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Abstract—Accelerating sorting on FPGA has been extensively
studied by leveraging the fine-grained data parallelism of FPGAs.
However, with the optimized hardware pipelines, the performance
of sorting algorithms is bounded by the off-chip memory band-
width. The integration of high-bandwidth memory (HBM) on
FPGAs offers significantly more off-chip memory bandwidth
compared with traditional DDR memory, which enables new
opportunities for accelerating sorting.

In this paper, we develop Hypersort, a hardware accelerator to
accelerate sorting on HBM-enabled FPGA. We use columnsort to
merge HBM channels. To support the data communication pat-
terns of Columnsort, we propose several optimizations to reduce
external memory (HBM) traffic and hide data communication
latency to further improve the overall throughput. We implement
our accelerator on a state-of-the-art HBM-enabled FPGA. Ex-
perimental results show that our implementation achieves overall
sorting throughput of 34 GB/s, which is up to 14.8x, 4.73x and
2.18x faster than the state-of-the-art implementations on CPU,
FPGA with external DDR and HBM-enabled FPGA, respectively.
The proposed approach demonstrates higher efficiency for merg-
ing sorted arrays in HBM channels compared with the state-of-
the-art implementation on HBM-enabled FPGA.

Index Terms— Parallel Sorting, Columnsort, High-Bandwidth
Memory (HBM), FPGA

I. INTRODUCTION

ORTING is a key problem in a broad range of appli-

cations, including big data applications, digital signal
processing, bioinformatics, compression of grid functions, and
large-scale scientific computing [[1], [2[], [3]l, [4]., [S[l, [6]. Field
Programmable Gate Array (FPGA) is a promising hardware
platform for sorting due to its fine-grained data parallelism and
customizable memory access pattern [7[, [8[I, [O, [100, [11],
[12], [13]], [14]. While there are many FPGA accelerators pro-
posed for efficiently executing sorting algorithms, the sorting
algorithms are inherently bounded by the available memory
bandwidth, preventing them from being further accelerated
(8], [9], [10]. Integration of High-Bandwidth Memory (HBM)
on FPGA offers new opportunities for improving sorting
performance.

High Bandwidth Memory (HBM) is a type of memory
device that uses 3D-stacking techniques providing up to 460
GB/s memory bandwidth on a single FPGA device (e.g.,
Xilinx Alveo U280 [15]]). FPGA vendors (e.g., AMD Xilinx,
Intel) exploit the Through Silicon Via (TSV) technology to
integrate the programmable logic and HBM into a single chip
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to reduce the memory access latency from HBM. Compared
with traditional DDR memory on FPGAs (e.g., Xilinx Alveo
U250, U200 [16]) which have up to 77 GB/s, HBM provides
6x more memory bandwidth (up to 460 GB/s).

Despite the massive memory bandwidth of HBM, we face
non-trivial design challenges in achieving high-throughput
sorting on HBM-enabled FPGA. Unlike traditional DDR mem-
ory of FPGA which has up to four memory channels, the
HBM memory on FPGA (e.g., Xilinx Alveo U280) has a
large number of memory channels (up to 32), which imposes
significant challenges not only on the efficiency of sorting
algorithm, but also on the scalability of the hardware design.
On the one hand, a scalable and load-balanced parallel sorting
algorithm should be identified to efficiently exploit the massive
memory bandwidth of the HBM. Prior work [17] maps the
bucket sort algorithm on HBM-enabled FPGA. However,
the uneven data distribution can lead to load imbalance in
piplining bucket sort. On the other hand, a hardware-efficient
design should be developed to utilize the massive number
of memory channels of HBM. Such a design will involve
efficient hardware pipelines and interconnection network to
communicate data among the HBM channels. For example, in
the high-performance design in prior work [18], the resource
requirement can quickly exceed the available resources of
state-of-the-art FPGA to effectively use the massive data
parallelism of HBM.

In this paper, we develop Hypersort, a hardware accelerator
to accelerate sorting on HBM-enabled FPGA. We use column-
sort to merge HBM channels. To support the data communi-
cation patterns of Columnsort (See Section [V)), we propose
various optimizations to further improve the performance. Our
main contributions are:

e We propose a hardware design on HBM-enabled FPGA
with well-optimized computation pipelines and intercon-
nection network to efficiently execute Columnsort.

e« We propose algorithm-specific optimizations that can
further improve the overall sorting throughput (Section
[V), including (1) Optimized all-to-all personalized com-
munication, (2) Fake shifting, (3) Data caching, (4) Step
overlapping.

o Through detailed analysis and performance modeling for
the proposed mapping technique, we demonstrate that
Columnsort based design has higher efficiency of merging



the sorted arrays in the HBM channels compared with
merge sort based designs.

o« We conduct experiments on Xilinx Alveo U280. The
proposed design achieves an overall sorting throughput
of 34 GB/s with 14.8x, 4.73x and 2.18x speed-up over
the state-of-the-art implementations on CPU, FPGA with
external DDR, and HBM-enabled FPGA respectively.

II. BACKGROUND AND RELATED WORK
A. Problem Definition

Sorting an array is to rearrange the array in ascending or
descending order. The input and output are defined as follow:
o Input: The input array is arranged in a 2-D mesh (Figure
shows an example) with the columns of data stored in
HBM channels. The input array can be fully stored in the
HBM channels of FPGA. Note that the input array can
have any data distribution. HBM is also used to store the
intermediate results.
o Output: The sorted data is stored in HBM channels in
column major order.

B. HBM-enabled FPGA

A HBM device has multiple memory channels. Each chan-
nel is connected to a memory controller and can be accessed
through an AXI port. For example, Xilinx Alveo U280 has 2
HBM stacks with each stack having 16 pseudo channels, and
a peak memory bandwidth of 460 GB/s with total memory
capacity of 8 GB. Table [[|illustrates the specifications of each
pseudo-channel (PC) of Xilinx Alveo U280 with sequential
access pattern [15]], [[17]. The AXI port of a HBM PC can
output a 512-bit data packet per clock cycle.

TABLE I: Attributes of a single pseudo channel of the HBM
on Xilinx Alveo U280

Parameter Description
Memory capacity 256 MB
Read-only bandwidth 13 GB/s

Write-only bandwidth 13.1 GB/s

Ideal bandwidth 14.4 GB/s
Read latency 289 ns
Write latency 151 ns

C. Columnsort

The classic Leighton’s Columnsort algorithm [[19] sorts a
N-element input sequence represented as a 2-D mesh (See an
example in Figure[I)) of size r x s, where r denotes the number
of rows and s denotes the number of columns. Columnsort
algorithm has a restriction that » > 2 - (s — 1)? and s is
a divisor of r. For an array of any size, data padding can
be used to satisfy the above restriction easily. Columnsort
algorithm performs the following eight steps explained with a
toy example in Figure

o Step 1 (Sort along the column): Each column is sorted

independently.

o Step 2 (Transpose): The elements of the matrix are

accessed in column major order and written back in row
major order.

o Step 3 (Sort along the column): Each column is sorted
independently.

o Step 4 (Untranspose): The elements of the matrix are
accessed in row major order and written back in column
major order.

o Step 5 (Sort along the column): Each column is sorted
independently.

o Step 6 (Shift forward by £ positions): The columns are
shifted forward by [5] positions and —oo and +oo are
inserted at the beginning and end respectively such that
the matrix size changes from r X s to r X (s + 1).

o Step 7 (Sort along the column): Each column is sorted
independently.

o Step 8 (Shift backward by 3 positions): The columns
are shifted backward by 5 positions such that the matrix
size changes from 7 x (s 4+ 1) to r X s.

Note that the Steps 1, 3, 5 and 7 involve the sorting within each
column. Intuitively, we can implement s parallel processors to
sort s columns concurrently and each column can be stored in
the local memory of a processor. Steps 2, 4, 6 and 8 involve
the data communication among these processors. To mitigate
the height and divisibility restrictions in Columnsort, [20]]
presents 2 modifications to Columnsort - subblock columnsort
and slabpose columnsort. Both the modifications can relax the
height restriction to r > 4s% when s is a perfect square and
s is a divisor of r. While subblock columnsort can further
eliminate the divisibility condition at the cost of a tighter
height restriction, r > 653 .
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Fig. 1: The eight steps of the Columnsort algorithm explained
with a toy example

D. Related Work

In this section, we discuss two major categories of related
work. First, there have been many works done on analysis
and optimisation of Columnsort algorithm. [21]] discusses the
design and implementation of Columnsort as an efficient out-
of-core sorting algorithm. However, their implementation is
not parallelized and they utilise asynchronous I/O and commu-
nication calls. Non-overlapping of sorting and communication
stages, and the additional time spent for disk read/write
increases the latency.



Second, some recent works [1[], [22], [23]], [24] explore
HBM to accelerate various computation tasks on FPGA.
Saturating the entire bandwidth offered by the 32 HBM
channels is challenging as the scalability of the design may be
restricted by the availability of on-chip resources. For example,
HiSparse [22], a linear algebra accelerator on HBM could
only harness 18 HBM channels as their scalability was limited
by routability issues and resource contention. Topsort [1] is a
sorting accelerator for executing parallel two-phase merge sort
on HBM-enabled FPGAs, achieving the overall throughput of
15.6 GB/s. Although [1]] efficiently utilizes the bandwidth of
HBM in the 1% phase, their main drawback is that they can
only utilize 25% of the HBM bandwidth in the 2" sorting
phase due to the inherent limitations of merge sort algorithm
and on-chip resource availability.

III. MERGING SORTED HBM CHANNELS

Sorting on HBM-enabled FPGA involves two major stages:
(1) sorting the subarray (column) within each HBM channel,
and (2) merging the sorted subarrays of all the HBM channels.
Sorting the subarray within each HBM channel is similar
to sorting an array within a DDR channel, for which many
algorithms and hardware designs [7], [8], [10] have been
proposed. However, merging the sorted subarrays of all the
HBM channels can dominate the overall performance. A major
challenge is that the data parallelism provided by all the HBM
channels is massive, and directly scaling the prior FPGA
designs [8], [10] to match the data rate of all the HBM
channels can lead to large hardware consumption. Moreover,
the merge tree based approach [1] is data-dependent resulting
in bandwidth under-utilization during merging HBM channels.
In this section, we analyze bitonic sort, radix sort, merge sort,
and columnsort for merging the sorted subarrays of HBM
channels. For simplicity, we assume there are p HBM channels
and each HBM channel can read/write [ data per cycle. To fully
utilize the bandwidth of HBM channels, the hardware design
should match the data rate of HBM (p x [ data elements per
cycle). For example, the HBM on Xilinx Alveo U280 has
p = 32 HBM channels and each HBM channel can read/write
I = 16 32-bit data per cycle.

Bitonic Sort: Bitonic sorting is an efficient algorithm for sort-
ing the data within a single DDR/HBM channel, since the data
rate of a single DDR/HBM channel is limited, for example,
!l = 16. To execute Bitonic sort algorithm, Bitonic sorting
network is used [7]], which has the hardware complexity of
O(n log? n where n is the data rate of off-chip memory
denoting the number of input/output data per cycle. For a
single HBM channel, the required hardware complexity is
I x log?(1). If we directly scale the Bitonic sorting network to
match the data rate of p HBM channels, the required hardware
complexity is pllog?(pl).

Radix Sort: It is an non-comparative algorithm as it groups
data elements based on the radix [25]]. It does not require
hardware comparators. However, the algorithm is neither load

IThe logarithms are to base 2 unless the base is specified.

balanced nor data oblivious. Since the algorithm depends
on the values of the data elements, the bucketing and com-
munication patterns are data dependant. In many real-world
applications, skewed data distribution can lead to severe load
imbalance, thus degraded performance.

Merge Sort: It uses divide-and-conquer strategy to perform
large-scale sorting. Prior work [1] uses a merge tree with
Bitnoic merging unit as the basic component for merging the p
HBM channels. The hardware design of [1]] can efficiently sort
data in each individual HBM channel. However, [[1]] does not
exploit all the memory bandwidth when merging the p HBM
channels since matching the data rate of p HBM channels will
result in large amount of hardware resources. Therefore, [1]
builds a small merge tree that only utilizes 25% of the HBM
bandwidth for merging p = 32 HBM channels.

Columnsort: To support the communication patterns of
Columnsort (Steps 2, 4, 6, and 8), we can implement an
interconnection network for communicating data among p
HBM channels. The interconnection network does not require
hardware comparators. For example, [17] develops a large-
scale butterfly network for communicating data among p par-
allel HBM channels which is demonstrated to be lightweight
and hardware-efficient. Moreover, with careful optimizations,
we are able to completely hide overhead/latency of the data
communication steps (See Section [V]).

To summarize, Columnsort algorithm has the following ben-
efits for merging p HBM channels on FPGA: (1) the required
hardware resource for computation units grows linearly w.r.t.
p. Only an extra interconnection network is needed which can
be made hardware efficient. (2) The sorting steps (Steps 1, 3,
5 and 7) and data communication among columns (Steps 2, 4,
6 and 8) can fully utilize the memory bandwidth of p HBM
channels. (3) The number of data communication steps (Steps
2, 4, 6 and 8) is fixed and does not depend on the array size
and the number of HBM channels p. (4) Columnsort does not
make any assumptions regarding the data distribution. This
leads to load-balanced implementation.

IV. ALGORITHM AND IMPLEMENTATION
A. Overview of the proposed system

Our objective is to map Columnsort algorithm on HBM-
enabled FPGA. Suppose the HBM memory has 2p pseudo
channels (PCs). We divide the 2p PCs into p HBM groups with
each HBM group having 2 PCs. For example, AMD Xilinx
Alveo U280 has 32 parallel pseudo-channels (PCs) which can
be divided into 16 groups using the proposed approach. For a
given input array of size N, we convert it into a 2-D mesh of
size % X p. This 2-D mesh has p columns with each column
having N/p elements.

Columnsort involves eight steps (Section [[I-C). For Steps 1,
3,5 and 7, each column is sorted using a processing element
(PE) that is connected to a HBM group. For Steps 2, 4, 6 and
8, there is an interconnection network (IN) that performs data
communication among HBM groups. The overall architecture
is shown in Figure 2| Moreover, we perform algorithm-specific
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Fig. 2: Overall architecture of the proposed hardware design

optimizations discussed in Section V to improve performance
and compare our design with the state-of-the-art work in
Section VII-D.

B. Algorithm on HBM-enabled FPGA

The parallel Columnsort algorithm on HBM-enabled FPGA
is described in Algorithm [T} The p columns of the input 2-
D mesh is stored in p HBM groups respectively. For sorting
steps (Steps 1, 3, 5 and 7), each PE sorts a column in a HBM
group. p PEs sort p columns concurrently. The interconnection
network performs data communication in Steps 2, 4, 6 and 8.

Algorithm 1 Parallel Columnsort on HBM-enabled FPGA

Input: The size of the array: N; The number of HBM groups: p
Qutput: Sorted array
1: Rearrange the input array into a 2-D mesh of r rows and p
columns: r < %, S p

2: Assign column ¢ to group, (1 <7 < p) > Preprocessing
3: for ¢ = 1 to p Parallel do > Step 1
4 PE,; sorts column ¢ in group ¢
5. Perform transpose using interconnection network > Step 2
6: for ¢ = 1 to p Parallel do > Step 3
7 PFE; sorts column ¢ in group ¢
8: Perform untranspose using interconnection network > Step 4
9: for ¢ = 1 to p Parallel do > Step 5
10: PE; sorts column ¢ in group ¢
11: Perform shift forward using interconnection network > Step 6
12: for i = 2 to p Parallel do > Step 7
13: PE; sorts column ¢ in group ¢
14: Perform shift back using interconnection network > Step 8

C. Hardware Modules

Processing Element (PE): As shown in Figure |Z[, each HBM
group is connected to a Processing Element (PE). A PE is
implemented as a Merge Tree (MT) (Figure [3) to perform
sorting of the column that is stored in a HBM group. In the
Merge Tree, each node except the leaf node is implemented
as a Massive Merge Sorter (MMS) unit [12] (See Figure E[)

Stage 4 1
Stage3 !
Stage 2
Stage 1
Stage 0
[]cas [ Imms2 [ ] Mms-4
| | MMms-8

Fig. 3: Diagram of a Processing Element (PE) that can output
16 data per cycle

We use MMS-! to denote the MMS unit that can output / data
per cycle. The leaf node is implemented using a Compare-
and-Swap (CAS) unit. We use MT-/ to denote the Merge
tree that can output ! data per cycle. A MT-l can merge [
sorted subarrays in parallel. A MT- consists of logy(l) + 1
stages (from stage 0 to stage log, (1)) with each stage having
single or multiple MMS units. The stage i (1 <4 < logy(1))
has QL MMS-2¢ units. We use BM-I to denote the Partial
Bitonic Merger of 2l-intput and [-output. A MMS-{ unit has
two Partial Bitonic Mergers (BM), each reading 2! inputs
and generating [ outputs per cycle: BMy -l and BMg-l. The
architectures of BM -l and BMg-l are shown in Figure [3
The basic component in BM is the Compare-And-Swap (CAS)
Unit. BM .-l or BMg-l has log(2l) stages. While stage 1 has
I CAS units, each of other stages has é CAS units. Therefore,
a MMS-I consists of [log(2l) + 1 CAS Units as BMy-I has
Llog(2l) + L CAS units and BM-l also has Llog(2l) + &
CAS units.

A sorting step (Steps 1, 3, 5, 7) consists of single or multiple
sorting passes. In one sorting pass, the input elements are
streamed from the HBM channels into the leaf buffers of the
MT, and the output elements are streamed back into the other
HBM channel of the same group. For one sorting pass, the
entire input array is read and written from/to HBM once.
For example, each group has % unsorted elements stored in

the HBM channel initially. In the first pass, the MT reads %
unsorted sub-arrays containing 1 element each from the HBM
channel, merges them into % sorted sub-arrays containing [-
elements each and writes back to the HBM channel. Similarly,
in the second pass, p%l sub-arrays of length [-elements each
is streamed into the BMT and Z2 sorted sub-arrays with 2
elements each is written back to the HBM channel. Thus, using
MT-l, it takes logl(%) passes to sort % elements.

Interconnection network (IN): The interconnection network
is used to permute the data elements in Steps 2 and 4, which
have all-to-all data communication pattern. While the built-in
crossbar [26] can possibly be used, it has degraded all-to-all
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Fig. 5: Diagram of Bitonic Mergers: BM -4 and BMg-4. The
hardware switches in grey color are not needed.

data communication throughput due to lateral communications
(See [26] for lateral communication). Therefore, we exploit
an optimized custom crossbar [17] which is implemented as a
multi-stage butterfly interconnection network. As depicted in
Figure [0] the fundamental component of the interconnection
network is the 2 x 2 switch. To establish all-to-all commu-
nication, we implement logp stages with £ 2 x 2 switching
units per stage. Figure [6] illustrates the topology of the custom
crossbar. The 2 x 2 switching unit is constructed as a Mux-
Demux switch. Each 2 x 2 switch reads 2 data elements from
the source PC/previous stage switch and writes to the output
ports of the destination PC/next stage switch in a round robin
fashion.

V. OPTIMIZATIONS

In this section, we introduce algorithm-specific optimiza-
tions to improve the sorting throughput and reduce hardware
resource consumption. We develop techniques to hide data
communication latency by exploiting on-chip memory which
also reduces the HBM traffic.

Workload reduction:

Steps 1, 3, 5 and 7 involve sorting the data within each
column. [21] depicts that the data should be communicated
to the correct column but its placement within the column
is immaterial. Hence, by permuting sorted data from each
column to contiguous locations in the the destination column,
we can reduce the number of sorting passes in the subsequent
sorting step. In Step 1, each PE needs to sort a column from
scratch. But in Steps 3 and 5, each column already has p sorted
sub-arrays, having 1% elements each. While Step 7 has 2 sorted

sub-arrays, comprising 2]:; elements each. Hence, Steps 3 and

Pseudo [a) [q)
channels .5 ‘é gggg‘gggg
(PCs)
smtee. A g LT
(In-built T AN =
iU i A A I
AXIBurst  ||&
Buffer i N
— \l \I ]/ [/y// Output 0 Output 1
Ll Ll L]
4-stage IAL_IAL AL Al
custom crossbar mm

N
7S]

LN L]
Sl T TLT
D Ny N ‘:’ :/5/

S ~

[ 1
A< A4
BEE==

T~

B el ol
>,

Ll

Fig. 6: Overall architecture of the four-stage butterfly inter-
connection network

—
Butterfly
Interconnection
Network

_PC
Addr)

Input 1

(b)

Input 0

Pseudo
channels
(PCs)

10do
z0do
€0do
¥0do
s0do

0do

9
£0d9

5 require [log;(p)] passes, and Step 7 only requires 1 pass to
complete sorting.

Optimized all-to-all personalized communication: Step 2
(transpose) and Step 4 (untranspose) involve basic data com-
munication primitive — all-to-all personalized communication
[27]. For this, each column/group sends pﬂz elements to every
other column/group. This all-to-all personalized communica-
tion is performed by the interconnection network (IN). How-
ever, without careful scheduling, the all-to-all personalized
communication can easily lead to congestion in the butter-
fly network. We proposed an optimized data communication
scheduling for Step 2 and Step 4, as shown in Algorithm [2]
Using the proposed scheduling, no more than one HBM group
will send data to a HBM group concurrently, which eliminates
the congestion.

Fake shifting: Steps 6 and 8 involve shifting each data element



Algorithm 2 Scheduling of all-to-all personalized communi-
cation for Step 2 (transpose) and Step 4 (untranspose)
Input: HBM group, (1 < ¢ < p) has messages { M [i][j] : 1 <
Jj < p} (MTi][j] contains z% array elements of column 4
that need to be sent from HBM group, to HBM group;).
1: for i = 1 to p parallel do
2: for j=1top—1do
3: group; send M [i][(i + j)%p] to group ;. ; o,

by ¢ positions in forward and backward directions respec-
tively. This data shifting can lead to extra memory traffic and
requires an additional HBM group to store the extra column.
To address the above issue, we propose the fake shifting
technique. The key idea is that instead of actually performing
the shift operation at Step 6 (See Figure[I)), we pretend that the
shifting is already done for Step 6 and each PE maintains two
pointers (physical addresses) that point to the two subarrays
of a column. The subarrays are stored in two adjacent HBM
groups since the shifting is not performed. Then, in Step 7,
the PE directly fetches the subarrays from two HBM groups
and merges them into a single sorted array/column. The sorted
array/column will be stored back to the corresponding HBM
group of that PE. After Step 7, no backward shift (Step 8) is
needed since the whole array has already been sorted. Using
the proposed fake shifting technique, Steps 6, 7 and 8 are
combined into a single Step, which reduces the memory passes
(of Steps 6, 7 and 8) from 3 to 1, thus dramatically reducing
the memory traffic.

Data caching: For implementing Step 1, the on-chip memory
of FPGA can be used to store the intermediate results which
can reduce the total memory traffic. Suppose each PE has an
on-chip memory of size Son-chip. For the pass 1 of Step 1, every
time, the PE fetches Son-chip unsorted elements from the HBM
and stores them in the on-chip memory. When the Sqp_chip data
elements are fully sorted on-chip, each PE sends the Son-chip
elements back to HBM. Therefore, using the on-chip memory,
we can obtain sorted subarrays of size Son.chip in a single pass.
The number of passes for Step 1 can be reduced from logl(%)
to logl(%) —log; (Son-chip) + 1 (I is the data parallelism of the
merge tree in a PE, See Section [[V-C).

Increasing data parallelism in pass 1 of Step 1: Since we
exploit data caching optimization for Step 1, for the first pass
of Step 1, we store Sop.chip unsorted elements in the on-chip
memory. The on-chip memory has higher memory bandwidth
than HBM. Therefore, we can exploit the higher memory
bandwidth of on-chip memory to increase the data parallelism
of a PE to accelerate pass 1 of Step 1. For example, increasing
the data parallelism of the Merge Tree in a PE from [ to 2/
can lead to 2x speedup for pass 1 of Step 1.

Step overlapping: The computation steps (Steps 1, 3, 5
and 7) and the communication steps (Steps 2, 4, 6 and
8) can be overlapped. The adjacent computation step and
communication step can be overlapped to hide the latency of

the communication steps. Specifically, (1) the last pass of Step
1 and Step 2 can be overlapped. When the PE performs the
last pass of Step 1, the sorted results can be directly sent to
the corresponding HBM group, which is same as performing
Step 2. (2) Similarly, Steps 3 and Step 4 can be overlapped.
(3) For Steps 6 and Step 8, since we already use the fake
shifting technique, Steps 6 and Step 8 are combined into Step
7. Through step overlapping, the latency of Steps 2 and Step
4 can be completely hidden.

VI. PERFORMANCE AND RESOURCE CONSUMPTION
MODELING

We make the following assumptions for our modeling:

« Input array has size N.

o A single CAS unit in the Merge Tree (MT) consumes
hardware resource: Scas. A single switch in the butterfly
network consumes hardware resource: Sgwitch-

e« A MT in a PE can output /yr data per cycle and a single
HBM PC can also input/ouput lpc data per cycle. To fully
exploit the memory bandwidth of HBM, lyr should be
greater than or equal to lpc. In our design, Iyt > lpc.

o The total number of HBM groups is p (p is a power of
2; each HBM group contains two HBM PCs); The total
number of PEs is p. For example, for Xilinx Alveo U280,
p=16.

« A single PE has an on-chip memory of size Son-chip-

A. Performance modeling
We estimate the performance based on the metrics defined
below:

o Latency: It is the total execution time taken to sort the
input array of size N. We assume the input and output
are stored in the HBM.

o Throughput: Throughput, measured in GB/s, is the size
of the input sequence sorted per second [§]].

Size of the input sequence
Latency

Throughput = (1)
Modeling of throughput: The throughput of i Step (Bstep:)
is defined as the size of the input sequence divided by the total
execution time taken to complete the i Step. The overall
sorting throughput S,yerqn of parallel sorting with 8 Steps
can be represented as a function of sorting throughput of the
individual Steps is given by Equation

1
ﬁoverull = 1 1 1 (2

Bstepy

Bsteps Bstep
s

Due to the proposed step overlapping technique, Step 1 and
Step 2 are combined into a single step denoted as Step; _,.
Step 3 and Step 4 are combined into a single step denoted as
Step;_,4. Step 6, Step 7, and Step 8 are combined into a single
step denoted as Steps_,_g. Therefore, the overall throughput
after step overlapping is:

601)erall = 1 1 1 1 (3)
Bstepy_o Bsteps_4

Bsteps Bstepg_7_g



TABLE II: The performance of merging p HBM groups of various designs

Design Algorithm # of passes Data Parallelism  Execution time (clock cyles) for merging p HBM channels
Serial Merge  Merge Sort 1 1 N
Topsort [[1] Merge Sort 1 4 X lpc TMergesort = i X %
211 1
Our work Columnsort Q[IOgZPC (p)1+1 p X lpc Teolumnsort = M > %
Number of passes: One memory pass is defined as the 250
process of reading the entire array from HBM and writing
the entire array back to HBM. During the reading and writing 200r |
process, the accelerator performs sorting/merging operations £ %150 _
for rearranging the array elements. Due to data caching and :‘3 g
step overlapping, the number of passes for Step,_, is: 5& 100 1
N 50 | .
NP _o = Ingpc(;) — loglpC(Son_chip) +1 “)
. S 0 " - . . " "
Due to the Workload reduction optimization, both Step;_, gnd 0 10 20 30 40 50 60 70
Step 5 require [log;,.(p)] passes each and Steps_,_g requires »

1 pass. Therefore, the total number of passes for all the steps
is:

N
N-Ptotal = loglpc(g) - loglpc(Son—chip) +2 ’Vloglpc (p)—l +2 (5)

Note the Step;_, is to sort the data in each HBM group, and
Step;_g is to merge the HBM groups.

Efficiency of merging HBM channels: Merging HBM chan-
nels denotes merging p sorted arrays in p HBM group (each
HBM group has one sorted array) into one single sorted array
in column-major order (See Section [[I-C] In the proposed
design, the total number of passes for merging the HBM group
is:

NP3 g= NP3 4+ NPs+NPs_7_g = 2[log;,.(p)| +1 (6)

We compare the efficiency of merging p HBM channels with
serial merge and the approach in Topsort [[1]. For serial merge,
the architecture is a merge tree with p leaf nodes that merges
p HBM channels which can output 1 data per cycle. We use
the serial merge as the baseline for Topsort and our approach.
The comparison results are shown in Table [[T} Topsort [T]]
implements extra sorting units for merging p HBM groups.
Although Topsort only uses 1 pass for merging HBM groups,
it only has the data parallelism of 4 x [pc which is achieved
through adding extra computation units. Hypersort requires
2[logy,.(p)| +1 passes and can fully utilize all the p x lpc data
parallelism. The comparison of execution time for merging p
HBM groups between Topsort and our work is shown in Figure
[B] Our columnsort based design is more efficient for merging p
HBM groups than the merge sort based design 1] for p > 12
when [,. = 16.

B. Resource modeling

Suppose each PE has a merge tree MT-l, there are
log(2lmt) % (log(2imr) 4+ 2) X Imr CAS units. Therefore, the
total amount of hardware resources of p parallel PEs is:

SpE =pX log(QlMT) X (log(ZZMT) =+ 2) X lMT X SCAS- (7)

Fig. 7: Comparison of execution time between Serial Merge
and Hypersort for merging p = 4, 8,16, 32,64 HBM groups
(lpc = 16)

TTopSm t
Teolumnsort

0 10 20 30 40 50 60 70

p
Fig. 8: Comparison of execution time between Topsort and
Hypersort for merging p = 4, 8,16, 32,64 HBM groups (/. =
16)

The total amount of hardware resources of the interconnection
network is:

Sin = log(p) x g X lpc X Sswitch (®)

Therefore, the total hardware resources consumption of our
design is:
Stotat = SpE + SIN ©)

According to the above analysis, the resource consumption
of PEs, Spg = O(pllog®(l)) grows linearly with the number
of HBM channels p. The interconnection network is also
resource-efficient O(pllog(p)) with respect to p (See [17]
for the detailed evaluation for the resource efficiency of the
butterfly network).



VII. EXPERIMENTS
A. Implementation Details

We implement our design using Verilog HDL on Xilinx
Alveo U280 FPGA Board as the target platform. We im-
plement 16 PEs (p = 16) to utilize the 32 HBM channels.
Each HBM channel can input/output 16 32-bit data per cycle
(Ipc = 16). We use BRAM for the implementation of data
buffers in the switches of the interconnection network. Further,
we use URAM [26], a high capacity on-chip memory for
the implementation of the data caching technique discussed
in Section V. We perform Synthesis and Place & Route
using Vivado 2021.1. The reported resource utilization is
shown in Table [TV] We also build a cycle-accurate simulator
for evaluation. The reported throughput is obtained through
simulation on the input data.

B. Benchmarks and Baselines

Benchmark: We evaluate our design using arrays up to 4 GB
(half the memory capacity of HBM). The entire input sequence
is stored in the HBM.

Baseline Sorters: Table [Tl shows the platform specifications
of the baselines with which we compare our design. Section
VII-(D) evaluates the performance of our design and compares
our work with the state-of-the-art parallel sorting implemen-
tations on CPU and FPGA.

C. Resource Utilization

We implement p = 16 parallel PEs with each PE having a
Merge Tree (MT) that accepts 16 input elements (I = 16) and
outputs 16 elements per clock cycle. For the Interconnection
Network, we implement a four-stage butterfly network. Table
[[V] shows the breakdown of the resource utilization. The total
resource consumption of the entire design comprises of the
resource consumption of 16 PEs and butterfly interconnection
network.

D. Breakdown Analysis

B/s)

- - N N
n o [} o n
o o o o o

Throughput (G

512 MB 1GB 2GB

Data size

Il Overall Sorting Performance [ Step-1&2 Performance [[]Step-3&4 Performance
[l Step-5 Performance [ Step-6,7&8 Performance

4GB

Fig. 9: The overall sorting performance for data sizes 512
MB, 1 GB, 2 GB and 4 GB. The overall sorting throughput
is calculated as the total data size divided by the total latency.

The performance of each Step is shown in Figure [9} Note
that the breakdown analysis only includes 4 Steps — Step; _,,

Step;_,, Step; and Stepg_;_g as explained in Section
Since HBM access is half-duplex, in a HBM group, one

channel is used for reading and the other channel is used
for writing data. The overall performance of our algorithm
sorting 4 GB data with a data width of 32 bits per data
element is 34 GB/s where, Step;_, has sorting throughput
of 59.6 GB/s and the other Steps have a sorting throughput of
238.4 GB/s. The overall throughput of our design is bounded
by the performance of the Step with the lowest throughput
(Step;_,). We observe that for 4 GB data, Step,_, runs for 6
passes and each pass reads and writes to the HBM channels
simultaneously.

E. Impact of Optimizations

We perform ablation study to demonstrate the impact of
various proposed optimizations:
Fake Shifting Through this optimization, we circumvent the
communication overhead for 21*61;’ cycles which will otherwise
be used for streaming the data elements in Steps 6 and 8. Thus,
we achieve nearly 20% speed-up in overall sorting throughput.
Data caching We observed that the on-chip memory in Alveo
U280 can accommodate data elements upto 32 MB i.e., 2 MB
data elements/group. The data parallelism for the Sorting Step-
1 can be scaled up by increasing the number of parallel Merge
Trees (MT) until the on-chip resources become the bottleneck.
Given the available on-chip resources, we can scale up the
data parallelism of a MT up to 32 and realize around 30%
improvement in overall sorting throughput.
Step overlapping Through step-overlapping, consecutive
Steps can be overlapped, which can effectively reduce overall
latency. Based on our experiments, by adopting techniques to
hide latency, we obtain up to 22.2% improvement in sorting
throughput compared with implementing Columnsort without
overlapping consecutive Steps.

F. Efficiency of Merging HBM channels

While TopSort [1] is very efficient for sorting the data in
each HBM channel, their overall throughput [1f] is bounded
by the performance in phase 2. In phase 2 of [1]], some merge
trees are idle and it uses only 25% of the HBM bandwidth
thereby limiting the overall sorting throughput of phase 2
to be 38 GB/s. In our design, we implement Steps 3-8 of
columnsort instead of the final merging phase (Phase-2). (1)
We have fixed number of sorting passes involved in Steps 3-8,
which is 3 (as p = 16). (2) Steps 3-8 of Columnsort involves
repeated sorting and data movement (transpose, untranspose
and shifting) within the groups which can fully utilise the
HBM bandwidth. Therefore, the proposed columnsort based
design is efficient for merging the sorted arrays in parallel
HBM channels, and it does not dependent on input data.

G. Scalability Analysis

Table [V shows the resource breakdown analysis on varying
Imt and p at a design frequency of 250MHz.

Scalability in Input Size: We study the scalability of our
design across a range of input size varying from 512MB to
4GB as shown in Figure 9] Figure[9]shows a performance drop
when data size is increased from 1GB to 2GB because 2GB



TABLE III: Comparison with state-of-the-art sorters. Dashes (°-’) indicates no reported result.

Sorter Platform Peak Bandwidth  Algorithm Off-chip Memory  Frequency Th?(;/li:;ll;l)ut
PARADIS CPU - Intel Xeon (E7-8837) Radix sort DDR memory 2.66 GHz 2.3 GB/s
Bonsai FPGA - Virtex UltraScale+ VU9P FPGA 32 GB/s Merge sort 4 DDR channels 250 MHz 7.1 GB/s
Samplesort | CPU+FPGA - Xilinx UltraScale+ VU9P FPGA 32 GB/s Bucket sort 4 DDR channels 250 MHz 7.2 GB/s
TopSort FPGA- Xilinx Alveo U280 FPGA 460 GB/s Merge sort 32 HBM channels 214 MHz 15.6 GB/s
Hypersort FPGA - Xilinx Alveo U280 FPGA 460 GB/s Columnsort 32 HBM channels 250 MHz 34 GB/s
TABLE IV: Resource utilization of the proposed design on 2
Xilinx Alveo U280 Board (Iyr = 32) o 50 1= 200 MHZ '

Component LUTs FFs BRAMs URAMs
Available 1,300K  2,600K 2016 960
16 PEs 688K 917K 0 960
Percentage 52.93%  3527% 0% 100%
Interconnection Network 189K 305K 248 0
Percentage 14.54%  11.73% 12.3% 0%
Total 877K 1222K 248 960
Percentage 67.5%  47.02% 12.3% 100%

TABLE V: Impact on the throughput with increased data
parallelism and clock frequency

Parameters  Frequency  Throughput
Imt = 16 200MHz 19.07 GB/s
Imt = 16 250MHz 23.84 GB/s
Imt = 32 250MHz 34 GB/s

takes 6 sorting passes in Step;_, while sorting 1GB takes 5
passes.

Scalability in Data Parallelism [yt (See Section M): Figure
shows that overall sorting throughput increases superlin-
early with linear increase in data parallelism. However, scaling
in performance is bounded by the limited on-chip resources.

Scalability in Number of HBM groups p: When we fix
the size of input array, we observe a linear increase in overall
sorting throughput with increasing of p as shown in Figure [TT]
TABLE VI: Overall resource utilization on Xilinx Alveo U280
Board when varying Iyt and p

LUTs FFs BRAMs URAMs
p=16, lyr =16 430K (33.07%) 626K (24.07%) 248 (12.3%) 960 (100%)
p =16, Iyt = 32 877K (67.5%) 1222K (47.02%) 248 (12.3%) 960 (100%)
p=38, lyr =32 759K (58.38%) 1039K (39.7%) 93 (4.7%) 960 (100%)
p=4, lyr =32 712K (54.8%) 956K (36.75%) 35 (1.6%) 960 (100%)

H. Comparison with the state-of-the-art

To evaluate the performance of our design, we compare
it with the state-of-the-art work. Table [IT]] lists the platform
specifications of the baselines and the comparison results. We
compare our work with the following baselines:

« PARADIS [28]], a state-of-the-art CPU sorter, implements
the parallel in-place radix sort algorithm to achieve the
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Fig. 10: The overall sorting performance when varying data
parallelism (Iyr) and frequency (through simulation) with p =
16
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Fig. 11: The overall sorting performance when varying the
number of HBM groups (p) and frequency (through simula-
tion)

overall sorting throughput of 2.3 GB/s. They propose
speculative permutation and distributive-adaptive load
balancing method to minimize the overall sorting time.
PARADIS suffers from performance degradation due
to the load imbalance caused by highly skewed data
distribution.

o Samplesort [10], an FPGA sorter implementing bucket
sort, offers overall sorting throughput of 7.2 GB/s. It uses
the CPU for initial coarse-grained partitioning operation
(sampling and bucketing) which limits its scalability and
efficiency.

o Bonsai presents an adaptive sorting solution imple-
mented on Amazon AWS EC2 F1 instance to achieve a
throughput of 7.1 GB/s. However, the scalability of the
merge units is restricted by the DRAM bandwidth.



o TopSort [1] is the state-of-the-art accelerator on HBM-
enabled FPGA. It executes a 2-phase merge sorting
algorithm using a parallel merge tree, achieving an overall
throughput of 15.6 GB/s. However, the 2" sorting phase
in TopSort has idle merge trees near the root of the merge
units which restricts the throughput. Moreover, additional
resources are required to implement the extra logic to
form wider merge trees in phase 2.

Hypersort achieves 2.18 x speed-up in overall sorting through-
put compared to TopSort []1].

Hypersort exhibits better overall sorting performance pri-
marily due to the proposed optimizations: workload reduction
and step overlapping which effectively reduce latency and
improve the overall sorting throughput while data caching,
fake shifting and implementation of customized crossbar al-
leviate memory congestion to enhance bandwidth utilization.
Columnsort algorithm’s inherent load balancing and logic
reuse property further reduces resource consumption and im-
proves the scalability of our design. Thus we observe that
Hypersort is 14.8x and 4.73x faster than state-of-the-art
sorters implemented on CPU [28] and FPGA with external
DDR [8].

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel approach to map
Columnsort algorithm using well-optimized computation
pipelines and hardware-efficient interconnection network on
HBM-enabled FPGA to achieve high-throughput sorting. We
further adopted several algorithm-specific optimizations to
enhance the sorting throughput. Experimental results show
our optimized design yields 14.8x, 4.73x and 2.18x speed-
up compared with state-of-the-art implementations on CPU,
FPGA with external DDR and HBM-enabled FPGA. The main
advantage of the proposed columnsort based design is that
it can efficiently merge the sorted arrays in parallel HBM
channels. We expect the columnsort based design can achieve
higher speedup on the future FPGA devices with more HBM
channels. We plan to improve the design along the following
directions:

Algorithm optimization: We plan to apply columnsort for
sorting the data within each HBM channel. We can view
the stored data in a HBM channel to have multiple columns.
Thereby, we can use a smaller number of comparators with
hardware-efficient interconnection to sort the data within each
column, which can further reduce hardware consumption and
increase the scalability of the design.

Hardware optimization: The interconnection network is the
key to perform the data communication for columnsort. In this
paper, we exploit the optimized butterfly network in a prior
work [17] which is implemented using High-level Synthesis
(HLS). In future, we plan to develop optimized interconnection
network using Verilog HDL which can further reduce the
hardware consumption.
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