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1 INTRODUCTION
Sparse Matricized Tensor Times Khatri-Rao Product (spMTTKRP) is
the most computationally intensive kernel in sparse tensor decom-
position. In this paper, we propose a hardware-algorithm co-design
on FPGA to minimize the execution time of spMTTKRP along all
modes of an input tensor. We introduce FLYCOO, a novel tensor
format that eliminates the communication of intermediate values to
the FPGA external memory during the computation of spMTTKRP
along all the modes. Our remapping of the tensor using FLYCOO
also balances the workload among multiple Processing Engines
(PEs). We propose a parallel algorithm that can concurrently pro-
cess multiple partitions of the input tensor independent of each
other. The proposed algorithm also orders the tensor dynamically
during runtime to increase the data locality of the external memory
accesses.We develop a custom FPGA accelerator design with (1) PEs
consisting of a collection of pipelines that can concurrently process
multiple elements of the input tensor and (2) memory controllers
to exploit the spatial and temporal locality of the external memory
accesses of the computation. Our work achieves a geometric mean
of 8.8× and 3.8× speedup in execution time compared with the
state-of-the-art CPU and GPU implementations on widely-used
real-world sparse tensor datasets.
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Tensor Decomposition (TD) transforms input tensors into a re-
duced latent space which can then be leveraged to learn salient
features of the underlying data distribution. TD has been success-
fully employed in many fields including machine learning [2, 15, 18],
signal processing [22], and network analysis [3]. One popular TD
algorithm is Canonical Polyadic Decomposition via alternating
least squares (CP-ALS) [6], which can be accelerated by optimiz-
ing spMTTKRP, its most expensive computation task. Since real-
world tensors are generally sparse, keeping only nonzero values
in memory is a natural way to reduce the memory footprint. How-
ever, there is a concomitant need to develop optimized sparse ten-
sor formats that support highly irregular data access patterns of
spMTTKRP [23].

Several tensor formats have been proposed for real-world sparse
tensors [5, 12, 14, 16, 20]. Many of the proposed formats seek to
alleviate the problem of irregular data access by either using the
number of tensor copies proportional to the number of modes or
through additional memory to save intermediate by-products of the
computation. However, as the number of modes and the sparsity of
the tensor increases, these approaches might introduce significant
amount of memory overhead. One desirable solution to reduce the
memory trafic to the external memory is to reduce the number of
accesses to the external memory by increasing the data reuse. A
cache can be used as an intermediate memory to achieve this goal.
In addition, reordering the tensor based on space-filling curves
has shown promising results. Tensor formats such as HiCOO [12]
and ALTO [5] use variations of Z-Morton data ordering [12]. It
brings the tensor elements with neighboring coordinates closer and
increases the data reuse. However, these tensor formats still commu-
nicate a significant amount of intermediate values to the external
memory. In this paper, we propose FLYCOO, a tensor format that
eliminates the communication of intermediate values to the FPGA
external memory during the execution time of spMTTKRP along all
the modes of the input tensor. It also increases the locality of data
used in spMTTKRP. Our work hides the cost of on-the-fly tensor
remapping time by overlapping the spMTTKRP computations with
the tensor remapping.

The key contributions of this paper are:

• We introduce FLYCOO, a novel tensor format that eliminates
the communication of intermediate values generated dur-
ing spMTTKRP computation to the FPGA external memory.
FLYCOO balances the workload among multiple Processing
Engines along all the output modes of the input tensor.

• We develop a novel FPGA accelerator for spMTTKRP, which
consists of (1) PEs with multiple pipelines to concurrently

259

https://doi.org/10.1145/3543622.3573179
https://doi.org/10.1145/3543622.3573179
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3543622.3573179


˝
�=0

˝
�=0

FPGA ’23, February 12–14, 2023, Monterey, CA, USA

process input tensors in a streaming fashion, (2) cache sub-
systems to exploit the locality of input factor matrices, (3)
DirectMemoryAccess (DMA) buffers to load the input tensor
partitions and store the output factor matrices in a stream-
ing fashion, and (4) custom hardware to support on-the-fly
tensor remapping.

• The memory controller design introduced in this paper re-
duces the total execution time by 4.5× compared with the
traditional Direct Memory Access (DMA) buffer-based mem-
ory controllers. The memory controller further reduces 67%
of the pipeline stalls caused by FPGA external memory ac-
cesses.

• On widely used real-world large tensor datasets, our FPGA
accelerator achieves a geometric mean of 8.8× and 3.8× im-
provement in total execution time compared with the state-
of-the-art CPU and GPU implementations, respectively.

2 BACKGROUND
2.1 Notations
An �-dimensional, real-valued sparse tensor is denoted by X  �
R�0 × · · · ×��−1 . For a thorough review of tensors and tensor algebra,
please refer to [10]. Table 1 summarizes the list of symbols used in
this paper. Table 1: Notations

Symbol                       Description
� scalar (lowercase letter)
v vector (bold lowercase letter)
M                 matrix (bold capital letter)
X sparse tensor (Euler script letter)
�                        number of modes

X(�) mode-� matricization of the tensor X
◦                           vector outer product
�                           Kronecker product
�                           Khatri-Rao product

2.2 Tensor Decomposition
Canonical Polyadic Decomposition (CPD) [10] on sparse tensors
decomposes a sparse tensor X  into a sum of dense matrices for
each mode which best approximates the original sparse tensor.
For example, given a sparse tensor X  � R�0 ×�1 ×�2 , our goal is to
express it as X  ≈ �−1 a� ◦  b� ◦  c�, where � � Z+ refers to the
rank of X , which is defined as the smallest sum of rank-one tensors
required to generate X ,  a� � R�0 , b� � R�1 , and c� � R�2 for �
= 0, . . . ,� −  1. For illustration purposes, we assume the number of
modes of tensors to be three in the rest of the section. The
components of the above summation can be expressed as input
factor matrices, i.e., A = [a0, . . . , a�−1] and likewise for B and C.
It is often useful to constrain the components to unit length,
factoring the weights into the vector � = [�0, . . . ,��−1] � R�,
which allows to concisely express the model as X  ≈  [[�; A, B, C]] =
�−1 �� · a� ◦  b� ◦  c�.
Since the problem is non-convex and has no closed-form solution,

existing methods for this optimization problem rely on iterative
schemes. The alternating least squares algorithm for computing the
CP decomposition (CP-ALS) is the most popular method due to its
simplicity and eficiency. Algorithm 1 shows a common formulation
of CP-ALS for 3-mode tensors. It consists of several iterations of the
sparse Matricized Tensor-Times Khatri-Rao Product (spMTTKRP)
operation on each mode.
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As illustrated in Algorithm 1,executing spMTTKRPin each mode
is the most expensive operation of CP-ALS. spMTTKRP involves
the mode-� matricization X(�) and the Khatri-Rao product [5] —
given two matrices B � R�1 ×� and C � R�2 ×�, their Khatri-Rao
product B � C = [b1 � c1     b2 � c2 · · · b� � c�]. spMTTKRP can be
expressed as

spMTTKRP(X(�) , B, C) = X(�) (B � C).

Algorithm 1: CP-ALS for  the 3-mode tensors

1 Input: A tensor X  � R�0 ×�1 ×�2 , the rank � � Z+

2 Output: CP decomposition [[�; A, B, C]], � � R�, A � R�0 ×�,
B � R�1 ×�, C � R�2 ×�

3 while stopping criterion not met do
4 A ← spMTTKRP(X(0) , B, C)
5           B ← spMTTKRP(X(

1
) , A, C)

6           C ← spMTTKRP(X(
2

) , A, B)
7 Normalize A, B, C and store the norms as �

3 RELATED WORK
Srivastava et al. [21] propose a custom CGRA fabric to acceler-
ate sparse computations, including spMTTKRP. The authors use a
mode-specific tensor format to compute spMTTKRP. In our work,
we propose a mode-agnostic tensor format that only requires one
additional tensor copy regardless of the number of modes of the
tensor.

Nisa et al. [17] optimize MTTKRP on GPUs. They propose a
tensor slicing technique for the load balancing between GPU warps.
We develop a simple load balancing scheme that fairly shares the
total workload between ACCELs (see Section 4.6).

There are several CPU-based MTTKRP acceleration algorithms
proposed in the literature. J. Li et al. propose HiCOO [12], a block-
based format that compresses the sparse tensor. Helal et al. propose
ALTO [5], a space-filling curve-based tensor ordering method that
can eficiently encode spaces with irregular shapes. ALTO requires
the least amount of external memory to store tensors. Unlike prior
formats, we perform on-the-fly memory layout remapping to reduce
external memory communication time.

4 ACCELERATOR DESIGN

4.1 Target Platform
We develop a hardware accelerator for a data center FPGA device
directly connected to external DRAM memory.

4.2 Hypergraph Representation of Tensors
The hypergraph representation of a
tensor has been used to describe the
spMTTKRP operation in the litera-
ture [8, 13]. To describe our proposed
tensor format based on the hyper-
graph, we will briefly introduce the
hypergraph representation of a ten-
sor in this section. For a given tensor Figure 1: Hypergraph

X  with � modes, we build a hyper- of a sparse tensor
graph � = (�,�) with the vertex

set� and the hyperedge set� as follows:� = �0��1�· · ·���−1,
where�� is the set of all the tensor indices in mode �; � contains
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hyperedges that represent the nonzero tensor elements in X. For a 3-
mode sparse tensor X  � R|�0|×|�1|×|�2| with � nonzero tensor ele-
ments, itshypergraph� = (�,�) consists of |�| = |�0|+|�1|+|�2|
vertices and |�| = � hyperedges. A hyperedge X (�, �,�) connects
the three vertices�,
�, and�, which correspond to the row indices of the factor
matrices. Figure 1 shows an example of the hypergraph for a
sparse tensor.

Figure 2: Example FLYCOO Format Generation

4.3 Tensor Format
During tensor decomposition, spMTTKRP is computed along each
mode, one mode after the other (see Algorithm 1). For an �-mode
tensor, when computing spMTTKRP for mode�, we refer to mode
� as the output mode and its corresponding factor matrix as the
output factor matrix. Meanwhile, the rest of the modes becomes
input modes, and their factor matrices become input factor matrices.

For each mode, the FLYCOO format assigns each nonzero tensor
element to a tensor partition. Then embed the partition ids to each
tensor element. Figure 2 illustrates the tensor format generation
process for an example tensor with 3 modes and 8 elements. For a
given output mode, FLYCOO divides the tensor into multiple parti-
tions with an equal number of output mode indices. We call these
partitions super-shards. Each PE processes the super-shards one by
one. The number of intermediate values generated while processing
each super-shard is proportional to the number of output mode
indices in the super-shard. It ensures the intermediate values are
combined in the FPGA internal memory to generate the output fac-
tor matrices. Despite generating many intermediate values similar
to other tensor formats, our method enables combining them into
output factor matrix elements before communicating the results to
the FPGA external memory.

Due to the sparsity of input tensors, each super-shard contains
a different number of nonzero tensor elements. We further divide
each super-shard into shards, where the shards have the same num-
ber of nonzero tensor elements residing inside. Having the same
size shards throughout the execution enables streaming memory
access to the input tensor stored in FPGA external memory. It also
leads to a static load balancing scheme described in Section 4.7 that
fairly distributes the workload among PEs in all the output mode
computations. Before partitioning the super-shards into shards,
each super-shard is ordered based on Z-Morton order [12] using
input mode indices of each nonzero element (see Figure 2). As a re-
sult, the nonzero tensor elements with the same input mode indices
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reside within the same shard. Z-Morton order recursively partitions
multidimensional data into one dimension while preserving the
locality of the data [12]. We adopt the Z-Morton order that lays
out the elements along a recursive �-shaped curve. The Z-Morton
vector of each nonzero element is computed from the indices of
each input mode by interleaving their binary coordinate values. For
each nonzero tensor element, the input factor matrices are accessed
based on their indices of the input modes. Hence, the proposed
ordering improves the data locality in each shard while accessing
input factor matrices.

4.3.1 Tensor Format Definition. Following the hypergraph repre-
sentation described in Section 4.2, we can define the tensor for-
mat as follows. Consider a FPGA internal memory with enough
space to store � rows of the output factor matrix. For each out-
put mode �, we partition the vertex set �� which represent the
indices of the input tensor in mode � into equal-size vertex sets
��,0,��,1, . . . ,��,� −1, where�� = |�� | . Here, |��| refers to the size of
vertex set��. For � = 0,1, . . . , (�� −  1), each vertex set��,� of
size� is defined as a subset of vertex set��. We call each vertex
set��,� as an interval. Then, we collect all the hyperedges incident
on the vertices (i.e., nonzero tensor elements) in��,� together as a
super-shard, denoted by SS�,�. Since real-world sparse tensors
have high variance in the distribution of nonzero tensor elements,
each super-shard contains a different number of hyperedges. This
leads to load imbalance during the spMTTKRP computation. To
address this, we further divide each super-shard into equal-sized
sets called shards. Each super-shard SS�,� is further divided into
��,� = |SS�,� |/� shards to fit in the FPGA buffers of size�. Here,
we denote the �-th shard in SS�,� as������,�,�. The total number

of shards for mode � is�� =     ��−1 ��,� ≈  |�|/� for a tensor with |�|
nonzero tensor elements.

FLYCOO format maps each nonzero element in the tensor to
a shard in each mode. A tensor of size |�| with � modes in the
FLYCOO format is a sequence �0, . . . ,�|� |−

1, where each element
�� is a tuple ⟨��,��,����⟩, �� = (�0, . . . ,��−1) is a shard ID vector
where each shard ID corresponds to a mode of the tensor. Here,
�� = (�,�) if and only if �� � ������,�,�. This is used to locate the
shards where each nonzero tensor element belongs in each mode.
�� = (�0, . . . ,��−1) is the original indices of the nonzero tensor
element in each dimension. ���� is the value of the nonzero tensor
elements of the tensor at��. Following the notation used in Section
4.3.1, a single nonzero element in the FLYCOO format requires
approximately � ×  log2     

|� |     +     �=0
1 log2 |��| + �float bits, where

�float is the number of bits needed to store the floating-point value
of the nonzero tensor element. We encode |� | ≈  � ×  log |� | ,

|��| = 
˝�− 1  log2 |��|, and |����| = �float.

The FLYCOO format generation is a preprocessing task. Even
though the remapping process is executed in real-time, the FPGA
external memory spaces (i.e., memory layout) for each shard can be
statically decided during the preprocessing time (see Section 4.7).

While FLYCOO and HiCOO [12] adopt similar tensor ordering
strategies, such as Z-Morton ordering during the format generation,
they have significant differences, including: (1) Intermediate value
communication: According to the FLYCOO tensor format intro-
duced in Section 4.3.1, each super-shard contains all the nonzero
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tensor elements of an output factor matrix interval. Since each in-
terval can be fit in the FPGA internal memory, each interval can be
computed without communicating intermediate values generated
during the computation to the FPGA external memory. However,
HiCOO requires intermediate values to be communicated to the
FPGA external memory. Since spMTTKRP is a memory-bound op-
eration and FLYCOO avoids communicating intermediate values
to the FPGA external memory, FLYCOO significantly reduces the
overall execution time. (2) Tensor partitioning scheme and nonzero
element distribution: HiCOO partitions contain an equal number
of tensor indices for each mode, while the FLYCOO shards have the
same number of nonzero tensor elements. The approach used by
FLYCOO leads to load-balanced computation in a multi-PE accel-
erator, as discussed in Section 4.6. HiCOO partitions vary in size
because nonzero elements are not distributed evenly across tensor
indices. Hence, HiCOO leads to non-uniform partitioning of the
tensor. (3) Applying Z-Morton ordering: FLYCOO applies Z-Morton
ordering for each super-shard independent of each other along the
indices of the input mode. HiCOO applies Z-Morton ordering once
considering all the modes. FLYCOO enables better data reuse of
input factor matrices while computing spMTTKRP with the use of
the accelerator hardware (see Section 4.5).
4.4 Parallel Algorithm
We perform mode-by-mode super-shard computation. Since each
super-shard can be executed independently by construction (see
Section 4.3), the order of super-shard computation does not af-
fect the outputs. Further, multiple super-shards can be executed in
parallel.

Algorithm 2 shows the parallel algorithm for a super-shard for a
given mode. The functions Load and Store correspond to loading
and storing data from the FPGA external memory. The parallel
algorithm consists of (1) spMTTKRP Computation and (2) Data
Remapping for the next mode. These 2 stages are executed concur-
rently.

In Algorithm 2, all the factor matrices are accessed in row-major
order. Hence, the factor matrices are stored in the FPGA external
memory in row-major order.

At the beginning of Algorithm 2, a super-shard gets assigned
to a PE for execution. In the spMTTKRP Computation, the shards
that belongs to the same super-shard are loaded into an internal
buffer one by one (Algorithm 2: line 7). After a shard is loaded, the
tensor elements inside the shard are assigned for execution. First,
the coordinates of the modes are extracted from the tensor element
in FLYCOO format (Algorithm 2: line 10). Then the corresponding
rows (based on input mode indices of the tensor element) of the
input factor matrices are loaded into the PE from the FPGA external
memory. After, the element-wise operations between the tensor
element and the rows of the input factor matrices are performed in-
side the PEs (Algorithm 2: line 15-20). The PE maintains an internal
memory buffer to store the intermediate values of the computation.
Keeping this internal buffer size proportional to interval size, |�|
(see Section 4.3.1) ensures that all the intermediate values can be up-
dated only using the internal memory of FPGA. After a super-shard
is completely processed, the generated output interval is stored in
the FPGA external memory (Algorithm 2: line 26).

After computing spMTTKRP for mode�, the accelerator should
compute spMTTKRP for the subsequent mode (i.e., mode (� + 1)
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mod �). Nonzero tensor elements should be ordered according to
the output mode to support our proposed parallel algorithm.
Therefore, the tensor should be remapped according to the shard
IDs of mode (� + 1) mod � to compute the spMTTKRP of the
upcoming mode. Hence, as the current mode runs, the tensor is
remapped in parallel according to the shard IDs of the upcoming
mode, allowing sequential execution of all the modes.

Algorithm 2: Computation of a super-shard in mode �

1 Input: Input factor matrices-set Y = {�0,�1, ...��−1} \ {��}, 2
super-shard in mode � ���,� = {shard�,�,0, . . ., shard�,�,�−1}

Result: Store interval � from output factor matrix��,
remap and store each tensor element ��

3 Compute & On-the-fly Remap(��, Y):
4 Initialize � as a zero matrix
5 � ← (� + 1) mod � // upcoming mode
6 for each shard�,�,� in SS do
7 Buffer� ← Load(shard�,�,�)
8 for each element �� = ⟨��,��,����⟩ in Buffer�
do 9                   ����� ← ����

10 �� = (�0, . . . ,��−1)
11 �����_���,�� = (�0,
. . . ,��−1) 12 � ← ��
13 // ℓ is a vector of size R. Each element initialized to 1
14 ℓ ← 1
15 for each input mode� � {0, . . . ,� −  1} \ {�} do 16

��� ← Load(row�� from�th factor matrix) 17

for each rank� in � parallel do
18 ℓ (�) ← ℓ (�) ×  ���(�)

19 for each rank� in � parallel do
20 �(��,�) ← �(��,�) + ����� ×  ℓ (�)

21 // Inside Remap_Cache_Buffer
22 shard_collector(��) ← Update(shard_collector(��) ���)

23 i f  Remap_Cache_Buffer full then
24 for each collected shard_collector(��) in

Remap_Buffer do
25 Store(append shard_collector(��) to ������,�� )

26 Bufferoutput ← �
27 Store(Bufferoutput to n�� factor matrix)
28 for each collected shard_collector(��) in

Remap_Cache_Buffer do
29 Store(append shard_collector(��) to ������,�� )

The on-the-fly remapping for the upcoming mode is performed
as follows: First, the shard ID of the subsequent mode to be executed
is extracted from each tensor element. Then, the tensor elements
with the same shard ID of the subsequent mode are collected
to-gether inside the Remap_Cache_Buffer using the update
function (Algorithm 2: line 22). Remap_Cache_Buffers are not
large enough to store all shards; therefore, as the
Remap_Cache_Buffer becomes full, we store partially aggregated
shards (i.e., shard collectors) in
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the corresponding shard locations in the FPGA external memory
(Algorithm 2: lines 23-25 & 28-29).

The total computations per mode in the proposed Algorithm 2 is
� ×  |�| ×  �. Here, the factor � comes from � −  1 multiplications
and the addition we perform per nonzero tensor element. The
accelerator loads all the nonzero tensor elements and stores the
factor matrix of the output mode. Meanwhile, it also stores the
remapped tensor optimized for the next mode. Hence it requires a
total of 2 ×  |�| + ���� ×  � memory transfers. Here, ����

represents the length of the output dimension (���� �
{�0,�1, . . . ,��−1}). For factor matrices of rank � with no data
reuse, the total factor matrix elements transferred per mode is (�
− 1) ×  |�| ×�. Hence, the total amount of data transferred from
the FPGA external memory per mode is 2 ×  |�| + (� −  1) ×  |�| ×
� + ���� ×  �.

4.5 FPGA Design
Algorithm 3 is designed for multi-SLR [25] datacenterFPGAs. These
FPGAs contain a large number of DSPs and multiple DRAM memo-
ries to provide high compute power and memory bandwidth.
Algorithm 3: FLYPAR: FLYCOO-based Parallel algorithm

1 Input: Input factor matrices-set Y = {�0,�1, ...��−1}, 2
super-shards of mode 0, { H0 }  = {��0,� : � �}
3 Output: Updated factor matrices-set� = {�0,�1, ...��−1} 4
for each mode� = 0, . . . ,� −  1 do
5 while H� ≠  � do
6 for each ACCEL� parallel do
7                           i f  ACCEL� is idle then
8 Fetch super-shard �� � H� in DRAM� to

ACCEL�
9 H� ← H� \ {��}

10 (H(�+
1

) mod �,�) ← Compute &
On-the-fly Remap(��, Y) // Algorithm 2

11 Wait(All ACCELs are idle)

The proposed accelerator contains multiple custom hardware
units called ACCELs. For a FPGA with � DRAMs, we employ �
ACCELs where each ACCEL is directly connected to a DRAM via
memory controller as shown in Figure 3 (a). ACCELs communicate
with each other using ACCEL routers in a ring interconnection.
Inter-SLR switches in the FPGA [24] are used to connect neighbor-
ing ACCELs in different Super Logic Regions (SLRs).

Our design has the following features: (1) custom multi-pipeline
PEs to support concurrent element-wise tensor multiply and add
operations, (2) internal buffers in each pipeline to ensure all the
intermediate values remain in the FPGA internal memory while
processing a super-shard, (3) use Direct Memory Accesses (DMAs)
to load shards and store output factor matrix rows as bulk transfers
while optimally using the FPGA external memory bandwidth, (4)
multi-cache subsystem to exploit locality while loading input factor
matrices, and (5) tensor remapping module to support on-the-fly
remapping.

Each ACCEL is assigned a super-shard during the execution time
in which the super-shard resides in its directly connected DRAM as
described in FLYPAR: Parallel spMTTKRP Accelerator Algorithm
based on FLYCOO (Algorithm 3). The � ACCELs process � super-
shards in parallel following the parallel algorithm in Section 4.4.
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All the ACCELs synchronize at the end of the computations in each
output mode. Our workload distribution (see Section 4.6) ensures
PE idle time is minimized. As shown in Figure 3 (b), each ACCEL
has a Processing Engine (PE) and a memory controller. Each PE
executes the element-wise computation on the tensor elements.
The memory controller manages the data flow between the PEs
and their external memory.
4.5.1 Processing Engine (PE). PE is the compute unit inside an
ACCEL. It can concurrently process � input tensor elements in
each clock cycle using� (� ≥  1) processing pipelines as shown in
Figure 3 (c). A PE processes a shard with the following 3 steps: (1) a
pipeline reads an element of the shard from the tensor buffer, (2)
pipeline extracts the coordinates of the tensor element and
requests corresponding input factor matrices from the caches in the
memory controller, (3) When all the requested input factor matrix
rows become available inside the pipeline, it performs element-wise
compute as indicated in Algorithm 2 and stores the corresponding
partial value in its matrix buffer, (4) after computing all the elements
in a super-shard, PE computes the final output factor matrix rows by
adding the partial sums in the partial matrix buffers in all the
pipelines with the same output mode indices using PE’s adder tree.
For a PE with � pipelines, the adder tree has log (�) stages with
�(�+ 1)/2 total adders, (5) outputs the output factor matrix rows to
the output matrix buffer inside the memory controller. This process
generates a interval of the output factor matrix that corresponds to
the input super-shard. At the end of the process, it is transferred to
the FPGA external memory as a bulk transfer using DMA inside
the memory controller.
4.5.2 Memory Controller. Figure 3 (d) shows the details of the mem-
ory controller (MC). It consists of a cache subsystem,DirectMemory
Accesses (DMA) module, a Tensor Remapper Module (TRM), an
ACCEL router, and an external memory interface. The cache sub-
system exploits the spatial and temporal locality of the input factor
matrix accesses enabled by the proposed FLYCOO format. Each
cache is a set-associative cache with the Least Recently Used (LRU)
cache-line replacement policy. Multiple input factor matrices can
share a cache. The number of caches inside a MC, the number of
input factor matrices that share a single cache, and cache size are
chosen based on available FPGA resources. DMAs can eficiently
access sequential data as bulk transfers. DMAs load shards to the
tensor buffer and store the output factor matrix from the output
matrix buffer as bulk transfers. By keeping the size of a shard as
same as the tensor buffer size and the interval size equal to the
output matrix buffer size, we avoid data overflows inside the DMAs.
The DMA uses double buffers to overlap the communication time
of the shards from the FPGA external memory with the compute
time of the PEs. On-the-fly remapping is supported by the tensor
remapping module (TRM) in the MC. When the PE requests a tensor
element from the tensor buffer, a copy of the same tensor element
is passed to the TRM using a shared bus, as shown in Figure 3 (d).
TRM extracts the shard ID of the upcoming output mode of the
spMTTKRP in the CPD decomposition iteration (see Algorithm 1).
The TRM collects the tensor elements with the same shard ID until
it fills a complete row of the TRM buffer and transfers it to the
FPGA external memory.

ACCEL router maintains the super-shard scheduling while con-
trolling the data flow between PE, DRAM, and neighboring ACCELs.
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Figure 3: FPGA design: (a) Overall FPGA design, (b) architecture of an ACCEL, (c) Processing Engine, (d) memory controller

ACCEL router resides inside the memory controller of each ACCEL.
Each ACCEL Router is connected to neighboring ACCEL routers
as a ring (see Figure 3 (b)). Each ACCEL router communicates data as
data packets between its neighboring ACCEL routers in the ring. It
uses large data buses between ACCELs while maximally using
inter SLR [24] routing resources to transfer multiple data packets
simultaneously. The accelerator maintains a virtual address space to
keep track of the memory addresses of each tensor shards of all the
modes and the intervals of all the factor matrices. The accelerator
also maintains memory pointers to identify the location to be read
or stored in a shard to support the proposed tensor remapping. The
virtual addresses are generated during the tensor generation pro-
cess and stored in the FPGA external memory as initial meta-data.

4.5.3 ACCEL Router. Each ACCEL Router performs Algorithm 4
that, (1) loads shards from directly connected external DRAM, (2)
stores the output factor matrix rows depending on the PE requests,
(3) loads the input factor matrix rows depending on the PE requests
from differentACCELs, and (4) stores the remapped tensorelements
in the corresponding shard location. The destination location of
the remapped tensor element can be in any of the external DRAMs
connected to the FPGA.

The data router loads each shard from its directly connected
DRAM and forwards it to Tensor Buffer inside DMA (Algorithm 4
line 2-8). Additionally, memory access requests are received from
Cache Subsystem (Algorithm 4 line 9-10) and Tensor Remapping
Module (Algorithm 4 line 11-12) to the ACCEL router. In addition,
data packets are forwarded from the previously connected ACCEL
router (Algorithm 4 line 13-14). For the input factor matrix row read
requests, if the factor matrix is in the directly connected DRAM, it is
loaded from the DRAM and forwarded either to the previous ACCEL
router in the ring or to the cache subsystem. Otherwise, the request
is forwarded to the next ACCEL router in the ring (Algorithm 4 line
15-26). When a tensor remapping request is reached to the ACCEL,
if the corresponding shard of the nonzero tensor element is located
inside the directly connected DRAM, it is stored in the DRAM.
Otherwise, remap request with the tensor element is forwarded to
the next ACCEL router in the ring (Algorithm 4 line 27-32).

We use memory interface IPs [7, 26] to maintain the low-level
signals (e.g., refresh, and pre-charge) between DRAMs and FPGA.

4.6 Load balancing
Since the accelerator performs spMTTKRP computation for a sin-
gle output mode at a time, we consider load balancing the total
computation mode by mode. In a given mode, the total number of
computations corresponding to a super-shard is proportional to the
number of nonzero tensor elements in the super-shard. Since each
super-shard is further partitioned into shards with same number

Algorithm 4: Data Routing Algorithm for ACCEL�

1 Routing (ACCEL�,�): // For output mode �
2 i f  PE is Idle then
3 SS = Get Active super-shard ID
4 shard = Next shard (SS)
5 i f  all shards of SS processed then
6 interval data = Get output data from PE
7 Store DRAM�(Get Interval (SS), interval data)
8 SS = Get Next super-shard ID

9 i f  Factor Matrix Row� is requested by a Cache Miss then
10 {type, src_accel, w, info}← {fm_read, i, n, k}

11 i f  else remapped tensor y available from Tensor Remapper
then

12 {type, src_accel, w, info}← {remap_store, i, n, y}

13 i f  else data_packet from from ACCEL�−1 then
14 {type, src_accel, w, info}←data_packet

15 i f  type = fm_read then
16 I = Extract Interval (info, w)
17 i f  I is in DRAM� then
18 value = Read DRAM�(w, info)
19 i f  src_ACCEL = ACCEL� then
20 Forward Cache(value, w, info)

21 else Forward ACCEL�−1 ({fm_write, src_accel, n, w,
info})

22 else Forward ACCEL�+1 ({fm_read, src_accel, n, w,
info})

23 i f  type = remap_store then
24 � = Get Next Mode shard ID (y)
25 i f  � is in DRAM� then
26 Store DRAM(info, S)

27 else Forward ACCEL�+1 ({remap, src_accel, n, w, info})

of tensor elements, the total number of computations also propor-
tional to the number of shards in a super-shard. Each super-shard
contains a different number of shards depending on the sparsity
of the tensor. We use a greedy approach to distribute the super-
shards and perform the spMTTKRP computation. For each mode,
the proposed method evenly distributes the total workload among
the ACCELs. Suppose a FLYCOO tensor of size� is partitioned into
super-shards {���,� : � �} for a mode�. Let ��,� be the number of
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shards in the super-shard ���,�. We reorder the indices of super-
shards so that ��,� ≥  ��,�′ if � <  � , so that they are sorted in
descending order of number of shards. Each super-shard ���,� is
iteratively assigned to the ACCEL that is currently the least heavily
loaded (i.e., with the least number of shards). We perform the above
operation for all the modes of the tensor.

For a given output mode, let�max be the largestnumber of shards
assigned to a single ACCEL and �max be the value of �max in an
optimal shard distribution among the ACCELs. Then our proposed
greedy approach above guarantees that �max ≤  4/3 · �max [4]. The

proof of this approximation guarantee is shown by induction in the
following.

Theorem 4.1. For a given mode�, based on our greedy approach,
the number of shards assigned to each ACCEL is at most 4/3 · � 

pe
.
-

shards. Suppose there are� super-shards, and the ℓ-th super-shard
is the last one that is assigned to the ACCEL � containing the
most shards. Consider two cases: (i) If ℓ <  �, then since the �-th
super-shard is not assigned to �, removing it doesn’t affect the
result. Therefore, the theorem follows immediately by the induction
hypothesis on the first� −  1 super-shards. (ii) If ℓ = �, then�max ≤
�max +��,�. If��,� ≤  �max/3 then the theorem holds immediately.
Suppose ��,� >  �max/3, then �max <  3��,�, so each ACCEL has
been assigned either one or two super-shards, which is in fact an
optimal assignment: exchanging any two super-shards in different
ACCELs will increase the largest number of shards in an ACCEL.
So �max = �max in this case. □

4.7 Tensor Remapping
As described in Section 4.4, tensorelements are remapped according
to the shard IDs of the upcoming mode. Theorem 4.2 shows that it
only requires 2 ×  |�| FPGA external memory to perform on-the-fly
tensor remapping. Note that the mode-specific formats require the
number of tensor copies proportional to the number of modes of
an input tensor. Theorem 4.3 shows the tensor layout generated
through the proposed tensor remapping technique is load balanced
across all ACCELs, and the tensor data is locally available to each
ACCEL in its directly connected external DRAM memory during
each output mode computing time.

The accelerator requires the external memory address point-
ers for each shard to identify the destination memory address of
nonzero elements while tensor remapping. The memory address
pointers for the initial position of each shard are computed during
the tensor format generation time. These memory address pointers
are updated as the shards are getting filled during the runtime. Dur-
ing the remapping, the accelerator only requires to keep track of
the address pointers corresponding to a single mode. Also, follow-
ing the routing algorithm discussed in Section 4.5.2, each ACCEL
only requires to keep track of the shards mapped into its directly
co

Theorem 4.2. The total FPGA external memory required to store
an input tensor� in the FLYCOO format for our proposed algorithm
FLYPAR is 2 ×  |�|, where |�| is the size of the tensor, independent of
the number of modes.

Proof. Consider a FPGA external memory space of size � =
2 ×  |�|, divided to �[0] and �[1]. If the current mode (�) being
executed is even (i.e., � = 2, 4, 6 . . . ), then it uses �[0] to keep the
tensor copy ordered according to mode � shard IDs. �[1] is used
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to keep the tensor copy ordered according to shard IDs of mode (�
+ 1) mod � during the on-the-fly remapping. Similarly, if the
current output mode being executed is odd (i.e., � = 1, 3, 5 . . . ), it
uses space �[1] to keep the tensor copy ordered according to mode
�. �[0] is used to keep the tensor copy ordered according to mode
(� + 1) mod �. As a result, we only need |�| = 2 ×  |�| space to
store the tensor to support the algorithm FLYPAR. □

Theorem 4.3. Algorithm FLYPAR performs spMTTKRP for all the
modes of an input tensor such that the computation is load balanced
across all ACCELs and the tensor data is available for each ACCEL
in its directly connected external DRAM memory for all the output
mode computations.

Proof. In the FLYCOO format, each tensor element contains its
shard IDs for all the modes (see Section 4.3). For an input tensor
with � modes, during the computation of mode � −  1, the on-the-
fly-remapping remaps each nonzero tensor element according to
the shard IDs of mode � (0 ≤  � <  �). The data routing algorithm
(Algorithm 4.5.3) allows this by remapping each tensor element to
the DRAM directly connected to the PE. Hence, at the beginning of
the spMTTKRP computation for an output mode � (Algorithm 2),
all the nonzero elements in the tensor have been assigned to the
shards of mode � {������,�,� : � �,�}. Therefore, the tensor data
is available for each ACCEL in its directly connected external
DRAM memory for all the output mode computations.

The load balancing approach in Section 4.6 proves that the com-
putation is load balanced if each tensor element is in its assigned
shard for an output mode�. According to the on-the-fly remapping,
at the beginning of the computation, all nonzero elements in the
tensor are in the shards of mode �. Since we perform the over-
all computation mode-by-mode, the overall computation is load
balanced for all the modes. □

Theorem 4.4 proves that the remapping cost introduced in FLY-
PAR is insignificant compared to total FPGA external memory
accesses while accessing input factor matrices in each mode.

Theorem 4.4. In any mode, without data reuse, the ratio of the
total amount of data transferred in remapping to that for accessing

the input factor matrices is O (�−1)� , where � is the number of

modes and � is the rank of the factor matrices.
Proof. Fora givenmode,sinceeverynonzeroelement is remapped

for spMTTKRP in the upcoming mode, the total amount of data
transferred per mode for remapping is equal to the size of the total
number of nonzero elements (|�|). With no data reuse, the total
amount of data transferred per mode for the input factor matrices
is (� −  1) ×  |�| ×  � (see Section 4.4). Therefore, the ratio of the
amount of data transferred for the remapping to that for accessing

input factor matrices is O (�−1)� . □

4.8 Super-shard Scheduling
After distributing super-shards among ACCELs in Section 4.6, we
further optimize the memory access cost between distinct super-
shards assigned to each ACCEL in every mode by statically schedul-
ing these super-shards. The objective of the super-shard scheduling
is to reuse cached rows of input factor matrices across multiple
super-shards as much as possible. The first step to achieving this
is to create a weighted directed complete graph Γ = (Γ , Γ , Γ )
whose vertex set Γ consists of the super-shards, which are as-
signed to the target ACCEL. Here, the weight�� � Γ of each edge
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� � Γ represents the number of rows of factor matrices that any
two super-shards have in common. After constructing the complete
graph Γ, our goal is to find a maximum weighted Hamiltonian path
� in Γ. The order of vertices in the Hamiltonian path � represents
the scheduling of the super-shards assigned to each ACCEL. It leads
to eficient cache utilization by maximizing the reusability of the
common input factor matrices among super-shards after loading
them into the caches. Since the maximum weighted Hamiltonian
path problem is NP-complete [1], we use a greedy heuristic by
adding one edge at a time, as summarized in Algorithm 5. The
schedule computed as a pre-processing step for each input tensor.

Algorithm 5: super-shard Scheduling

Sasindu Wijeratne, Ta-Yang Wang, Rajgopal Kannan, & Viktor Prasanna

Obtaining module-wise performance results is effortless with PMS
compared with the actual hardware implementation.

The system designer has to provide the following inputs to the
PMS: (1) resources of target FPGA (i.e., total DSPs, BRAMs, and
URAMs and data width of memory interface), (2) design parameters
(i.e., number of pipelines per ACCEL, DMA buffer sizes, number of
caches, number of cache lines, associativity of a cache, and number
of factor matrices shared by a cache), (3) algorithm parameters (i.e.,
rank of the factor matrices, size of a shard, and size of an interval),
and (4) input tensor parameters (i.e., number of modes, and length
(dimension size) of each mode).

Table 2: Characteristics of the sparse tensors

1 Input: A weighted directed complete graph Γ = (Γ , Γ , Γ )
consisting of the super-shards

2 Output: A Hamiltonian path � representing the scheduling
of the super-shards assigned to each ACCEL

3 � ← �

Tensor

NELL-1

NELL-2

PATENTS

LBNL

DELICIOUS

Shape

2.9� ×  2.1� ×  25.5�

12.1� ×  9.2� ×  28.8�

46 ×  239.2� ×  239.2�

1.6� ×  4.2� ×  1.6� ×  4.2�× 868.1�

532.9� ×  17.3� ×  2.5� ×  1.4�

#NNZs Density

143.6�      9.1 ×  10−13

76.9�       2.4 ×  10−05

3.6�        1.4 ×  10−03

1.7�        4.2 ×  10−14

140.1�      4.3 ×  10−15

4 Sort Γ in descending order of Γ
5 for each edge� = (�,�) � Γ do

6 i f  deg (�) = 0 & deg (�) = 0 & no cycle in� � {�} then
7                   � ← � � {�}

8 return �

5 EVALUATION
5.1 Experimental Setup
5.1.1 FPGA Platform. We implement our hardware design on Xil-
inx Alveo U250 Data Center Accelerator Card [24] using Verilog
HDL. This Alveo Card consists of 4 super logic regions (SLRs) [25].
The SLRs connected to DRAM modules through memory interface
IPs [26]. Simulation, synthesis, and place and route are performed
using Xilinx Vivado Design Suite 2020.2 [27].

5.1.2 Datasets. We use the sparse tensors from real-world appli-
cations shown in Table 2. All the tensors are from the Formidable
Repository of Open Sparse Tensors and Tools (FROSTT) dataset[19].
The selected datasets have tensors with different shapes, sizes, and
sparsities.

5.1.3 FLYCOO Format Generation Time. Since we implement the
preprocessing step using Python libraries, our preprocessing algo-
rithm is substantially slower than C/C++ implementations. There
are no meaningful comparisons of the execution time between the
pre-processing and processing steps with C/C++-based implemen-
tations in related works. Hence in this work, we do not show the
implications of preprocessing costs which are executed ofline.
5.1.4 Performance Model Simulator. Performance Model Simulator
(PMS) is used for optimizing the accelerator configuration. PMS can
estimate thenumberof clock cyclesspenton computing spMTTKRP
for a given input tensor. PMS models each hardware module in the
accelerator design at the cycle level. The PMS can further estimate
the total FPGA internal memory requirement and the DSP usage
for a given accelerator configuration.

Our objective is to usePMSto (1) identify the bestsetof hardware
parameters of the accelerator to obtain the least average execution
time for a given collection of datasets (see Section 5.1.5), and (2)
evaluate the impact of various hardware modules in the proposed
design and algorithmic optimizations due to the versatility of PMS.

The overall execution time (in cycles) reported by PMS is val-
idated using FPGA run-time results. Figure 5 compares the total
execution time of each tensor on FPGA and the PMS. The behavior
of DRAM technology and packet routing on ACCEL routers can
not be accurately simulated using a software model. Hence PMS
shows below 10% error compared with the actual hardware.

We performed an extensive parameter search to select the con-
figuration of the accelerator. The goal is to identify the hardware
parameters with the least average execution time for all the datasets
in Table 2. spMTTKRP is executed per single iteration for each
dataset.
5.1.5 Optimizing Accelerator Con-
figuration. The execution time de-
pends on the total number of clock
cycles and FPGA operating fre-
quency (�����). We use PMS to
estimate the number of clock cy-
cles for computing spMTTKRP. We
determine the average number of
FPGA cycles (����) by taking the
PMS results for all the targeted ten-
sors. PMS can also estimate the to-
tal FPGA internal memory require-
ment and the DSP usage for a given accelerator configuration. We
can choose an accelerator configuration that provides the least����

and is subject to the resource constraints of the FPGA using PMS.
First, we focus on identifying the shard and interval sizes that are
suitable for the target FPGA. These sizes directly correlate with the
accelerator buffer sizes. We use PMS to identify the shard and inter-
val sizes that fit the target FPGA and take the minimum number of
FPGA clock cycles. Using PMS, we select 10 suitable configurations
with a minimum of���� and fit the target FPGA resources. Then
we use Place and Route (P&R) using Xilinx Vivado to obtain the
����� of each selected accelerator configuration. Finally, we pick
the configuration with the least����/����� configuration. Table 3
shows the selected configuration for our targeted dataset and
FPGA. We observe that using more FPGA resources leads to lower
FPGA operating frequency which reduces the overall performance
of the design.
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Figure 4: Total execution time to perform spMTTKRP along all the modes once
Table 3: Module Parameter Configuration

Module Parameter Configuration
PE No. of pipelines 16

Partial Matrix Buffer size             16 KB
No. of caches 2

Cache Set-associativity 4
subsystem            No. of cachelines                    4096

cache line width                     64 B
Tensor Buffer 64 KB

DMA Output Matrix Buffer 16 KB
Tensor Remapping Buffer 64 KB

Table 4: Resource utilization of the selected design
LUT FF BRAM     URAM     DSP

37.23%     24.52%     20.84%     20.52% 25%

5.1.6 Baselines. The baseline experiments are conducted on an
Intel Xeon Gold 5120 CPU, an NVIDIA RTX 3090 GPU, and an
NVIDIA RTX A6000 GPU. Platform specifications are summarized
in Table 5. Table 5: Specifications of the platforms

CPU GPU0 GPU1 FPGA
Platform Intel Xeon NVIDIA NVIDIA Xilinx

Gold 5120                 RTX 3090             RTX A6000          Alveo U250

Technology Intel 14 nm Samsung 8 nm      Samsung 8 nm      TSMC 16 nm

Frequency 2.20 GHz 1695 MHz 1410 MHz 230 MHz

Peak Device Performance 14.9 GFLOPS 35.6 TFLOPS 38.71 TFLOPS 0.6 TFLOPS

Device Internal Memory 19.25 MB L3 Cache      6 MB L2 Cache      6 MB L2 Cache 54 MB

Figure 4 displays the total execution time while computing
spMTTKRP along all the modes. Our work is the only implementa-
tion that delivers consistent performance across all the modes of the
datasets. Our work achieves an average of 8.8× and 3.8× speedup
compared with the baseline CPU and GPU implementations. Table
6 summarizes the average speedup of each baseline and our work
compared to COO-CPU[11].

We observe that LBNL generates a large number of intermediate
values. Therefore, baselines that hold intermediate data in the exter-
nal memory have to load and store intermediate data several times
while computing a single row of the output factor matrix. Since our
approach avoids partial outputs being stored in the external mem-
ory, it reduces the communication time between the FPGA and its
external memory. LBNL also has limited data reuse while accessing
the rows of input factor matrices. Our cache system exploits the
data reuse of the input factor matrices of LBNL better than the other
datasets. This leads to a significant execution time reduction for
the LBNL dataset compared with the rest of the benchmarks. When
executing PATENT, the OS kills ALTO, TACO CPU, and all GPU
implementations because the data generated during compute time
does not fit in the device external memory. The selected devices
did not have suficient external memory to hold the intermediate
values generated during the execution time of PATENT for our
baselines.
5.3 Impact of Tensor Remapping

External Memory Bandwidth 107.3 GB/s 936.2 GB/s 768 GB/s 77 GB/s

We evaluate our work against mode-specific CSF format[9],
mode-specific COO format[11], mode-agnostic HiCOO format[12]
on both CPU and GPU platforms. We also evaluate the ALTO
format [5] on the CPU. For the COO format, we use the library
ParTI[11]. HiCOO is the required input parameter block size for its
partitioning scheme, similar to the shard size in our proposed work.
Similar to literature [5, 12], we use a block size of 128 to evaluate
the performance of HiCOO. We ran OpenMP-enabled HiCOO CPU
implementation using all the CPU threads. We evaluate the perfor-
mance of mode-specific CSF formats using TACO[9]. We optimize
the TACO code to our target CPU and GPU platforms using their

5.2
m 

Overall Performance
Following the baselines[5, 12], we set the tensor rank (�) as 16.
The interval size (�) is set to the same size as the output matrix
buffer size, which is determined during optimizing the accelerator.
We also keep the shard size equal to the tensor buffer size. Our
experiments are conducted on the actual FPGA hardware. The
tensor format generation is a one-time preprocessing step. As in
the baselines[9, 12], we do not include the tensor generation time in
the overall execution time.

Figure 6: (a) Number of intermediate elements avoided being
transferred to FPGA external memory by tensor remapping
vs. total tensor elements remapped, (b) Cache-hit ratio while
accessing rows of input factor matrices, (c) Tensor remapping
time over total memory access time

The proposed parallel algorithm, FLYPAR (Algorithm 3), avoids
intermediate values being transferred to the FPGA external memory
at the additional cost of tensor remapping. Note that it introduces
additional data transfers during on-the-fly tensor remapping. Fig-
ure 6 (a) shows a comparison between the amount of remapped
tensor elements transferred to the FPGA external memory and the
amount of data transfers (to the FPGA external memory) avoided
by combining the intermediate values inside the FPGA internal
memory for every super-shard. Our results indicate that FLYCOO
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Table 6: Comparison of baselines on their targeted platforms and this work
Tensor Formats

Speedup (over COO-CPU)
Device Peak Bandwidth (GB/s)

Device Peak Performance (TFLOPS)

FLYCOO     ALTO     HiCOO HiCOO HiCOO TACO TACO
FPGA        CPU        CPU        GPU0       GPU1       CPU      GPU0
18.0 3.9 2.2 4.4 9.2 1.0 0.5
77          107.3       107.3        936.2         768        107.3      936.2

0.60 0.0149 0.0149 35.6 38.71 0.0149 35.6

TACO     COO      COO      COO
GPU1      CPU      GPU0 GPU1

1.90         1.0         4.2         7.8
768       107.3      936.2       768

38.71     0.0149      35.6      38.71

with FLYPAR reduces the FPGA external memory trafic by 9.2× on
average. Figure 6 (b) shows the cache hit rate while accessing input
factor matrices. It confirms that FLYCOO significantly increases
data reuse. Figure 6 (c) compares the total tensor remapping time
with the time spent on the rest of the memory accesses. The results
show that even though the input factor matrices are cached in the
FPGA, the tensor remapping cost is still insignificant compared
with the rest of the memory access cost.

5.4 Impact of Memory Controller

Figure 7: (a) Improvement of proposed MC in execution time,
(b) Number of pipeline stalls wrt. total number of pipeline
requests, (c) Sustained MC bandwidth

We compare our proposed memory controller (MC[cache + DMA])
with 2 other alternative memory controller designs, namely cache-
only (MC[cache only]) and DMA-only (MC[DMA only]) memory
controllers. As the name implies, MC[cache only] uses only caches.
The DMA in our proposed MC[cache + DMA] is replaced by a cache
of the same size. Similarly, MC[DMA only] replaces the caches in
the original design with a DMA of the same size. A comparison of
the total execution time for each dataset is shown in Figure 7 (a).
The datasets with higher data locality while loading input factor
matrices show significant execution time reduction with MC[cache
+ DMA] compared with MC[DMA only]. Replacing DMAs
with
cacheshinders bulk data transferswhen loading, storing, and remap-
ping shards. As a result, MC[cache only] takes longer to perform the
above memory operations than MC[cache + DMA]. With MC[cache
+ DMA], total execution time is improved by 4.5x and 5.8x compared
with MC[cache only] and MC[DMA only].

Figure 7 (b) shows the total number of pipeline stalls in the
system compared with the total number of operations executed
by all the pipelines. Due to irregular external memory access to
the input factor matrices, NELL-1 has a significant percentage of
pipeline stalls. The rest of the datasets has less than 25% pipeline
stalls during computing spMTTKRP on all modes.

Figure 7 (c) shows the sustained memory controller bandwidth
while executing spMTTKRP. The memory controller bandwidth
is defined as the total amount of data communicated between PEs
and memory controllers over the total spMTTKRP execution time
for each input tensor. Our memory controller achieves sustained

memory controller bandwidth that is more than twice the peak
DRAM bandwidth.

In this section, we evaluate the impact of the rank (�) of the factor
matrices on total execution time. We alter � to 8, 16, and 32 as
they are the most common sizes used in tensor decomposition
applications [2, 15, 18, 22]. Results from PMS (see Section 5.1.5)
suggest that we can use the same accelerator parameters listed in
Table 3 by adjusting the interval size of the tensor format.

Figure 8 shows
the total execu-
tion time for dif-
ferentdatasetsover
� = 8, 16 and
32. With increas-
ing R, the number
of elements in a
row in output in-
terval and input
factor matrices in- Figure 8: Impact of rank (R)

the following 2 important observations: (1) as�increases, the caches
need multiple cache-line requests to load a single row of factor ma-
trices, and (2) as � decreases, multiple neighboring rows of factor
matrices can fit in a single cache line. In the case of� = 8, the contri-
bution of each subsequent factor matrix row to the computation is
very low even if multiple neighboring factor matrices are loaded in
one cache line load. Hence we can not observe a significant reduc-
tion in total execution time. When� = 16, a single cache line request
loads a single row of the input factor matrix. On the other hand,
when � = 32, a single input factor matrix row occupies multiple
cache lines. Hence a cache miss on a single input factor matrix row
results in multiple cache line misses.

6 CONCLUSION AND FUTURE WORK
We proposed the FLYCOO format to reduce the total memory ac-
cess time on FPGA. The on-the-fly tensor remapping supported by
FLYCOO avoids storing intermediate values in the external memory.
Using FLYCOO and the proposed FPGA accelerator, we outperform
existing benchmarks on a variety of real-world sparse tensors.

In the future, we plan to parallelize the preprocessing algorithm
for the tensor format generation. The algorithmic optimizations
discussed in Section 4 can be adapted to general purpose hardware
such as CPU and GPU. Using our proposed algorithmic optimiza-
tions, CPU and GPU can accelerate spMTTKRP by eficiently using
their limited internal cache and external memory bandwidth.
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