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Abstract

The collection of d x N complex matrices with prescribed column norms and prescribed (nonzero) singular values
forms a compact algebraic variety, which we refer to as a frame space. Elements of frame spaces—i.e., frames—are
used to give robust representations of complex-valued signals, so that geometrical and measure-theoretic properties of
frame spaces are of interest to the signal processing community. This paper is concerned with the following question:
what is the probability that a frame drawn uniformly at random from a given frame space has the property that any
subset of d of its columns gives a basis for C%? We show that the probability is one, generalizing recent work of
Cahill, Mixon, and Strawn. To prove this, we first show that frame spaces are related to highly structured objects
called toric symplectic manifolds. This relationship elucidates the geometric meaning of eigensteps—certain spectral
invariants of a frame—and should be a more broadly applicable tool for studying probabilistic questions about the
structure of frame spaces. As another application of our symplectic perspective, we completely characterize the norm
and spectral data for which the corresponding frame space has singularities, answering some open questions in the
frame theory literature.

1 Introduction

A frame in a Hilbert space (M, (-,-)) is traditionally defined as a collection {f; };cz of vectors in H so that for all ve H
we have
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for some numbers 0 < a < b called frame bounds. In this paper, we focus on finite frames in complex Hilbert spaces, in
which case H = C¢ for some integer d > 0 with its standard Hermitian inner product and norm, Z = {1,...,N} is finite,
and the above condition is equivalent to the collection {fi,..., fy} being a spanning set for C.

Interest in finite frames is largely due to their application to robust signal representation. Modeling a signal as
an element of a Hilbert space H, a frame allows one to take a sequence of “measurements” by recording the inner
product of the signal with each of the frame vectors. This signal representation is more robust to noise in the signal
or random erasures of measurements than a similar measurement scheme associated to an orthonormal basis, at least
when the frame has certain properties [[11},23]29]]. These desirable properties for a frame are typically expressed as
prescriptions for the norms of the frame vectors and for the spectrum of an operator associated to the frame, which
we describe in more detail below. The collection of frames with prescribed norm and spectral data is easily seen to
define an algebraic variety, and there is interest in the geometric structure of these frame varieties [8}|18,/49]. This
paper explores the geometry of frame varieties through the lens of symplectic geometry. Symplectic geometry is a
subfield of differential geometry that studies manifolds endowed with a certain geometric structure—to keep the paper
accessible to the broader frame theory community, we have aimed to give self-contained expositions of the relevant
ideas from symplectic geometry, but we will not go into details here in the introduction.

The main contributions of this paper are as follows:

* Our main theorem, [Theorem l.ll says that with probability 1 every size-d subset of a random frame in C? with
prescribed norms and spectral data is a basis. Frames satisfying this non-degeneracy condition are called full
spark frames. This generalizes the complex case of Theorem 1.6 from Cahill, Mixon, and Strawn’s paper [8]],
which established the genericity of the full spark condition for frames whose frame bounds are equal (this can
be stated as a spectral constraint) and whose frame vectors are all unit—this is referred to as the space of finite
unit-norm tight frames or FUNTFss.



* We show in[Theorem 2.25|that the space of frames with prescribed norm and spectral data is a smooth manifold,
for generic choices of this data. In fact, we give necessary and sufficient conditions on the norms and eigen-
values which guarantee that the corresponding frame variety is smooth, and we describe the local geometry of
singular varieties near their singular points. This theorem (together with surrounding results) generalizes work
of Dykema and Strawn [[18]], which once again specializes to the space of FUNTFs, and answers generalizations
of two open questions posed in [8].

* Both of the previous two results are proved by novel applications of ideas from symplectic geometry to frame
theory. Throughout the course of the paper, we show that many spaces of complex frames have natural inter-
pretations from the symplectic point of view. In particular, we show in[Theorem 3.20| that each space of frames
with prescribed spectral and norm data has a dense open subset which projects onto a highly structured geomet-
ric object called a foric symplectic manifold. This geometric structure has measure-theoretic implications—we
use it to prove our full spark theorem, but expect that it will be a useful tool for the future study of probability
theory on frame spaces. [Theorem 3.20 generalizes work of Flaschka and Millson [19]], which is written in the
context of pure symplectic geometry and makes no references to frames. The theorem also gives a symplectic
interpretation of the frame-theoretic concept of eigensteps, introduced by Cabhill et al. [[7]], and an auxiliary result
used in its proof generalizes a theorem of Haga and Pegel [27].

To describe our results in detail, we now introduce more precise terminology and notation.

Notation and statement of the main theorem. Let F% be the space of frames of N vectors in C¢. Identifying a
frame { f; fi | € F4N with the d x N matrix whose columns are the f; represented in the standard basis, the space F¢V
can be viewed as an open, dense subset of the space C*V of d x N complex matrices.

When a = b in (I), the frame satisfies a scaled Parseval identity
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and such frames are called a-tight (or just tight); 1-tight frames are called Parseval frames.
Each frame { f,}fi | € FN has three related operators, which can be interpreted in terms of the d x N matrix

F=[filfal.--| fv]:

1. The analysis operator C? - CV is defined by

V= (<v7fl>7'?(v’fN))7
or equivalently v — F*v, where F* is the Hermitian adjoint (i.e., conjugate transpose) of F’;

2. The synthesis operator CN — C? is defined by

N
(Wi, wn) = D wifi,
i=1

or equivalently w — Fw;
3. The frame operator C¢ - C? is the composition of the analysis and synthesis operators; i.e., v FF*v.

A simple calculation shows that a frame is a-tight if and only if its frame operator is all;, where I; is the identity
d
map on C*.

Frame operators are always Hermitian and positive-definite, so they have spectrum A; > --- > A; > 0, which we will
call the frame spectrum. If A = (A1,...,Ay), we will use fg’N to indicate the frames with frame spectrum A. Notice
that the a-tight frames are uniquely specified by their frame spectra: ]-'ElaN 2) is the space of all a-tight frames.

In addition to specifying a frame operator, we also often want to fix the (squared) norms of the individual frame

vectors. We can always permute the labels on the frame vectors, so it will be convenient in what follows to assume the
norms are sorted in decreasing order. If r = (r1,...,ry) is a non-increasing list of positive numbers ry > - > ry > ()[

'We could also allow some of the r; to be zero, but this would complicate some statements below to no apparent benefit.



we will use 4V (r) to indicate the space of frames with | f;|* = r;. It is especially common to require that all the
frame vectors have the same norm: | f;[|®> = 7> 0 for all i, in which case the frame is an equal-norm frame; if r = 1, this
is a unit-norm frame.

In general, the frame norms determine the trace of the frame operator:

N N d
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by the cyclic invariance of trace. Hence, for tight frames the frame operator must be @Hd and a unit-norm tight frame
must have A; = % foralli. Ifr=(ry,...,ry)and A = (A1,...,Ag) withry >--->ry>0and A; >--- > A5 >0, we will use
fij’N(r) = fi’N nF®N (r) to denote the space of frames {f;}¥ | with | f;|* = r; and frame spectrum A. This space has
a natural probability measure: the (normalized) Hausdorff measure it inherits as a compact subset of C?*V.

Equation (2) is not the only restriction imposed on the frame vector norms by the frame operator: the partial
sums of the squared frame vector norms must be bounded above by the partial sums of the eigenvalues of the frame
operator [124/19]. More precisely, there exists a frame {f;}¥ | with | f;|* = ; > 0 and frame spectrum 4 if and only if
holds and, for all k=1, ....d,
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Given A, we will call a non-increasing list r of positive numbers satisfying (2) and (3) A-admissible, and if all inequal-
ities in (3)) are strict we call the list strongly A-admissible. This terminology comes from Casazza and Leon [12], who
showed that ]—"f’N(r) is non-empty if and only if r is A-admissible. Although the terminology does not appear in the
work of Casazza and Leon, in general one says that the vector A majorizes the vector r in the case that the relations
hold [39].

For {fi}¥, € F4N, the spark of {f;}}Y, is the size of the smallest linearly dependent subset [[16]. The spark is
bounded above by d + 1, and a frame with spark equal to d + 1 is called a full-spark frame. Equivalently, a frame in
F4N is full spark if and only if all of its size-d subsets are bases. Full spark frames are often desirable, for example
because they provide unique reconstructions of the largest possible class of sparse signals [2}|16].

We are now ready to state our main theorem:

Theorem 1.1. Suppose N >d > 1. Let r=(ry,...,ry) and A = (Ay,...,Ay) be nonincreasing lists of positive real
numbers. There are three mutually exclusive possibilities for the space f;f’N(r) of frames { f; ﬁ | with || ﬁHz =r;and
frame spectrum A:

1. If r is not A-admissible, then ]—";f'N(r) =g

2. If r is A-admissible but not strongly A-admissible, then ]—';f’N(r) is nonempty but consists entirely of frames
which are not full spark.

3. If ris strongly A-admissible, then full spark frames have full measure in fZN(r)

In particular, since r = (1,...,1) is strongly A = (%, . %)—admissible whenever N > d and since ]—'(dld N (1,...,1)
consists of orthonormal bases, which are certainly full spark, we have: '

Corollary 1.2. For any N >d > 1, the full-spark frames have full measure inside the space F (,\iv N)(l, 1) of
drd
unit-norm tight frames (FUNTFs) in C9.

This result essentially recovers the complex case of [8, Theorem 1.6], where the authors showed that full spark
frames form an open dense subset of F d,’év N)(l, ...,1). Our corollary slightly sharpens this result, in that we are
drod
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able to refer precisely to the canonical probability measure on .7-'2[ ,\Z,V
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Structure of the paper. [Section 2 begins with an exposition of the relevant ideas and tools from symplectic geome-
try. These tools are then applied to show that various spaces of frames with prescribed data have symplectic structures.

Then, parameters A and r for which the frame variety f;‘N(r) is a smooth manifold are characterized. |Section 3 is de-

voted to showing that the space ]-';f’N(r) has a dense open subset which projects onto a toric symplectic manifold (we
define and describe the basic properties of such an object in[Section 3.T). The main theorem is proved in as
an application of the toric symplectic structure from the previous section. An alternative proof using related tools from
algebraic geometry is also sketched. The paper concludes with a brief discussion of future directions in [Section 3]

2 Symplectic Structure of Frame Varieties

In this section, we describe the symplectic structures on the frame varieties of interest; i.e., spaces of frames with
prescribed frame spectra and/or norms. It has been previously observed in the literature that certain parameter choices
may lead to frame spaces with singularities [8}|18,/49]. We give a precise characterization of this phenomenon and
describe the local structure of singular points later in this section.

2.1 Symplectic Geometry

We begin with a review of some concepts of symplectic geometry, with a focus on various notions of reducing a
symplectic manifold by a Lie group action. We use [40|] as our main reference for the basics of symplectic manifolds.
The ideas we present are standard in the field of symplectic geometry; this subsection is mainly intended as a quick
reference for non-experts and to standardize our notation.

A symplectic form on a (smooth, real) manifold M is a closed, nondegenerate 2-form @. For a point p € M and
tangent vectors X,Y € T,M, we write ®,(X,Y’) € R for the evaluation of @ on the vectors. The closedness condition
means that the exterior derivative d is identically zero and the nondegeneracy condition means that for every nonzero
X € T,M there exists Y € T,M such that w,(X,Y’) #0. A manifold endowed with a symplectic form is called a symplectic
manifold, denoted (M, ®) or simply as M when the symplectic form is understood to be fixed. A simple argument
shows that if a manifold M admits a symplectic form, then it must be even dimensional (over the reals).

Example 2.1 (Complex n-Space). The prototypical example of a symplectic manifold is n-dimensional complex space
C", which is considered as a 2n-dimensional real manifold via the natural identification C" ~ R?". For any n-tuple p
of complex numbers, there is a natural isomorphism 7,,C" ~ C". Coordinates (x| + V=1y1, ..., %y +/~1y,) for C"
correspond to real coordinates (xi,...,X;,1,...,y,) in which a symplectic form is given by

o =dx; Andy) +---+dx, Adyy. @)

This is referred to as the standard symplectic form on C". In complex coordinates, is expressed concretely for
peC"and
Z=(21,..,2n), W= (w1,...,w,) e ,C"~» C"
by
©,(Z,W) =-Im(wiz) +-+Wnzy) = —Im(W*Z) = -Im(Z,W),

where Im denotes the imaginary part of a complex number and (-,-) is the standard Hermitian inner product on C”.

The most important example of a symplectic manifold for our purposes is complex matrix space C4*V, which is
just a reshaped version of the space C?" described above. For a matrix F € C“*, we have a natural identification
TrCN ~ CPN_ The canonical symplectic form on C*V is defined as

or(X,Y) =-Imtr(Y*X).

This is just a transformation of the canonical symplectic form on C4" under the reshaping map.
Since the space of frames F¢" ¢ C*V is an open submanifold, the standard symplectic structure on
to make F¢ a symplectic manifold.

CP*N restricts

In fact, every 2n-dimensional symplectic manifold is locally equivalent to C" with the standard symplectic form.
Let us now make this statement precise. If ¥ : N — M is a smooth map from a manifold N to a symplectic manifold
(M, w), the pullback form W* @ on N is defined by

(¥"0),(X,Y) = 0 (,) (DY (p)(X),D¥(p)(Y)),



for X,Y € T,N and where D¥(p) : T,N — Ty(p)M denotes the derivative of ¥ at p. If (N,m) is also a symplectic
manifold and W is a diffeomorphism with the property that ¥* @ = 7, then we say ¥ is a symplectomorphism and that
(N,n) and (M, ) are symplectomorphic. A fundamental result of symplectic geometry is Darboux’s Theorem [40,
Theorem 3.2.2]: every point in a 2n-dimensional symplectic manifold has an open neighborhood U such that the
symplectic manifold (U, |y ) is symplectomorphic to C* with the standard symplectic form.

An important aspect of symplectic geometry is the study of interactions between symplectic structures and certain
group actions on their manifolds. Let G be a Lie group with Lie algebra g and suppose that G acts on a manifold M
endowed with a symplectic form @. For p e M and g € G, let g- p € M denote the action of g on p. To each & € g, one
associates an infinitesimal vector field Yz on M via the formula

Ve, 2| exn(ed) p.

e=0

where exp : g — G is the exponential map of G. A map ®: M — g*, where g* denotes the dual to g, is called a momentum
map for the G-action if its derivative interacts with the symplectic form as follows. Let D®(p) : T,M — Tip()g* denote
the derivative of ® at p € M. Then for each X € T,M, D®(p)(X) € Tp(,) 8" ~ g*, where we use the natural isomorphism
coming from the fact that g* is a vector space. Then D®(p)(X): g — R, and for each & € g we require

DO (p)(X)(§) = @p(Yep,X).

We also require that the momentum map P is equivariant, in the following sense. Recall that the adjoint action of G
on g is defined, for each g € G, by the map Ad, : g — g which is the derivative at the identity of the conjugation map
h '~ ghg™!. The corresponding coadjoint action of G on the dual Lie algebra g* is defined, for each g € G, by the map
Adg :g* — g* given by Ad, (%) (&) := X(Ad,-1(&)). When G is a matrix group, both the adjoint and coadjoint actions
can be interpreted as conjugation actions. The momentum map is required to be equivariant with respect to the given
G-action on M and the coadjoint action on g*. Explicitly, this means that, for each g € G and each p e M,

Ad; (@(p)) = (g p).

If a G-action admits a momentum map, then we say the action is Hamiltonian. Hamiltonian actions give the
appropriate setting for performing a quotient operation in the symplectic category.

Theorem 2.2 (Marsden—Weinstein—-Meyer Theorem for Regular Values [38/41])). Let (M, ®) be a symplectic manifold
with a Hamiltonian G-action, let ® : M — g* be a momentum map for the action and let ) € g* be a regular value such
that G acts freely on the level set ®~'(x). Then the manifold

M)y G=2"'(x)/G,

called the symplectic reduction or symplectic quotient over ¥, admits a symplectic structure @,.q which is uniquely
characterized by the equation
q*a)red = l*(l),

where q: @71 (x) - M |/, G is the quotient map and 1: D~ () - M is the inclusion map.

See [5, Example II1.2.18] for a construction of the complex projective space CP' ! asa symplectic reduction
C" J¢U(1), where U(1) acts on C" by scalar multiplication.

Notice that, in the statement of Theorem 2.2} we required that G acts freely on the level set ' (). In particular,
G acts on this level set, meaning that for any p € M with ®(p) = yx, it must be the case that ®(g-p) = x for all g€ G.
By the equivariance required in the definition of the momentum map @, this implies that Ad; (x) =y forall ge G;in
other words, ¥ must be a fixed point of the coadjoint action of G. Conversely, G will act on the level set over any fixed
point of the coadjoint action.

More generally, when x € g* is not a fixed point of the coadjoint action, we can still take a symplectic reduction
over the coadjoint orbit of ¥, defined to be the set

Oy ={Ad; (%) |g<G}.

In this case the equivariance of the momentum map ensures that G acts on &~ (Oy).



Theorem 2.3 (Marsden—Weinstein—-Meyer Theorem for Coadjoint Orbits [38,41]). Let M, o, G and ® be as above
and let x € g* be a regular value. If the action of G on ®~! (Oy) is free, then the manifold

M)o,G=2"(0,)/G
admits a symplectic structure ®,.q which is uniquely characterized by q* @,.q = 1* @, where q denotes the projection
map ®~1(Oy) > ®71(0,)/G and 1 denotes the inclusion map ' (Oy) —» M.

It is straightforward to show that when y € g* is a regular value, the action of G on ®~! (Oy) is at worst locally
free. easily generalizes to this setting, with the only modification being that M /o, G is a symplectic
orbifold rather than a symplectic manifold.

Perhaps surprisingly, if we are more concerned with the “symplectic” part of this statement than the “manifold”

(or “orbifold”) part, Sjamaar and Lerman [48]] have shown that ) being a regular value is not an essential hypothesis

in[Theorems 2.2, and When  is a singular value of & then &~! (Oy) is not a manifold, but it nonetheless admits

a G action and the quotient still admits a natural symplectic structure.

Theorem 2.4 (Sjamaar—Lerman [48]). Let M, @, G and ® be as above and let X € g*. The symplectic reduction
M[o,G:=2"(0y)/G

is a symplectic stratified space with symplectic structure @,.q characterized by q* ®,.q = 1* @, where 1 again denotes

the inclusion map ®1(0y) - M.

Roughly speaking, M // 0, G being a symplectic stratified space means that it is the disjoint union of symplectic
manifolds and that these manifolds fit together nicely. Somewhat remarkably, each connected component contains a
unique manifold piece which is open and dense:

Theorem 2.5 (Sjamaar—Lerman [48])). Let M, o, G, ®, and ) be as above. Then each connected component of the
symplectic reduction M /| 0, G has a unique open stratum which is a manifold and is connected and dense.

Kirwan’s proof that level sets of proper momentum maps are connected —this follows from [34, Remark 3.1],
which handles the case where the domain is compact, together with the discussion surrounding [33, Remark 9.1],
which applies to proper moment maps— yields the following immediate corollary.

Corollary 2.6. Let M, ®, G, ®, and ) be as above. If @ is proper (for example, if G is compact), then the symplectic
reduction M || 0, G has a unique open stratum which is a manifold and is connected and dense.

Therefore, up to sets of lower dimension, the symplectic reduction even over a singular value of a proper momen-
tum map is a connected symplectic manifold.

2.2 Frame Spaces as Symplectic Quotients

Various spaces of frames can be endowed with natural symplectic structures via[Theorems 2.3|and [2.4] To be precise,
the symplectic manifolds of interest are actually quotients of frame spaces by certain symmetry groups. Throughout
this subsection, fix dimensions d and N and a frame spectrum A = (41,...,4;) with A; >--- > 44> 0.

2.2.1 Frames with Prescribed Frame Spectrum

The unitary group acts on f-;f’N by left matrix multiplication. We then consider the quotient space f;f’N /U(d), which
has a natural symplectic structure, as we will show below.

Before stating the result, we observe that the space H(d) of d xd Hermitian matrices may be identified with the
dual Lie algebra u(d)* via the isomorphism o : H(d) —u(d)* taking & to the linear functional o :u(d) — R, defined

by
o)=Y ). ®)

We begin with a preliminary result about this isomorphism. We define a U(d)-action on H.(d) which we (with a slight
abuse of terminology) refer to as the adjoint action:
Ad:U(d) xH(d) > H(d)
(A,8) ~ Ady(§) =ALA™.

a:(n) =



Lemma 2.7. The map o defined in is equivariant with respect to the adjoint action on H(d) and the coadjoint
action on u(d)*. That is,
aAdA(.ﬁ) = Ad;(x,g.

It follows that, under the map @, the coadjoint orbit of any element of u(d)* is identified with the collection of
Hermitian matrices with a fixed spectrum.

Proof. The first part is a straightforward computation: for 1 € u(d),

A -

Otag, (&) (1) = tr((A"nA)*8) = ag (A"nA) = Adjo (1).

Any Hermitian matrix € with spectrum A can be expressed via its eigendecomposition as & = Ad, (diag(A)) for
some A € U(d), so that the second part of the claim follows by equivariance. [

Based on the second part of the lemma, we use O, c H(d) to denote the set of matrices with fixed spectrum A.
We now describe the symplectic structure on the space of frames with prescribed frame spectrum.

Proposition 2.8 ( [43]). The action of U(d) on C**N by left multiplication is Hamiltonian with momentum map

Dy(gy : CN > H(d) mu(d)*
F > —FF*.

It follows that the space fi’N/ U(d) is the symplectic quotient
C™N Jo_, U(d).

In particular, it has a natural symplectic structure.

Proof Sketch. We sketch the proof, since the constructions involved will be useful later. For details, see our previous
paper [43].

The fact that Py 4y : F' = —FF* is a momentum map (where we are specifically fixing the isomorphism (3)) follows
by a computation, as shown in [43| Proposition 2]. We remark that our momentum map differs by a sign in the present
paper, due to slightly different conventions. The fact that ]:j’N = CIJG]( 4) (O_,) follows by [Lemma 2.7} Moreover, the

negative-definite Hermitian matrices are the regular values of ®y,) in H(d); we proved this by slightly tedious but
essentially straightforward calculation in [43], but it also follows easily from [Proposition 2.20|below, since the only
unitary matrix which acts trivially on a spanning set of C¢ is the identity matrix. Therefore, the entries in A being

positive means that[Theorem 2.3|applies and
CN o, U(d) = @5 (0-3)/U(d) = 7}V [U(a)

is a symplectic manifold. O

2.2.2 Identification with a Coadjoint Orbit

The symplectic structure of ]-';’*N /U(d) can alternatively be realized by identifying the frame space with a certain
coadjoint orbit in the larger space of Hermitian matrices H(N). This perspective will be useful in the following
subsection. In order to state the result precisely, we introduce some more terminology.

It is well known that any coadjoint orbit has a natural symplectic structure, called the Kirillov—Kostant—Souriau
(KKS) symplectic form [5, 11.3.c]), which we denote generically as @®XS. Indeed, for an arbitrary Lie group G with
Lie algebra g, the tangent space to a coadjoint orbit Og at € g* consists of vectors of the form adgﬁ, where & € g,
and where ad; is the coadjoint representation of g on g*, obtained as the derivative of the map Ad™ : G — Aut(g*) at
the identity. Then the KKS form is defined by

oS (adzB.adz, ) = B([&.6']), ©)

where [-,-] is the Lie bracket on g.



By another slight abuse of terminology, we define the adjoint representation of u(d) on H(d) by

ad:u(d) xH(d) - H(d)
(n.8) ~ady(8)=nE-En.

An argument similar to that of [Lemma 2.7 proves the following.

Lemma 2.9. The map o defined in (9)) is equivariant with respect to the adjoint representation of u(d) on H(d) and
its coadjoint representation on u(d)*. That is,

Otyq, () = ady tz.

The adjoint representation of u(d) on H(d) is obtained by differentiating the adjoint action of U(d) on H(d). It
follows that the tangent space to O_, c H(d) at & consists of vectors of the form ady (&) for n e u(d).

Lemma 2.10. The pullback of @%%S to O_; c H(d) via o is given by
(o @55, (ady (&) (£)) = Im e ().
Proof. We have

(o %) (adn (§),ady/(§)) = 01> (Det(8) (adn (§)), Dex(8) (adyy (£))) = 05> (Ot (2 Caa,  (2))

= o (ady g adyae) = o ([n,1'])

\/2__1tr((nn’—n’n)*§) = @_2\/—_1““(@”77')
=Imtr(&nn’),

where the second-to-last line uses cyclic invariance and linearity of trace. O

We can now describe precisely how fz’N /U(d) is equivalent to a coadjoint orbit in H(N).

Proposition 2.11 ( [43]). Let A be a frame spectrum and define A := (Als.-,24,0,...,0) € RN to be A padded with
N —d zeros. The space fZ’N/U(d) is diffeomorphic to O3 <« H(N), via the map

[F]~F*F (7)

taking a unitary equivalence class to its Gram matrix.
Moreover, the map is a symplectomorphism with respect to the reduced symplectic structure on fﬁ’N /U(d)
and the pullback of the Kirillov—Kostant-Souriau form o* @®XS described in z;emma 2.10.

The proof of the proposition makes use of the following lemma.
Lemma 2.12. Let [F] e fi’N/U(d). The tangent space T[F]}";f’N/U(d) is naturally isomorphic to the vector space
{FEICeuN)}{EF[§ cu(d)}.

Proof. Any F ¢ f:’N has singular value decomposition of the form F = UX, V*, where
£3 = [diag(2)* | 0].

Therefore
FyN ={USV* |U e U(d) and V e U(N)}.

We claim that

TrFy™ ={EF -F{ | & eu(d) and § eu(N)}.



Indeed, a smooth path F; in FZ’N with Fy = F =UX; V* can be expressed as F; = U;XZ; V,* for some smooth paths U; in

U(d) with Uy =U and V; € U(N) with Vy = V. Then the derivative of F; at t = 0 satisfies
Fo=UoZ, Vg +UpZy Vo = EUL)V* —UL V= EF-F(,

for & eu(d) and § e u(N) satisfying Ug = EU and Vo = {V, respectively.
By general principles of quotient manifolds, there is a natural isomorphism

Tiry (7Y /0(d)) ~ T [T (U(d) - F).

Indeed, the quotient map ]—';LN — F;'N /U(d) is a submersion, so the rank theorem [37, Theorem 4.12] implies that,
locally near F, it is an orthogonal projection with the fiber U(d) - F being sent to the origin. This gives Tp]-';’N ~

Tr(U(d) - F) @ Tipy (]—";f’N/U(d)), and the claim follows. Since Tr(U(d)-F) ={EF | & eu(d)}, the lemma follows.
O

Proof o, The diffeomorphism result is Proposition 3 in our previous paper [43[], so we only sketch
the details here. Unitary equivalence classes of frames are uniquely determined by their Gram matrices (see, for

example, [50, §3.4]), so we can identify FZN/ U(d) with the elements of H(N) which arise as Gram matrices of
frames in }';f’N. Of course, the frame operator FF* and the Gram matrix F*F have the same nonzero eigenvalues, S0
specifying the spectrum of the frame operator also determines the spectrum of the Gram matrix by padding with N —d
zeros, and it follows that this subset consists of those N x N Hermitian matrices with spectrum A. In other words,
is a diffeomorphism between fﬁ’N /U(d) and O3.

It remains to prove the symplectomorphism claim. For the rest of this proof, let ¥ denote the map (7). By
Lemma 2.12L the tangent space to fi’N /U(d) at [F] consists of equivalence classes (under the quotient operation
in the lemma) [F ], where § € u(N). The derivative of y at [F] in the direction [F ] is given by

DY(FN)((FL]) = F*FC+ (FE)'F = F*F§ - §F*F =adg (F*F),

Then, using |[Lemma 2.10]

(y*a*a)KKS)[F] (FEFE) = (a*0*) ., (ad(F*F),adg/ (F*F)) =Imte(F*F ().

On the other hand, the reduced symplectic form on f;f"N /U(d) evaluates as

~Imtr((FE')*(FE)) = -Imte(F*FE(E)") =Imtr(F*F{ L),

where we have used the characterization of the reduced form, cyclic invariance of trace and the fact that {’ is skew-
Hermitian. O

Remark 2.13. Since O5 c H(N) is identified with a coadjoint orbit, it is diffeomorphic, like all coadjoint orbits,
to a flag manifold [5, §II.1.d]. Specifically, if A consists of ¢ distinct eigenvalues with multiplicities ki,...,k; and
di=ki+---+k;fori=1,...,¢, then

OI N Fg(d] yoeoe ,dg,N),

the flag manifold whose elements are nested sequences V| c---c V, c Vp | = CN of subspaces with dimV; = d;. In
particular, when A is constant then £ = 1 and k; = d, so the flag manifold is F{(d,N), whose elements are all subspaces
V; ¢ CN with dimV; = d; that is, the Grassmannian Grd(CN ) of d-dimensional subspaces of CNV.

2.2.3 Frames with Prescribed Frame Spectrum and Norms

The torus U(1)N can be realized as the subgroup of diagonal elements of U(N); that is, as the standard maximal torus
T < U(N). Thought of in this way, U(1)" ~ T acts on C*V by right matrix multiplication and, as we will see in a
moment, this action preserves the frame spectrum, and hence restricts to an action on fi’N.



First, though, it is worthwhile to pause and think about the right action of the full unitary group U(N) on C#V,

If we try to define the action of A € U(N) on F € C**N by A-F = FA we quickly run into problems: after all, if
Aj,Ap € U(N), then
A1-(Ay-F)=A,-(FAy) =FAyA| + FA1Ay = (A1A) - F,

unless Ay and A, happen to commute. This is not an issue at the level of T, which is abelian, but it is preferable to
define the T action to be consistent with an honest U(N) action. We get such an action by defining A - F := FA* for
AeU(N) and F e C**N_ In particular, if D € T, define D-F := FD* = FD.

This action preserves the frame spectrum: if F ¢ f;"N and D € T, then the frame operator of D-F = FD* is

(FD*)(FD*)* =FD*DF* = FF*, which is the same as the frame operator of F, and hence D-F ¢ fz’N as well.

At the frame level, the action of an element of the torus on a frame performs an independent phase rotation on
each frame vector. The right action of T commutes with the left action of U(d), so the torus action descends to the
quotient .FZN/ U(d), but it is not an effective action. After all, both T and U(d) contain a 1-parameter subgroup of
scalar matrices, and the actions of these two subgroups cancel each other: if [; denotes the k x k identity matrix and
¢ € U(1), then €T, € U(d), ¢®Ty € T and for any F ¢ fi’N we have

(¢“T) - ((¢7Ta)F) = (¢“La)F (7" T) = F.

We can put this in a more standard context using our identification of ]—'Z’N /U(d) with the coadjoint orbit s
H(N) ~u(N)*, described in [Proposition 2.11. The standard maximal torus of U(N) certainly acts on any coadjoint
orbit of U(N), and in this case the action is just the conjugation action. The scalar matrices are the center Z(U(N)) of
U(N), whose coadjoint action is trivial. In general, to get an effective action of the maximal torus of a Lie group on a
coadjoint orbit of the group, one needs to take the quotient of the torus by the center of the group; in this case, this is
simply

G:=T/Z(U(N)) ~U(1)¥/U(1) ~ U(1)"N!,

which can be identified with the subgroup of diagonal elements of U(N) whose last entry is 1.

Now we see why it was worth defining the action of U(1)" (and hence G) on Fi’N by D-F = FD*, since this
corresponds exactly to the standard coadjoint action on H(N) ~ u(N)*.

In this setting, it is easy to see that the action of G on O3 » ]—"iN/ U(d) is Hamiltonian:

Proposition 2.14. The action of G on O3 is Hamiltonian, with momentum map $¢ : Oy — g* ~ RN recording the
first N — 1 diagonal entries.

Proof. First of all, it is standard (see, e.g., [40, Example 5.3.11]) that the coadjoint action of U(N) on the coadjoint
orbit Oy is Hamiltonian with momentum map given by the inclusion O3 — u(N)* ~ H(N); in fact, the analogous
statement holds for arbitrary compact Lie groups acting on coadjoint orbits.

Similarly, it is standard (see, e.g., [5, Proposition III.1.10]) that the action of the maximal torus T < U(N) on OX
is Hamiltonian with momentum map given by the composition

Oz = H(N) »u(N)" > t,

where t* is the Lie algebra of T and the projection u(N)* — t* is the one induced by the inclusion T = U(N). After
identifying t* with R, this projection is easily seen to be the map which records the diagonal entries of a Hermitian
matrix

More generally, the same applies for any subgroup (see, e.g., [9 p. 213]), and so the action of G on OI is Hamil-
tonian with momentum map given by the composition

Oz > H(N) ~u(N)" ~g",

where the projection u(N)* — g* is the one induced by the inclusion G < U(N). Under the identification g* ~ RN~!,
this map just records all the diagonal entries but the last one (which in any case is determined by the others, since the
trace of any element of OI is Y, A). O]

2It is worth pointing out that this is precisely the setup for the symplectic proof of the Schur—Horn theorem; see Knutson’s excellent paper [36]
for more.
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Remark 2.15. Tt is easy to show that the map (7) from ]—';’N /U(d) to H(N) is equivariant with respect to the right
multiplication action of U(N), A-[F] = [FA*], and the Ad-action of U(N) on H(N). This observation, together with
Proposition 2.11]and the first paragraph of the proof of|Proposition 2. 14L shows that the action of U(N) on fi’N /U(d)
is Hamiltonian, with momentum map [F] — F*F.

IfFe fi’N, then the (i,i) entry of F*F € Oy is simply (fi, fi) = | fi 2, s0, reinterpreting in terms of frame data, the

momentum map of the Hamiltonian G-action on f;’N/U(d) is simply [F] = (| f1]%,.-., ] fv—1]*). Hence, as a subset
of ]-';f'N /U(d), the collection f;’N(r) /U(d) of unitary equivalence classes of frames in ]—'Z’N(r) is precisely the level
set CIDZ;I (riy.-srn=1)-

By the Schur-Horn theorem [30,46], @51(}"1 ,-.-,FN—1) 18 non-empty only if the vector (ry,...,ry) lies in the
convex hull of the orbit of 4 = (A1,-.-,44,0,...,0) under the action of the symmetric group Sy which permutes
entries. When r and A are non-increasing lists, this condition is easily seen to be equivalent to r being A-admissible,
SO fX’N(r) is non-empty precisely when r is A-admissible.

When r is A-admissible, there is no guarantee that (ry,...,ry_;) € R¥"! ~ g* is a regular value, but we can still

apply [Theorem 2.4|to see that the quotient of (IDZ;I (r1,...,rn—1) by G is at worst a symplectic stratified space. We have
thus proved the first part of the following proposition:

Proposition 2.16. When r is A-admissible, the (non-empty) space ]—';’N(r) [(U(d) x G) is the symplectic quotient
(7Y 1u@) /r6,

which is a symplectic stratified spaceE
Alternatively, fi’N(r) /(U(d) x G) can be viewed as the symplectic quotient

C"N J o, x(ry (U(d) xG).

Proof. We proved the first sentence above. For the second sentence, Sjamaar and Lerman [48| Theorem 4.1] showed
that even when reducing over singular values, we can perform a reduction by a product group in stages. Hence, with
@ :CPN - H(d) xRN~ being the (product) momentum map of the Hamiltonian action of U(d) x G on C*V,

TN oy (U@)xG) » (C™N o, U(d)) /-G = (71" [U()) /1 G.

Remark 2.17. |Proposition 2.16[says that f;’N (r)/(U(d) x G) is, in general, a symplectic stratified space. Depending

on the parameters A and r, it may actually be a smooth manifold. We characterize the parameters such that fi’N(r)
is a smooth manifold below in

Notice that the momentum map ® : C*N — H(d) x R¥~! is given by
F o (=FF* (| A 1 - ]?)-

In particular, the space FZ’N (r) is exactly the level set ®~'(O_, x {r}). To simplify slightly, assume r is strongly

A-admissible. When ]—';f’N(r) is a manifold (conditions for which we determine in|Corollary 2.22 in the next section),
then we know its codimension inside C*V is equal to the codimension of O_j x {r} inside H(d) x R¥~!. Even when
fﬁ’N(r) is not a manifold, we know from [Theorem 2.5 that its quotient by U(d) x G contains an open dense subset
which is a manifold. This subset is a stratum, and hence its (open, dense) preimage is also a manifold by Theorem 3.5

from Sjamaar and Lerman [48]].

3Here we are slightly abusing notation. We are reducing over the point (r,...,ry_1) € RN"!, so we should, strictly speaking, use the notation
(]’;’N/U(d)) N (ry,ry_yy G- This is notationally cumbersome and, since for elements of fZ‘N the quantity ry is determined by (ry,...,ry—1)
anyway, it seems overly pedantic to invent a new shorthand for the truncated vector. Hence, we will use r to indicate both (ry,...,ry) and
(r1,...,ry-1) and trust both ourselves and the reader to keep track of which we mean from context.
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In other words, fi’N(r) contains an open, dense subset which is a manifold and which consists precisely of
regular points of the momentum map @, so for the purposes of dimension-counting we may as well assume ]—';’N(r)
is a manifold.

To that end,

dim(O_y x{r}) =dimO_y =d> —k} —--- k2,
where, as in[Remark 2.13| the k1, ...,k are the multiplicities of the entries in the frame spectrum A. Subtracting this
from d>+N -1 = dim(H(d) x R¥™") gives the codimension N —1+k} +---+k7 of O_y x {r} (inside H(d) xR¥"") and
hence also of ]-';f’N(r) (inside C¥N). This proves:

Corollary 2.18. For r which is strongly A-admissible,

,
dimF; ™ (r) =2dN-N+1- Zlkﬁ.
=

Hence,

dimF; ™ (r)/(U(d) x G) =2N(d 1) +2-d” - fj i3,
j=1

where the k;j are the multiplicities of the entries in the frame spectrum A.

2.3 Manifold Structure of Frame Spaces

While (Corollary 2.6 will allow us to apply the symplectic machinery even when TZ’N(r) is singular, it is still interest-

ing to understand when this space is a smooth manifold. We completely characterize parameters for which ]—"X’N(r)
is a manifold in the following subsection. We then give a detailed description of the local structure of singularities in
singular frame spaces.

2.3.1 Characterizing Smooth Frame Spaces

The model result on manifold structures of frame spaces is due to Dykema and Strawn [18]], who showed that the

singular points in the space N ,’VN vy (1,...,1) of unit-norm tight frames must be orthodecomposable (we recall the
y.y
definition of this property below). An immediate corollary is that the space of unit-norm tight frames is a manifold

when N and d are relatively prime. More generally, Strawn [49] showed that the singular points in any space of frames
with fixed frame vector norms and fixed frame operator (rather than frame spectrum) must be orthodecomposable.

We will prove the converse of these results, showing that the singular points (if any) of every fi’N(r) space are
exactly the orthodecomposable frames. First, recall what it means for a frame to be orthodecomposable:

Definition 2.19. A frame {f; f\i = C4 is orthodecomposable if there exists a partition P,..., P, of {1,...,N} and
pairwise orthogonal subspaces Vi,...,V,, c C? with C? = ", Visothat, forall k=1,...,m, { ﬁ},-epk is a frame for V.

In our setting, we are realizing the space fZ’N(r) =® 1 (O_; x{r}) as the inverse image of a coadjoint orbit
under the momentum map ®. This frame space will certainly be a manifold if it contains no critical points of ®, so we
now characterize the critical points of .

A standard part of the discussion around [Theorems 2.2/ and [2.3] (see, e.g., [40l Proof of Proposition 5.4.13] or [9}
§23.2.1]) is the following characterization of regular points of momentum maps:

Proposition 2.20. Let H be a Lie group and let (M,®) be a symplectic manifold admitting a Hamiltonian H-action
with momentum map ¥ : M — §*. Then p € M is a regular point of ¥ if and only if the action of H is locally free at p.

Recall that a group action is locally free at p if the stabilizer of p is discrete. Therefore, gives
a characterization of critical points of a momentum map: p € M is a critical point if and only if the stabilizer of p
is continuous, and in particular contains a nontrivial one-parameter subgroup. This is the key to characterizing the
critical points of & : C**N — 7{(d) x RN"1,
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Proposition 2.21. A frame F is a critical point of the momentum map ® : C*N — H(d) x RN of the Hamiltonian
action of U(d) x G if and only if F is orthodecomposable.

Proof. LetF = [fl ] fN] € C¥N be a frame and let £ : R — G be a one-parameter subgroup such that {(¢)-F = F for
all 7 € R. Then ¢ uniquely corresponds to an element of the Lie algebra u(d) x g of U(d) x G, and in particular there
exist matrices & e u(d) and 6 € g such that {(¢) =exp(¢(£,0)) = (exp(¢&),exp(0)) (see, e.g., [37, Propositions 20.1
and 20.5]). Under our concrete realization of G = T/Z(U(N)) as the subgroup of diagonal unitary matrices with last
entry equal to 1, 6 will be of the form

6 =/~1-diag(6y,...,6y-1,0)

for some 01,...,0y_; € R. Then we have
d d
o= ¢ .F- 7’ exp(tE)Fexp(—10) = EF — FO.
dt l;=0 dt |;=

At the frame vector level, this yields a system of equations

{éf,-:ﬁejf,-, j=1,...,N-1,

8)
Efw=0. (

Each /-16 ; is therefore an eigenvalue of the skew-Hermitian matrix & with corresponding eigenvector f;. More-
over, any solution of (8) yields a one-parameter subgroup in the stabilizer of F. By the Spectral Theorem for normal
matrices, the eigenspaces for distinct eigenvalues of & are orthogonal.

With the above setup, we are prepared to prove the claim. First, suppose that F' is not a regular point of the
momentum map. By it is possible to find a one-parameter subgroup ¢ : R — G of the stabilizer of
F which is nontrivial. In this case, £ has at least two distinct eigenvalues and it follows that F is orthodecomposable,
with frame vectors partitioned into the orthogonal eigenspaces of &.

Conversely, suppose that F' is orthodecomposable. Let Py, ..., P, denote the partition and Vi, ...,V,, the subspaces

appearing in [Definition 2.19. Permuting columns of F as necessary, we can assume without loss of generality that
P ={1,...,k} for some k < N. For convenience, we can apply a unitary transformation to F so that fj,..., f; span a

coordinate plane V;; say, the span of the first £ < d standard basis vectors. Since V;,...,V}, are all orthogonal to Vi,
®!",V; is the span of the remaining d — ¢ standard basis vectors. Then F' has the form

(A 0
(o 7)
where the nonzero blocks F] and F; have sizes ¢ x k and (d — ) x (N —k), respectively. Let

& :=diag(V-1,-V/-1,0,...,0) eu(d)  and  6:=diag(v/-1,...,v/-1,0,...,0) eu(1)".
— — —
l d—t k N-k

It is easy to check that £, 0, and F satisfy the system (8] and therefore yield a nontrivial one-parameter subgroup in

the stabilizer of F. By F is not a regular point of the momentum map. O

The characterization of singular points in f;”N(r) is now an easy corollary:

Corollary 2.22. The singular points of fi’N(r) are exactly the orthodecomposable elements. Hence, f;’N(r) is a
manifold if and only if it contains no orthodecomposable frames.

Proof. From [Proposition 2.2T we know that the critical points of the momentum map & are exactly the orthodecom-
posable frames. It is a nontrivial fact (see, e.g., |3, Theorem 5] or [48, Proposition 2.5]) that in a neighborhood of a
critical point of a momentum map, the level set looks like the product of a quadratic cone and a manifold. Therefore,
fi’N(r) =® 1 (O_; x{r}) has a quadratic singularity at each orthodecomposable frame. Since the structure of such
singularities is itself of interest [8], we describe these cone singularities in detail in[Section 2.3.2 below.
Orthodecomposable frames are the only possible singularities: if F € }";f’N(r) is not orthodecomposable, then
the differential D& : TrCPN - Tq,(p)(?{(d) x RV1) is surjective. In particular, this implies & is transverse to
a neighborhood of ®(F) in O_, x {r}, so it is standard that its inverse image—which is a neighborhood of F in
fi’N(r)—is a submanifold of C4*N (see, e.g., [[37, Theorem 6.30]), and in particular is smooth at F. O
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Remark 2.23. Since every orthodecomposable frame is a singular point of the f;’N(r) space containing it, |Corol-
lari 2.22 solves the complex case of Cahill, Mixon, and Strawn’s Problem 5.8 [].

To make |Corollary 2.22|more practical, it would be helpful to know, in terms of some computable conditions on
the parameters d, N, A, and r, exactly when f;’N(r) contains an orthodecomposable frame.

To that end, suppose F € fg’N(r) is orthodecomposable. Then, as in the proof of [Proposition 2.20, after possibly
permuting columns and applying a unitary transformation, we can realize F in block-diagonal form:

(R 0
(5 )

where F; € CP and F, € C@=D*(N=k) are frames. But then both the Gram matrix and the frame operator associated
to F are also block-diagonal:

« [FF1 0 « [FIF 0
FF—( 0 F2*F2) and FF —( 0 BF )

Since tr(F{*F1) = tr(F F}*), we see that r +---+ 71, = A; +---+ A;. More generally, since we permuted columns to get F
into block-diagonal form, there exist proper subsets {r;,,...,r; } ¢ rand {4; ,...,A;,} ¢ A so that

i+ = A e+ A

Moreover, let
r'=(rl, )= (riyyer) and A= (A, 40) = (A0 Ay
and let ” and A"’ be their respective complement vectors. Then we see that the columns {f,, ..., f; } give a frame
for an ¢-dimensional subspace of C¢ with spectrum Aiy > -+ 2 A, > 0, which means that the frame space fi,k (r)

is non-empty, and in particular that 7’ is A'-admissible. Similarly, the complementary columns give an element of
fi;Z’N_k(r’ "), and hence r" is A" -admissible.

Summarizing, we have shown the following consequences of orthodecomposability:
Lemma 2.24. IfF ¢ ]:Z’N(r) is orthodecomposable, then there exist proper partitions r=r' Ur" and A = A" UA" so

that v’ is A'-admissible, ' is A" -admissible, and ¥’ and A" have the same sum (which implies that ¥'" and A" have
the same sum as well).

Combined with [Corollary 2.22| this gives a sufficient condition for F:’N(r) to be a manifold. In fact, it is also a

necessary condition:

Theorem 2.25. fi’N(r) is a manifold if and only if there are no proper partitions r=r Ur'" and A = A" UA" so that
' is A'-admissible, r'" is A" -admissible, and ¥’ and A" have the same sum.

Proof. If .Fd’N(r) is not a manifold, then |Corollary 2.22 tells us that it contains some orthodecomposable frame and
hence, by [Lemma 2.24, there are such partitions of 7 and A.

Conversely, suppose there are such partitions. Then, since r’ is A'-admissible, there exists a frame {fiys-- o fi} e

}"ﬁ’,k (r"), and similarly there exists a frame {g;,,...,8jy .} € ]-';,_,Z‘N_k(r” ). Embedding the former into the {-dimensional
subspace of C spanned by the first £ standard basis vectors and the latter into the (d —¢)-dimensional orthogonal com-
plement and combining them into a single list sorted by decreasing norm gives an orthodecomposable element—and

hence a singular point—of fi’N(r), which is therefore not a manifold. O
Notice that [Theorem 2.25 recovers Dykema and Strawn’s result that the space of unit-norm tight frames is a

manifold when N and d are relatively prime, and also implies that fi’N(r) is a manifold for generic r and A.

2.3.2 Describing Singularities

As was mentioned above, solves Problem 5.8 of [8]] for complex FUNTFs. Problem 1.5 of the same
paper asks for a description of the local geometry of the space of FUNTFs near orthodecomposable frames, and we
now expand on the proof of to solve this problem. We describe singularities for progressively more
general classes of frames, with full details given in the simplest case and sketches given for more general cases.
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Minimally Orthodecomposable FUNTFs. A result of Arms, Marsden, and Moncrief gives a description of the local
geometry near any point on the level set of a momentum map of an arbitrary symplectic manifold [3, Theorem 5]. This
specializes to our setting to show that near any FUNTF

N N
FerFh L (1,...,1 =q>—1((—f...—f) 1,...,1 )
(%7%)( b ) ) d’ ) d 7( ) ) ) )
there is a local diffeomorphism of the ambient space C**V which takes a neighborhood of F in the level set onto the

product of a quadratic cone Cr and a smooth manifold. The cone is described explicitly as
Cr = {X eker(D®(F)) nker(DP(F)oJ) | D*®(F)(X,X) ¢ image(D®(F))},

where J denotes multiplication by v/—1, considered as a linear map on the real vector space TrC¢*" and D*®(F) is
the Hessian of @ at F, considered as a H(d)-valued bilinear form. Observe that if F is a regular point of ® then Cr is
just a linear subspace of C4*V. We will show that Cr is a singular cone when F is not a regular point.

Writing F = [f1 [ -] fN] and X = [xl |- |xN], we have

DO(F)(X) = (-FX*=XF*,(2Re(f;,x;))}')

and

DO(F) o J(X) = (V=IFX* —V=1XF*, (2Im(f;,;)}' ),

so that
ker(D®(F)) nker(D®(F)oJ) = {X e C"N | FX* =0and (fj,x;) =0V j=1,...,N-1}.

‘We can also show that
D*®(F)(X,X) = (-2XX*, (2|x;[*))5").

Now suppose that F is orthodecomposable. As in the proof of [Proposition 2.21} we can assume without loss of

generality that
(F O
F= ( 0 Fz) ’

for some submatrices Fy € C4M and F, € C2*V2 (we use a different indexing convention for dimensions than in the
proof of [Proposition 2.2T for ease of generalization later on). Furthermore, suppose that the blocks F; and F are not
themselves orthodecomposable. We then claim that

image(D®(F))* = span{((%‘ 8),(1,...,1,0,...,0))} c H(d)xRNL )
—_—— ——
N Np-1

where the orthogonal complement is taken with respect to the inner product (-,-) on H4*¢ x RV=! defined by

((&1,81),(&,62)) :=Retrace(&5 61) + &5

Indeed, a straightforward computation shows that the vector given in (9) belongs to image(D®(F))*, and we see that
this space is one-dimensional as follows. By standard arguments, it suffices to show that the nullity of the dual map
D®(F)* is equal to one and Equation 5.2.7 of [40] implies that it suffices to show that the map taking an element of
H(d) xRN~ to its infinitesimal vector field evaluated at F has one dimensional kernel. By arguments similar to those
used in the proof of this is equivalent to showing that the space of solutions to the system of equations
is one-dimensional, which holds under our assumption that 7] and F; are not themselves orthodecomposable (using
the fact that the eigenspaces of a skew-Hermitian matrix are orthogonal).
Based on the work in the previous two paragraphs, the cone C is described more explicitly as the set of X € C*N
satisfying
FX* =0, (fi,xj)=0 Vvj=1,...,.N-1, (10)

and

. 2\N-1 Iy O Q122 2212
0= -2XX 7(2ijH )j=l ) 0 0 ,(1,...,1,0,...,0) :ZZij H _ZZij H ) (11
= =
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where we express X as a block matrix with blocks X km k. me {1,2}, of size dj x N,, whose column vectors are denoted
xkm,
J
We can verify that the intersection of the subspace defined by and the solution set of the indefinite quadratic
equation (1 1)) yields a singular cone by showing that it is not a linear subspace. To do so, choose

0 X
such that F1 X =0 and F2X; =0, so that FX* = 0. The condition ( fix j) holds automatically due to the block structures
of F and X, hence is satisfied. The matrices X; can be chosen to be nonzero, since the dimension of the row space

of Fj is at most d; < N;. We can therefore scale the X;’s to have equal Frobenius norm, which means that is also
satisfied, so that X € Cr. Next, we observe that
/I _ 0 X2
X= (—xl 0

also lies in Cr. However, the matrix X — X’ does not satisfy (11)), and this proves our claim that Cr is not a linear
subspace.

Example 2.26. Here we provide a concrete example of the structure described above. Let F' denote the orthodecom-
posable unit norm tight frame
F:( 1 1 0 0 )Ef.QA

0 0 1 1 (2_’2)(1,1,1,1):;_?'_

The cone Cr can be described explicitly as the set of 2 x4 matrices X satisfying equations and (11). Using the
x/j‘.m notation from above, we write
L
x%l x%l x%z x%z '
The subspace equations then tell us that
00 ezl ! k
( o 0 ):FX* =( ézmiz x%zm%z = A=A vigm
and, letting f; and x; denote the columns of F" and X, respectively,
0=(fjxj) Vje{l,2,3,4} < X' =xl =xt?=x?=0.
The cone equation then simply reads
122 2112 12| _ 1,21
207" =20 | g ber =Pyl
Putting all of this together, the cone Cr is

0 0 e\/—_le _e\/—_19
Cr={A(1,0,0)| 1,0, <R},  where A(1,0,¢):=1 .

e\/—_l(]) —E\/__l¢ 0 0

Interpreted as a subset of C2 = {(lle\/__w , ApeV 10 )}, this is precisely the cone over the Clifford torus.
Now consider the map defined by

AeV-10 _peV10 122 J1-A2 12)

with domain {A(A,0,¢)|A €[0,1)}, a neighborhood of the origin in Cr. We claim that the image of this map is an
open subset of F intersected with a slice of the (U(Z) x U(1)4)) /U(1)-action on C*** through F—that is, a subset

S c C¥* containing F such that the orbit of any point in C**# sufficiently close to F has a unique representative in S E

—A2 _22 V=10 g V=16
A(l,e,qﬁ)'—>\/1—7LZF+A(7L,9,¢):( VIZZ VIZZ2 e Ae )

“Strictly speaking, we should consider the group modulo the isotropy group of F when constructing the slice, but we are suppressing this
technical detail for the sake of brevity.
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Specifically, the slice S is the set of matrices of the form

o o BlevCTe BzevCTe
7’16\/__1‘1’ 7’26\/__1<D 0 & ’

where «; and §; are positive real numbers, and f3;, ¥, 0, ¢ are arbitrary real numbers. The proof that S is a slice is
somewhat technical, so we omit it.

It is then straightforward to show that FnS is equal to the image of our map (i.e., points of the form (12)), which
implies that a neighborhood of F' in F is identified with the product of a neighborhood of the origin in Cr and the

group.

General Orthodecomposable FUNTFs. Now suppose that F' is a general orthodecomposable FUNTE. After ap-
plying isometries as necessary, we can assume without loss of generality that F is a block diagonal matrix F =
diag(F1,...,F;), where F; a non-orthodecomposable matrix of size d; x N;. Similar computations show that the cone
Cr consists of matrices X € C*V satisfying the linear conditions and the system of quadratic equations

Ny N,
1] DG e ME/ ) UL I

m+k \ j=1

where we express X as a block matrix with blocks X km of size dj x Ny, and with column vectors denoted xlj‘-m. Arguments
similar to the above show that Cr is a singular cone.

Orthodecomposable Frames in Arbitrary Frame Spaces. These descriptions of the local structure of FUNTF
space near orthodecomposable frames do not intrinsically use the unit norm condition—they only rely on the assump-
tion that the columns have some fixed collection of norms. The arguments therefore apply to describe singularities of
spaces of tight frames with fixed norms.

In fact, similar local characterizations can be derived near orthodecomposable frames in any frame space ]’;*N (r)
with an added technical step. The result of Arms, Marsden, and Moncrief specifically treats zero level sets of momen-
tum maps, and extends trivially to handle level sets of fixed points of the Ad*-action on the dual of the Lie algebra.
The general frame space ]—"Z’N(r) is a level set of a coadjoint orbit: fi’N(r) =@~ 1(O_y x{r}). The standard shifting

trick of symplectic geometry (see, e.g., [48, p. 376]) can be used to realize f;f’N(r) as the 0-level set of an associated

momentum map on the symplectic manifold C**¥ x O_, ; more specifically, this space is endowed with a product form,
where the symplectic form on the second factor is —@*KS with @*¥S being the canonical Kirillov—Kostant—Souriau
symplectic form on a coadjoint orbit defined in (6). After applying the shifting trick, similar computations can be done
to describe the local geometry of singular points.

3 Toric Geometry of Frame Space

3.1 Toric Symplectic Manifolds

Recall that our goal is to show that the collection of full-spark frames in f;’N(r) has full measure. As mentioned in

the introduction, the natural measure on ]—'§7N(r) is the Hausdorff measure it inherits as a compact subset of C**V,
This measure is not so easy to get a handle on directly, but symplectic geometry provides a more tractable approach.

All symplectic manifolds are equipped with natural measures. Specifically, suppose (M, ®) is a symplectic mani-
fold of dimension 2n. By the non-degeneracy of the symplectic form @, the maximal wedge power

oM =N AD
—_———
n

is nowhere-vanishing, and hence defines a volume form and associated symplectic or Liouville measure mg: for a
Borel set U c M, my(U) = [, o"".
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While }'i’N(r) is not symplectic, by [Proposition 2.16|its quotient
FNO/U@) xG)=CP™ o1, (U(d) < G)

is. Moreover, since C?**V is Kihler—i.e., it is a complex manifold with a Hermitian metric whose negative imaginary
part defines the standard symplectic form and whose real part defines the standard Riemannian metric—so is the
symplectic reduction, and the symplectic measure agrees with the pushforward of Hausdorff measure on fi‘N (r) by
the quotient map fz’N(r) - ]:Z’N(r)/(U(d) x G) [28, Theorem 3.1].

Therefore, to prove our main theorem it suffices to prove that the equivalence classes of full-spark frames have
full measure in FZ’N(r) /(U(d) x G), which we can do symplectically. The key is that }';’N(r) /(U(d) x G) admits a
Hamiltonian action of a high-dimensional torus, which considerably simplifies the task of understanding the symplectic
measure.

If a 2n-dimensional symplectic manifold (M, ) admits a Hamiltonian action of a torus U (1)*, then the associated
momentum map ®: M — (u(l)k )* ~ R¥ has convex image and connected level sets:

Theorem 3.1 (Atiyah [4] and Guillemin—Sternberg [24]]). With notation as above:
o For any veRY, ®~1(v) is either empty or connected.
o The image ®(M) is the convex hull of the images of the fixed points of the torus action.

In particular, when M is (relatively) compact, (the closure of) ®(M) is a bounded convex polytope P called the
moment polytope associated to the Hamiltonian torus action.

In general, the Duistermaat—-Heckman theorem [[17] precisely describes the relationship between the pushforward
measure D, (mg,) and Lebesgue measure on the moment polytope P. Since we will not need the full statement, we
restrict to the case when k = n, that is when M admits a Hamiltonian action of a half-dimensional torus. In this case
M is called a toric symplectic manifold. Toric symplectic manifolds are closely related to toric varieties [[13] and are
completely classified by the combinatorics of the moment polytope [15].

Theorem 3.2 (Duistermaat—-Heckman [17]], see also [9, Chapter 30]). Let M be a 2n-dimensional toric symplectic
manifold with moment polytope P. The pushforward measure ®,(my,) is a constant multiple of Lebesgue measure
on P.

3.2 Toric Structure of Frame Space
3.2.1 Circle Actions on Frame Space

With [Theorem 3.2|in mind, our strategy is to show that the top stratum of ]—";f’N(r) /(U(d) x G) is toric, and then to
see that the image of the spark-deficient frames in the moment polytope has measure zero with respect to Lebesgue
measure.

We begin by defining a torus action on the full space of frames F¢*¥ and then show that our construction descends
to the symplectic quotient. Let F € F%V with column vectors f; e C¢!,i=1,... N. Foreachk=1,...,N, let

Myt > Mg 2+ 2 Hieg 2 0

denote the d eigenvalues of the d x d Hermitian matrix

fUST+oafs ++ fifi

arranged in decreasing order—each such sum is rank at most k, so we only need consider the first k eigenvalues if
k < d. The quantities L ; were dubbed eigensteps by Cahill et al. [[7]].
To get well-defined circle actions, we make the assumption that the eigenvalues t;, j=1,...,k, are all distinct—

the necessity of this assumption is explained below in [Remark 3.4. Let w1, ..., Ugmin(k,q) be the eigenvectors corre-
sponding to the nonzero eigenvalues. For each k= 1,...,N and each j = 1,...,min(k,d), define a U(1)-action on F,
denoted

¢kj : U(l) X]:d,N - fd’N’
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by defining it at the frame vector level as

oj(t. fi) = (13)

exp(tV = luyjug;) fi if1<i<k
f; ifk+1<i<N,

where 7 € [0,27).

Remark 3.3. To be precise, we are identifying [0,27) ~ U(1) via t — exp(tr/—1). This identification induces an
isomorphism R ~ u(1) via
s>V -ls. (14)

Keeping track of the exact isomorphism used in this identification will be useful later on.

Remark 3.4. The assumption that the eigenvalues Ly ; are distinct means that the eigenspaces are all one-dimensional,
which, in turn, gives a well-defined ordering of the eigenvectors u;;. Without the isolated eigenvalues assumption,
some of these actions would degenerate to U(¢)-actions, with ¢ the multiplicity of a repeated eigenvalue.

Remark 3.5. The action defined by really defines a circle action; i.e., it is 27-periodic. Indeed, this follows from
[Cemma 3.1T|below, and is also shown in [19, Corollary 5.1.4].

Next we show that this action on F¢* induces a well-defined action on fi’N(r) /(U(d) x G). We do so in stages.
Proposition 3.6. The circle action ¢; commutes with the T action.

Proof. We need to show that if two frames F; and F; lie in the same T orbit, then so do ¢;(z,Fi) and ¢ ;(t,F>).
Indeed, this holds since the formula for the action makes it clear that

O (1, fie™ 0 = (e, fr)e V1
for all 6. -

Proposition 3.7. Let F = [ fil] fN] € FUN_ The circle action @y on the vectors of F is U(d)-equivariant. That is,
forall AeU(d),

d)kj([aAfi) :A¢kj(t7fi)
forallt€[0,2x) and all i=1,...,N.

Proof. The claim is clear when k+ 1 <i <N, since the action is trivial in that case. It remains to check the claim when
1 <i<k. In this case, we have
Oj(1,Af;) = exp(tV —1Aujui ;A )Afi,

since (W ;,Auy ;) are the corresponding eigenpair for the kth partial frame operator of AF. In turn, we have

exp(tV = 1Auy ju;A*) fi = Aexp(tV —lugjug ; )A™ A fi = Aexp(tV = Lugjug ;) fi = Adw (¢, fi).- O
Since the circle action ¢; is defined on F = [ Sl fN] e F4N through the action on the individual frame vectors,

we have the following corollary.
Corollary 3.8. The circle action §y; on FN commutes with the U(d) action. That is, for all A € U(d),
Oj(1,AF) = Ady;(1,F)
forallt €[0,27) and all F € F4N,
The next proposition is obvious from the formula for ¢ ;.
Proposition 3.9. The circle action ¢y; preserves norms of frame vectors.
The following proposition is similar, but is less obvious.

Proposition 3.10. The circle action @ ; preserves the frame operator.
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The proof uses a lemma.
Lemma 3.11. If P is a d xd projection matrix, then exp(t/—1P) =1+ (e“/__1 -1)P.

Proof. This follows from the Taylor series representation of the matrix exponential and the property that P> = P. [

Proof of[Proposition 310, Suppose F = [fi | f2| | fv] € C*V is a frame and let S = FF* = fi f{ + -+ fufy be its

frame operator with spectrum A; >--->A; > 0. Let ke {1,...,N} and let Sy = fi f{" +---+ fi.f;" be the partial frame
operator with spectrum gy >+ > g > 0. Let j € {1,... min(k,d)}, and consider the torus action associated with the
eigenvalue ;. Then, by definition,

t-F = [exp(tv/=Tugju ) fi | | exp(ev/=Tugju ) fic| fiesr |- | fv]
and the corresponding frame operator is
Sii= (1-F) (0 F)" = exp(tv/=Tug ) (7 ++ fefi ) exp(=tV/=Tuguy) + fiar Sy +-+ fufi
= Lo+ (Y7 = Vg )k Lo+ (™ = D) + frot Sy +-+ S

=S+ (et\/__1 - 1)ukju;:jSk + Sk(e_’\/__1 - l)ukju}:j +(2 _ VI e_t\/__l)ukju,:jSkukju;j,

using

For i} # i3 the vectors uy;, and uy;, are Hermitian orthogonal and hence the product of projections uy;, u;il Uiy u;l.z =0.
Combining this with the spectral decomposition

Sk = Mr ugrugy + -+ Magatiy,
and again using the fact that projections are idempotent, we see that

S, -S= [(et\/__l— 1)+ (VT l)+(2—e’\/__1—e_t\/__l)]

*
Mijujuy; =0,
so the frame operator is invariant under the circle action. O

Combining [Propositions 3.6} and[3.10] with [Corollary 3.8} we obtain:
Proposition 3.12. The circle action ¢; on F*N descends to a well-defined action on f;’N(r) /(U(d) xG).

3.2.2 The Momentum Map of the Circle Action
Foreachk=1,...,N and j=1,... , min(k,d), define a map
@y FN SR
Fe lLl’kj’

where i ; = i j(F) is (as above) the jth eigenvalue (in descending order) of the kth partial frame operator of F. Recall
that we identify u(1) ~ R via (14). We likewise identify u(1)* ~ R, where R* ~ R is identified via the pairing
-t
(s.1) = = (15)

on R xR. This allows us to state the following result.

Proposition 3.13. The map ®y; : F4N R is a momentum map for the circle action @y j on the dense open subset of
matrices whose kth partial frame operators have isolated jth eigenvalues.

To prove the proposition, we introduce some notation and technical lemmas. Let F = [f 1l fN] e F4N and let
Sk =Sk(F) = fif{" +-+ fify be its partial frame operator. Then i ;j(F) is the jth eigenvalue (in decreasing order) of
Sk.

We first consider the map fi ; which takes a Hermitian k x k matrix to its jth eigenvalue. In what follows, let (-,+)

denote the Frobenius inner product on F%V.
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Lemma 3.14. Suppose that S is a k x k Hermitian matrix with isolated jth eigenvalue ,ELj(S). Then [i; is a smooth
map in a neighborhood of S. Moreover, its gradient at S is given by

= .
where i} is the unit eigenvector associated to fi ;(S).

Proof. Let S have isolated jth eigenvalue, which we denote simply as (1. We denote the associated unit eigenvector as
u. Let §” be a variation of S. Denote the jth eigenvalue and unit eigenvector of S+ £S” as p(€) and u(€), respectively;
we denote the e-derivatives of these functions as ft(€) and iz(g). Then

] e = | ((svesute) ue)) = (5w + (5u(0), 1)+ S,0))

dele dele
= (S u,u) + (it(0),Su) + (Su,it(0)) (16)
= (S"u,u) + p ((1(0),u) + (u,(0))) (17)
= (S"u,u) = (S’ uu™),

where follows because S is Hermitian and follows by the condition that |u(€)] is constant in €. O

Lemma 3.15. Let F = [fl [ fN] e F4N and s e R ~u(1) (using the identification (14)). The infinitesimal vector field
associated to s which is induced by the action ¢y is given at F by

P 1:‘/—1S'ukjbt1tj[f1 || fi 0] |0]

Proof. The infinitesimal vector field is given at the frame level by

d
=0¢"f(gs’f")_ de |eo f ifk+1<i<N,

_ \/—1s~ukju;jf,- if1<i<k
0 ifk+1<i<N.

d exp(&sV/ —lugjug;) fi ifl1<i<k
d8 £ [

The result follows. O

We are now prepared to prove the proposition.

Proof o We need to show that, for F = [f1 [ -] fN] e FON X = [x1 [ - |xN] € Tr FN » CPN | and
seRw~u(1) (via (14)), the following equation holds:

DO (F)(X)(s) = op (F*,X). (18)

This is accomplished by direct computation.
The right hand side of simplifies to

wp (F*,X) =Imtr(F°X*)

=tmtr (V=Tsewgut-[fi ]| fe| 0] -++10]- [ [+ [xw]") (19)
= Im\/—_ls-tr(ukju;j(flx’f +ort fixd)
:s~Retr(ukju,§j(f1xf+---+ka,j)), (20)

where uses the expression for F* from|Lemma 3.15. The left hand side of (I8) becomes

DO (F)(X)(5) = 35 D(f o S0 (F) (X)

_ %S.Daj(sk(m) :DSi(F)(X),
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where the first line follows by our choice of identification R ~ u(1)* and where Si(F) is the kth partial frame
operator of F and [i; is the jth eigenvalue function on d x d Hermitian matrices. A straightforward computation shows
that

DSi(F)(X) = (fixp +x1fi) +-++ (foxi + X fi)-
Putting this together with our simplification continues as

1 1
§s~D/.1j(Sk(F))'DSk(F)(X) = ES‘Re(Mij;p(fle +x1fi) 4+ (g + i)
1
= ES.Retr(ukju;j((fle +X1f1*) +"'+(ka; +kak*)))

1 * * * *
= §s~Retr(ukjukj (fix] + fox; +---+kak))

+Retr(ukju}fj (1 fi +x2fy +'”+ka1?)) (2D

=s-Retr (wju; (f1x} ++ fixg)) (22)
where the last line follows by the observation that the trace terms in (21I) are conjugates. Since and agree,
has been established. O

3.2.3 Dimension Counting

We now pause briefly to count the possible number of independent eigensteps ;. The py; associated to a frame

define a map TX’N(r) — R™ for some m depending on N and d; as has been previously observed [7,8127]], the image
of this map is a convex polytope, whose dimension we now determine. To slightly simplify some calculations, we will
assume in this section that r is strongly A-admissible.

Since each partial frame operator Sy = fi fi" +---+ fi fi" is a rank-1 perturbation Sy = Sy_; + fi f;" of the previous
partial frame operator, Weyl’s perturbation inequalities (see, e.g., [6, Chapter III]) imply that the eigenvalues of S; and
Si—1 satisfy the interlacing inequalities

2 Mg 2 k-1, 2 i jel 2 Hi=1,54+1 2 -+

for each k=2,...,N and j =1,...,min{d,k}, where we use the notation i ; in place of 1;; when we need to disam-
biguate the index k from the index j.
When N =4 and d = 3, this produces the array

M > A 13
Q 7 S 7 Q
HUs1 > U2 2 U33
Q 7 Q 7

Ha1 H22

\Y%

\%

Q 7

Ui

where we recall that Sy = S, and hence uy ;= A; foreach j=1,...,d.
In other words, entries in the array are greater than entries to the right, regardless of vertical position. With this
convention in place, we can omit explicit inequalities without losing any information:

M A2 Az
U3 U3z 33
H21 U2z
Hii
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In general, then, the yy ; satisfy the system of interlacing inequalities implied by the following diagram:

HUN-1,1 HUNn-12 HNn-13 UN-1,4
Ha+1,1 Ha+12 Ha+13 Ha+1,d
Ha 1 Ha 2 Ha3 . Hd a (23)
Uz 1 Uz 2 U3 ;3
H2 1 22
Ui

In this diagram, all entries are nonnegative; equivalently, we think of implicit zeros to the right of every row. The
pattern of inequalities described by the above diagram is often called a Gelfand—Tsetlin pattern [|14,21]]; it corresponds
to the Gelfand-Tsetlin integrable system on the flag manifold Oy ~ ]-";f’N /U(d) [26].

In fact, there is one further constraint: cyclic invariance of trace implies that the trace of each partial frame operator
S must equal the trace of the corresponding partial Gram matrix. That is, the sum of each row in must equal the
corresponding partial sum of squared frame vector norms:

min{k,d}

Z Hycj = Z T 24)

foreachk=1,...,N.
With this constraint in place, we can count the number of free parameters in (23) and, hence, the number of

independent ¢ ;. Notice that there are w total entries in (23), excluding the top row (which we already know

is fixed): d(d2+1) for the triangle in the bottom d rows, and d(N —d — 1) for the parallelogram in the upper N —d rows.
Since each row sum is fixed, we lose one free parameter for each of the rows but the top one, meaning we subtract
N —1 parameters.

If all the eigenvalues A4, ...,A,; of the frame operator are distinct, we are done. However, if A j = Aj+1, then this
implies that A; = uy_1 ;= Aj41. More generally, if A; has multiplicity k, meaning that A; = A;,1 = -+ = 4441, then this
fixes an entire upside-down triangle in (23)) with vertices at A;, A4, and uy_g ;, comprlslng ( 5 D of the Wi j.

Therefore, if the eigenvalues Ay, .. ld have multiplicities ki, ...,k with k| +---+k; = d, then the total number of
free parameters in is

kj- d>

WD oy G gy f L

2
The interlacing inequalities implicit in the diagram together with the row sums determine a convex
polytope ’PZ’N(r), which we call the eigenstep polytope (at least when A and r are rational, these are sometimes called

(weight-restricted) Gelfand-Tsetlin polytopes in the combinatorics literature [1,|14]]). In the course of the discussion
above, we have proved:

Proposition 3.16. When r is strongly A-admissible, the eigenstep polytope has dimension
2 !
i (AN N arf g A 1o
d(A,r) = dlm(P,L (r)) =N@-1)+1-5 j:zlk’

where ki, ...,k are the multiplicities of the spectrum A = (A1,...,Ay).

Comparing to[Corollary 2.18|
dim (P} (r)) = dlm(de(r)/(U(d)xG))
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In the case of unit-norm tight frames, r; = 1 for all i and lj = % for all j, so k; =d and the above dimension
simplifies to

dlm( yy (1o 1)):(d—1)(N—d—1),

so we see that a result of Flaschka—Millson [19, Propos1t10n 6.2.2] and Haga—Pegel [27, Theorem 3.2] is a special case
of
3.2.4 Hamiltonian Torus Action

We now return to the task of showing that there is a Hamiltonian torus action on our frame spaces; the dimension
d(A,r) just computed will be the dimension of the torus.
Of course, the torus action will simply be the product of the individual circle actions, which we will show commute

using [Proposition 3.7

Proposition 3.17. The circle actions ¢; and ¢, commute for all k, j,m, L.
Proof. Let F = [ Sil] fN] e F4N 1t suffices to prove the claim at the frame level, i.e.,

(pkj(tagbmf(svﬁ)):(Pm((sagbkj(taﬁ)) (25)

for all f;. Without loss of generality, assume k <m. If k+1<i<N, then ¢; is the trivial action, so [23) is obvious.
Otherwise we have

Ox; (. Pum (s, £3)) = Onj (t,exp(sV/~ Lttty f7)

= exp(sV = Lumetty ) 9 (2, fi) (26)
= (ng(s, ¢kj(taﬁ))a
where follows by since the exponential is unitary. O

Corollary 3.18. If r is strongly A-admissible, there is a Hamiltonian action of the torus U (1 )d(l” ) on an open, dense
subset of ]—';f’N(r) /(U(d) x G). The associated moment polytope is the eigenstep polytope PZ’N(r).

Proof. We know from |Corollary 2.6| that fi’N(r) /(U(d) x G) contains an open, dense symplectic manifold which,
by [Corollary 2.22| consists of orbits of non-orthodecomposable frames. This symplectic manifold contains an open,
dense subset of frames whose partial frame operators each have as many distinct eigenvalues as possible (given the
eigenstep constraints). Choosing d(A,r) free variables according to the dimension counting argument of m
yields a Hamiltonian torus action on this open set.

Remark 3.19. In conjunction with [Theorem 3.1| this result can be used to show that the space of frames with pre-
scribed eigensteps is connected. While this fact essentially follows from [7, Theorem 7], which was a key tool in
the original proof of the Frame Homotopy Conjecture [8]], the symplectic viewpoint puts this fact in a more general
context.

By [Proposition 3.T6, the torus acting on the open dense subset from [Corollary 3.18 is half-dimensional. We have
therefore proved the following theorem on the geometric structure of frame spaces.

Theorem 3.20. The space of frames fi’N(r) with prescribed spectrum and norms contains a dense open subset which
is a (U(d) x G)-bundle over a toric symplectic manifold.

4 Proof of Main Theorem

We are now prepared to prove the main theorem using the toric symplectic framework developed in the previous
section. We also sketch a more algebraically-flavored proof using related tools from Geometric Invariant Theory [42].
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4.1 A Toric Symplectic Approach

It is clear that the three options (repeated below) are mutually exclusive and exhaust all possibilities, so it remains only
to show that the conclusion in each part follows from the assumption.

1. If r is not A-admissible, then f;f"N(r) =@

Proof. As pointed out in[Section 2.2.3] this is a consequence of the Schur—Horn theorem [30L{46]; it is also a result
of Casazza and Leon [12]. O

2. Ifris A-admissible, but not strongly A-admissible, then fﬁ’N(r) is nonempty but consists entirely of frames which
are not full spark.

Proof. Suppose r is A-admissible, but not strongly A-admissible. Then fﬁ’N(r) is nonempty by Casazza and
Leon’s result [|12].

Since r is not strongly A-admissible, there exists k € {1,...,d} so that

i=1 i=1

The admissibility criterion requires that Zﬁl ri= Zflzl Ai, so it follows that

N d
z ri = Z )Ll'. (27)

i=k+1 i=k+1
If k = d, then we see that ;| =--- = ry =0, which does not satisfy the hypothesis that the r; are all positive.

Otherwise, suppose F = [ f1 || fv] € f;”N(r), so that A is the spectrum of FF* and |f;|®> =r; foralli=1,...,N.

Form a new frame F = [ vl fl] by reversing the order of the columns of F'. If /TIZ, ; are the eigensteps of F, then
we know that

‘ ‘ N
PTNED I Y
j=1 j=1 i=N+1-¢
forall /=1,...,N—1. In particular, letting £ = N —k yields
N—k N d
Y Hyy= 2= A (28)
j=1 i=k+1 i=k+1
using (27).
Now, consider the portion of the eigenstep inequality diagram for F starting from the (N - k)th row:
A A A3 .. A
[TV Hy_iz Hy_13 e Hy_14
Hy_a, Hy 2, Hy_ps e [Ny
Bk By k2 Hy_i3 e By ka

Going diagonally up and to the right, we see that [Iy_; ; > A¢y; for all i=1,...,d —k. The only way this can be
reconciled with is if
oHN—k,l = Mets oo .lev—k,d—k =M,
and hence
.Hka,dka == ﬁN—k,d =0.
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But then [y _; ;> Hy 4 s it follows that [T, , = 0. Since this is an eigenvalue of the partial frame operator

ININ A+ F INde fR—aes

the length-d collection of frame vectors fy_g4+1, ..., fa is linearly dependent, and hence F is spark-deficient. Since
the choice of F' was arbitrary, we see that ]—';f’N(r) consists entirely of spark-deficient frames. O

. If r is strongly A-admissible, then full spark frames have full measure in f;N(r)

Proof. 1t suffices to show that the set of full spark frames is full measure in the dense open subset of ]—'X”N(r)

from [Theorem 3.20L which we denote Z/. We will prove a subclaim: the set Di(r) c U of frames whose first d
columns are linearly dependent is measure zero. The full claim then follows easily. Indeed, consider the action of
the symmetric group on N letters on the matrix space C?*" given by permuting columns. This representation of
the symmetric group embeds it as a subgroup of U(N), so that the action on C*V is by isometries. The action
of a permutation o restricts to an isometry of each frame space ]-';‘N(r) onto its image ff’N(O' -r), where G - r is
the corresponding permutation of the norm vector. It follows that the set of spark-deficient frames is realized as
UGDf{ (o-r), a finite union of measure zero sets. We proceed by establishing the subclaim.

A frame F = [f 1] fN] €U has linearly independent columns f,..., f; if and only if the partial frame operator
Sa = fif{" +---+ fafy is full rank, which holds if and only if the smallest eigenvalue of S is positive. Observe that
these conditions are well-defined on the (U(d) x G)-equivalence class of F, denoted [F]. Moreover, the quotient
map U - U c ]-';f’N(r) /(U(d) x G) is a Riemannian submersion (with respect to the real parts of the respective
Kihler structures) onto its (dense, open) image. It is therefore sufficient to establish the subclaim for the set I4.

Let y
N
®= X DU =Py (r)
1<k<N-1
1<j<min{d k}

denote the moment map for the torus action on I/; that is, ® is the eigenstep map. By the remarks in the previous
paragraph, the condition that the first d columns of a frame F are linearly independent is equivalent to the statement
that ded([FD #0.

. . . d(2N—-d—1)
According to|Section 3.2.3| the moment polytope PX’N(r) is a convex subset of an affine subspace AcR™ 2 .

Thinking of the ®;; as coordinates on the ambient space, the condition ®4,; = 0 defines a hyperplane. The inter-

section of this hyperplane with PZ’N(r) is positive codimension (hence measure zero), unless A is contained in the
hyperplane. It is easy to see that this is not the case, as it suffices to show the existence of a pattern of the form
satisfying the defining equalities of .A such that p;; # 0—such examples are trivial to construct without the
polytope inequality constraints.

We have so far shown that image of the set of equivalence classes of frames whose first d columns are linearly
independent has full measure image in PZ‘N(r) under ®. By the Duistermaat—-Heckman Theorem (jTheorem 3.2),
this implies that the set has full measure in ¢/. This completes the proof of the subclaim, and therefore completes
the proof of the theorem. O

4.2 An algebraic approach

The above proof is based on symplectic geometry, but, under additional rationality assumptions, there is also an

argument using algebraic geometry that shows that the collection of full-spark frames is dense in ]-";fN(r)
While we expect a similar argument to apply to arbitrary rational A and r, in which case the objects of interest

are more general weight varieties [35]], for simplicity we limit ourselves to the case when A and r are constant, so
we are talking about (scaled) unit-norm tight frames. It will be convenient to rescale so that r = (d,...,d), and hence
A =(N,...,N); note that both are integer vectors.

As above, it suffices to show that the (equivalence classes of) full spark frames are open and dense in the symplectic

reduction

FN () [(U(d)xG) 8 TN o iy (U(d) xG).
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Since A is constant, the coadjoint orbit O_, consists of the single point —AI,;. Taking the reduction in stages, the
above quotient is isomorphic to

(€™ J_a3,U(@)) /G =Gra(CY) /G

using [Proposition 2.11|and [Remark 2.13|

Work of Sjamaar [47]], which is a culmination of a series of results by Kempf and Ness [32], Guillemin and
Sternberg [25], Kirwan [33]], and Ness [45]] relating symplectic reductions and Geometric Invariant Theory (GIT)
quotients [42]], has the following consequence in our case:

Theorem 4.1. For arbitrary r consisting of positive integers, Gry(CN) //r G is isomorphic, as a complex projective
variety, to the GIT quotient
Grd((cN) //L‘,r H7

where the line bundle L, on the Grassmannian is linearized to correspond to the action of the algebraic torus
H={(t1,...,ty) € (C)N: [Tt; = 1} on CN given by identifying t = (t1,...,ty) € H with the diagonal unitary matrix
diag(t'ty,...,t"ty), where t” =t'--1,) is the character of H corresponding to the vector r (cf. [2031)]).

If Fe f;‘N is a frame representing a point [F] € Gry(CV), then the determinants of the d x d minors of F are
precisely the Pliicker coordinates of [F], and in general the Pliicker coordinates generate the homogeneous coordinate
ring of Gry(CV). By definition, the full-spark frames are precisely those for which none of the Pliicker coordinates
vanish.

In turn, the homogeneous coordinate ring R of the GIT quotient Gry(CY) //z, H consists of the H-invariant ho-
mogeneous coordinates on Gry(CY). It is known [31, Lemma 4.5] that R is spanned by monomials in the Pliicker
coordinates so that the total number of Pliicker coordinates involving the ith column is kr; for some integer k indepen-
dent of i.

In our case, all 7; = d, so taking the product of all the Pliicker coordinates and raising it to the dth power gives a
homogeneous coordinate on Gr,(CV) /-, H whose vanishing set is exactly the collection of (equivalence classes of)
spark-deficient frames in the space of (scaled) unit-norm tight frames. Since this is the vanishing set of a homogeneous
coordinate, it is a subvariety, and hence its complement—the collection of full-spark frames—is open in the Zariski
topology, and in particular either empty or dense. Since there are full-spark frames in each space of unit-norm tight
frames (for example, the first d rows of a scaled N x N discrete Fourier transform matrix [2]]), the collection of full-
spark frames cannot be empty, so it must be dense.

5 Discussion

Given a 2n-dimensional toric symplectic manifold M with moment polytope P, one can often find action-angle co-
ordinates on M which take the form of a map « : int(P) x U(1)" - M which inverts the momentum map & : M — P
in the sense that ®(a(p,t)) = p. In this case, [Theorem 3.2 can be extended slightly to show that the image of o is a
full-measure subset of M and that the map o is measure-preserving. Sampling P x U (1)" with respect to the product
of Lebesgue measure on P and the standard product measure on U(1)" and pushing forward by o gives a uniformly
random sample from the symplectic measure on M (see, for example, the discussion in [[10]).

In our setting, this means that coupling explicit action-angle coordinates on }'i’N(r) /(U(d) x G) with an algorithm

for sampling PZ’N(r) would give an algorithm for sampling random frames in fi’N(r). In particular, by|Corollary 1.21
such an algorithm would provide endless quantities of full spark FUNTFs.

It is natural to ask whether the analog of holds for real and for quaternionic frames. Symplectic
geometry is not the right tool in either case, but it is very plausible that the algebraic proof sketched in[Section 4.2 could
be adapted to the real case to show that full spark frames are dense in real frame spaces. In a different direction, the
perspective based on isotropy orbits and isoparametric submanifolds introduced in [44] seems like the most promising
way to understand the measures on real and quaternionic frame spaces.

Finally, the spaces f;’N(r) /(U(d) x G) are examples of weight varieties [35]], and Goldin [22]] has determined

the rational cohomology ring of certain weight varieties, including the quotient faN P (r)/(U(d) x G) of the space

of A-tight frames with fixed frame vector norms whenever it is a manifold. In particular, this determines the rational
cohomology ring of the (U(d) x G)-quotient of FUNTF space when N and d are relatively prime. What about in the
non-manifold case or for more general frame spectra?
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