,

density, and Poisson’s ratio of the medium, respectively. Addi-
tionally, r 3 is the position vector of an arbitrary field point
andr, r q, 3 is the relative position vector between
the field point and the nth transducer. Lastly, the Ath order
anti-symmetric Lamb wave coefficient is defined as

B" 2 *B} J (22)
As it is evident from the mathematical development in this
section, the nth transducer excites waves with different har-
monics in both frequency and wavenumber space which could
be summed to yield the net wave field generated by the nth

2 k
ri.

piezoelectric transducer , r ¢ K 2 on

5.2. Aggregate wave field generated by the phased array

Wave beaming is achieved as a consequence of constructive
and destructive interferences of the wave fields generated by
the N piezoelectric transducers in the phased array. An expres-
sion for the aggregate wave field generated by the phased array
is derived by summing up the individual wave fields of the N
transducers as follows:

N
VO hBhel 1 a T

Given the uniform linear configuration of the array
(centered around the y-axis in figure 1), the location of
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the ath transducer can be written as q, x, 007 and
the spatial modulation frequency as (,h (,h 007 As
such, equation (23) can be simplified to
N i JFsin F by,
s h e «a o o
hrt V() hthl t a T 12
ry
n 1
(24)

where " is the direction of the Ath harmonic wave with

respect to the broadside. Lastly, the net harmonic wave ficlds
generated by the phased array are summed to yiceld the net dis-
placement fieldas r ¢ i 2 rt.

5.3. Direction of the hth order harmonic wave

An STP phased array is capable of beaming different harmon-
ics in their respective directions. The principal transmission
direction " of a given harmonic % is found when the max-
imum wave amplitude is achieved in equation (24), i.e. when
the argument of the summation exponential term approaches
zero which yields

(25

As can be inferred from equation (25), it is worth noting that
the direction of the hth harmonic is dependent on the phased
array parameters ., ., and . Therefore, for desired har-
monic directions, the phased array parameters can be easily
computed, thus enabling the inverse problem.

6. Full wave simulations

Finite element (FE) simulations are conducted on a thin-
circular Aluminum plate (5052 Aluminum Alloy) of &
1 27 mm thickness and 8 m radius. A phased array comprised
of 12 piezoelectric transducers is synthesized by using circular
edge sources of radius 5 mm. Each edge source is excited with
individually modulated signals with an excitation frequency
of 2 3 kHz, modulation frequency ,, 2 0 05 kHz,
static phase gradient ., O radm ', and modulation spa-
tial frequency , 20 radm '. Due to the periodicity of
the phase profile, every 6 piczoelectric transducers compose
one spatial unit cell with a modulation traveling velocity of
m m 3ms L. The duration of each simulation is 20 ms
to ensure an adequate frequency resolution is maintained while
computing the frequency spectrum and to minimize the effect
of boundary reflections. The FE model is divided into two
regions: An 8 m semicircular domain (to avoid reflections)
anda107 053 m? rectangular domain (to match the experi-
mental apparatus), both made up of triangular elements which
are sufficiently smaller than the wavelength. Figure 6(a) shows
the wave field generated by the non-Hermitian phased array
for the optimal up-converted harmonic suppression (left) and
down-converted harmonic suppression (right) cases at their
respective modulation depths in the PT-symmetric system.
Figure 6(b) shows the direction of various harmonic compon-
ents using a fast Fourier transform (FFT) of all points in space

while isolating the different frequency components for optimal
visualization.

The directional behavior of the various harmonics and their
frequency content corresponding to an up-converted harmonic
suppression is shown in the wave fields of the top row of
figure 6(b) ranging from h 2( %2 2 290 kHz) to
h 22 2 3 10 kHz). The two rightmost subplots
validate the suppression efficiency and confirm the lack of any
noticeable propagation of up-converted frequencies. Further, it
can be noted that the magnitude of the first down-converted
harmonic wave is maximum as seen at 2.95 kHz, thereby
validating the theoretical analysis presented in section 4 for
the optimal modulation depths. For the propagating modes,
the principal directionis © 0 for the fundamental mode,

1 022 rad for the first down-converted harmonic, and

2 050 022 i rad for the second down-converted
harmonic. The complex value of the second down-converted
harmonic direction indicates an evanescent mode which is dir-
ected towards the end-fire direction for the prescribed phased
array parameters (2 300 kHz, ,, 2 005 kHz,

. Oradm ',and , 20 radm ). Similarly, the bot-
tom row of figure 6(b) validates the down-converted harmonic
suppression showing negligible magnitudes at 2.90 and 2.95
kHz. Additionally, the magnitude of the first up-converted har-
monic is maximum as seen at 3.05 kHz. For the propagat-
ing modes, the principal directionsare ° 0, ! 023
rad, and 2 050 024 rad, indicating an evanescent
mode for the second up-converted harmonic. Although these
evanescent modes are visible close to the end-fire direction in
the FE simulations due to the presence of amplified side lobes,
these waves are generally not visible in an experiment setting.

It is important to note that FE simulations of the anti-PT-
symmetric phased array yields the exact same results shown
in figure 6. This is expected since the energy of different wave
harmonics is identical whether the suppression is caused by
PT- and anti-PT-symmetric phase profiles, as confirmed earlier
in figure 3. However, a comparison of equations (7) and (13)
suggests that a phase difference of 2 rad exists between
the first non-suppressed harmonics of the PT- and the anti-PT-
symmetric cases. Figure 7 displays the difference between the
PT-symmetric and anti-PT-symmetric FFT phase angle of the
dominant frequency of the temporal signals, denoted pr  apr,
captured at the circular marker locations in figure 6 for both the
fundamental and the first non-suppressed harmonic directions.
For example, figure 7(a) shows the aforementioned difference
in the up-converted harmonic suppression scenario and shows
that while the fundamental frequency  exhibits approxim-
ately zero phase difference between the PT- and anti-PT-
symmetric systems, the first down-converted harmonic !
exhibits a phase shift of approximately 2 rad as theoretic-
ally predicted. Figure 7(b) confirms the same observation in
the down-converted harmonic suppression scenario.

7. Experimental apparatus and results

To validate the derived theoretical framework for on-demand
selective harmonic wave suppression, an experimental
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Figure 6. (a) Full wave (displacement) field of a non-Hermitian STP phased array with a PT-symmetric phase profile at f =3 ms
corresponding to an up-converted harmonic suppression (Sim (I) and a down-converted harmonic suppression (Sim II). Markers indicate
sensors at a radius of 0.3 m from the center that capture time-domain signals at the depicted points in the wave field corresponding to the
fundamental (green), up-converted (blue), and down-converted (red) directions. (b) FFT magnitudes for the various harmonics within the
up-converted harmonic suppression case (top row) and down-converted harmonic suppression case (bottom row).
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Figure 7. Difference between the PT-symmetric and anti-PT-symmetric FFT phase angle of the dominant frequency of the temporal signals,
denoted Zpr ApT, captured at the circular marker locations in figure 6 for both the fundamental (green marker) and the first non-suppressed
harmonic direction. The latter is the first down-converted harmonic (red marker) in (a) and the first up-converted harmonic (blue marker) in
(b). The figure shows that while the fundamental frequency exhibits approximately zero phase difference between the PT- and
anti-PT-symmetric systems, the first non-suppressed harmonic whether in (a) or (b) exhibits a phase shift of approximately 7/2 as

theoretically predicted.

apparatus was constructed consisting of an Aluminum
plate and a piezoelectric STP phased array. The phased
array consists of twelve piezoelectric transducers (Manufac-
turer; Steminc Inc. Model: SMDO5T04R111WL) that form
two spatial units. These transducers produce the required

anti-symmetric Lamb waves by inducing in-plane radial strain
when excited. The piezoelectric transducers are individually
controlled with voltage signals, as shown in figure 8. Due to the
inherent periodicity, the number of individual signals required
is reduced to six which contain the space-time-varying phase
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Figure 8. Overview of the experiment setup of a non-Hermitian STP phased array. (a) Entire experimental apparatus used to characterize
the performance of the non-Hermitian array. 12 Piezoelectric transducers are bonded to an elastic medium in the form of an aluminum plate.
A scanning laser Doppler vibrometer (SLDV) is used to capture the wave field via out-of-plane displacement measurements. A MATLAB
script is used to generate the excitation signals and an audio digital-to-analog converter (DAC) transorms the digital excitation to an analog
domain, which is amplified prior to being fed to the piezoelectric transducers. (b) Schematic diagram of the circuit used to drive the various

piezoelectric transducers and to trigger the SLDV measurements.

profile. The transducers are epoxy-bonded (Manufacturer:
3M, Model: Scotch-Weld DP 270) to the center of an Alu-
minum plate (5052 Aluminum Alloy) which has a side length
of 1.07 m and a thickness of 1.27 mm. For a complete descrip-
tion of the experiment apparatus, the reader is directed to [29],
where a similar setup was used to demonstrate the operational
concept of a nonreciprocal elastic phased array.

The six-channel phase-shifted signals, shown in figures 9
and 10, are digitally created using a custom MATLAB script
that incorporates the non-Hermitian phase shift requirements.
These digital signals are converted to the analog domain
using an audio digital-to-analog converter which communic-
ates with the MATLAB code via MATLAB’s Data Acquisition
Toolbox. These signals are then amplified using an off-the-
shelf audio amplifier and the amplified signals are supplied
to the transducers. The amplifiers are tuned such that the out-
put signal has a peak-to-peak voltage of V,,, 14 V. The six
phase-shifted signals are generated and supplied to the two
unit cells in parallel. The out-of-plane velocity wave field is
captured using a Polytech scanning laser Doppler vibrometer
(SLDV) using a 1000 500 mm? grid with a spatial resol-
ution of 12 points per wavelength and a temporal sampling
frequency of 100 kHz. The SLDV is triggered using the cus-
tom MATLAB script which generates a 1 ms trigger signal at
the start of every measurement to ensure synchronous meas-
urements of all spatial points with the same excitation signal.
This enables the reconstruction of the wave field for the time-
varying system. The excitation signal is provided for 30 ms
and the measurement for each spatial point is conducted for
70 ms to ensure that all the propagating waves present in the
elastic domain that were generated during the measurement
of the previous point are dampened out and a steady state
is achieved before starting the measurement of the following
point. Additionally, a 2—4 kHz band-pass filter is applied dur-
ing post-processing to remove any noise outside the frequency
range of interest.

Figure 9 provides the experimental results for the STP
phased array with a PT-symmetric phase profile. Specific-
ally, figures 9(a)—(c) show the array’s performance during
up-converted harmonic suppression, while figures 9(d)—(f)
show the performance during down-converted harmonic sup-
pression. The up-converted harmonics are suppressed using
modulation depths of 135 135. Figure 9(a) dis-
plays the experimentally-obtained wave field and shows two
transmission channels at the fundamental direction and the
first down-converted direction ! , and confirms the neg-
ligible propagation in the first up-converted direction !
To verify the temporal frequency content of the waves travel-
ing in the three principal transmission directions, the spectrum
of the signals captured at three marker locations (denoted by
green, blue, and red stars on figure 9(a) for the fundamental,
up-converted, and down-converted directions, respectively) is
plotted in figure 9(b) and is compared with both FE and the-
oretical predictions, as shown. The suppression of propaga-
tions corresponding to the up-converted marker location com-
pared to the two other locations is clearly evident from the
three subplots. These plots also serves to confirm that the
minimal wave propagation that is seen experimentally along
the up-converted direction is predominantly due to cross-talk
or side lobes from the other transmission channels, since the
highest amplitudes in the rightmost subplot of figure 9(b)
correspond to the down-converted and fundamental frequen-
cies as opposed to the suppressed up-converted one. Further-
more, the leftmost subplot of figure 9(b) shows the frequency
spectrum of the temporal signal captured along the down-
converted direction, and confirms that the first down-converted
harmonic ! is dominant in the first down-converted dir-
ection ' . This agrees with the theoretical prediction as
the modulation depths used in this case align with a full
up-converted harmonic suppression with a maximization of
the first down-converted harmonic, as discussed in section 4.
Finally, figure 9(c) shows the six voltage signals that drive the
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Figure 9. Experiment performance of a non-Hermitian STP elastic phased array with a PT-symmetric phase profile. (a)—(c) show the array’s
ability to achieve up-converted harmonic suppression at 1 35 1 35, while maximizing the energy within the first down-converted
harmonic. (d)—(f) show the array’s ability to achieve down-converted harmonic suppression at 135 135, while maximizing the
energy within the first up-converted harmonic. (a), (e) show the experimental wave fields, (b), (d) show the frequency spectrum of the
signals collected at the three marked locations comparing the experiment to the FE and theoretical predictions, and (c), (f) show the voltage
signal sent to the six piezoelectric transducers which constitute a single unit cell of the array in both time and frequency domains.

unit cell in both time and frequency domains. The spatiotem-
poral variation can be observed in the six signals sent to the
unit cell. It is interesting to note that regardless of the different

spatiotemporal variations between the six signals, the mag-
nitude of the frequency spectrum remains identical in all six
voltage signals as shown in the right column of figure 9(c),

12
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Figure 10. Experiment performance of a non-Hermitian STP elastic phased array with an anti-PT-symmetric phase profile. (a)—(c) show the
array’s ability to achieve up-converted harmonic suppression at 135 135, while maximizing the energy within the first
down-converted harmonic. (d)—(f) show the array’s ability to achieve down-converted harmonic suppression at 135 135, while
maximizing the energy within the first up-converted harmonic. (a), (e) show the experimental wave fields, (b), (d) show the frequency
spectrum of the signals collected at the three marked locations comparing the experiment to the FE and theoretical predictions, and

(c), (f) show the voltage signal sent to the six piezoelectric transducers which constitute a single unit cell of the array in both time and
frequency domains.

which shows the suppressed down-converted harmonics and A similar trend is observed in the bottom panel of figure 9
a highest magnitude at the first down-converted frequency, for the down-converted harmonic suppression and maximum
again strongly agreeing with theoretical predictions. first up-converted harmonic case. The optimal modulation

13



Smart Mater. Struct. 32 (2023) 074001

R Adlakha and M Nouh

depths used for this case are 135 135 . The exper-
imentally obtained wave field in figure 9(d) shows the waves
propagating in the fundamental and first up-converted direc-
tion !  with negligible energy in the first down-converted
direction ! .Complete suppression of down-converted har-
monics is observed on analyzing the frequency spectrum of
the captured signals at the three marker locations presented in
figure 9(e) with a magnitude peak at the first up-converted fre-
quency ! .Figure 9(f) shows the voltage signals sent to the
unit cell in both time and frequency domains. In the frequency
domain, the six voltage signals show the same frequency spec-
tra with the absence of down-converted harmonics and a peak
at the first up-converted harmonic.

Akin to the results obtained for the PT-symmetric phase
profile, figure 10 displays the experimentally obtained res-
ults for the STP phased array with an anti-PT-symmetric
phase profile. Particularly, figures 10(a)—(c) show the array’s
performance during up-converted harmonic suppression
while figures 10(d)—(f) show the performance during down-
converted harmonic suppression. The up-converted har-
monics are suppressed using modulation depths of

135 1 35 . Figure 10(a) depicts the experimentally-obtained
wave field with two transmission channels at the fundamental
direction  and the first down-converted direction !
and negligible propagation in the first up-converted direc-
tion ' . To verify the temporal frequency content of the
waves propagating in the three principal transmission direc-
tions, the spectrum of the signals obtained at the three marker
locations (denoted by green, blue, and red stars on figure 10(a)
for the fundamental, up-converted, and down-converted direc-
tions, respectively) are plotted in figure 10(b) and is compared
with both FE and theoretical predictions. The suppression
of propagations corresponding to the up-converted marker
location is evident in the figure. Moreover, the leftmost sub-
plot of figure 10(b) shows the frequency spectrum of the
temporal signal obtained along the down-converted direction
and confirms the dominance of the first down-converted har-
monic ! in the down-converted direction ! , agreeing
with the theoretical predictions presented in section 4. Lastly,
figure 10(c) shows the six voltage signals that drive the unit
cell in both time and frequency domains. These show again
that irrespective of the different spatiotemporal variations
between the six signals, the magnitude of the frequency spec-
trum remains identical in all six voltage signals as shown in the
right column of figure 10(c), showcasing the full suppression
of the up-converted harmonics and the maximization of the
first down-converted frequency. A similar trend is observed
when the modulation depths are set to 135135
in order to completely suppress the down-converted harmon-
ics and maximize the first up-converted harmonics, as shown
in the bottom panel of figure 10.

Finally, it should be noted that in both PT- and anti-PT-
symmetric systems, the input voltage signals contain higher
order non-suppressed modes as well. However, due to the
choice of parameters for the non-Hermitian phased array, the
main lobes generated at higher frequencies (harmonics) are
non-propagating modes with a complex transmission angle,
but their side lobes remain visible in the other principal

14

directions. Lastly, it is important to reiterate that even though a
similar harmonic suppression behavior can be obtained using
PT- and anti-PT-symmetric phase profiles (as was shown here),
the mechanism by which the behavior is achieved in each case
is different.

8. Concluding remarks

In this work, the working concept and underlying phys-
ics of a fully operational non-Hermitian STP phased array
were presented. Through a comprehensive theoretical analysis
backed by experimental testing, it has been shown that the non-
Hermitian STP phased array can be tuned to exhibit both PT-
and anti-PT-symmetric behaviors by implementing appropri-
ate phase profiles. A theoretical framework was developed to
conceptualize and interpret the behavior of both phase pro-
files in the context of the STP phased array dynamics via an
analysis of the eigen spectra by utilizing the scattering matrix.
The phase transition from PT (or anti-PT) exact phase to PT
(or anti-PT) broken phase was observed in the eigen spectra
indicating the presence of EPs, which are characteristic fea-
tures of PT- and anti-PT-symmetric non-Hermitian systems.
On further analysis of the amplitudes of the different harmon-
ics, it was observed that selective suppression of a given set
of such harmonics, whether up- or down-converted from the
fundamental frequency, can be achieved at the EPs. Addition-
ally, an optimization problem was formulated to maximize
the energy contained within a specific non-suppressed mode
at the EPs. Expressions for the wave field generated by the
non-Hermitian STP phased array were derived and used to pre-
dict the principal propagation directions corresponding to the
non-suppressed modes, and full-wave FE numerical simula-
tions were utilized to validate the theoretical results. Finally,
an experimental realization of the non-Hermitian array was
developed and tested in order to verify the feasibility of the on-
demand harmonic suppression scheme presented earlier. The
results presented here can be the foundation of a new class
of adaptive phased arrays which can robustly and efficiently
achieve ‘on-the-fly’ directional wave beaming with unpreced-
ented control over transmission directions and energy levels
contained therein. In the mechanical domains, non-Hermitian
STP phased arrays have the potential to advance acoustic
communication systems given their ability to communicate
with multiple carriers at different frequencies, while simul-
taneously modulating the amplitude of specific directional
channels. This can be easily tailored to ensure appropriate
communication strength or compensate for carriers at differ-
ent proximity levels. They can similarly impact a wide range
of applications ranging from sensing and communication to
SONAR/RADAR, object detection, focusing, and source loc-
alization. Moreover, by invoking multiple non-Hermitian STP
arrays, the proposed system can triangulate multiple objects
by augmenting traditional time-delay methods with amplitude
information of the incident signals from different directional
channels. As a result, these systems can be extended to 5G
communication and internet connectivity through constella-
tion systems such as Starlink.
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