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Abstract
The collection of d×N complex matrices with prescribed column norms and prescribed (nonzero) singular values

forms a compact algebraic variety, which we refer to as a frame space. Elements of frame spaces—i.e., frames—are
used to give robust representations of complex-valued signals, so that geometrical and measure-theoretic properties of
frame spaces are of interest to the signal processing community. This paper is concerned with the following question:
what is the probability that a frame drawn uniformly at random from a given frame space has the property that any
subset of d of its columns gives a basis for Cd? We show that the probability is one, generalizing recent work of
Cahill, Mixon, and Strawn. To prove this, we first show that frame spaces are related to highly structured objects
called toric symplectic manifolds. This relationship elucidates the geometric meaning of eigensteps—certain spectral
invariants of a frame—and should be a more broadly applicable tool for studying probabilistic questions about the
structure of frame spaces. As another application of our symplectic perspective, we completely characterize the norm
and spectral data for which the corresponding frame space has singularities, answering some open questions in the
frame theory literature.

1 Introduction
A frame in a Hilbert space (H,�⋅, ⋅�) is traditionally defined as a collection { fi}i∈I of vectors inH so that for all v ∈H
we have

a�v�2 ≤�
i∈I
��v, fi��2 ≤ b�v�2 (1)

for some numbers 0 < a ≤ b called frame bounds. In this paper, we focus on finite frames in complex Hilbert spaces, in
which caseH =Cd for some integer d > 0 with its standard Hermitian inner product and norm, I = {1, . . . ,N} is finite,
and the above condition is equivalent to the collection { f1, . . . , fN} being a spanning set for Cd .

Interest in finite frames is largely due to their application to robust signal representation. Modeling a signal as
an element of a Hilbert space H, a frame allows one to take a sequence of “measurements” by recording the inner
product of the signal with each of the frame vectors. This signal representation is more robust to noise in the signal
or random erasures of measurements than a similar measurement scheme associated to an orthonormal basis, at least
when the frame has certain properties [11, 23, 29]. These desirable properties for a frame are typically expressed as
prescriptions for the norms of the frame vectors and for the spectrum of an operator associated to the frame, which
we describe in more detail below. The collection of frames with prescribed norm and spectral data is easily seen to
define an algebraic variety, and there is interest in the geometric structure of these frame varieties [8, 18, 49]. This
paper explores the geometry of frame varieties through the lens of symplectic geometry. Symplectic geometry is a
subfield of differential geometry that studies manifolds endowed with a certain geometric structure—to keep the paper
accessible to the broader frame theory community, we have aimed to give self-contained expositions of the relevant
ideas from symplectic geometry, but we will not go into details here in the introduction.

The main contributions of this paper are as follows:

• Our main theorem, Theorem 1.1, says that with probability 1 every size-d subset of a random frame in Cd with
prescribed norms and spectral data is a basis. Frames satisfying this non-degeneracy condition are called full
spark frames. This generalizes the complex case of Theorem 1.6 from Cahill, Mixon, and Strawn’s paper [8],
which established the genericity of the full spark condition for frames whose frame bounds are equal (this can
be stated as a spectral constraint) and whose frame vectors are all unit—this is referred to as the space of finite
unit-norm tight frames or FUNTFs.
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• We show in Theorem 2.25 that the space of frames with prescribed norm and spectral data is a smooth manifold,
for generic choices of this data. In fact, we give necessary and sufficient conditions on the norms and eigen-
values which guarantee that the corresponding frame variety is smooth, and we describe the local geometry of
singular varieties near their singular points. This theorem (together with surrounding results) generalizes work
of Dykema and Strawn [18], which once again specializes to the space of FUNTFs, and answers generalizations
of two open questions posed in [8].

• Both of the previous two results are proved by novel applications of ideas from symplectic geometry to frame
theory. Throughout the course of the paper, we show that many spaces of complex frames have natural inter-
pretations from the symplectic point of view. In particular, we show in Theorem 3.20 that each space of frames
with prescribed spectral and norm data has a dense open subset which projects onto a highly structured geomet-
ric object called a toric symplectic manifold. This geometric structure has measure-theoretic implications—we
use it to prove our full spark theorem, but expect that it will be a useful tool for the future study of probability
theory on frame spaces. Theorem 3.20 generalizes work of Flaschka and Millson [19], which is written in the
context of pure symplectic geometry and makes no references to frames. The theorem also gives a symplectic
interpretation of the frame-theoretic concept of eigensteps, introduced by Cahill et al. [7], and an auxiliary result
used in its proof generalizes a theorem of Haga and Pegel [27].

To describe our results in detail, we now introduce more precise terminology and notation.

Notation and statement of the main theorem. Let Fd,N be the space of frames of N vectors in Cd . Identifying a
frame { fi}N

i=1 ∈Fd,N with the d×N matrix whose columns are the fi represented in the standard basis, the space Fd,N

can be viewed as an open, dense subset of the space Cd×N of d×N complex matrices.
When a = b in (1), the frame satisfies a scaled Parseval identity

N
�
i=1
��v, fi��2 = a�v�2,

and such frames are called a-tight (or just tight); 1-tight frames are called Parseval frames.
Each frame { fi}N

i=1 ∈ Fd,N has three related operators, which can be interpreted in terms of the d ×N matrix
F = � f1 � f2 � . . . � fN�:

1. The analysis operator Cd →CN is defined by

v� (�v, f1�, . . . ,�v, fN�) ,

or equivalently v� F∗v, where F∗ is the Hermitian adjoint (i.e., conjugate transpose) of F ;

2. The synthesis operator CN →Cd is defined by

(w1, . . . ,wN)�
N
�
i=1

wi fi,

or equivalently w� Fw;

3. The frame operator Cd →Cd is the composition of the analysis and synthesis operators; i.e., v� FF∗v.

A simple calculation shows that a frame is a-tight if and only if its frame operator is aId , where Id is the identity
map on Cd .

Frame operators are always Hermitian and positive-definite, so they have spectrum l1 ≥ ⋅ ⋅ ⋅ ≥ ld > 0, which we will
call the frame spectrum. If lll = (l1, . . . ,ld), we will use Fd,N

lll to indicate the frames with frame spectrum lll . Notice
that the a-tight frames are uniquely specified by their frame spectra: Fd,N

(a,...,a) is the space of all a-tight frames.
In addition to specifying a frame operator, we also often want to fix the (squared) norms of the individual frame

vectors. We can always permute the labels on the frame vectors, so it will be convenient in what follows to assume the
norms are sorted in decreasing order. If rrr = (r1, . . . ,rN) is a non-increasing list of positive numbers r1 ≥ ⋅ ⋅ ⋅ ≥ rN > 0,1

1We could also allow some of the ri to be zero, but this would complicate some statements below to no apparent benefit.
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we will use Fd,N(rrr) to indicate the space of frames with � fi�2 = ri. It is especially common to require that all the
frame vectors have the same norm: � fi�2 = r > 0 for all i, in which case the frame is an equal-norm frame; if r = 1, this
is a unit-norm frame.

In general, the frame norms determine the trace of the frame operator:

N
�
i=1

ri =
N
�
i=1
� fi�2 = trF∗F = trFF∗ =

d
�
i=1

li, (2)

by the cyclic invariance of trace. Hence, for tight frames the frame operator must be �rrr�
2

d Id and a unit-norm tight frame
must have li = N

d for all i. If rrr = (r1, . . . ,rN) and lll = (l1, . . . ,ld) with r1 ≥ ⋅ ⋅ ⋅ ≥ rN > 0 and l1 ≥ ⋅ ⋅ ⋅ ≥ ld > 0, we will use
Fd,N

lll (rrr) ∶=F
d,N
lll ∩Fd,N(rrr) to denote the space of frames { fi}N

i=1 with � fi�2 = ri and frame spectrum lll . This space has
a natural probability measure: the (normalized) Hausdorff measure it inherits as a compact subset of Cd×N .

Equation (2) is not the only restriction imposed on the frame vector norms by the frame operator: the partial
sums of the squared frame vector norms must be bounded above by the partial sums of the eigenvalues of the frame
operator [12, 19]. More precisely, there exists a frame { fi}N

i=1 with � fi�2 = ri > 0 and frame spectrum lll if and only if
(2) holds and, for all k = 1, . . . ,d,

k
�
i=1

ri ≤
k
�
i=1

li. (3)

Given lll , we will call a non-increasing list rrr of positive numbers satisfying (2) and (3) lll -admissible, and if all inequal-
ities in (3) are strict we call the list strongly lll -admissible. This terminology comes from Casazza and Leon [12], who
showed that Fd,N

lll (rrr) is non-empty if and only if rrr is lll -admissible. Although the terminology does not appear in the
work of Casazza and Leon, in general one says that the vector lll majorizes the vector rrr in the case that the relations
(3) hold [39].

For { fi}N
i=1 ∈ Fd,N , the spark of { fi}N

i=1 is the size of the smallest linearly dependent subset [16]. The spark is
bounded above by d +1, and a frame with spark equal to d +1 is called a full-spark frame. Equivalently, a frame in
Fd,N is full spark if and only if all of its size-d subsets are bases. Full spark frames are often desirable, for example
because they provide unique reconstructions of the largest possible class of sparse signals [2, 16].

We are now ready to state our main theorem:

Theorem 1.1. Suppose N > d ≥ 1. Let rrr = (r1, . . . ,rN) and lll = (l1, . . . ,ld) be nonincreasing lists of positive real
numbers. There are three mutually exclusive possibilities for the space Fd,N

lll (rrr) of frames { fi}N
i=1 with � fi�2 = ri and

frame spectrum lll :

1. If rrr is not lll -admissible, then Fd,N
lll (rrr) =�.

2. If rrr is lll -admissible but not strongly lll -admissible, then Fd,N
lll (rrr) is nonempty but consists entirely of frames

which are not full spark.

3. If rrr is strongly lll -admissible, then full spark frames have full measure in Fd,N
lll (rrr).

In particular, since rrr = (1, . . . ,1) is strongly lll = (N
d , . . . ,

N
d )-admissible whenever N > d and since Fd,d

(1,...,1)(1, . . . ,1)
consists of orthonormal bases, which are certainly full spark, we have:

Corollary 1.2. For any N ≥ d ≥ 1, the full-spark frames have full measure inside the space Fd,N
�

N
d ,...,N

d �
(1, . . . ,1) of

unit-norm tight frames (FUNTFs) in Cd.

This result essentially recovers the complex case of [8, Theorem 1.6], where the authors showed that full spark
frames form an open dense subset of Fd,N

�
N
d ,...,N

d �
(1, . . . ,1). Our corollary slightly sharpens this result, in that we are

able to refer precisely to the canonical probability measure on Fd,N
�

N
d ,...,N

d �
(1, . . . ,1).
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Structure of the paper. Section 2 begins with an exposition of the relevant ideas and tools from symplectic geome-
try. These tools are then applied to show that various spaces of frames with prescribed data have symplectic structures.
Then, parameters lll and rrr for which the frame variety Fd,N

lll (rrr) is a smooth manifold are characterized. Section 3 is de-
voted to showing that the space Fd,N

lll (rrr) has a dense open subset which projects onto a toric symplectic manifold (we
define and describe the basic properties of such an object in Section 3.1). The main theorem is proved in Section 4, as
an application of the toric symplectic structure from the previous section. An alternative proof using related tools from
algebraic geometry is also sketched. The paper concludes with a brief discussion of future directions in Section 5.

2 Symplectic Structure of Frame Varieties
In this section, we describe the symplectic structures on the frame varieties of interest; i.e., spaces of frames with
prescribed frame spectra and/or norms. It has been previously observed in the literature that certain parameter choices
may lead to frame spaces with singularities [8, 18, 49]. We give a precise characterization of this phenomenon and
describe the local structure of singular points later in this section.

2.1 Symplectic Geometry
We begin with a review of some concepts of symplectic geometry, with a focus on various notions of reducing a
symplectic manifold by a Lie group action. We use [40] as our main reference for the basics of symplectic manifolds.
The ideas we present are standard in the field of symplectic geometry; this subsection is mainly intended as a quick
reference for non-experts and to standardize our notation.

A symplectic form on a (smooth, real) manifold M is a closed, nondegenerate 2-form w . For a point p ∈M and
tangent vectors X ,Y ∈ TpM, we write wp(X ,Y) ∈ R for the evaluation of w on the vectors. The closedness condition
means that the exterior derivative dw is identically zero and the nondegeneracy condition means that for every nonzero
X ∈TpM there exists Y ∈TpM such that wp(X ,Y)≠ 0. A manifold endowed with a symplectic form is called a symplectic
manifold, denoted (M,w) or simply as M when the symplectic form is understood to be fixed. A simple argument
shows that if a manifold M admits a symplectic form, then it must be even dimensional (over the reals).

Example 2.1 (Complex n-Space). The prototypical example of a symplectic manifold is n-dimensional complex space
Cn, which is considered as a 2n-dimensional real manifold via the natural identification Cn ≈R2n. For any n-tuple p
of complex numbers, there is a natural isomorphism TpCn ≈ Cn. Coordinates (x1 +

√
−1y1, . . . ,xn +

√
−1yn) for Cn

correspond to real coordinates (x1, . . . ,xn,y1, . . . ,yn) in which a symplectic form is given by

w = dx1∧dy1+�+dxn∧dyn. (4)

This is referred to as the standard symplectic form on Cn. In complex coordinates, (4) is expressed concretely for
p ∈Cn and

Z = (z1, . . . ,zn),W = (w1, . . . ,wn) ∈ TpCn ≈Cn

by
wp(Z,W) = −Im(w1z1+�+wnzn) = −Im(W∗Z) = −Im�Z,W � ,

where Im denotes the imaginary part of a complex number and �⋅, ⋅� is the standard Hermitian inner product on Cn.
The most important example of a symplectic manifold for our purposes is complex matrix space Cd×N , which is

just a reshaped version of the space Cd⋅N described above. For a matrix F ∈ Cd×N , we have a natural identification
TFCd×N ≈Cd×N . The canonical symplectic form on Cd×N is defined as

wF(X ,Y) = −Imtr(Y∗X).

This is just a transformation of the canonical symplectic form on Cd⋅N under the reshaping map.
Since the space of frames Fd,N ⊂Cd×N is an open submanifold, the standard symplectic structure on Cd×N restricts

to make Fd,N a symplectic manifold.

In fact, every 2n-dimensional symplectic manifold is locally equivalent to Cn with the standard symplectic form.
Let us now make this statement precise. If Y ∶ N →M is a smooth map from a manifold N to a symplectic manifold
(M,w), the pullback form Y∗w on N is defined by

(Y∗w)p(X ,Y) =wY(p)(DY(p)(X),DY(p)(Y)),
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for X ,Y ∈ TpN and where DY(p) ∶ TpN → TY(p)M denotes the derivative of Y at p. If (N,h) is also a symplectic
manifold and Y is a diffeomorphism with the property that Y∗w = h , then we say Y is a symplectomorphism and that
(N,h) and (M,w) are symplectomorphic. A fundamental result of symplectic geometry is Darboux’s Theorem [40,
Theorem 3.2.2]: every point in a 2n-dimensional symplectic manifold has an open neighborhood U such that the
symplectic manifold (U,w �U) is symplectomorphic to Cn with the standard symplectic form.

An important aspect of symplectic geometry is the study of interactions between symplectic structures and certain
group actions on their manifolds. Let G be a Lie group with Lie algebra g and suppose that G acts on a manifold M
endowed with a symplectic form w . For p ∈M and g ∈G, let g ⋅ p ∈M denote the action of g on p. To each x ∈ g, one
associates an infinitesimal vector field Yx on M via the formula

Yx �p ∶=
d

de
�
e=0

exp(ex) ⋅ p,

where exp ∶ g→G is the exponential map of G. A map F ∶M→ g∗, where g∗ denotes the dual to g, is called a momentum
map for the G-action if its derivative interacts with the symplectic form as follows. Let DF(p) ∶TpM→TF(p)g

∗ denote
the derivative of F at p ∈M. Then for each X ∈ TpM, DF(p)(X) ∈ TF(p)g

∗ ≈ g∗, where we use the natural isomorphism
coming from the fact that g∗ is a vector space. Then DF(p)(X) ∶ g→R, and for each x ∈ g we require

DF(p)(X)(x) =wp(Yx �p,X).

We also require that the momentum map F is equivariant, in the following sense. Recall that the adjoint action of G
on g is defined, for each g ∈G, by the map Adg ∶ g→ g which is the derivative at the identity of the conjugation map
h� ghg−1. The corresponding coadjoint action of G on the dual Lie algebra g∗ is defined, for each g ∈G, by the map
Ad∗g ∶ g∗→ g∗ given by Ad∗g (c)(x) ∶= c(Adg−1(x)). When G is a matrix group, both the adjoint and coadjoint actions
can be interpreted as conjugation actions. The momentum map is required to be equivariant with respect to the given
G-action on M and the coadjoint action on g∗. Explicitly, this means that, for each g ∈G and each p ∈M,

Ad∗g (F(p)) =F(g ⋅ p).

If a G-action admits a momentum map, then we say the action is Hamiltonian. Hamiltonian actions give the
appropriate setting for performing a quotient operation in the symplectic category.

Theorem 2.2 (Marsden–Weinstein–Meyer Theorem for Regular Values [38,41]). Let (M,w) be a symplectic manifold
with a Hamiltonian G-action, let F ∶M→ g∗ be a momentum map for the action and let c ∈ g∗ be a regular value such
that G acts freely on the level set F−1(c). Then the manifold

M �c G ∶=F−1(c)�G,

called the symplectic reduction or symplectic quotient over c , admits a symplectic structure wred which is uniquely
characterized by the equation

q∗wred = i∗w,

where q ∶F−1(c)→M �c G is the quotient map and i ∶F−1(c)→M is the inclusion map.

See [5, Example III.2.18] for a construction of the complex projective space CPn−1 as a symplectic reduction
Cn �x U(1), where U(1) acts on Cn by scalar multiplication.

Notice that, in the statement of Theorem 2.2, we required that G acts freely on the level set F−1(c). In particular,
G acts on this level set, meaning that for any p ∈M with F(p) = c , it must be the case that F(g ⋅ p) = c for all g ∈G.
By the equivariance required in the definition of the momentum map F, this implies that Ad∗g (c) = c for all g ∈G; in
other words, c must be a fixed point of the coadjoint action of G. Conversely, G will act on the level set over any fixed
point of the coadjoint action.

More generally, when c ∈ g∗ is not a fixed point of the coadjoint action, we can still take a symplectic reduction
over the coadjoint orbit of c , defined to be the set

Oc ∶= �Ad∗g (c) � g ∈G� .

In this case the equivariance of the momentum map ensures that G acts on F−1(Oc).
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Theorem 2.3 (Marsden–Weinstein–Meyer Theorem for Coadjoint Orbits [38, 41]). Let M, w , G and F be as above
and let c ∈ g∗ be a regular value. If the action of G on F−1(Oc) is free, then the manifold

M �Oc G ∶=F−1(Oc)�G

admits a symplectic structure wred which is uniquely characterized by q∗wred = i∗w , where q denotes the projection
map F−1(Oc)→F−1(Oc)�G and i denotes the inclusion map F−1(Oc)→M.

It is straightforward to show that when c ∈ g∗ is a regular value, the action of G on F−1(Oc) is at worst locally
free. Theorem 2.3 easily generalizes to this setting, with the only modification being that M �Oc G is a symplectic
orbifold rather than a symplectic manifold.

Perhaps surprisingly, if we are more concerned with the “symplectic” part of this statement than the “manifold”
(or “orbifold”) part, Sjamaar and Lerman [48] have shown that c being a regular value is not an essential hypothesis
in Theorems 2.2 and 2.3. When c is a singular value of F then F−1(Oc) is not a manifold, but it nonetheless admits
a G action and the quotient still admits a natural symplectic structure.

Theorem 2.4 (Sjamaar–Lerman [48]). Let M, w , G and F be as above and let c ∈ g∗. The symplectic reduction

M �Oc G ∶=F−1(Oc)�G

is a symplectic stratified space with symplectic structure wred characterized by q∗wred = i∗w , where i again denotes
the inclusion map F−1(Oc)→M.

Roughly speaking, M �Oc G being a symplectic stratified space means that it is the disjoint union of symplectic
manifolds and that these manifolds fit together nicely. Somewhat remarkably, each connected component contains a
unique manifold piece which is open and dense:

Theorem 2.5 (Sjamaar–Lerman [48]). Let M, w , G, F, and c be as above. Then each connected component of the
symplectic reduction M �Oc G has a unique open stratum which is a manifold and is connected and dense.

Kirwan’s proof that level sets of proper momentum maps are connected —this follows from [34, Remark 3.1],
which handles the case where the domain is compact, together with the discussion surrounding [33, Remark 9.1],
which applies to proper moment maps— yields the following immediate corollary.

Corollary 2.6. Let M, w , G, F, and c be as above. If F is proper (for example, if G is compact), then the symplectic
reduction M �Oc G has a unique open stratum which is a manifold and is connected and dense.

Therefore, up to sets of lower dimension, the symplectic reduction even over a singular value of a proper momen-
tum map is a connected symplectic manifold.

2.2 Frame Spaces as Symplectic Quotients
Various spaces of frames can be endowed with natural symplectic structures via Theorems 2.3 and 2.4. To be precise,
the symplectic manifolds of interest are actually quotients of frame spaces by certain symmetry groups. Throughout
this subsection, fix dimensions d and N and a frame spectrum lll = (l1, . . . ,ld) with l1 ≥ ⋅ ⋅ ⋅ ≥ ld > 0.

2.2.1 Frames with Prescribed Frame Spectrum

The unitary group acts on Fd,N
lll by left matrix multiplication. We then consider the quotient space Fd,N

lll �U(d), which
has a natural symplectic structure, as we will show below.

Before stating the result, we observe that the space H(d) of d ×d Hermitian matrices may be identified with the
dual Lie algebra u(d)∗ via the isomorphism a ∶H(d)→ u(d)∗ taking x to the linear functional ax ∶ u(d)→R, defined
by

ax (h) =
√
−1
2

tr(h∗x) = �
√
−1
2

x ,h� . (5)

We begin with a preliminary result about this isomorphism. We define a U(d)-action onH(d)which we (with a slight
abuse of terminology) refer to as the adjoint action:

Ad ∶U(d)×H(d)→H(d)
(A,x)�AdA(x) ∶= Ax A∗.
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Lemma 2.7. The map a defined in (5) is equivariant with respect to the adjoint action on H(d) and the coadjoint
action on u(d)∗. That is,

aAdA(x) =Ad∗Aax .

It follows that, under the map a , the coadjoint orbit of any element of u(d)∗ is identified with the collection of
Hermitian matrices with a fixed spectrum.

Proof. The first part is a straightforward computation: for h ∈ u(d),

aAdA(x)(h) =
√
−1
2

tr(h∗Ax A∗) =
√
−1
2

tr((A∗hA)∗x) = ax (A∗hA) =Ad∗Aax (h).

Any Hermitian matrix x with spectrum lll can be expressed via its eigendecomposition as x =AdA (diag(lll)) for
some A ∈U(d), so that the second part of the claim follows by equivariance.

Based on the second part of the lemma, we use Olll ⊂H(d) to denote the set of matrices with fixed spectrum lll .
We now describe the symplectic structure on the space of frames with prescribed frame spectrum.

Proposition 2.8 ( [43]). The action of U(d) on Cd×N by left multiplication is Hamiltonian with momentum map

FU(d) ∶Cd×N →H(d) ≈ u(d)∗

F � −FF∗.

It follows that the space Fd,N
lll �U(d) is the symplectic quotient

Cd×N �O−lll U(d).

In particular, it has a natural symplectic structure.

Proof Sketch. We sketch the proof, since the constructions involved will be useful later. For details, see our previous
paper [43].

The fact that FU(d) ∶F�−FF∗ is a momentum map (where we are specifically fixing the isomorphism (5)) follows
by a computation, as shown in [43, Proposition 2]. We remark that our momentum map differs by a sign in the present
paper, due to slightly different conventions. The fact that Fd,N

lll =F−1
U(d)(O−lll ) follows by Lemma 2.7. Moreover, the

negative-definite Hermitian matrices are the regular values of FU(d) in H(d); we proved this by slightly tedious but
essentially straightforward calculation in [43], but it also follows easily from Proposition 2.20 below, since the only
unitary matrix which acts trivially on a spanning set of Cd is the identity matrix. Therefore, the entries in lll being
positive means that Theorem 2.3 applies and

Cd×N �O−lll U(d) =F−1
U(d)(O−lll )�U(d) =F

d,N
lll �U(d)

is a symplectic manifold.

2.2.2 Identification with a Coadjoint Orbit

The symplectic structure of Fd,N
lll �U(d) can alternatively be realized by identifying the frame space with a certain

coadjoint orbit in the larger space of Hermitian matrices H(N). This perspective will be useful in the following
subsection. In order to state the result precisely, we introduce some more terminology.

It is well known that any coadjoint orbit has a natural symplectic structure, called the Kirillov–Kostant–Souriau
(KKS) symplectic form [5, II.3.c]), which we denote generically as wKKS. Indeed, for an arbitrary Lie group G with
Lie algebra g, the tangent space to a coadjoint orbit Ob at b ∈ g∗ consists of vectors of the form ad∗x b , where x ∈ g,
and where ad∗x is the coadjoint representation of g on g∗, obtained as the derivative of the map Ad∗ ∶G→Aut(g∗) at
the identity. Then the KKS form is defined by

wKKS
b (ad∗x b ,ad∗x ′b) ∶= b([x ,x ′]), (6)

where [⋅, ⋅] is the Lie bracket on g.

7



By another slight abuse of terminology, we define the adjoint representation of u(d) onH(d) by

ad ∶ u(d)×H(d)→H(d)
(h ,x)� adh(x) ∶= hx −x h .

An argument similar to that of Lemma 2.7 proves the following.

Lemma 2.9. The map a defined in (5) is equivariant with respect to the adjoint representation of u(d) on H(d) and
its coadjoint representation on u(d)∗. That is,

aadh(x) = ad∗h ax .

The adjoint representation of u(d) on H(d) is obtained by differentiating the adjoint action of U(d) on H(d). It
follows that the tangent space to O−lll ⊂H(d) at x consists of vectors of the form adh(x) for h ∈ u(d).

Lemma 2.10. The pullback of wKKS to O−lll ⊂H(d) via a is given by

�a∗wKKS�x (adh(x),adh′(x)) = Im tr(x hh ′).

Proof. We have

�a∗wKKS�x (adh(x),adh′(x)) =wKKS
ax
(Da(x)(adh(x)),Da(x)(adh′(x))) =wKKS

ax
(aadh(x),aadh′(x))

=wKKS
ax
(ad∗h ax ,ad∗h′ax ) = ax ([h ,h ′])

=
√
−1
2

tr((hh ′−h ′h)∗x) =
√
−1
2
⋅−2
√
−1 ⋅ Im tr(x hh ′)

= Im tr(x hh ′),

where the second-to-last line uses cyclic invariance and linearity of trace.

We can now describe precisely how Fd,N
lll �U(d) is equivalent to a coadjoint orbit inH(N).

Proposition 2.11 ( [43]). Let lll be a frame spectrum and define lll̃ ∶= (l1, . . . ,ld ,0, . . . ,0) ∈ RN to be lll padded with
N −d zeros. The space Fd,N

lll �U(d) is diffeomorphic to Olll̃ ⊂H(N), via the map

[F]� F∗F (7)

taking a unitary equivalence class to its Gram matrix.
Moreover, the map (7) is a symplectomorphism with respect to the reduced symplectic structure on Fd,N

lll �U(d)
and the pullback of the Kirillov–Kostant–Souriau form a∗wKKS described in Lemma 2.10.

The proof of the proposition makes use of the following lemma.

Lemma 2.12. Let [F] ∈Fd,N
lll �U(d). The tangent space T[F]F

d,N
lll �U(d) is naturally isomorphic to the vector space

{Fz � z ∈ u(N)}�{x F � x ∈ u(d)}.

Proof. Any F ∈Fd,N
lll has singular value decomposition of the form F =USlllV∗, where

Slll ∶= �diag(lll)
1
2 � 0� .

Therefore
Fd,N

lll = {USlllV∗ �U ∈U(d) and V ∈U(N)}.

We claim that
TFFd,N

lll = {x F −Fz � x ∈ u(d) and z ∈ u(N)}.
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Indeed, a smooth path Ft in Fd,N
lll with F0 = F =USlllV∗ can be expressed as Ft =UtSlllV∗t for some smooth paths Ut in

U(d) with U0 =U and Vt ∈U(N) with V0 =V . Then the derivative of Ft at t = 0 satisfies

Ḟ0 = U̇0SlllV∗0 +U0SlllV̇∗0 = xUSlllV∗−USlllV∗z = x F −Fz ,

for x ∈ u(d) and z ∈ u(N) satisfying U̇0 = xU and V̇ 0 = zV , respectively.
By general principles of quotient manifolds, there is a natural isomorphism

T[F]�F
d,N
lll �U(d)� ≈ TFFd,N

lll �TF(U(d) ⋅F).

Indeed, the quotient map Fd,N
lll → Fd,N

lll �U(d) is a submersion, so the rank theorem [37, Theorem 4.12] implies that,
locally near F , it is an orthogonal projection with the fiber U(d) ⋅F being sent to the origin. This gives TFFd,N

lll ≈
TF(U(d) ⋅F)⊕T[F]�F

d,N
lll �U(d)�, and the claim follows. Since TF(U(d) ⋅F) = {x F � x ∈ u(d)}, the lemma follows.

Proof of Proposition 2.11. The diffeomorphism result is Proposition 3 in our previous paper [43], so we only sketch
the details here. Unitary equivalence classes of frames are uniquely determined by their Gram matrices (see, for
example, [50, §3.4]), so we can identify Fd,N

lll �U(d) with the elements of H(N) which arise as Gram matrices of
frames in Fd,N

lll . Of course, the frame operator FF∗ and the Gram matrix F∗F have the same nonzero eigenvalues, so
specifying the spectrum of the frame operator also determines the spectrum of the Gram matrix by padding with N−d
zeros, and it follows that this subset consists of those N ×N Hermitian matrices with spectrum lll̃ . In other words, (7)
is a diffeomorphism between Fd,N

lll �U(d) and Olll̃ .
It remains to prove the symplectomorphism claim. For the rest of this proof, let g denote the map (7). By

Lemma 2.12, the tangent space to Fd,N
lll �U(d) at [F] consists of equivalence classes (under the quotient operation

in the lemma) [Fz ], where z ∈ u(N). The derivative of g at [F] in the direction [Fz ] is given by

Dg([F])([Fz ]) = F∗Fz +(Fz)∗F = F∗Fz −z F∗F = adz (F∗F).

Then, using Lemma 2.10,

�g∗a∗wKKS�
[F] (Fz ,Fz ′) = �a∗wKKS�F∗F (adz (F∗F),adz ′(F∗F)) = Im tr(F∗Fz z ′).

On the other hand, the reduced symplectic form on Fd,N
lll �U(d) evaluates as

−Im tr((Fz ′)∗(Fz)) = −Im tr(F∗Fz(z ′)∗) = Im tr(F∗Fz z ′),

where we have used the characterization of the reduced form, cyclic invariance of trace and the fact that z ′ is skew-
Hermitian.

Remark 2.13. Since Olll̃ ⊂H(N) is identified with a coadjoint orbit, it is diffeomorphic, like all coadjoint orbits,
to a flag manifold [5, §II.1.d]. Specifically, if lll consists of ` distinct eigenvalues with multiplicities k1, . . . ,k` and
di = k1+ ⋅ ⋅ ⋅+ki for i = 1, . . . ,`, then

Olll̃ ≈ F`(d1, . . . ,d`,N),

the flag manifold whose elements are nested sequences V1 ⊂ ⋅ ⋅ ⋅ ⊂ V` ⊂ V`+1 = CN of subspaces with dimVi = di. In
particular, when lll is constant then ` = 1 and k1 = d, so the flag manifold is F`(d,N), whose elements are all subspaces
V1 ⊂CN with dimV1 = d; that is, the Grassmannian Grd(CN) of d-dimensional subspaces of CN .

2.2.3 Frames with Prescribed Frame Spectrum and Norms

The torus U(1)N can be realized as the subgroup of diagonal elements of U(N); that is, as the standard maximal torus
T ≤ U(N). Thought of in this way, U(1)N ≈ T acts on Cd×N by right matrix multiplication and, as we will see in a
moment, this action preserves the frame spectrum, and hence restricts to an action on Fd,N

lll .
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First, though, it is worthwhile to pause and think about the right action of the full unitary group U(N) on Cd×N .
If we try to define the action of A ∈ U(N) on F ∈ Cd×N by A ⋅F = FA we quickly run into problems: after all, if
A1,A2 ∈U(N), then

A1 ⋅(A2 ⋅F) = A1 ⋅(FA2) = FA2A1 ≠ FA1A2 = (A1A2) ⋅F,

unless A1 and A2 happen to commute. This is not an issue at the level of T, which is abelian, but it is preferable to
define the T action to be consistent with an honest U(N) action. We get such an action by defining A ⋅F ∶= FA∗ for
A ∈U(N) and F ∈Cd×N . In particular, if D ∈T, define D ⋅F ∶= FD∗ = FD.

This action preserves the frame spectrum: if F ∈ Fd,N
lll and D ∈ T, then the frame operator of D ⋅F = FD∗ is

(FD∗)(FD∗)∗ = FD∗DF∗ = FF∗, which is the same as the frame operator of F , and hence D ⋅F ∈Fd,N
lll as well.

At the frame level, the action of an element of the torus on a frame performs an independent phase rotation on
each frame vector. The right action of T commutes with the left action of U(d), so the torus action descends to the
quotient Fd,N

lll �U(d), but it is not an effective action. After all, both T and U(d) contain a 1-parameter subgroup of
scalar matrices, and the actions of these two subgroups cancel each other: if Ik denotes the k× k identity matrix and
eiq ∈U(1), then eiq Id ∈U(d), eiq IN ∈T and for any F ∈Fd,N

lll we have

(eiq IN) ⋅((eiq Id)F) = (eiq Id)F(e−iq IN) = F.

We can put this in a more standard context using our identification of Fd,N
lll �U(d) with the coadjoint orbit Olll̃ ⊂

H(N) ≈ u(N)∗, described in Proposition 2.11. The standard maximal torus of U(N) certainly acts on any coadjoint
orbit of U(N), and in this case the action is just the conjugation action. The scalar matrices are the center Z(U(N)) of
U(N), whose coadjoint action is trivial. In general, to get an effective action of the maximal torus of a Lie group on a
coadjoint orbit of the group, one needs to take the quotient of the torus by the center of the group; in this case, this is
simply

G ∶=T�Z(U(N)) ≈U(1)N�U(1) ≈U(1)N−1,

which can be identified with the subgroup of diagonal elements of U(N) whose last entry is 1.
Now we see why it was worth defining the action of U(1)N (and hence G) on Fd,N

lll by D ⋅F = FD∗, since this
corresponds exactly to the standard coadjoint action onH(N) ≈ u(N)∗.

In this setting, it is easy to see that the action of G on Olll̃ ≈F
d,N
lll �U(d) is Hamiltonian:

Proposition 2.14. The action of G on Olll̃ is Hamiltonian, with momentum map FG ∶Olll̃ → g∗ ≈RN−1 recording the
first N −1 diagonal entries.

Proof. First of all, it is standard (see, e.g., [40, Example 5.3.11]) that the coadjoint action of U(N) on the coadjoint
orbit Olll̃ is Hamiltonian with momentum map given by the inclusion Olll̃ � u(N)∗ ≈H(N); in fact, the analogous
statement holds for arbitrary compact Lie groups acting on coadjoint orbits.

Similarly, it is standard (see, e.g., [5, Proposition III.1.10]) that the action of the maximal torus T ≤U(N) on Olll̃
is Hamiltonian with momentum map given by the composition

Olll̃ �H(N) ≈ u(N)
∗→ t∗,

where t∗ is the Lie algebra of T and the projection u(N)∗ → t∗ is the one induced by the inclusion T�U(N). After
identifying t∗ with RN , this projection is easily seen to be the map which records the diagonal entries of a Hermitian
matrix.2

More generally, the same applies for any subgroup (see, e.g., [9, p. 213]), and so the action of G on Olll̃ is Hamil-
tonian with momentum map given by the composition

Olll̃ �H(N) ≈ u(N)
∗→ g∗,

where the projection u(N)∗ → g∗ is the one induced by the inclusion G�U(N). Under the identification g∗ ≈RN−1,
this map just records all the diagonal entries but the last one (which in any case is determined by the others, since the
trace of any element of Olll̃ is ∑i li).

2It is worth pointing out that this is precisely the setup for the symplectic proof of the Schur–Horn theorem; see Knutson’s excellent paper [36]
for more.
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Remark 2.15. It is easy to show that the map (7) from Fd,N
lll �U(d) to H(N) is equivariant with respect to the right

multiplication action of U(N), A ⋅ [F] = [FA∗], and the Ad-action of U(N) on H(N). This observation, together with
Proposition 2.11 and the first paragraph of the proof of Proposition 2.14, shows that the action of U(N) on Fd,N

lll �U(d)
is Hamiltonian, with momentum map [F]→ F∗F .

If F ∈Fd,N
lll , then the (i, i) entry of F∗F ∈Olll̃ is simply � fi, fi� = � fi�2, so, reinterpreting in terms of frame data, the

momentum map of the Hamiltonian G-action on Fd,N
lll �U(d) is simply [F]� (� f1�2, . . . ,� fN−1�2). Hence, as a subset

of Fd,N
lll �U(d), the collection Fd,N

lll (rrr)�U(d) of unitary equivalence classes of frames in Fd,N
lll (rrr) is precisely the level

set F−1
G (r1, . . . ,rN−1).

By the Schur–Horn theorem [30, 46], F−1
G (r1, . . . ,rN−1) is non-empty only if the vector (r1, . . . ,rN) lies in the

convex hull of the orbit of lll̃ = (l1, . . . ,ld ,0, . . . ,0) under the action of the symmetric group SN which permutes
entries. When rrr and lll are non-increasing lists, this condition is easily seen to be equivalent to rrr being lll -admissible,
so Fd,N

lll (rrr) is non-empty precisely when rrr is lll -admissible.
When rrr is lll -admissible, there is no guarantee that (r1, . . . ,rN−1) ∈ RN−1 ≈ g∗ is a regular value, but we can still

apply Theorem 2.4 to see that the quotient of F−1
G (r1, . . . ,rN−1) by G is at worst a symplectic stratified space. We have

thus proved the first part of the following proposition:

Proposition 2.16. When rrr is lll -admissible, the (non-empty) space Fd,N
lll (rrr)�(U(d)×G) is the symplectic quotient

�Fd,N
lll �U(d)��rrr G,

which is a symplectic stratified space.3

Alternatively, Fd,N
lll (rrr)�(U(d)×G) can be viewed as the symplectic quotient

Cd×N �O−lll×{rrr} (U(d)×G).

Proof. We proved the first sentence above. For the second sentence, Sjamaar and Lerman [48, Theorem 4.1] showed
that even when reducing over singular values, we can perform a reduction by a product group in stages. Hence, with
F ∶Cd×N →H(d)×RN−1 being the (product) momentum map of the Hamiltonian action of U(d)×G on Cd×N ,

Cd×N �O−lll×{rrr} (U(d)×G) ≈ �Cd×N �O−lll U(d)��rrr G = �Fd,N
lll �U(d)��rrr G.

Remark 2.17. Proposition 2.16 says that Fd,N
lll (rrr)�(U(d)×G) is, in general, a symplectic stratified space. Depending

on the parameters lll and rrr, it may actually be a smooth manifold. We characterize the parameters such that Fd,N
lll (rrr)

is a smooth manifold below in Theorem 2.25.

Notice that the momentum map F ∶Cd×N →H(d)×RN−1 is given by

F � (−FF∗,(� f1�2, . . . ,� fN−1�2)).

In particular, the space Fd,N
lll (rrr) is exactly the level set F−1(O−lll ×{rrr}). To simplify slightly, assume rrr is strongly

lll -admissible. When Fd,N
lll (rrr) is a manifold (conditions for which we determine in Corollary 2.22 in the next section),

then we know its codimension inside Cd×N is equal to the codimension of O−lll ×{rrr} insideH(d)×RN−1. Even when
Fd,N

lll (rrr) is not a manifold, we know from Theorem 2.5 that its quotient by U(d)×G contains an open dense subset
which is a manifold. This subset is a stratum, and hence its (open, dense) preimage is also a manifold by Theorem 3.5
from Sjamaar and Lerman [48].

3Here we are slightly abusing notation. We are reducing over the point (r1, . . . ,rN−1) ∈ RN−1, so we should, strictly speaking, use the notation
�Fd,N

lll �U(d)��(r1 ,...,rN−1) G. This is notationally cumbersome and, since for elements of Fd,N
lll the quantity rN is determined by (r1, . . . ,rN−1)

anyway, it seems overly pedantic to invent a new shorthand for the truncated vector. Hence, we will use rrr to indicate both (r1, . . . ,rN) and(r1, . . . ,rN−1) and trust both ourselves and the reader to keep track of which we mean from context.
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In other words, Fd,N
lll (rrr) contains an open, dense subset which is a manifold and which consists precisely of

regular points of the momentum map F, so for the purposes of dimension-counting we may as well assume Fd,N
lll (rrr)

is a manifold.
To that end,

dim(O−lll ×{rrr}) = dimO−lll = d2−k2
1 −⋅ ⋅ ⋅−k2

` ,

where, as in Remark 2.13, the k1, . . . ,k` are the multiplicities of the entries in the frame spectrum lll . Subtracting this
from d2+N−1 = dim(H(d)×RN−1) gives the codimension N−1+k2

1+ ⋅ ⋅ ⋅+k2
` ofO−lll ×{rrr} (insideH(d)×RN−1) and

hence also of Fd,N
lll (rrr) (inside Cd×N). This proves:

Corollary 2.18. For rrr which is strongly lll -admissible,

dimFd,N
lll (rrr) = 2dN −N +1−

`

�
j=1

k2
j .

Hence,

dimFd,N
lll (rrr)�(U(d)×G) = 2N(d−1)+2−d2−

`

�
j=1

k2
j ,

where the k j are the multiplicities of the entries in the frame spectrum lll .

2.3 Manifold Structure of Frame Spaces
While Corollary 2.6 will allow us to apply the symplectic machinery even when Fd,N

lll (rrr) is singular, it is still interest-
ing to understand when this space is a smooth manifold. We completely characterize parameters for which Fd,N

lll (rrr)
is a manifold in the following subsection. We then give a detailed description of the local structure of singularities in
singular frame spaces.

2.3.1 Characterizing Smooth Frame Spaces

The model result on manifold structures of frame spaces is due to Dykema and Strawn [18], who showed that the
singular points in the space Fd,N

�
N
d ,...,N

d �
(1, . . . ,1) of unit-norm tight frames must be orthodecomposable (we recall the

definition of this property below). An immediate corollary is that the space of unit-norm tight frames is a manifold
when N and d are relatively prime. More generally, Strawn [49] showed that the singular points in any space of frames
with fixed frame vector norms and fixed frame operator (rather than frame spectrum) must be orthodecomposable.

We will prove the converse of these results, showing that the singular points (if any) of every Fd,N
lll (rrr) space are

exactly the orthodecomposable frames. First, recall what it means for a frame to be orthodecomposable:

Definition 2.19. A frame { fi}N
i=1 ⊂ Cd is orthodecomposable if there exists a partition P1, . . . ,Pm of {1, . . . ,N} and

pairwise orthogonal subspaces V1, . . . ,Vm ⊂Cd with Cd =�m
i=1Vi so that, for all k = 1, . . . ,m, { fi}i∈Pk is a frame for Vk.

In our setting, we are realizing the space Fd,N
lll (rrr) = F−1 (O−lll ×{rrr}) as the inverse image of a coadjoint orbit

under the momentum map F. This frame space will certainly be a manifold if it contains no critical points of F, so we
now characterize the critical points of F.

A standard part of the discussion around Theorems 2.2 and 2.3 (see, e.g., [40, Proof of Proposition 5.4.13] or [9,
§23.2.1]) is the following characterization of regular points of momentum maps:

Proposition 2.20. Let H be a Lie group and let (M,w) be a symplectic manifold admitting a Hamiltonian H-action
with momentum map Y ∶M→ h∗. Then p ∈M is a regular point of Y if and only if the action of H is locally free at p.

Recall that a group action is locally free at p if the stabilizer of p is discrete. Therefore, Proposition 2.20 gives
a characterization of critical points of a momentum map: p ∈M is a critical point if and only if the stabilizer of p
is continuous, and in particular contains a nontrivial one-parameter subgroup. This is the key to characterizing the
critical points of F ∶Cd×N →H(d)×RN−1.
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Proposition 2.21. A frame F is a critical point of the momentum map F ∶ Cd×N →H(d)×RN−1 of the Hamiltonian
action of U(d)×G if and only if F is orthodecomposable.

Proof. Let F = � f1 �� � fN� ∈Cd×N be a frame and let z ∶R→G be a one-parameter subgroup such that z(t) ⋅F =F for
all t ∈R. Then z uniquely corresponds to an element of the Lie algebra u(d)×g of U(d)×G, and in particular there
exist matrices x ∈ u(d) and q ∈ g such that z(t) = exp(t(x ,q)) = (exp(tx),exp(tq)) (see, e.g., [37, Propositions 20.1
and 20.5]). Under our concrete realization of G = T�Z(U(N)) as the subgroup of diagonal unitary matrices with last
entry equal to 1, q will be of the form

q =
√
−1 ⋅diag(q1, . . . ,qN−1,0)

for some q1, . . . ,qN−1 ∈R. Then we have

0 = d
dt
�
t=0

z(t) ⋅F = d
dt
�
t=0

exp(tx)F exp(−tq) = x F −Fq .

At the frame vector level, this yields a system of equations

�������

x f j =
√
−1q j f j, j = 1, . . . ,N −1,

x fN = 0.
(8)

Each
√
−1q j is therefore an eigenvalue of the skew-Hermitian matrix x with corresponding eigenvector f j. More-

over, any solution of (8) yields a one-parameter subgroup in the stabilizer of F . By the Spectral Theorem for normal
matrices, the eigenspaces for distinct eigenvalues of x are orthogonal.

With the above setup, we are prepared to prove the claim. First, suppose that F is not a regular point of the
momentum map. By Proposition 2.20, it is possible to find a one-parameter subgroup z ∶ R→ G of the stabilizer of
F which is nontrivial. In this case, x has at least two distinct eigenvalues and it follows that F is orthodecomposable,
with frame vectors partitioned into the orthogonal eigenspaces of x .

Conversely, suppose that F is orthodecomposable. Let P1, . . . ,Pm denote the partition and V1, . . . ,Vm the subspaces
appearing in Definition 2.19. Permuting columns of F as necessary, we can assume without loss of generality that
P1 = {1, . . . ,k} for some k < N. For convenience, we can apply a unitary transformation to F so that f1, . . . , fk span a
coordinate plane V1; say, the span of the first ` < d standard basis vectors. Since V2, . . . ,Vm are all orthogonal to V1,
⊕m

i=2Vi is the span of the remaining d−` standard basis vectors. Then F has the form

F = �F1 0
0 F2

� ,

where the nonzero blocks F1 and F2 have sizes `×k and (d−`)×(N −k), respectively. Let

x ∶= diag(
√
−1,�,

√
−1

����������������������������������������������������������������
`

,0, . . . ,0
�����������������

d−`

) ∈ u(d) and q ∶= diag(
√
−1, . . . ,

√
−1

����������������������������������������������������������������������
k

,0, . . . ,0
�����������������

N−k

) ∈ u(1)N .

It is easy to check that x ,q , and F satisfy the system (8) and therefore yield a nontrivial one-parameter subgroup in
the stabilizer of F . By Proposition 2.20, F is not a regular point of the momentum map.

The characterization of singular points in Fd,N
lll (rrr) is now an easy corollary:

Corollary 2.22. The singular points of Fd,N
lll (rrr) are exactly the orthodecomposable elements. Hence, Fd,N

lll (rrr) is a
manifold if and only if it contains no orthodecomposable frames.

Proof. From Proposition 2.21 we know that the critical points of the momentum map F are exactly the orthodecom-
posable frames. It is a nontrivial fact (see, e.g., [3, Theorem 5] or [48, Proposition 2.5]) that in a neighborhood of a
critical point of a momentum map, the level set looks like the product of a quadratic cone and a manifold. Therefore,
Fd,N

lll (rrr) =F−1 (O−lll ×{rrr}) has a quadratic singularity at each orthodecomposable frame. Since the structure of such
singularities is itself of interest [8], we describe these cone singularities in detail in Section 2.3.2 below.

Orthodecomposable frames are the only possible singularities: if F ∈ Fd,N
lll (rrr) is not orthodecomposable, then

the differential DFF ∶ TFCd×N → TF(F)(H(d)×RN−1) is surjective. In particular, this implies F is transverse to
a neighborhood of F(F) in O−lll × {rrr}, so it is standard that its inverse image—which is a neighborhood of F in
Fd,N

lll (rrr)—is a submanifold of Cd×N (see, e.g., [37, Theorem 6.30]), and in particular is smooth at F .
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Remark 2.23. Since every orthodecomposable frame is a singular point of the Fd,N
lll (rrr) space containing it, Corol-

lary 2.22 solves the complex case of Cahill, Mixon, and Strawn’s Problem 5.8 [8].

To make Corollary 2.22 more practical, it would be helpful to know, in terms of some computable conditions on
the parameters d, N, lll , and rrr, exactly when Fd,N

lll (rrr) contains an orthodecomposable frame.
To that end, suppose F ∈Fd,N

lll (rrr) is orthodecomposable. Then, as in the proof of Proposition 2.20, after possibly
permuting columns and applying a unitary transformation, we can realize F in block-diagonal form:

F = �F1 0
0 F2

� ,

where F1 ∈C`×k and F2 ∈C(d−`)×(N−k) are frames. But then both the Gram matrix and the frame operator associated
to F are also block-diagonal:

F∗F = �F
∗

1 F1 0
0 F∗2 F2

� and FF∗ = �F1F∗1 0
0 F2F∗2

� .

Since tr(F∗1 F1) = tr(F1F∗1 ), we see that r1+ ⋅ ⋅ ⋅+rk = l1+ ⋅ ⋅ ⋅+l`. More generally, since we permuted columns to get F
into block-diagonal form, there exist proper subsets {ri1 , . . . ,rik} � rrr and {li1 , . . . ,li`} � lll so that

ri1 + ⋅ ⋅ ⋅+ rik = li1 + ⋅ ⋅ ⋅+li` .

Moreover, let
rrr′ = (r′1, . . . ,r′k) ∶= (ri1 , . . . ,rik) and lll ′ = (l ′1, . . . ,l ′`) ∶= (li1 , . . . ,li`)

and let rrr′′ and lll ′′ be their respective complement vectors. Then we see that the columns { fi1 , . . . , fik} give a frame
for an `-dimensional subspace of Cd with spectrum li1 ≥ ⋅ ⋅ ⋅ ≥ li` > 0, which means that the frame space F `,k

lll ′ (rrr
′)

is non-empty, and in particular that rrr′ is lll ′-admissible. Similarly, the complementary columns give an element of
Fd−`,N−k

lll ′′ (rrr′′), and hence rrr′′ is lll ′′-admissible.
Summarizing, we have shown the following consequences of orthodecomposability:

Lemma 2.24. If F ∈Fd,N
lll (rrr) is orthodecomposable, then there exist proper partitions rrr = rrr′� rrr′′ and lll = lll ′�lll ′′ so

that rrr′ is lll ′-admissible, rrr′′ is lll ′′-admissible, and rrr′ and lll ′ have the same sum (which implies that rrr′′ and lll ′′ have
the same sum as well).

Combined with Corollary 2.22, this gives a sufficient condition for Fd,N
lll (rrr) to be a manifold. In fact, it is also a

necessary condition:

Theorem 2.25. Fd,N
lll (rrr) is a manifold if and only if there are no proper partitions rrr = rrr′� rrr′′ and lll = lll ′�lll ′′ so that

rrr′ is lll ′-admissible, rrr′′ is lll ′′-admissible, and rrr′ and lll ′ have the same sum.

Proof. If Fd,N
lll (rrr) is not a manifold, then Corollary 2.22 tells us that it contains some orthodecomposable frame and

hence, by Lemma 2.24, there are such partitions of rrr and lll .
Conversely, suppose there are such partitions. Then, since rrr′ is lll ′-admissible, there exists a frame { fi1 , . . . , fik} ∈

F `,k
lll ′ (rrr

′), and similarly there exists a frame {g j1 , . . . ,g jN−k} ∈F
d−`,N−k
lll ′′ (rrr′′). Embedding the former into the `-dimensional

subspace of Cd spanned by the first ` standard basis vectors and the latter into the (d−`)-dimensional orthogonal com-
plement and combining them into a single list sorted by decreasing norm gives an orthodecomposable element—and
hence a singular point—of Fd,N

lll (rrr), which is therefore not a manifold.

Notice that Theorem 2.25 recovers Dykema and Strawn’s result that the space of unit-norm tight frames is a
manifold when N and d are relatively prime, and also implies that Fd,N

lll (rrr) is a manifold for generic rrr and lll .

2.3.2 Describing Singularities

As was mentioned above, Corollary 2.22 solves Problem 5.8 of [8] for complex FUNTFs. Problem 1.5 of the same
paper asks for a description of the local geometry of the space of FUNTFs near orthodecomposable frames, and we
now expand on the proof of Corollary 2.22 to solve this problem. We describe singularities for progressively more
general classes of frames, with full details given in the simplest case and sketches given for more general cases.
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Minimally Orthodecomposable FUNTFs. A result of Arms, Marsden, and Moncrief gives a description of the local
geometry near any point on the level set of a momentum map of an arbitrary symplectic manifold [3, Theorem 5]. This
specializes to our setting to show that near any FUNTF

F ∈Fd,N
(

N
d ,...,N

d )
(1, . . . ,1) =F−1��−N

d
, . . . ,−N

d
� ,(1, . . . ,1)� ,

there is a local diffeomorphism of the ambient space Cd×N which takes a neighborhood of F in the level set onto the
product of a quadratic cone CF and a smooth manifold. The cone is described explicitly as

CF = �X ∈ ker(DF(F))∩ker(DF(F)○J) �D2F(F)(X ,X) ∈ image(DF(F))� ,

where J denotes multiplication by
√
−1, considered as a linear map on the real vector space TFCd×N , and D2F(F) is

the Hessian of F at F , considered as aH(d)-valued bilinear form. Observe that if F is a regular point of F then CF is
just a linear subspace of Cd×N . We will show that CF is a singular cone when F is not a regular point.

Writing F = � f1 �� � fN� and X = �x1 �� � xN�, we have

DF(F)(X) = �−FX∗−XF∗,(2Re� f j,x j�)N−1
j=1 �

and
DF(F)○J(X) = �

√
−1FX∗−

√
−1XF∗,(2Im� f j,x j�)N−1

j=1 � ,

so that
ker(DF(F))∩ker(DF(F)○J) = {X ∈Cd×N � FX∗ = 0 and � f j,x j� = 0 ∀ j = 1, . . . ,N −1}.

We can also show that
D2F(F)(X ,X) = �−2XX∗,(2�x j�2)N−1

j=1 � .
Now suppose that F is orthodecomposable. As in the proof of Proposition 2.21, we can assume without loss of

generality that

F = �F1 0
0 F2

� ,

for some submatrices F1 ∈Cd1×N1 and F2 ∈Cd2×N2 (we use a different indexing convention for dimensions than in the
proof of Proposition 2.21 for ease of generalization later on). Furthermore, suppose that the blocks F1 and F2 are not
themselves orthodecomposable. We then claim that

image(DF(F))⊥ = span���Id1 0
0 0� ,(1, . . . ,1�����������������

N1

,0, . . . ,0
�����������������

N2−1

)�� ⊂H(d)×RN−1, (9)

where the orthogonal complement is taken with respect to the inner product �⋅, ⋅� onHd×d ×RN−1 defined by

�(z1,x1),(z2,x2)� ∶=Re trace(z∗2 z1)+x∗2 x1.

Indeed, a straightforward computation shows that the vector given in (9) belongs to image(DF(F))⊥, and we see that
this space is one-dimensional as follows. By standard arguments, it suffices to show that the nullity of the dual map
DF(F)∗ is equal to one and Equation 5.2.7 of [40] implies that it suffices to show that the map taking an element of
H(d)×RN−1 to its infinitesimal vector field evaluated at F has one dimensional kernel. By arguments similar to those
used in the proof of Proposition 2.21, this is equivalent to showing that the space of solutions to the system of equations
(8) is one-dimensional, which holds under our assumption that F1 and F2 are not themselves orthodecomposable (using
the fact that the eigenspaces of a skew-Hermitian matrix are orthogonal).

Based on the work in the previous two paragraphs, the cone CF is described more explicitly as the set of X ∈Cd×N

satisfying
FX∗ = 0, � f j,x j� = 0 ∀ j = 1, . . . ,N −1, (10)

and

0 =��−2XX∗,(2�x j�2)N−1
j=1 �,��

Id1 0
0 0� ,(1, . . . ,1,0, . . . ,0)�� = 2

N2

�
j=1
�x12

j �2−2
N1

�
j=1
�x21

j �2, (11)
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where we express X as a block matrix with blocks Xkm, k,m ∈ {1,2}, of size dk×Nm whose column vectors are denoted
xkm

j .
We can verify that the intersection of the subspace defined by (10) and the solution set of the indefinite quadratic

equation (11) yields a singular cone by showing that it is not a linear subspace. To do so, choose

X = � 0 X2
X1 0 �

such that F1X∗1 = 0 and F2X∗2 = 0, so that FX∗ = 0. The condition � f j,x j� holds automatically due to the block structures
of F and X , hence (10) is satisfied. The matrices Xj can be chosen to be nonzero, since the dimension of the row space
of Fj is at most d j < Nj. We can therefore scale the Xj’s to have equal Frobenius norm, which means that (11) is also
satisfied, so that X ∈CF . Next, we observe that

X ′ = � 0 X2
−X1 0 �

also lies in CF . However, the matrix X −X ′ does not satisfy (11), and this proves our claim that CF is not a linear
subspace.

Example 2.26. Here we provide a concrete example of the structure described above. Let F denote the orthodecom-
posable unit norm tight frame

F = � 1 1 0 0
0 0 1 1 � ∈F

2,4
(2,2)(1,1,1,1) =∶F .

The cone CF can be described explicitly as the set of 2×4 matrices X satisfying equations (10) and (11). Using the
xkm

j notation from above, we write

X = � x11
1 x11

2 x12
1 x12

2
x21

1 x21
2 x22

1 x22
2
� .

The subspace equations (10) then tell us that

� 0 0
0 0 � = FX∗ = � x11

1 +x11
2 x21

1 +x21
2

x12
1 +x12

2 x22
1 +x22

2
� ⇔ xkm

1 = −xkm
2 ∀ k,m

and, letting f j and x j denote the columns of F and X , respectively,

0 = � f j,x j� ∀ j ∈ {1,2,3,4} ⇔ x11
1 = x11

2 = x22
1 = x22

2 = 0.

The cone equation (11) then simply reads

2�x12
1 �2 = 2�x21

1 �2 ⇔ �x12
1 � = �x21

1 �.

Putting all of this together, the cone CF is

CF = {A(l ,q ,f) � l ,q ,f ∈R} , where A(l ,q ,f) ∶= l
�
�

0 0 e
√
−1q −e

√
−1q

e
√
−1f −e

√
−1f 0 0

�
�
.

Interpreted as a subset of C2 = {(l1e
√
−1q ,l2e

√
−1f)}, this is precisely the cone over the Clifford torus.

Now consider the map defined by

A(l ,q ,f)�
√

1−l 2F +A(l ,q ,f) =
�
�

√
1−l 2

√
1−l 2 le

√
−1q −le

√
−1q

le
√
−1f −le

√
−1f

√
1−l 2

√
1−l 2

�
�
, (12)

with domain {A(l ,q ,f) � l ∈ [0,1)}, a neighborhood of the origin in CF . We claim that the image of this map is an
open subset of F intersected with a slice of the �U(2)×U(1)4)��U(1)-action on C2×4 through F—that is, a subset
S ⊂C2×4 containing F such that the orbit of any point in C2×4 sufficiently close to F has a unique representative in S .4

4Strictly speaking, we should consider the group modulo the isotropy group of F when constructing the slice, but we are suppressing this
technical detail for the sake of brevity.

16



Specifically, the slice S is the set of matrices of the form

�
�

a1 a2 b1e
√
−1q b2e

√
−1q

g1e
√
−1f g2e

√
−1f d1 d2

�
�
,

where a j and d j are positive real numbers, and b j, g j, q , f are arbitrary real numbers. The proof that S is a slice is
somewhat technical, so we omit it.

It is then straightforward to show that F ∩S is equal to the image of our map (i.e., points of the form (12)), which
implies that a neighborhood of F in F is identified with the product of a neighborhood of the origin in CF and the
group.

General Orthodecomposable FUNTFs. Now suppose that F is a general orthodecomposable FUNTF. After ap-
plying isometries as necessary, we can assume without loss of generality that F is a block diagonal matrix F =
diag(F1, . . . , F̀ ), where Fj a non-orthodecomposable matrix of size d j ×Nj. Similar computations show that the cone
CF consists of matrices X ∈Cd×N satisfying the linear conditions (10) and the system of quadratic equations

�
m≠k

�
�

Nm

�
j=1
�xkm

j �2−
Nk

�
j=1
�xmk

j �2
�
�
= 0 ∀ k = 1, . . . ,`,

where we express X as a block matrix with blocks Xkm of size dk×Nm and with column vectors denoted xkm
j . Arguments

similar to the above show that CF is a singular cone.

Orthodecomposable Frames in Arbitrary Frame Spaces. These descriptions of the local structure of FUNTF
space near orthodecomposable frames do not intrinsically use the unit norm condition—they only rely on the assump-
tion that the columns have some fixed collection of norms. The arguments therefore apply to describe singularities of
spaces of tight frames with fixed norms.

In fact, similar local characterizations can be derived near orthodecomposable frames in any frame space Fd,N
lll (rrr)

with an added technical step. The result of Arms, Marsden, and Moncrief specifically treats zero level sets of momen-
tum maps, and extends trivially to handle level sets of fixed points of the Ad∗-action on the dual of the Lie algebra.
The general frame space Fd,N

lll (rrr) is a level set of a coadjoint orbit: Fd,N
lll (rrr) =F−1(O−lll ×{rrr}). The standard shifting

trick of symplectic geometry (see, e.g., [48, p. 376]) can be used to realize Fd,N
lll (rrr) as the 0-level set of an associated

momentum map on the symplectic manifold Cd×N×O−lll ; more specifically, this space is endowed with a product form,
where the symplectic form on the second factor is −wKKS with wKKS being the canonical Kirillov–Kostant–Souriau
symplectic form on a coadjoint orbit defined in (6). After applying the shifting trick, similar computations can be done
to describe the local geometry of singular points.

3 Toric Geometry of Frame Space
3.1 Toric Symplectic Manifolds
Recall that our goal is to show that the collection of full-spark frames in Fd,N

lll (rrr) has full measure. As mentioned in
the introduction, the natural measure on Fd,N

lll (rrr) is the Hausdorff measure it inherits as a compact subset of Cd×N .
This measure is not so easy to get a handle on directly, but symplectic geometry provides a more tractable approach.

All symplectic manifolds are equipped with natural measures. Specifically, suppose (M,w) is a symplectic mani-
fold of dimension 2n. By the non-degeneracy of the symplectic form w , the maximal wedge power

w∧n =w ∧⋅ ⋅ ⋅∧w
���������������������������������������

n

is nowhere-vanishing, and hence defines a volume form and associated symplectic or Liouville measure mw : for a
Borel set U ⊂M, mw(U) ∶= ∫U w∧n.
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While Fd,N
lll (rrr) is not symplectic, by Proposition 2.16 its quotient

Fd,N
lll (rrr)�(U(d)×G) �Cd×N �O−lll×{rrr} (U(d)×G)

is. Moreover, since Cd×N is Kähler—i.e., it is a complex manifold with a Hermitian metric whose negative imaginary
part defines the standard symplectic form and whose real part defines the standard Riemannian metric—so is the
symplectic reduction, and the symplectic measure agrees with the pushforward of Hausdorff measure on Fd,N

lll (rrr) by
the quotient map Fd,N

lll (rrr)→F
d,N
lll (rrr)�(U(d)×G) [28, Theorem 3.1].

Therefore, to prove our main theorem it suffices to prove that the equivalence classes of full-spark frames have
full measure in Fd,N

lll (rrr)�(U(d)×G), which we can do symplectically. The key is that Fd,N
lll (rrr)�(U(d)×G) admits a

Hamiltonian action of a high-dimensional torus, which considerably simplifies the task of understanding the symplectic
measure.

If a 2n-dimensional symplectic manifold (M,w) admits a Hamiltonian action of a torus U(1)k, then the associated
momentum map F ∶M→ �u(1)k�∗ �Rk has convex image and connected level sets:

Theorem 3.1 (Atiyah [4] and Guillemin–Sternberg [24]). With notation as above:

• For any v ∈Rk, F−1(v) is either empty or connected.

• The image F(M) is the convex hull of the images of the fixed points of the torus action.

In particular, when M is (relatively) compact, (the closure of) F(M) is a bounded convex polytope P called the
moment polytope associated to the Hamiltonian torus action.

In general, the Duistermaat–Heckman theorem [17] precisely describes the relationship between the pushforward
measure F∗(mw) and Lebesgue measure on the moment polytope P. Since we will not need the full statement, we
restrict to the case when k = n, that is when M admits a Hamiltonian action of a half-dimensional torus. In this case
M is called a toric symplectic manifold. Toric symplectic manifolds are closely related to toric varieties [13] and are
completely classified by the combinatorics of the moment polytope [15].

Theorem 3.2 (Duistermaat–Heckman [17], see also [9, Chapter 30]). Let M be a 2n-dimensional toric symplectic
manifold with moment polytope P. The pushforward measure F∗(mw) is a constant multiple of Lebesgue measure
on P.

3.2 Toric Structure of Frame Space
3.2.1 Circle Actions on Frame Space

With Theorem 3.2 in mind, our strategy is to show that the top stratum of Fd,N
lll (rrr)�(U(d)×G) is toric, and then to

see that the image of the spark-deficient frames in the moment polytope has measure zero with respect to Lebesgue
measure.

We begin by defining a torus action on the full space of frames Fd,N and then show that our construction descends
to the symplectic quotient. Let F ∈Fd,N with column vectors fi ∈Cd×1, i = 1, . . . ,N. For each k = 1, . . . ,N, let

µk1 ≥ µk2 ≥� ≥ µkd ≥ 0

denote the d eigenvalues of the d×d Hermitian matrix

f1 f ∗1 + f2 f ∗2 +�+ fk f ∗k ,

arranged in decreasing order—each such sum is rank at most k, so we only need consider the first k eigenvalues if
k < d. The quantities µk j were dubbed eigensteps by Cahill et al. [7].

To get well-defined circle actions, we make the assumption that the eigenvalues µk j, j = 1, . . . ,k, are all distinct—
the necessity of this assumption is explained below in Remark 3.4. Let uk1, . . . ,uk min(k,d) be the eigenvectors corre-
sponding to the nonzero eigenvalues. For each k = 1, . . . ,N and each j = 1, . . . ,min(k,d), define a U(1)-action on F ,
denoted

fk j ∶U(1)×Fd,N →Fd,N ,
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by defining it at the frame vector level as

fk j(t, fi) = �
exp(t

√
−1uk ju∗k j) fi if 1 ≤ i ≤ k

fi if k+1 ≤ i ≤N,
(13)

where t ∈ [0,2p).

Remark 3.3. To be precise, we are identifying [0,2p) ≈ U(1) via t � exp(t
√
−1). This identification induces an

isomorphism R ≈ u(1) via
s�
√
−1s. (14)

Keeping track of the exact isomorphism used in this identification will be useful later on.

Remark 3.4. The assumption that the eigenvalues µk j are distinct means that the eigenspaces are all one-dimensional,
which, in turn, gives a well-defined ordering of the eigenvectors uk j. Without the isolated eigenvalues assumption,
some of these actions would degenerate to U(`)-actions, with ` the multiplicity of a repeated eigenvalue.

Remark 3.5. The action defined by (13) really defines a circle action; i.e., it is 2p-periodic. Indeed, this follows from
Lemma 3.11 below, and is also shown in [19, Corollary 5.1.4].

Next we show that this action on Fd,N induces a well-defined action on Fd,N
lll (rrr)�(U(d)×G). We do so in stages.

Proposition 3.6. The circle action fk j commutes with the T action.

Proof. We need to show that if two frames F1 and F2 lie in the same T orbit, then so do fk j(t,F1) and fk j(t,F2).
Indeed, this holds since the formula for the action (13) makes it clear that

fk j(t, fie−
√
−1q ) = fk j(t, fi)e−

√
−1q

for all q .

Proposition 3.7. Let F = � f1 �� � fN� ∈Fd,N. The circle action fk j on the vectors of F is U(d)-equivariant. That is,
for all A ∈U(d),

fk j(t,A fi) = Afk j(t, fi)

for all t ∈ [0,2p) and all i = 1, . . . ,N.

Proof. The claim is clear when k+1 ≤ i ≤N, since the action is trivial in that case. It remains to check the claim when
1 ≤ i ≤ k. In this case, we have

fk j(t,A fi) = exp(t
√
−1Auk ju∗k jA

∗)A fi,

since (µk j,Auk j) are the corresponding eigenpair for the kth partial frame operator of AF . In turn, we have

exp(t
√
−1Auk ju∗k jA

∗) fi = Aexp(t
√
−1uk ju∗k j)A∗A fi = Aexp(t

√
−1uk ju∗k j) fi = Afk j(t, fi).

Since the circle action fk j is defined on F = � f1 �� � fN� ∈Fd,N through the action on the individual frame vectors,
we have the following corollary.

Corollary 3.8. The circle action fk j on Fd,N commutes with the U(d) action. That is, for all A ∈U(d),

fk j(t,AF) = Afk j(t,F)

for all t ∈ [0,2p) and all F ∈Fd,N.

The next proposition is obvious from the formula for fk j.

Proposition 3.9. The circle action fk j preserves norms of frame vectors.

The following proposition is similar, but is less obvious.

Proposition 3.10. The circle action fk j preserves the frame operator.
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The proof uses a lemma.

Lemma 3.11. If P is a d×d projection matrix, then exp(t
√
−1P) = Id +(et

√
−1−1)P.

Proof. This follows from the Taylor series representation of the matrix exponential and the property that P2 = P.

Proof of Proposition 3.10. Suppose F = � f1 � f2 �� � fN� ∈ Cd×N is a frame and let S = FF∗ = f1 f ∗1 + ⋅ ⋅ ⋅+ fN f ∗N be its
frame operator with spectrum l1 ≥ ⋅ ⋅ ⋅ ≥ ld > 0. Let k ∈ {1, . . . ,N} and let Sk = f1 f ∗1 + ⋅ ⋅ ⋅+ fk f ∗k be the partial frame
operator with spectrum µk1 ≥ ⋅ ⋅ ⋅ ≥ µkd ≥ 0. Let j ∈ {1, . . . ,min(k,d)}, and consider the torus action associated with the
eigenvalue µk j. Then, by definition,

t ⋅F = �exp(t
√
−1uk ju∗k j) f1 �� � exp(t

√
−1uk ju∗k j) fk � fk+1 �� � fN�

and the corresponding frame operator is

St ∶= (t ⋅F)(t ⋅F)∗ = exp(t
√
−1uk ju∗k j)( f1 f ∗1 + ⋅ ⋅ ⋅+ fk f ∗k )exp(−t

√
−1uk ju∗k j)+ fk+1 f ∗k+1+ ⋅ ⋅ ⋅+ fN f ∗N

= (Id +(et
√
−1−1)uk ju∗k j)Sk(Id +(e−t

√
−1−1)uk ju∗k j)+ fk+1 f ∗k+1+ ⋅ ⋅ ⋅+ fN f ∗N

= S+(et
√
−1−1)uk ju∗k jSk +Sk(e−t

√
−1−1)uk ju∗k j +(2−et

√
−1−e−t

√
−1)uk ju∗k jSkuk ju∗k j,

using Lemma 3.11.
For i1 ≠ i2 the vectors uki1 and uki2 are Hermitian orthogonal and hence the product of projections uki1u∗ki1uki2u∗ki2 =0.

Combining this with the spectral decomposition

Sk = µk1uk1u∗k1+ ⋅ ⋅ ⋅+µkdukdu∗kd ,

and again using the fact that projections are idempotent, we see that

St −S = �(et
√
−1−1)+(e−t

√
−1−1)+(2−et

√
−1−e−t

√
−1)�µk juk ju∗k j = 0,

so the frame operator is invariant under the circle action.

Combining Propositions 3.6, 3.9, and 3.10 with Corollary 3.8, we obtain:

Proposition 3.12. The circle action fk j on Fd,N descends to a well-defined action on Fd,N
lll (rrr)�(U(d)×G).

3.2.2 The Momentum Map of the Circle Action

For each k = 1, . . . ,N and j = 1, . . . ,min(k,d), define a map

Fk j ∶Fd,N →R
F � µk j,

where µk j = µk j(F) is (as above) the jth eigenvalue (in descending order) of the kth partial frame operator of F . Recall
that we identify u(1) ≈R via (14). We likewise identify u(1)∗ ≈R, where R∗ ≈R is identified via the pairing

�s,t� = s ⋅ t
2

(15)

on R×R. This allows us to state the following result.

Proposition 3.13. The map Fk j ∶Fd,N →R is a momentum map for the circle action fk j on the dense open subset of
matrices whose kth partial frame operators have isolated jth eigenvalues.

To prove the proposition, we introduce some notation and technical lemmas. Let F = � f1 �� � fN� ∈ Fd,N and let
Sk = Sk(F) = f1 f ∗1 +�+ fk f ∗k be its partial frame operator. Then µk j(F) is the jth eigenvalue (in decreasing order) of
Sk.

We first consider the map µ̄ j which takes a Hermitian k×k matrix to its jth eigenvalue. In what follows, let �⋅, ⋅�
denote the Frobenius inner product on Fd,N .
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Lemma 3.14. Suppose that S is a k× k Hermitian matrix with isolated jth eigenvalue µ̄ j(S). Then µ̄ j is a smooth
map in a neighborhood of S. Moreover, its gradient at S is given by

∇µ̄ j(S) = ū jū∗j ,

where ū j is the unit eigenvector associated to µ̄ j(S).

Proof. Let S have isolated jth eigenvalue, which we denote simply as µ . We denote the associated unit eigenvector as
u. Let S′ be a variation of S. Denote the jth eigenvalue and unit eigenvector of S+eS′ as µ(e) and u(e), respectively;
we denote the e-derivatives of these functions as µ̇(e) and u̇(e). Then

d
de
�
e

µ(e) = d
de
�
e
�(S+eS′)u(e),u(e)� = �S′u,u�+ �Su̇(0),u�+ �Su, u̇(0)�

= �S′u,u�+ �u̇(0),Su�+ �Su, u̇(0)� (16)
= �S′u,u�+µ (�u̇(0),u�+ �u, u̇(0))� (17)
= �S′u,u� = �S′,uu∗�,

where (16) follows because S is Hermitian and (17) follows by the condition that �u(e)� is constant in e .

Lemma 3.15. Let F = � f1 �� � fN� ∈Fd,N and s ∈R ≈ u(1) (using the identification (14)). The infinitesimal vector field
associated to s which is induced by the action fk j is given at F by

Fs ∶=
√
−1s ⋅uk ju∗k j � f1 �� � fk � 0 �� � 0� .

Proof. The infinitesimal vector field is given at the frame level by

d
de
�
e=0

fk j(es, fi) =
d

de
�
e=0
� exp(es

√
−1uk ju∗k j) fi if 1 ≤ i ≤ k
fi if k+1 ≤ i ≤N,

= �
√
−1s ⋅uk ju∗k j fi if 1 ≤ i ≤ k

0 if k+1 ≤ i ≤N.

The result follows.

We are now prepared to prove the proposition.

Proof of Proposition 3.13. We need to show that, for F = � f1 �� � fN� ∈Fd,N , X = �x1 �� � xN� ∈ TFFd,N ≈Cd×N , and
s ∈R ≈ u(1) (via (14)), the following equation holds:

DFk j(F)(X)(s) =wF(Fs,X). (18)

This is accomplished by direct computation.
The right hand side of (18) simplifies to

wF(Fs,X) = Imtr(FsX∗)

= Imtr�
√
−1s ⋅uk ju∗k j ⋅ � f1 �� � fk � 0 �� � 0� ⋅ �x1 �� � xN�

∗� (19)

= Im
√
−1s ⋅ tr�uk ju∗k j( f1x∗1 +�+ fkx∗k )�

= s ⋅Retr�uk ju∗k j( f1x∗1 +�+ fkx∗k )� , (20)

where (19) uses the expression for Fs from Lemma 3.15. The left hand side of (18) becomes

DFk j(F)(X)(s) =
1
2

s ⋅D(µ̄ j ○Sk)(F)(X)

= 1
2

s ⋅Dµ̄ j(Sk(F)) ⋅DSk(F)(X),
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where the first line follows by our choice of identification R ≈ u(1)∗ (15) and where Sk(F) is the kth partial frame
operator of F and µ̄ j is the jth eigenvalue function on d×d Hermitian matrices. A straightforward computation shows
that

DSk(F)(X) = ( f1x∗1 +x1 f ∗1 )+�+( fkx∗k +xk f ∗k ).

Putting this together with Lemma 3.14, our simplification continues as

1
2

s ⋅Dµ̄ j(Sk(F)) ⋅DSk(F)(X) =
1
2

s ⋅Re�uk ju∗k j,( f1x∗1 +x1 f ∗1 )+�+( fkx∗k +xk f ∗k )�

= 1
2

s ⋅Retr�uk ju∗k j (( f1x∗1 +x1 f ∗1 )+�+( fkx∗k +xk f ∗k ))�

= 1
2

s ⋅Retr�uk ju∗k j ( f1x∗1 + f2x∗2 +�+ fkx∗k )�

+Retr�uk ju∗k j (x1 f ∗1 +x2 f ∗2 +�+xk f ∗k )� (21)

= s ⋅Retr�uk ju∗k j ( f1x∗1 +�+ fkx∗k )� , (22)

where the last line follows by the observation that the trace terms in (21) are conjugates. Since (22) and (20) agree,
(18) has been established.

3.2.3 Dimension Counting

We now pause briefly to count the possible number of independent eigensteps µk j. The µk j associated to a frame
define a map Fd,N

lll (rrr)→Rm for some m depending on N and d; as has been previously observed [7, 8, 27], the image
of this map is a convex polytope, whose dimension we now determine. To slightly simplify some calculations, we will
assume in this section that rrr is strongly lll -admissible.

Since each partial frame operator Sk = f1 f ∗1 + ⋅ ⋅ ⋅+ fk f ∗k is a rank-1 perturbation Sk = Sk−1 + fk f ∗k of the previous
partial frame operator, Weyl’s perturbation inequalities (see, e.g., [6, Chapter III]) imply that the eigenvalues of Sk and
Sk−1 satisfy the interlacing inequalities

⋅ ⋅ ⋅ ≥ µk, j ≥ µk−1, j ≥ µk, j+1 ≥ µk−1, j+1 ≥ . . .

for each k = 2, . . . ,N and j = 1, . . . ,min{d,k}, where we use the notation µk, j in place of µk j when we need to disam-
biguate the index k from the index j.

When N = 4 and d = 3, this produces the array

l1 l2 l3

µ31 µ32 µ33

µ21 µ22

µ11

≥

≥ ≥

≥
≥

≥
≥ ≥

≥

≥ ≥
≥ ≥

≥ ≥ ≥

where we recall that SN = S, and hence µN, j = l j for each j = 1, . . . ,d.
In other words, entries in the array are greater than entries to the right, regardless of vertical position. With this

convention in place, we can omit explicit inequalities without losing any information:

l1 l2 l3
µ31 µ32 µ33

µ21 µ22
µ11
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In general, then, the µk, j satisfy the system of interlacing inequalities implied by the following diagram:

l1 l2 l3 . . . ld
µN−1,1 µN−1,2 µN−1,3 . . . µN−1,d

. . .
. . .

. . .
. . .

. . .
µd+1,1 µd+1,2 µd+1,3 . . . µd+1,d

µd,1 µd,2 µd,3 . . . µd,d

. . .
. . .

. . . . .
.

µ3,1 µ3,2 µ3,3

µ2,1 µ2,2

µ1,1

(23)

In this diagram, all entries are nonnegative; equivalently, we think of implicit zeros to the right of every row. The
pattern of inequalities described by the above diagram is often called a Gelfand–Tsetlin pattern [14,21]; it corresponds
to the Gelfand–Tsetlin integrable system on the flag manifold Olll̃ �F

d,N
lll �U(d) [26].

In fact, there is one further constraint: cyclic invariance of trace implies that the trace of each partial frame operator
Sk must equal the trace of the corresponding partial Gram matrix. That is, the sum of each row in (23) must equal the
corresponding partial sum of squared frame vector norms:

min{k,d}

�
j=1

µk j =
k
�
j=1

r j (24)

for each k = 1, . . . ,N.
With this constraint in place, we can count the number of free parameters in (23) and, hence, the number of

independent fk j. Notice that there are d(2N−d−1)
2 total entries in (23), excluding the top row (which we already know

is fixed): d(d+1)
2 for the triangle in the bottom d rows, and d(N −d−1) for the parallelogram in the upper N −d rows.

Since each row sum is fixed, we lose one free parameter for each of the rows but the top one, meaning we subtract
N −1 parameters.

If all the eigenvalues l1, . . . ,ld of the frame operator are distinct, we are done. However, if l j = l j+1, then this
implies that l j = µN−1, j = l j+1. More generally, if l j has multiplicity k, meaning that l j = l j+1 = ⋅ ⋅ ⋅ = l j+k−1, then this
fixes an entire upside-down triangle in (23) with vertices at l j, l j+k−1, and µN−k, j, comprising k(k−1)

2 of the µi, j.
Therefore, if the eigenvalues l1, . . . ,ld have multiplicities k1, . . . ,k` with k1 + ⋅ ⋅ ⋅+k` = d, then the total number of

free parameters in (23) is

d(2N −d−1)
2

−(N −1)−
`

�
j=1

k j(k j −1)
2

=N(d−1)+1− d2

2
− 1

2

`

�
j=1

k2
j .

The interlacing inequalities implicit in the diagram (23) together with the row sums (24) determine a convex
polytope Pd,N

lll (rrr), which we call the eigenstep polytope (at least when lll and rrr are rational, these are sometimes called
(weight-restricted) Gelfand–Tsetlin polytopes in the combinatorics literature [1, 14]). In the course of the discussion
above, we have proved:

Proposition 3.16. When rrr is strongly lll -admissible, the eigenstep polytope has dimension

d(lll ,rrr) ∶= dim�Pd,N
lll (rrr)� =N(d−1)+1− d2

2
− 1

2

`

�
j=1

k2
j ,

where k1, . . . ,k` are the multiplicities of the spectrum lll = (l1, . . . ,ld).
Comparing to Corollary 2.18,

dim�Pd,N
lll (rrr)� =

1
2

dim�Fd,N
lll (rrr)�(U(d)×G)� .
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In the case of unit-norm tight frames, ri = 1 for all i and l j = N
d for all j, so k1 = d and the above dimension

simplifies to

dim�Pd,N
�

N
d ,...,N

d �
(1, . . . ,1)� = (d−1)(N −d−1),

so we see that a result of Flaschka–Millson [19, Proposition 6.2.2] and Haga–Pegel [27, Theorem 3.2] is a special case
of Proposition 3.16.

3.2.4 Hamiltonian Torus Action

We now return to the task of showing that there is a Hamiltonian torus action on our frame spaces; the dimension
d(lll ,rrr) just computed will be the dimension of the torus.

Of course, the torus action will simply be the product of the individual circle actions, which we will show commute
using Proposition 3.7.

Proposition 3.17. The circle actions fk j and fm` commute for all k, j,m,`.

Proof. Let F = � f1 �� � fN� ∈Fd,N . It suffices to prove the claim at the frame level, i.e.,

fk j(t,fm`(s, fi)) = fm`(s,fk j(t, fi)) (25)

for all fi. Without loss of generality, assume k ≤ m. If k+1 ≤ i ≤ N, then fk j is the trivial action, so (25) is obvious.
Otherwise we have

fk j(t,f`m(s, fi)) = fk j(t,exp(s
√
−1um`u∗m`) fi)

= exp(s
√
−1um`u∗m`)fk j(t, fi) (26)

= fm`(s,fk j(t, fi)),

where (26) follows by Proposition 3.7, since the exponential is unitary.

Corollary 3.18. If rrr is strongly lll -admissible, there is a Hamiltonian action of the torus U(1)d(lll ,rrr) on an open, dense
subset of Fd,N

lll (rrr)�(U(d)×G). The associated moment polytope is the eigenstep polytope Pd,N
lll (rrr).

Proof. We know from Corollary 2.6 that Fd,N
lll (rrr)�(U(d)×G) contains an open, dense symplectic manifold which,

by Corollary 2.22, consists of orbits of non-orthodecomposable frames. This symplectic manifold contains an open,
dense subset of frames whose partial frame operators each have as many distinct eigenvalues as possible (given the
eigenstep constraints). Choosing d(lll ,rrr) free variables according to the dimension counting argument of Section 3.2.3
yields a Hamiltonian torus action on this open set.

Remark 3.19. In conjunction with Theorem 3.1, this result can be used to show that the space of frames with pre-
scribed eigensteps is connected. While this fact essentially follows from [7, Theorem 7], which was a key tool in
the original proof of the Frame Homotopy Conjecture [8], the symplectic viewpoint puts this fact in a more general
context.

By Proposition 3.16, the torus acting on the open dense subset from Corollary 3.18 is half-dimensional. We have
therefore proved the following theorem on the geometric structure of frame spaces.

Theorem 3.20. The space of framesFd,N
lll (rrr) with prescribed spectrum and norms contains a dense open subset which

is a (U(d)×G)-bundle over a toric symplectic manifold.

4 Proof of Main Theorem
We are now prepared to prove the main theorem using the toric symplectic framework developed in the previous
section. We also sketch a more algebraically-flavored proof using related tools from Geometric Invariant Theory [42].
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4.1 A Toric Symplectic Approach
It is clear that the three options (repeated below) are mutually exclusive and exhaust all possibilities, so it remains only
to show that the conclusion in each part follows from the assumption.

1. If rrr is not lll -admissible, then Fd,N
lll (rrr) =�.

Proof. As pointed out in Section 2.2.3, this is a consequence of the Schur–Horn theorem [30,46]; it is also a result
of Casazza and Leon [12].

2. If rrr is lll -admissible, but not strongly lll -admissible, then Fd,N
lll (rrr) is nonempty but consists entirely of frames which

are not full spark.

Proof. Suppose rrr is lll -admissible, but not strongly lll -admissible. Then Fd,N
lll (rrr) is nonempty by Casazza and

Leon’s result [12].

Since rrr is not strongly lll -admissible, there exists k ∈ {1, . . . ,d} so that

k
�
i=1

ri =
k
�
i=1

li.

The admissibility criterion requires that ∑N
i=1 ri =∑d

i=1 li, so it follows that

N
�

i=k+1
ri =

d
�

i=k+1
li. (27)

If k = d, then we see that rk+1 = ⋅ ⋅ ⋅ = rN = 0, which does not satisfy the hypothesis that the ri are all positive.

Otherwise, suppose F = � f1 �� � fN� ∈Fd,N
lll (rrr), so that lll is the spectrum of FF∗ and � fi�2 = ri for all i = 1, . . . ,N.

Form a new frame F̃ = � fN �� � f1� by reversing the order of the columns of F . If µ̃`, j are the eigensteps of F̃ , then
we know that

`

�
j=1

µ̃`, j =
`

�
j=1

rN+1− j =
N
�

i=N+1−`
ri

for all ` = 1, . . . ,N −1. In particular, letting ` =N −k yields

N−k
�
j=1

µ̃N−k, j =
N
�

i=k+1
ri =

d
�

i=k+1
li (28)

using (27).

Now, consider the portion of the eigenstep inequality diagram (23) for F̃ starting from the (N −k)th row:

l1 l2 l3 . . . ld

µ̃N−1,1 µ̃N−1,2 µ̃N−1,3 . . . µ̃N−1,d

µ̃N−2,1 µ̃N−2,2 µ̃N−2,3 . . . µ̃N−2,d

. . .
. . .

. . .
. . .

. . .

µ̃N−k,1 µ̃N−k,2 µ̃N−k,3 . . . µ̃N−k,d

Going diagonally up and to the right, we see that µ̃N−k,i ≥ lk+i for all i = 1, . . . ,d − k. The only way this can be
reconciled with (28) is if

µ̃N−k,1 = lk+1, . . . , µ̃N−k,d−k = ld ,

and hence
µ̃N−k,d−k+1 = ⋅ ⋅ ⋅ = µ̃N−k,d = 0.
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But then µ̃N−k,d ≥ µ̃d,d , so it follows that µ̃d,d = 0. Since this is an eigenvalue of the partial frame operator

fN f ∗N + ⋅ ⋅ ⋅+ fN−d+1 f ∗N−d+1,

the length-d collection of frame vectors fN−d+1, . . . , fN is linearly dependent, and hence F is spark-deficient. Since
the choice of F was arbitrary, we see that Fd,N

lll (rrr) consists entirely of spark-deficient frames.

3. If rrr is strongly lll -admissible, then full spark frames have full measure in Fd,N
lll (rrr).

Proof. It suffices to show that the set of full spark frames is full measure in the dense open subset of Fd,N
lll (rrr)

from Theorem 3.20, which we denote Ũ . We will prove a subclaim: the set Dd
lll (rrr) ⊂ Ũ of frames whose first d

columns are linearly dependent is measure zero. The full claim then follows easily. Indeed, consider the action of
the symmetric group on N letters on the matrix space Cd×N given by permuting columns. This representation of
the symmetric group embeds it as a subgroup of U(N), so that the action on Cd×N is by isometries. The action
of a permutation s restricts to an isometry of each frame space Fd,N

lll (rrr) onto its image Fd,N
lll (s ⋅ rrr), where s ⋅ rrr is

the corresponding permutation of the norm vector. It follows that the set of spark-deficient frames is realized as
∪sDd

lll (s ⋅ rrr), a finite union of measure zero sets. We proceed by establishing the subclaim.

A frame F = � f1 �� � fN� ∈ Ũ has linearly independent columns f1, . . . , fd if and only if the partial frame operator
Sd = f1 f ∗1 +�+ fd f ∗d is full rank, which holds if and only if the smallest eigenvalue of Sd is positive. Observe that
these conditions are well-defined on the (U(d)×G)-equivalence class of F , denoted [F]. Moreover, the quotient
map Ũ → U ⊂ Fd,N

lll (rrr)�(U(d)×G) is a Riemannian submersion (with respect to the real parts of the respective
Kähler structures) onto its (dense, open) image. It is therefore sufficient to establish the subclaim for the set U .

Let
F = �

1≤k≤N−1
1≤ j≤min{d,k}

Fk j ∶ U →Pd,N
lll (rrr)

denote the moment map for the torus action on U ; that is, F is the eigenstep map. By the remarks in the previous
paragraph, the condition that the first d columns of a frame F are linearly independent is equivalent to the statement
that Fdd([F]) ≠ 0.

According to Section 3.2.3, the moment polytope Pd,N
lll (rrr) is a convex subset of an affine subspace A ⊂R

d(2N−d−1)
2 .

Thinking of the Fk j as coordinates on the ambient space, the condition Fdd = 0 defines a hyperplane. The inter-
section of this hyperplane with Pd,N

lll (rrr) is positive codimension (hence measure zero), unlessA is contained in the
hyperplane. It is easy to see that this is not the case, as it suffices to show the existence of a pattern of the form
(23) satisfying the defining equalities of A such that µdd ≠ 0—such examples are trivial to construct without the
polytope inequality constraints.

We have so far shown that image of the set of equivalence classes of frames whose first d columns are linearly
independent has full measure image in Pd,N

lll (rrr) under F. By the Duistermaat–Heckman Theorem (Theorem 3.2),
this implies that the set has full measure in U . This completes the proof of the subclaim, and therefore completes
the proof of the theorem.

4.2 An algebraic approach
The above proof is based on symplectic geometry, but, under additional rationality assumptions, there is also an
argument using algebraic geometry that shows that the collection of full-spark frames is dense in Fd,N

lll (rrr).
While we expect a similar argument to apply to arbitrary rational lll and rrr, in which case the objects of interest

are more general weight varieties [35], for simplicity we limit ourselves to the case when lll and rrr are constant, so
we are talking about (scaled) unit-norm tight frames. It will be convenient to rescale so that rrr = (d, . . . ,d), and hence
lll = (N, . . . ,N); note that both are integer vectors.

As above, it suffices to show that the (equivalence classes of) full spark frames are open and dense in the symplectic
reduction

Fd,N
lll (rrr)�(U(d)×G) ≈Cd×N �O−lll×{rrr} (U(d)×G).
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Since lll is constant, the coadjoint orbit O−lll consists of the single point −lll Id . Taking the reduction in stages, the
above quotient is isomorphic to

�Cd×N �−lll Id
U(d)��rrr G =Grd(CN)�rrr G

using Proposition 2.11 and Remark 2.13.
Work of Sjamaar [47], which is a culmination of a series of results by Kempf and Ness [32], Guillemin and

Sternberg [25], Kirwan [33], and Ness [45] relating symplectic reductions and Geometric Invariant Theory (GIT)
quotients [42], has the following consequence in our case:

Theorem 4.1. For arbitrary rrr consisting of positive integers, Grd(CN)�rrr G is isomorphic, as a complex projective
variety, to the GIT quotient

Grd(CN)�Lrrr H,

where the line bundle Lrrr on the Grassmannian is linearized to correspond to the action of the algebraic torus
H = {(t1, . . . ,tN) ∈ (C∗)N ∶∏ti = 1} on CN given by identifying ttt = (t1, . . . ,tN) ∈ H with the diagonal unitary matrix
diag(tttrrrt1, . . . ,tttrrrtN), where tttrrr = tr1

1 �trN
N is the character of H corresponding to the vector rrr (cf. [20, 31]).

If F ∈ Fd,N
lll is a frame representing a point [F] ∈ Grd(CN), then the determinants of the d × d minors of F are

precisely the Plücker coordinates of [F], and in general the Plücker coordinates generate the homogeneous coordinate
ring of Grd(CN). By definition, the full-spark frames are precisely those for which none of the Plücker coordinates
vanish.

In turn, the homogeneous coordinate ring R of the GIT quotient Grd(CN)�Lrrr H consists of the H-invariant ho-
mogeneous coordinates on Grd(CN). It is known [31, Lemma 4.5] that R is spanned by monomials in the Plücker
coordinates so that the total number of Plücker coordinates involving the ith column is kri for some integer k indepen-
dent of i.

In our case, all ri = d, so taking the product of all the Plücker coordinates and raising it to the dth power gives a
homogeneous coordinate on Grd(CN)�Lrrr H whose vanishing set is exactly the collection of (equivalence classes of)
spark-deficient frames in the space of (scaled) unit-norm tight frames. Since this is the vanishing set of a homogeneous
coordinate, it is a subvariety, and hence its complement—the collection of full-spark frames—is open in the Zariski
topology, and in particular either empty or dense. Since there are full-spark frames in each space of unit-norm tight
frames (for example, the first d rows of a scaled N ×N discrete Fourier transform matrix [2]), the collection of full-
spark frames cannot be empty, so it must be dense.

5 Discussion
Given a 2n-dimensional toric symplectic manifold M with moment polytope P, one can often find action-angle co-
ordinates on M which take the form of a map a ∶ int(P)×U(1)n →M which inverts the momentum map F ∶M → P
in the sense that F(a(p,t)) = p. In this case, Theorem 3.2 can be extended slightly to show that the image of a is a
full-measure subset of M and that the map a is measure-preserving. Sampling P×U(1)n with respect to the product
of Lebesgue measure on P and the standard product measure on U(1)n and pushing forward by a gives a uniformly
random sample from the symplectic measure on M (see, for example, the discussion in [10]).

In our setting, this means that coupling explicit action-angle coordinates onFd,N
lll (rrr)�(U(d)×G)with an algorithm

for samplingPd,N
lll (rrr)would give an algorithm for sampling random frames inFd,N

lll (rrr). In particular, by Corollary 1.2,
such an algorithm would provide endless quantities of full spark FUNTFs.

It is natural to ask whether the analog of Theorem 1.1 holds for real and for quaternionic frames. Symplectic
geometry is not the right tool in either case, but it is very plausible that the algebraic proof sketched in Section 4.2 could
be adapted to the real case to show that full spark frames are dense in real frame spaces. In a different direction, the
perspective based on isotropy orbits and isoparametric submanifolds introduced in [44] seems like the most promising
way to understand the measures on real and quaternionic frame spaces.

Finally, the spaces Fd,N
lll (rrr)�(U(d)×G) are examples of weight varieties [35], and Goldin [22] has determined

the rational cohomology ring of certain weight varieties, including the quotient Fd,N
(l ,...,l)(rrr)�(U(d)×G) of the space

of l -tight frames with fixed frame vector norms whenever it is a manifold. In particular, this determines the rational
cohomology ring of the (U(d)×G)-quotient of FUNTF space when N and d are relatively prime. What about in the
non-manifold case or for more general frame spectra?
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