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ABSTRACT: Biological cells can exist in a variety of distinct
phenotypes, determined by the steady-state solutions of genetic networks
governing their cell fate. A popular way of representing these states relies
on the creation of landscape related to the relative occupation of these
states. It is often assumed that this landscape offers direct information
regarding the state-to-state transition rates, suggesting that these are
related to barrier heights separating landscape minima. Here, we study a
toggle triad network exhibiting multistability and directly demonstrate
the lack of any direct correlation between properties of the landscape and
corresponding transition rates.

■ INTRODUCTION
Cell fate transitions form an essential part of developmental
processes and also have been shown to play a critical role in
cancer metastasis. These transitions occur between cells of
differing phenotype, commonly thought of as arising due to
multistability in the genetic networks governing gene
expression. The simplest such decisions take place between
binary choices, such as hematopoietic stem cells differentiating
into either myeloid or lymphatic progenitors.1 Increasingly,
however, it has been recognized that cells can exhibit higher-
order multistability, leading for example to hybrid E/M states
during the epithelial-mesenchymal transition (EMT)2−5 or the
formation of mixed Th1/Th2 T-cells from T-helper cell
precursors.6 We note that the dynamics of such systems are
nonequilibrium, which means that the deterministic terms are
not derivable from a free energy and the dynamics does not
obey detailed balance.
One of the methods that has been widely used to represent

stochastic dynamical processes with multiple steady-state
solutions in their deterministic limit relies on the determi-
nation of an effective “energy” landscape.7−9 This landscape is
defined by the probability distribution P of being at a particular
point in the space spanned by the dynamical variables via U =
−ln P. This definition is designed such that in a system in
thermodynamic equilibrium, U is just the free energy of a given
configuration. In the landscape, steady-states appear as local
minima, i.e. as locations with high probability; various
realizations of the process get stuck for long periods of time
in the regions around these states, thereby giving rise to large P
and small U. Again, this is supposed to be analogous to what
happens in equilibrium systems, where macroscopic systems

with small fluctuations flock to configurations of minimal free
energy.
In a bistable system, there is of necessity a simple connection

between the effective landscape and the notion of transition
probability. Imagine decomposing the configuration space into
two regions, defined by the basins of attraction of the two fixed
points, e.g., Ab and Bb of A and B respectively, of the
deterministic limit dynamics. If we define rAB as the rate to go
from region Ab to region Bb and rBA as the reverse, it is clear
that the once the stochastic process reaches a steady-state, we
will approximately have the balance rABP(A) = rBAP(B). The
approximation will become increasingly accurate as the noise
becomes smaller and the deterministic rates of attraction to the
fixed points becomes much larger than the transition rates and
hence the minima become increasingly sharp and the
difference between the probabilities is dominated by the
peak height difference. This is again familiar from the
equilibrium context, where simple arguments predict rAB ∼
exp(U(A) − Ut), rBA ∼ exp(U(B) − Ut), where Ut is the free
energy of the transition state, i.e. the minimum value of
maximal free energy along the path from A to B as we vary
among paths. This leads immediately to the aforementioned
balance result.
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It is quite natural to hope that this strong connection
between the effective landscape and the transitions among
phenotypes would be true in general, i.e., for multistable
systems. In fact, this assumption seems to be implicit in many
discussions of phenotypic landscapes in the biological
literature.10−12 For example, a recent review argues that the
landscape is “canalized” into specific basins of attraction,
defining low-energy paths that connect attractor states to each
other.13 This is certainly the picture that emerges from a
cursory glance at the famous Waddington drawing of the
developmental process. However, this is not correct in general,
as (using an old aphorism) is well-known to those who know it
well.14−16 This is because, as is pointed out in several papers,
landscapes do not in general uniquely determine dynamics of
nonequilibrium systems and must be augmented by the
knowledge of various fluxes, corresponding to nongradient
flows. Specifically, there is still a unique transition path which
determines the rate at low noise, but it is not the one given by
relaxation on the aforementioned effective potential U; instead,
it can be determined by minimizing the action defined by
Wentzell and Friedlin.17 In particular, the path that dominates
does not go through the saddle points of the landscape-based
potential,18 and hence there is no reason any feature of this
point should automatically control the transition rate. Various
papers,19 including one by Onuchic and co-workers,20 derive
the correct approaches to solving this problem. However, the
messages from these works are somewhat complicated and
hence not fully appreciated and hence this paper.
Here, we use a simple network exhibiting tristability to

investigate the landscape−transition rate connection. Our
model is a stochastic version of toggle-switch triad as has been
studied,21 and we computationally determine both the
probability distribution and the transition rates and show
that the former does not directly determine the latter. We then
discuss the implications of our findings for the proper use
versus misuse of the landscape concept in the cell biology
context.

■ RESULTS
Toggle Triad Network Can Give Rise to a Balanced

Tristable System. The toggle switch model is widely used as
a simple example of a network with mutually inhibiting
proteins whose interaction create multistability.6 Here, we
study a toggle triad network where all three proteins inhibit
each other (Figure 1) and determine parameters (through the
use of RACIPE22) such that the ODE reaction system exhibits

three stable states: state A (high A, low B, low C), state B (low
A, high B, low C), and state C (low A, low B, high C) with
relatively equal basins of attraction; for simplicity we have
referred to these states by the protein with highest
concentration, namely A, B, or C. We generated 100 randomly
chosen initial conditions for a variety of parameter sets and
tracked which final state would be converged to. For our
chosen parameter set, this calculation found gives 42 cases of
convergence to state A, 33 cases to state B, and 25 cases to
state C, which indicates the three states can be considered
balanced.
Next, we added noise to the ODE dynamics simulation for

the same parameter set, in order to trigger transitions between
different states; typical results are shown in (Figure 2). A high

level of the blue line indicates that the system in state A, a high
level of the red line implies state B and high level of yellow line
implies state C. Thus, our stochastic toggle triad network
successfully generates a tristable system, and serves as a simple
testbed for concepts to be applied to more complex genetic
networks that have been shown to generate three stable
phenotypes.3,23−30

Energy Landscape and Flux. We can plot the effective
landscape, based on our dynamic simulations. A PCA heatmap
clearly shows the expected three stable states (Figure 3a). We
also carried out probability flux analysis (PFA)31 to track the
dynamical flow of flux in our network (Figure 3b). One can
clearly see the presence of rotational components of the flow,
for example in the region around fixed-point C. This is a
general consequence of the fact that the ODE model cannot be
written as a gradient flow.
We wish to connect this structure to a reduced Markov

transition description that focuses on the probability of being
in a particular state and the transition rates between them. In
order to determine the state of a specific point (A, B, C) in
concentration space, we carry out a deterministic ODE
integration simulation starting at this point (A, B, or C) and
determine its final stable state. Via this procedure, the basins of
attraction can be mapped out and all the combinations of the
(A, B, C) concentrations can be classified into one of the three
states, A, B, or C. Then, by integrating the probability P over
each of these regions, we obtain the effective potential of a

Figure 1. Toggle triad network. The network consists of three
proteins (A, B and C); each protein mutually inhibits each of the
other two.

Figure 2. Dynamic simulation of the toggle triad network.
Independent white noise was added to the three governing ODEs
in order to trigger transitions between states. The noise is Gaussian
distributed with mean zero and standard deviation 40 and is added
every time step of duration 0.01. The times at which the highest curve
is blue indicates that the system is in state A, red high represents state
B, and yellow high represents state C.
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specific state i can be defined as Ui = −ln Pi where P is the
probability of being in state i. The results are given in Table 1.

From the effective potential we calculated (Table 1), we
might roughly expect that since PA has the largest value,
transiting out of state A is harder than out of state B or state C.
We will see below that this intuition can be confirmed. On the
other hand, one might also have the intuition that the rate of
transitioning from, for example, state A to state B would be
directly governed by the barrier between them as determined
by the effective potential; high walls would automatically mean
low transition rates. As already mentioned, this is the
impression left by the famous Waddington landscape
picture,32,33 where the walls between phenotypes get
progressively higher during development, supposedly repre-
senting the stabilization of increasing differentiated cell types.
Is this intuition in fact accurate?
Transition Rates Calculation. To test the connection

between rates and the effective landscape, we turn to a coarse-
grained Markov model description of the phenotypic dynamics
in our system. Focusing on the temporal evolution of the state
of the system, the master equations of a reduced model can be
written as

= + + +

= + +

= + +

P r r P r P r P

P r P r r P r P

P r P r P r r P

( )

( )

( )

A AB AC a BA B CA C

B AB A BA BC B CB C

C AC A BC B CA CB C

Considering a start from A, we can track the time it takes to
reach state B or C and calculate the transition rates based on
the probability distribution:

=

=

+

+

p t r

p t r

( ) e

( ) e

AB AB
r r t

AC AC
r r t

( )

( )

AB AC

AB AC

We performed the stochastic dynamic simulation as we
discussed above, and obtained the probability distribution by
fitting the histogram (i.e., the time it took to go from A to B or
C). Here, we only fit the decay part of the curve (Figure 4);
the Markov model predicts a single exponential decay, which
cannot be precisely correct for our stochastic ODE simulations,
as it always takes some finite time to go from the initial starting
point at the peak to a different state. From the figure, we see
that this issue only affects the smallest time bin. Once the rate

Figure 3. (A) PCA (principal component analysis) for toggle triad
network, by reducing the dimensionality of 3D (A, B, C) data sets to
2D. The three stable states are labeled. (B) PFA (probability flux
analysis) for toggle triad network. This is done based on PCA results,
and blue arrows indicate the direction of flux between three states.

Table 1. Probability and Corresponding Effective Potential
of Three States

PA PB PC
0.44 0.20 0.36
UA UB UC

0.82 1.61 1.02

Figure 4. Probability distribution of transition times going from A to
B and from A to C.
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sum is determined from the overall exponential decay, the ratio
of the rates is just the ratio of the two coefficients of the
exponential fit.
Similarly, we also fitted the probability distribution curve for

the rates leaving states B and C. All of the corresponding
calculated transition rates are shown in Table 2. Our results do
satisfy the intuitive relationship mentioned above that

+ < +
+ < +

r r r r

r r r r
AB AC BC BA

AB AC CA CB

However, the barrier height idea is demonstrably incorrect.
From the argument presented in introduction, if the
correlation

r U U

r U U

exp( (A) )

exp( (B) )

AB

BA

t

t

is correct, it can be easily derived that

r
r

U U

r
r

U U

r
r

U U

ln (A) (B)

ln (C) (A)

ln (B) (C)

AB

BA

CA

AC

BC

CB

We calculated these values, and they are listed in Table 2. As
the results show here, the logarithm of transition rate ratio is
not correctly given by the potential energy difference. In
general, our calculation directly reveals the lack of correlation
between the landscape picture and the transition rates.
More quantitatively, we need to determine how accurate is

our three-state reduction approach as compared to the ODE
model. We can solve the three-state model exactly and
determine that

= + +
+ + + + + +

= + +
+ + + + + +

= + +
+ + + + + +

_

_

_

P
r r r r r r

r r r r r r r r r r r r r r r r r r

P
r r r r r r

r r r r r r r r r r r r r r r r r r

P
r r r r r r

r r r r r r r r r r r r r r r r r r

A sol
BA CB CA BA CA BC

BA CB CA BA CA BC AB CA CB AB CB AC BC AB AC BC AC BA

B sol
AB CA CB AB CB AC

BA CB CA BA CA BC AB CA CB AB CB AC BC AB AC BC AC BA

C sol
BC AB AC BC AC BA

BA CB CA BA CA BC AB CA CB AB CB AC BC AB AC BC AC BA

We compared these probabilities (Psol) with the probability
obtained from the ODE simulations (PODE) for our basic
parameter set (Table 3) as well as one additional set (see
Appendix). The probability values are reasonably close to each
other, which shows that our model reduction is accurate with
the error averaging about 20%.
This then allows to compute the ratio of the rate products

going the two ways around the ABC loop. The landscape
approach as indicated by the above relationships automatically
gives unity for this ratio. From the transition rates in Table 2,
we have

× × = × × =
× × = × × =

r r r

r r r

0.26 0.21 1.05 0.05733

0.31 0.002 0.27 0.00017
AC CB BA

CA BC AB

This is obviously very far outside the range that would be
expected given the 20% average error. In other words, the
balanced triad model has nonzero flux, a clear indicator that
the landscape picture is not capable of describing the model
dynamics.

Parenthetically, we note that for the second parameter set,
the ODE simulations show that there are no transitions from B
to C or C to B that do not go through A as an obligate
intermediate. This structure explicitly prevents nonzero flux,
and for this special condition, the landscape picture is
sufficient.

■ DISCUSSION
In many research papers (see ref 13 and references therein), it
is implicitly assumed that the height of the barrier between
states as computed from the effective energy U = −ln P is
proportional to the negative logarithm of the transition rate
between two states. This is indicated directly in the often-
reproduced Waddington picture, where the heights of the walls
are supposed to represent the increasing lack of plasticity of
cell phenotypes as development progresses. In order to show
that this concept is in general untrue, we adopted a simple but
powerful model, the toggle triad network, which has three
distinct stable states and which can be easily simulated as well
as analyzed.21 We note that there may be some real biological

Table 2. All the Calculations for the Baseline Parameter Set 1

state state probability potential transition rate potential difference log of rate

A 0.44 0.82 rAB: 0.27 UA − UB: 0.79 ln rAB/rBA: 1.36
rAC: 0.26

B 0.20 1.61 rBA: 1.05 UB − Uc: −0.59 ln rBC/rCB: 4.65
rBC: 0.002

C 0.36 1.02 rCA: 0.31 UC − UA: −0.20 ln rCA/rAC: −0.18
rCB: 0.21

Table 3. Probability Comparisons for Two Parameter Set

set no. 1 set no. 2

Psol PODE Psol PODE
A 0.54 0.44 A 0.56 0.53
B 0.19 0.20 B 0.30 0.40
C 0.28 0.36 C 0.15 0.07
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systems that are accurately modeled by the toggle triad
system,34 but this is not directly relevant in terms of our
general conclusion.
Of course, what is true generically for dynamical systems

may not be the case for a specific biological system, as shaped
by evolution. Thus, some authors have constructed models of
gene networks that do have dynamics that arise from a
“energy” minimization, i.e., behave like equilibrium sys-
tems.35,36 When this very strong assumption will prove to be
actually correct is an interesting question for future research.

■ APPENDIX
In the Results, we calculated the transition rates between states
by fitting the probability distribution curve. In order to show
that this method works, we used the Gillespie algorithm to
perform a biochemical reaction simulation, which was given
the specific reaction rates. Then, we calculated its reaction
rates by fitting the simulated probability distribution. The
calculated reaction rates are very close to the given rates
(Table 4).

Next, we present the details of our ODE model. The ODEs
for our triad toggle switch are

= × × ×

= × × ×

= × × ×

A g H H k A

B g H H k B

C g H H k C

A B
S

C
S

A

B A
S

C
S

C A
S

B
S

C

B

Here, HS is the shifted Hill function defined as

= +

=
+

=

+

+

( )

H H H

H

H H

1

1

1

X
S

X X

X
X
X

n

X X

X

0

where λ is the fold change from the basal synthesis rate due to
protein X. For activators, λ > 1, and for inhibitors, λ < 1.
The specific parameters we used for set no. 1 and set no. 2

are given in Tables 5 and 6.
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