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ABSTRACT: Analyses of two high-resolution reanalysis products show that high values of hurricane potential intensity (PI)
are becoming more frequent and covering a larger area of the Atlantic, which is consistent with the lengthening of the tropical
cyclone season previously reported. These changes are especially pronounced during the early months of the storm season
(May–July) in subtropical latitudes. The western subtropical Atlantic features increases in mean PI as well as the areal coverage
and frequency of high PI throughout the storm season; the length of the season with high PI has grown since 1980. The number
of days with low vertical wind shear increases in the tropical North Atlantic during the early and middle months of the storm
season, but trends are mixed and generally insignificant elsewhere. A thermodynamic parameter measuring the ratio of midlevel
entropy deficits to the strength of surface fluxes that work to eliminate them is sensitive to the choice of the pressure level(s)
used to calculate its value in the boundary layer, as well as to subtle differences in temperature and humidity values near the
surface in different reanalysis datasets, leading to divergent results in metrics like the ventilation index that depend on its
value. Projections from a high-resolution simulation of the remainder of the twenty-first century show that the number of
days with high PI is likely to continue increasing in the North Atlantic basin, with trends especially strong in the western
subtropical Atlantic during the early and late months of the season.
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1. Introduction

Assessing whether, how, and why aspects of the observed
record of tropical cyclones change can be a deceptively diffi-
cult problem. Historical records of tropical cyclones have been
constructed from disparate observational methodologies that
have varied with changing technology over time, and they of-
ten required subjective judgements made by different forecast-
ers across the world (e.g., Landsea et al. 2006; Vecchi et al.
2021). If limited to the past four decades, some of these con-
cerns can be diminished by using a globally homogeneous sat-
ellite record spanning the 40 years of global coverage (Kossin
et al. 2013, 2014), making this period the most thoroughly
documented and observed. Kossin (2008) reported that during
this period the length of the tropical cyclone storm season (as
measured by the first and last dates of named storm activity)
underwent a statistically significant increase of about 1 day yr21

in the North Atlantic basin. This particular finding, however,
appears sensitive to the period and geographic area included
in the analysis, as Karloski and Evans (2016) reported when
they revisited these results through the 2014 season: they
found no statistically significant change when the analysis ex-
tended to the full basin [a wider geographic area than Kossin
(2008) used]. Dwyer et al. (2015) found mixed trends in simu-
lations of future climate change, but they argued that increases

in storm counts in a given year tended to drive an increase in
the length of the season from start to finish. Dwyer et al.
(2012, 2014) also reported that annual cycles of tropical sea
surface temperatures (SSTs) and precipitation increase in am-
plitude and peaks shift later in the season in climate model
projections forced with rising greenhouse gases. However,
tropical cyclones do not respond directly to absolute SST
changes, but rather to potential intensity, which depends on
the relationship between SST and the atmospheric thermal
profile in the column above it (e.g., Emanuel 1987; Royer et al.
1998; Emanuel and Sobel 2013).

In a series of pioneering papers, Gray (1968, 1975, 1979)
showed that there are particular large-scale properties common
to the genesis regions of tropical cyclones globally. Among these
are warm SST, atmospheric thermal profiles supporting deep
convection, low deep-layer vertical wind shear, high relative hu-
midity, and elevated low-level absolute vorticity. These environ-
mental factors are generally regarded as necessary conditions for
tropical cyclone (TC) formation, although later work has refined
our understanding of how they permit or limit development and
intensification. An important example is that although TCs in the
modern climate are rarely observed to form over water colder
than 268C (Palmén 1948; Gray 1968), there is no threshold SST
required to create a TC; rather, high potential intensity (Emanuel
1986; Bister and Emanuel 2002) is required (Emanuel 1987;
Royer et al. 1998; Korty et al. 2017). Similarly, while elevated
low-level vorticity is likely important for the formation of individ-
ual TCs, Tippett et al. (2011) showed that vorticity is not gener-
ally a rate-limiting factor outside of very low latitudes.

Genesis indices constructed from an updated set of parameters
like these (see section 2 for additional details) have proven remark-
ably useful in studies of TCs and climate (e.g., Emanuel 2010;
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Tippett et al. 2011; McGauley and Nolan 2011; Menkes et al.
2012; Tang and Emanuel 2012). These indices are con-
structed empirically by maximizing the statistical relation-
ship between observed TCs and values of environmental
conditions, and they have also proven useful in studies of
model projected climate changes and TC activity. For TCs
statistically downscaled from the large-scale properties of
climate models (Emanuel et al. 2008), these environmental
parameters control the response across a wide range of climate
states (e.g., Emanuel 2010, 2013, 2021; Korty et al. 2017;
Lawton et al. 2021), but the relationship between TCs generated
by a climate model and these environmental parameters is more
complex. Camargo et al. (2020) undertook a comprehensive ex-
amination of the TC-like vortices generated in 30 climate models
with varying horizontal resolution. They found that there was no
universal relationship between a model’s number of model-
generated storms and the model’s representation of environmental
conditions. (For example, if a particular model has a mean state
with potential intensity values above what occurs in other mod-
els, it does not necessarily generate more storms than those
other models.) The Camargo et al. (2020) results do not imply
there are no relationships 1) between TC activity in a particular
model and interannual variability in that model’s simulated
environmental conditions or 2) between TC activity and changes
in a model’s environmental conditions due to climate change.
Their analysis showed that there is no universal threshold to
these parameter values common from one model to another and
that there may be especially weak relationships between envi-
ronmental conditions and model-generated storms in coarse
resolution models. In higher-resolution models (with horizontal
resolution from 0.258 to 1.258), Camargo et al. (2020) found that
there is a significant relationship between the magnitude of
vertical wind shear and storm development.

In this paper, we are motivated by the increase since the
1980s of storm activity during the early and late parts of the sea-
son, as shown in Fig. 1. The genesis date of the first named TC
from the best track data (see section 2 and Fig. 1) has moved
earlier by about 2 weeks decade21, consistent with results first
reported by Kossin (2008). (Here we choose to mark the start of
each year on 1 March, so that the rare January event is defined
to be a part of the prior calendar year’s season; no storms have
formed during February or March, making this a sensible break-
point roughly 6 months from the Atlantic season’s peak.) This
shift to earlier formation is also seen in a broader metric, the
10th percentile of storm days, whose time series is constructed
by adding one to each date if any storm existed in the basin.
There is a smaller shift in the date of last storm to form and in
the 90th percentile of storm days (Fig. 1b), but the linear trend
from 1980 to 2019 is not statistically significant. The shift to lon-
ger seasons between 1980 and 2019 (16.47 days decade21 with
p 5 0.01) has occurred in conjunction with an increase in total
storms, consistent with the arguments of Dwyer et al. (2015).
Figures 1c and 1d show the annual time series of the data ex-
tended to 1950, which reveals that the changes since 1980 are
perhaps better viewed as a recovery from a drought of activity
during the 1970s and 1980s and are concurrent with a warmer
state of Atlantic multidecadal variability. Our goal in this paper
is to investigate whether the changes in early and late season

activity that have occurred since then are accompanied by re-
lated changes in the spatial coverage and temporal frequency of
favorable environmental conditions during early, middle, and
late months of the season. We constrain our primary analysis to
the period between 1980 and 2019, which overlaps with the
global satellite coverage and allows a comparison of some reanal-
ysis products that span only this interval; this period spans
the recovery of TC activity from its basinwide drought.

2. Data and background

a. Reanalysis data

To construct the time series of historical data shown in Fig. 1,
we used the best track hurricane dataset (HURDAT2) from
the National Hurricane Center. Cyclones are included only for
the portion of their lifetime that their maximum wind speed
exceeds 17 m s21 (tropical storm intensity and stronger). As
mentioned in section 1, we choose to define the start of each
“year” on 1 March, which makes the occasional January
storm a part of the prior calendar year’s season. We favor
this definition because 1) the annual transition occurs during
the middle of the winter–spring cyclone drought (no storms
form during February or March), 2) it is roughly 6 months
from the peak of activity in the Atlantic, and 3) several
years with January activity follow active seasons, suggesting
that activity in that month might often be thought of as an exten-
sion of the prior year’s season extending across 1 January into a
new calendar year.

We construct environmental factors from daily-averaged tem-
perature, humidity, and horizontal wind component data from
two high-resolution reanalysis datasets. The fifth generation of
the European Centre for Medium-Range Weather Forecasts
(ECMWF) atmospheric reanalysis (ERA5) offers high spatial
resolution and the data used here are from a 0.258 longitude 3

0.258 latitude grid. The National Aeronautics and Space Admin-
istration (NASA) Modern-Era Retrospective Analysis for
Research and Applications, version 2 (MERRA-2) was gener-
ated using the NASA Goddard Earth Observing System
(GEOS) data assimilation system, and provides data beginning
in 1980 (Gelaro et al. 2017). The horizontal resolution of the
MERRA-2 data is 0.6258 longitude 3 0.58 latitude. These (and
several other) reanalysis products provide fields on regular spa-
tial grids and at regular temporal intervals, have a wide selec-
tion of variables calculated using internally consistent methods,
and assimilate a large range of measurements, both in situ and
remotely sensed. These features have rendered them very use-
ful and attractive datasets, although comparisons with direct
measurements are necessary to reveal their strengths and weak-
nesses; prior studies have compared these datasets (and their
predecessors, MERRA and ERA-Interim) with field campaigns
over the tropical North Atlantic (e.g., Vergados et al. 2014;
Robertson et al. 2016; Guan et al. 2018; Luo et al. 2020). Both
MERRA-2 and ERA-5 include daily SST as an input variable
to their reanalyses, and Luo et al. (2020) recently compared
their boundary layer temperature and humidity profiles to data
collected in the tropical North Atlantic during a series of re-
search cruises (Morris et al. 2006; Nalli et al. 2011). We choose
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these two datasets for our analysis to capitalize on the prior
work done with them and to show some of the sensitivity in
calculations of tropical cyclone environmental factors that can
arise from seemingly small differences in the values of bound-
ary layer fields.

b. Climate model data

We also analyze how environmental variables change during
early and preseason months (May–July), peak months of the
Atlantic season (August–October), and in late and postseason
months (November and December) in high-resolution simula-
tions of the second half of the twentieth century and in projec-
tions of the remainder of the twenty-first century, which follow
protocols of the Coupled Model Intercomparison Project

phase 6 CMIP6 (Eyring et al. 2016) and data output require-
ments of the HighResMIP CMIP6 (Haarsma et al. 2016). Knut-
son et al. (2010) among many others have shown that external
forces can have profound effects on TC activity, and we use a
coupled high-resolution (25 km) simulation of CESM from
1950 to 2100 to assess how the annual cycle of favorable envi-
ronmental conditions evolves under the projections of further
anthropogenic change. The simulation is forced using historical
emissions for the period from 1950 to 2014 and by projections
using the representative concentration pathway 8.5 (RCP8.5)
from 2015 to 2100; note that the years that overlap with those
of the reanalysis data are a mixture of forcing by historical emis-
sions (until 2014) and RCP8.5 projections (2015 forward).
Li et al. (2020) showed that the improved boundary layer

FIG. 1. (a) The Julian day of the first day of genesis (blue) and the 10th percentile of storm days (red) of tropical
cyclone (TC) activity in the North Atlantic (NA) from 1980 to 2019 using the best track data from the National Hurricane
Center. (b) The Julian day of the last date of genesis (blue) and the 90th percentile of storm days (red) of TC activity in
the NA. (c) Frequency of storm genesis in each month of the year. (d) Number of storm days in each month of the year.
Statistically significant trend lines for the data in (a) are shown with p value in parentheses, and the gray shading high-
lights the period from 1May to 31 Jul, which we define as the early (and preseason) months in the paper.
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physics and representations of air–sea and air–land interactions
offered by high-resolution simulations leads to improved pre-
dictability of TC genesis.

c. Environmental factors

Tropical cyclones require conditions in the large-scale envi-
ronments to be conducive for development (e.g., Gray 1975)
and intensification. Several decades of work have gone into
identifying the measures of environmental properties and com-
binations of them that best relate to tropical cyclone climatol-
ogy, but generally these environmental factors and the indices
derived from them include both kinematic and thermodynamic
measures of the large-scale flow. Below we briefly review and
justify the parameters used in this paper, although more com-
prehensive discussions have been taken up by Tippett et al.
(2011), McGauley and Nolan (2011), Nolan (2011), Bruyère
et al. (2012), and Korty et al. (2012a,b), among others.

1) INDIVIDUAL FACTORS

Deep-layer vertical wind shear (VWS) is defined here as
the magnitude of the vector difference between the 250- and
850-hPa horizontal wind vectors. [Many studies define VWS as
the difference in winds between 200 and 850 hPa (e.g., Wong and
Chan 2004; Kim et al. 2009; Zheng et al. 2020), but other papers
define the upper level using 250 hPa (e.g., Korty et al. 2017; Li
et al. 2020) or 300 hPa (e.g., Gualdi et al. 2008) instead. The qual-
itative conclusions of our analysis are insensitive to the choice of
upper-tropospheric pressure level, and we choose 250 hPa to be
able in future work to compare with statistically downscaled re-
sults (e.g., Emanuel et al. 2008; Korty et al. 2017; Lawton et al.
2021) that use this level.] Strong VWS hinders the genesis and
development of TCs not only by disrupting the vertical alignment
of a developing circulation, but also thermodynamically via venti-
lation of ambient dry air into the developing convective core
(Tang and Neelin 2004; Tang and Emanuel 2012).

Potential intensity (PI; Emanuel 1986; Bister and Emanuel
1998) defines a thermodynamic limit on TC intensity based on a
steady-state balance between a cyclone’s acquisition of energy
from ocean surface fluxes and the dissipation of a cyclone’s
wind field against dissipative sinks. It is a fundamental property
of TC environments, because while warm sea surface tempera-
tures (SSTs) are found where TCs form (Palmén 1948; Gray
1968), there is no common threshold SST for TC formation
across climates (Emanuel 1987; Royer et al. 1998; Korty et al.
2017; Lawton et al. 2021). Rather, the common element in TC
formation is high PI (Korty et al. 2012b): PI can only be large if
the atmosphere supports deep convection of surface parcels
heated by surface enthalpy fluxes. If the thermodynamic sound-
ing does not (e.g., by low- or midtropospheric temperature in-
version in the column) support it, PI is low and TCs cannot be
maintained [see section 3 of Korty et al. (2012b) for further dis-
cussion]. We calculate PI using an algorithm first devised by
Bister and Emanuel (2002):

PI 5
CK

CD

SST
To

(CAPE* 2 CAPEb)
[ ]1=2

: (1)

Here CAPE* is the convective available potential energy
(CAPE) of an air parcel lifted from saturation at the sea level
pressure in reference to the local environmental sounding,
CAPEb is the CAPE of an ambient boundary layer parcel,
SST is the sea surface temperature (in kelvins), To is the tem-
perature at the level of convective outflow (found iteratively
using the algorithm), and CK and CD are exchange coefficients
for enthalpy and drag, respectively (their ratio is set to 0.9
here).

Gray (1975) understood that midtropospheric levels of hu-
midity were important to TC development. Higher midlevel
humidity reduces the amount of water required to bring a col-
umn to saturation, and higher ambient humidity levels also re-
duce the dryness of air brought down to the surface by
convective downdrafts during the genesis process (Nolan
2011). The nondimensional ratio of the strength of the con-
vective entropy flux to that of the surface entropy flux proved
important in axisymmetric hurricane models (Emanuel 1989,
1995), and this parameter is defined as

x 5
sb 2 sm
s*s 2 sb

: (2)

Here s is the moist entropy and the subscripts b and m refer to
boundary layer and midtropospheric pressure levels, respectively
(950 and 600 hPa in this paper); s*s is the moist entropy value a
parcel has when saturated at the surface pressure and SST.
When quasi-equilibrium assumptions hold, the boundary layer
entropy is tethered via a moist adiabat to the saturation entropy
throughout the free troposphere, and thus sb ≈ s*m. Under these
conditions, the numerator of (2) can be regarded as a measure of
the saturation deficit of the midtroposphere (sb 2 sm ≈ s*m 2 sm)
and hence is related to midcolumn dryness.

Luo et al. (2020) compared MERRA-2 and ERA-Interim SST
and atmospheric temperature and humidity profiles over the
Atlantic to in situ measurements taken during a field campaign.
They found that differences between these reanalyses and obser-
vations were small (generally skin temperatures differed on the
order of 0.1 K, lower-tropospheric temperature profiles remained
within 2 K of the sounding, and relative humidity discrepancies
were smaller than 10%). Nevertheless, subtle differences in
measurements can affect the numeric values of the environmen-
tal parameters discussed above, particularly x, which is a highly
nonlinear metric strongly sensitive to humidity and temperature
values. Luo et al. (2020) showed that boundary layer relative hu-
midity in reanalyses generally agrees well with the variations
measured by radiosondes (cf. their Fig. 11), but that MERRA-2
had slightly lower relative humidity values than ERA-Interim ad-
jacent to the surface (cf. their Fig. 15); ERA-Interim was often
drier than MERRA-2 above 950 hPa when boundary layers
were deep (cf. their Fig. 15). We found that there are significant
differences in the values (not trends) of x computed in ERA5
and MERRA-2 if sb were calculated from a single level such as
925 or 975 hPa to represent the boundary layer value. However,
in both of these datasets using data from 950 hPa to calculate sb
best agreed with the values of sb obtained by integrating all avail-
able levels between 1000 and 900 hPa. The differences in values
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of x between the two datasets were also smallest when com-
puted using 950-hPa data. For these reasons, we calculate sb
using 950-hPa data in this paper.

2) COMBINED INDICES

The thermodynamic and VWS parameters outlined in the last
subsection can be combined into genesis indices, and a substan-
tial amount of prior work has investigated the performance of
particular combinations. Our primary purpose here is to analyze
how the individual environmental factors vary during the early
and late season, but a few of these combined metrics are useful
as summary metrics. Emanuel and Nolan (2004) proposed an up-
date of Gray’s (1975) genesis index by combining PI, VWS, abso-
lute vorticity, and relative humidity. Emanuel (2010) argued that
x given by (2) was preferable to relative humidity for studies of
involving changes in climate, and Tippett et al. (2011) showed
that absolute vorticity should be considered only at very low lati-
tudes (i.e., absolute vorticity values poleward of ∼158 latitude do
not constitute a rate limiting factor for TC formation). Bruyère
et al. (2012) showed that, at least in the Atlantic, good relation-
ships between TC activity and a simplified index using only PI
and VWS can be obtained; their formula, defined as a cyclone
genesis index (CGI), is given by

CGI 5
PI
70

( )3
[1 1 0:1(VWS)]22: (3)

Bruyère et al. (2012) argued that including relative humidity
did not significantly augment the CGI, but variations in relative
and even absolute humidity levels during the short period on
which these indices are trained are small compared to potential
changes in absolute humidity under larger climate change. Tang
and Emanuel (2012) showed that ventilation, which is the prod-
uct of the strength of the VWS with measures of midtropo-
spheric dryness, can be measured using a ventilation index L

that is a useful predictor of environments that support rapid in-
tensification. This index is a nondimensional ratio defined by

L 5
x 3 VWS

PI
(4)

and it relates the strength of ventilation to the strength of sur-
face fluxes that supply moisture to the convection. We use (3)
and (4) as ways of summarizing changes in the large-scale envi-
ronment. The ventilation index (4) incorporates the additional
effects from changing temperature and humidity levels that are
potentially important under climate change (cf. Emanuel et al.
2008). However, Bruyère et al. (2012) showed that the simpler
index given by (3) captures the interannual variability of Atlantic
activity effectively during the period of historical observations.
Given the sensitivity of x to the source of data and to the levels
used to calculate it, we urge caution in interpreting differences in
trends between (3) and (4).

3. Changes in environmental conditions

In this section we discuss changes in the length of the season
with favorable environmental conditions, with primary foci on

the early and late months of the Atlantic TC season. We calcu-
late TC environmental factors using both ERA5 and MERRA-2
data, as discussed in section 2a. The storm season has grown
longer over the North Atlantic during the last 40 years (Kossin
2008; Karloski and Evans 2016), and the data in Fig. 1 show
that there are especially prominent changes during the early
months of the season. The median date of the first named storm
in the 1980s was 24 July, but this shifted to 27 May during the
2010s (as noted earlier, we begin our year on 1 March, so the
January 2016 storm is considered to be a part of the 2015 sea-
son). Similarly, the median date of the 10th percentile of storm
days shifted from 8 August in the 1980s to 16 July in the 2010s.
If one fit a linear trend to this 40-yr period, the date of first TC
genesis is moving 1.38 days yr21 earlier (trend significance: p
5 0.01), and the date of the 10th percentile of storm days shifts
0.57 days yr21 earlier (p 5 0.10). There are no significant
movements in the last date of storm activity (the median is 16
November during the 1980s and 6 November during the
2010s) or in the 90th percentile of storm days (24 October is
the median during both the 1980s and the 2010s), but there is
an increase in the total number of storm days in all months of
the storm season, including the late ones during autumn.

To aid our analysis and discussion, in addition to examining
changes in the entirety of the North Atlantic basin, we exam-
ine the responses in three subregions defined by boundaries
listed in Table 1 to isolate effects of changes in subtropical
and midlatitude parts of the basin from those that occur in the
tropical main development region. Approximately 80% of all
geneses occurs in one of these three areas, and the trends to
an earlier start to the season are evident for each of these sub-
regions as well (see Table 1).

a. Early season (May–July) climatology

Given that activity during the early months of the season
has increased over the past 40 years, we investigate how envi-
ronmental conditions that favor TC development have
changed in different parts of the Atlantic basin during these
months. We begin with an analysis of the 40-yr mean of
May–July values of the TC environmental parameters dis-
cussed in section 2 using both ERA5 and MERRA-2 datasets.
We choose this 3-month period to define the early (and pre-
season) months based on data shown in Fig. 1: by the end of
July in most years, the Atlantic has already experienced 10%
of that season’s storm days (Fig. 1a), and the first occurrence
of genesis has not infrequently occurred during May (Fig. 1a).
We isolate these months from the much more active months
of August–October (Figs. 1c,d) to assess whether environ-
mental conditions have also become more conducive during
the beginning part of the season.

The left column of Fig. 2 shows 1980–2019 mean climato-
logical values of May–July (MJJ) averages of PI (Fig. 2a),
VWS (Fig. 2c), and the CGI (Fig. 2e) calculated using daily
ERA5 data. Panels on the right side of Fig. 2 show the differ-
ence in 1980–2019 MJJ climatological values between
MERRA-2 and ERA5. Locations where the difference be-
tween ERA5 and MERRA-2 MJJ climatological means are
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statistically significant (at 99% confidence level) are marked
with a gray cross in the right panels.

There are some notable differences in the mean climatolog-
ical values between ERA5 and MERRA-2. As seen in
Fig. 2b, PI is higher in ERA5 than in MERRA-2, and this is
driven primarily by larger near-surface humidity levels and
slightly warmer lower-tropospheric temperatures in ERA5
than in MERRA-2 [cf. Luo et al. (2020), who found similar
differences between ERA-Interim and MERRA-2]. To test
whether the increased vertical resolution of ERA5 also af-
fected the PI values, we recalculated ERA5 PI using only the
subset of pressure levels contained in MERRA-2 (ERA5 con-
tains additional data at 225, 175, and 125 hPa, while
MERRA-2 has an additional level of data at 725 hPa). We
found that ERA5 PI remained larger than MERRA-2 PI, but
that differences in PI values with and without the upper-
tropospheric levels were generally no larger than 1 m s21. This
suggests the PI differences seen in Fig. 2b are primarily attribut-
able to differences in boundary layer temperature and humidity
between the datasets, with a smaller, secondary contribution
from different near-tropopause vertical resolution. The differ-
ences in VWS (Fig. 2d) between datasets are small (less than
1 m s21) compared to mean values and are not statistically signif-
icant across all of the NA basin. CGI values during MJJ are large
in the Gulf of Mexico (GOM) and the southern half of the west-
ern subtropical North Atlantic (WSNA) (Fig. 2e), but differences
between the datasets here are small and insignificant. There are
also large values of CGI during MJJ in the southwestern part of
the TNA and these values are significantly lower in MERRA-2
than in ERA5 owing to the lower PI and higher VWS in that da-
taset found here.

Figure 3 shows the 1980–2019 MJJ climatology for x given
by (2) (top row), its numerator, which is proportional to the
entropy deficit (ED) of the middle troposphere (second
row), its denominator, which is proportional to the strength
of the surface fluxes (SF) (third row), and the logarithm of
the ventilation index L given by (4) (bottom row). The left

panels use daily data from ERA5, while the right panels
show the differences in values when data from MERRA-2
are used.

Values of x are lower (i.e., more favorable) in the GOM
and WSNA than in the TNA during MJJ. The numerator,
which is proportional to midtropospheric entropy deficits, is
smaller in the eastern GOM and in the WSNA than in the
TNA, indicating that a smaller amount of water vapor is
needed to saturate the middle troposphere here. The denomi-
nator of (2), which is proportional to the strength of the sur-
face entropy fluxes, is highest in the GOM, the southern part
of the WSNA, and along the Gulf Stream near the southeast
coastline of the United States. The high values of SF near the
U.S. coastline in MJJ are slightly smaller when calculated us-
ing ERA5 data compared to calculations with MERRA-2.
Here MERRA-2 features drier air in the boundary layer,
leading to larger thermodynamic disequilibrium; the differ-
ence in SST between ERA5 and MERRA-2 is negligible here
(not shown). Figures 3d and 3f show statistically significant
differences in values of both ED and SF over the Caribbean
Sea between the two datasets. Temperatures here at 600 hPa
are warmer in MERRA-2 than in ERA5, but they are lower
at 950 hPa than in ERA5; MERRA-2 also has higher 950-hPa
humidity. As we noted in section 2c(1), the numeric values of
x are quite sensitive to the vertical level used to compute its
boundary layer entropies. We chose 950 hPa here as using
data from that level most closely estimated values vertically
integrated over the 1000–900-hPa layer as well as minimized
the difference between ERA5 and MERRA-2.

Given the smaller SF values in ERA5 in the Gulf of Mexico
and western subtropical North Atlantic to the east of the U.S.
coastline, x is smaller in MERRA-2 than in ERA5 (Fig. 3b).
While combined metrics like CGI and the ventilation index
show different numerical values between the datasets (Figs. 2f
and 3h, respectively), the differences are generally not statisti-
cally significant. The exception to this is an area in the tropical
North Atlantic (TNA) immediately east of the Lesser

TABLE 1. Definitions of three subregions of the North Atlantic (NA) basin used in this paper, median dates for the 1st, 10th, 90th,
and 99th percentiles of storm days (SD) in each region over the period 1980–2019, and trends over the 1980–2019 period for the 1st,
10th, 90th, and 99th percentiles of storm days in each subregion. The p value for each trend is given in the parentheses, and data in
boldface highlight significant trends (assessed at confidence interval of p , 0.10).

Subregions Tropical North Atlantic (TNA) Gulf of Mexico (GOM) Western subtropical North Atlantic (WSNA)

Latitude range 88–208N 188–308N 208–408N
Longitude range 658–208W 1008–808W 808–608W
1st SD
Median 8 Aug 30 Jun 5 Jul
Trend (p) 26.67 (0.04) 210.61 (0.06) 210.09 (0.09)

10th SD
Median 15 Aug 16 Jul 3 Aug
Trend (p) 24.40 (0.12) 213.19 (0.01) 210.59 (0.05)

90th SD
Median 22 Sep 6 Oct 4 Oct
Trend (p) 3.48 (0.12) 28.23 (0.12) 3.89 (0.20)

99th SD
Median 27 Sep 9 Oct 19 Oct
Trend (p) 5.37 (0.46) 24.79 (0.27) 4.46 (0.36)
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Antilles, where the differences in PI between datasets is
enough to drive CGI to statistically significantly higher values
in ERA5 than in MERRA-2. We take from all of these com-
parisons evidence that the numeric values of these parameters
are sensitive to subtle differences in humidity and thermal
profiles as well as to vertical resolution of datasets. Despite
these differences, we show below there are trends in some
fields common to both datasets.

b. Changes from 1980 to 2019

Figure 4 shows trends in the MJJ values of environmental
factors over the 40-yr period from 1980 to 2019 in both ERA5
(left column) and MERRA-2 (right column). Significance was
assessed using a Mann–Kendall test with a 90% confidence
level; this test assumes that data are independent (from one
year to another) but does not presume that trends, if present,
are linear.

PI shows sharp and statistically significant increases in the
GOM, WSNA, and in the western part of the TNA (i.e., east
of the Lesser Antilles). This increase in PI from 1980 to 2019
is significant in both ERA5 and in MERRA-2 [although the
absolute values of PI differ between the datasets (Fig. 2b), the
upward trend is common to both]. Figure 5 shows that in both
the GOM and in the WSNA, the area covered by high values
of PI (i.e., PI . 55 m s21)1 becomes more extensive during
May–July as time progresses from the 1980s to 2010s, with sta-
tistically significant increases in the fraction of each area cov-
ered by high PI values in the early parts of the season. This

FIG. 2. (left) May–July (MJJ) mean in environmental genesis factors over the NA from1980 to 2019 using ERA5
and (right) the difference between MERRA-2 and ERA5. (a) Potential intensity (PI; in m s21) in ERA5 and (b) the
difference between MERRA-2 and ERA5. (c) Vertical wind shear between the 250- and 850-hPa levels (VWS; in
m s21). (d) As in (b), but for VWS. (e) MJJ mean cyclone genesis index (CGI) in ERA5. (f) As in (b), but for CGI.
The black rectangles in each panel show the subregions of the NA discussed in the text. Gray crosses in the panels of
the right column show grid points with a statistically significant difference (at 99% confidence) between ERA5 and
MERRA-2 data.

1 PI obtains large values only where deep convection is possible.
See, for example, the discussion in section 3 of Korty et al.
(2012b), which shows that values of PI . 55 m s21 are obtained
only when the equilibrium level (or level of neutral buoyancy) is
found in the upper troposphere.
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trend to more extensive spatial coverage continues through the
heart of the season in the WSNA; the GOM features nearly
universal coverage of high PI from July to early October
throughout the entire 40-yr period. In the TNA, the increase in
PI values seen in the areas immediately to the east of the Lesser
Antilles in MJJ (Figs. 4a,b) occurs where PI is already large; the

areal coverage of high PI in this region does not show statisti-
cally significant increases until the main part of the season.
Both the GOM and WSNA also show statistically significant in-
creases in high PI during the late part of the season, showing
that the length of the season with a large amount of territory
supporting high PI has grown in these regions over the past

FIG. 3. May–July (MJJ) climatological mean from 1980 to 2019 of (a) x computed with ERA5 data. (b) Difference
in MJJ x climatological means computed with MERRA-2 and ERA5 data. (c) The MJJ climatological mean
(1980–2019) of the numerator of x, which is proportional to midtropospheric entropy deficits (ED), using ERA5 data.
(d) As in (b), but for ED. (e) MJJ climatological mean (1980–2019) of the denominator of x, which is proportional to
surface fluxes of entropy (SF) using ERA5 data. (f) As in (b), but for SF. (g) Base-10 logarithm of the MJJ
(1980–2019 mean) ventilation index L using ERA5 data. (h) As in (b), but for log10L.
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FIG. 4. The trend in May–July (MJJ) values of environmental factors from 1980 to 2019. Values using
ERA5 data and (right) MERRA-2. (a),(b) Trends in PI (in m s21 decade21). (c),(d) Trends in VWS
(in m s21 decade21). (e),(f) Trends in CGI. (g),(h) Trends in x. (i),(j) Trends in the base-10 logarithm
of ventilation index (log10L). Units in (e)–(j) are change in value per decade. Points where trends are
statistically significant (p, 0.10) are marked with gray crosses.
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40 years. Areal coverage of high PI also increases from 1980 to
2019 during the peak months of the season in the WSNA.

Figure 6 shows these changes in a slightly different way: the
percentage of each region (left: GOM; right: WSNA) with PI
exceeding the value shown on the y axis is plotted over the
course of the season in the 1980s (top) and again for the 2010s
(middle), with the difference between them shown in the bot-
tom row. Territorial coverage of high PI not only expands to
earlier and later in the year, but the probability of finding high
values of PI in each month of the season increases also (the
curves not only expand left and right but also move up). Figure 6
was constructed using data from ERA5, but the behavior is qual-
itatively similar using MERRA-2 data (not shown).

While mean values of PI increase and the percentage of
time and space covered by high values of PI also increase from

1980 to 2019, VWS shows small but statistically significant
changes during MJJ in parts of the GOM (Fig. 4c). VWS
shows a statistically significant increase (a condition that is less
favorable) in the western GOM during MJJ but a statistically
significant decline (a favorable change) in the vicinity of
Florida in both datasets (Figs. 4c,d). The low values found
in the southern TNA (Figs. 2c,d) show a further significant
decline in MERRA-2 (Fig. 4d), but there is no significant
change in ERA5 (Fig. 4c). Across much of the basin, there
are only small (i.e., changes less than 0.5 m s21 decade21)
and statistically insignificant changes over the period. When
combined with PI, these changes lead to increases in MJJ
CGI near Florida, in much of the WSNA, and in the western
TNA nearest the Lesser Antilles in both ERA5 and
MERRA-2 (Figs. 4e,f).

FIG. 5. Hovmöller diagrams for the fraction of (a),(d) the GOM, (b),(e) the WSNA, and (c),(f) the TNA covered by PI . 55 m s21

from 1 Mar to 31 Dec each year. Data from (top) ERA5 and (bottom) MERRA-2. The black curves below each Hovmöller diagram
show trends for each day of the year in areal coverage, with statistically significant (p, 0.10) positive trends shown in pink. (There are no
statistically significant negative trends in coverage.) Units in each panel are the percentage of the subregion with PI . 55 m s21, and the
units of trends are % decade21.
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As we mentioned earlier, calculations of x turn out to be
quite sensitive to the differences in temperature and humidity
values between ERA5 and MERRA-2, and these discrepan-
cies can lead to different trends when calculated with ERA5
or MERRA-2. There is a statistically significant decrease in
MJJ climatological values of x (i.e., this parameter becomes
more favorable with time) over the GOM and northern part
of the WSNA in ERA5 (Fig. 4g), but there are no significant
trends here in MERRA-2 (Fig. 4h). The southeastern part of
WSNA shows a statistically significant increase in x (i.e., be-
comes less favorable with time) in both MERRA-2 and
ERA5. Among the reasons for the differences in trends in the
GOM and WSNA are subtle differences in humidity levels
between ERA5 and MERRA-2: over the GOM and WSNA,
MERRA-2 relative humidity levels at 600 hPa are higher
during MJJ than in ERA5 in the 1980s and 1990s, but the
differences between datasets diminish from the early 2000s
onward. Conversely, relative humidity levels at 950 hPa are
larger in ERA5 than in MERRA-2 over GOM and WSNA
during MJJ in the 1980s and 1990s, with differences between
datasets again diminishing after about 2000. The numeric
value of x is sensitive to these differences in data, and they

are substantial enough to have consequences for trends in
combined metrics like the ventilation index (Figs. 4i,j). In
ERA5, the ventilation index decreases (becomes more favor-
able) near Florida and in much of the WSNA, consistent with
the increases in CGI (it also becomes more favorable). But us-
ing data from MERRA-2, the ventilation index shows no sig-
nificant differences over most of the WSNA, although it does
show consistency with changes in CGI (i.e., both trends to
more favorable MJJ conditions) in the small area surrounding
Florida. There is qualitative agreement in both ERA5 and
MERRA-2 that PI and CGI increase near Florida and the
U.S. Atlantic coastline. The ventilation index also becomes
more favorable during the early season here in ERA5, but the
discrepancy in how (4) changes with MERRA-2 data under-
scores its sensitivity to subtle differences in calculation.

c. Changes in coverage of favorable conditions across the
North Atlantic basin

In this section, we consider changes in environmental pa-
rameters across all of the North Atlantic (the three subregions
discussed extensively in prior sections, plus the Caribbean
Sea) and throughout the entire length of the TC season. The

FIG. 6. (a) The percentage of the area of the GOM having PI exceeding the value shown on the y axis as a function
of day of the year during 1980–89 computed using ERA5 data. (b) As in (a), but for the WSNA. (c) As in (a), but for
the 2010–19. (d) As in (b), but for 2010–19. (e) Difference in coverage of the GOM between the 2010s and 1980s with
statistically significant differences (at 90% confidence) marked by black crosses. (f) As in (e), but for WSNA.
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number of storm days (Fig. 1d) has increased in recent decades,
and there are statistically significant increases from 1980 to 2019
during the months of July, September, and October. We focus
here on the parameters that demonstrate trends from 1980 to
2019 during at least some part of the season, and we note that
most of those documented below are seen in both ERA5 and
MERRA-2 (although discussion of any discrepancies between
datasets is noted, where they occur). As noted earlier, the most
prominent differences between datasets often arise in time se-
ries of x or in those of parameters involving it (e.g., the ventila-
tion index).

To assess whether the frequency of favorable conditions in
any given environmental factor is changing, we define thresh-
olds for favorability based on results from prior studies (Korty
et al. 2012b; Tang and Emanuel 2012; Bruyère et al. 2012;
Tang and Camargo 2014; Rios-Berrios and Torn 2017). Our
results are qualitatively similar if thresholds are varied slightly
from values used here. We define favorable VWS when its
daily value is less than 10 m s21; favorable PI is defined as
larger than 55 m s21 (Korty et al. 2012b); favorable values of
x are those less than 0.5; favorable CGI is larger than 0.3; and
the ventilation index is defined to be favorable if the base-10
logarithm of its value is less than 21.4. Because x is a mean-
ingful quantity only if deep convection is possible, we place
an additional constraint on its definition of favorability: for x
to be labeled favorable, not only must x , 0.5 but the level of
neutral buoyancy (LNB) from the PI algorithm on that day
and at that location must also have a pressure less than
500 hPa (i.e., convection must be able to reach the upper
troposphere).

Figure 7 shows Hovmöller diagrams for the fraction of
the entire NA basin with favorable values each day from
1980 to 2019 for each environmental factor. There is an in-
crease in coverage of low VWS during the early and late
part of the seasons (also see Figs. 4c and 4d for trends in
MJJ mean). There is no coherent shift in the coverage of
low x; this parameter will increase with warming if relative
humidity does not also rise, and its sensitivity to variations
in how it is calculated and to subtle differences in data was
noted earlier. The major shift occurs in PI, and in both
ERA5 and in MERRA-2 high PI covers larger amounts of
the basin as time progresses forward over the 40 years ana-
lyzed. These changes are statistically significant over large
parts of the season, especially during the peak months from
August into autumn.

Figure 8 shows that the increase in coverage of high PI and
of low VWS lead the coverage of high values of CGI to in-
crease during the early and late parts of the season. (Figure 8
shows data computed from ERA5, but this pattern of statisti-
cally significant increases in the early and especially late part
of the seasons is also evident using MERRA-2.) The GOM
and WSNA show increases in coverage of high CGI early and
late in the season, but the largest change occurs in the TNA.
Here the areal extent of high CGI is much larger after 2000
during June and from September to November than as the
case in the late twentieth century. This is consistent with the
significant increase in coverage of high PI coupled with an in-
crease in coverage of low VWS. There is an increase in the

length of the season with low ventilation index also (not
shown), but the changes are less prominent than CGI as it de-
pends on PI less strongly than CGI and is also affected by var-
iations in x.

Figure 9 summarizes the trends from 1980 to 2019 in each
of the environmental parameters. To facilitate discussion, we
break the season into three periods: early [May–July MJJ)],
middle [August–October (ASO), the most active months of
the season; cf. Figs. 1c,d), and late [November and December
(ND)]. We tabulate the number of days with favorable values
for each parameter (defined using the same thresholds used in
Figs. 7 and 8) at each grid point, and these tabulations are
then spatially averaged for separately for each region (GOM,
WSNA, or TNA) as well as for the entire NA basin (GOM,
TNA, WSNA, and Caribbean Sea together). Trends from
1980 to 2019 within early, middle, and late months of the sea-
son are assessed for each parameter (calculated with ERA5
data and repeated using MERRA-2 data). Positive trends
(colored with yellow, orange, or red in Fig. 9) represent an in-
crease in the number of days with favorable values of a partic-
ular parameter (i.e., large values of PI or CGI, small values of
VWS, x, or L), and negative trends (colored with blue or pur-
ple in Fig. 9) represent a decrease in the number of days with
favorable values. Nearly all of the statistically significant
trends that are common to both ERA5 and MERRA-2 are
positive (i.e., an increasing number of days featuring favor-
able conditions).

Across the entire NA basin (Fig. 9, top row), the number of
days with favorable PI increases in all months of the year, and
the rise is statistically significant in both datasets during the
middle and late months of the season; the rise is also statisti-
cally significant during MJJ in the MERRA-2 dataset. When
averaged across the full basin, the number of days favorable
CGI undergoes a statistically significant increase during the
middle and late months of the season, driven primarily by the
increase in PI. There is an increase in the number of days with
low x and L during ASO and ND, but the trend is significant
only when calculated using ERA5 during ASO. In the TNA,
the number of days with favorable values of most parameters
increases during ASO, and the trends in PI and CGI are sta-
tistically significant in both datasets. There are statistically sig-
nificant increases in the number of days with high PI in the
GOM during MJJ and ASO in both ERA5 and MERRA-2,
and the number of days with high PI grows in early, middle,
and late months of the season in the WSNA (using data from
ERA5 or MERRA-2).

In summary, we find that there is a statistically significant
increase in the number of days with high values of PI in all
parts of the basin and in most months of the season. There
are increases early and middle months of the storm season in
the GOM and WSNA, and in the TNA in the season’s peak
and autumn months. The number of days with high CGI in-
creases across full basin in ASO and ND, as well as in TNA
during ASO. Bruyère et al. (2012) argued that CGI captured
the behavior of TCs in the North Atlantic during the last sev-
eral decades, and that more complicated metrics incorporat-
ing measures of humidity may not be necessary in this basin.
Although mostly statistically insignificant, note that there are

J OURNAL OF CL IMATE VOLUME 355248



differences in the sign of trends in x and L in many of the sub-
regions between ERA5 and MERRA-2, underscoring the
need to pay close attention to the sensitivity of these parame-
ters to the temperature and humidity data used to calculate
them.

4. Changes to environmental conditions in a
high-resolution projection

Future warming resulting from increase in carbon dioxide
and other greenhouse gases has been shown to have the ability
to alter many properties of the climatology of tropical cyclones
(e.g., Sobel et al. 2016). Dwyer et al. (2015) showed that the
North Atlantic season length for tropical cyclones downscaled

from projections in CMIP3 and CMIP5 increased over the
course of the warming twenty-first century, but that direct simu-
lations using a high-resolution atmospheric model (SST was
prescribed) produced a shorter season. They also showed that a
tropical cyclone genesis index (TCGI; Camargo et al. 2014) that
includes saturation deficits as a predictor has a shorter season
with high values under CMIP5 projections of warming (cf. their
Fig. 7). Here we revisit these results to focus on the changes of
individual environmental factors in different months of the
season; we use a new high-resolution coupled simulation of
projected changes using a CESM run contributed to the
HighResMIP.

As introduced in section 2b, the simulation we analyze here
was implemented following the protocols established for

FIG. 7. (a) Hovmöller diagram of the fraction of the area of the NA basin VWS, 10 m s21 using ERA5 data. (b) As in (a), but the frac-
tion of the NA basin with favorable values of x (see text for details). (c) As in (a), but for fraction of the area with PI . 55 m s21.
(d)–(f) As in (a)–(c), but constructed using MERRA-2 data. The black curves below each Hovmöller diagram are trends in daily values
over the period 1980–2019; pink shadows highlight statistically significant (p , 0.10) positive trends, and blue shadows highlight statisti-
cally significant negative trends. Units in each Hovmöller diagram are percentage of NA basin with favorable conditions, and the units of
each trend are% decade21.
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CMIP6 (Eyring et al. 2016) and data were output with a fre-
quency to meet the requirements of the HighResMIP CMIP6
(Haarsma et al. 2016). A 130-yr coupled atmosphere–
ocean–land–ice model simulation control simulation was

generated with perpetual 1950 greenhouse gas (GHG) emis-
sions, and the coupled transient climate simulation analyzed
here was initialized from the end of the control run. The tran-
sient run was forced by observed GHG emissions from 1950

FIG. 8. (a) Hovmöller diagram of the fraction of the entire NA covered with CGI . 0.3 for each day of the season
using ERA5 data. (b) As in (a), but for GOM only. (c) As in (b), but for WSNA. (d) As in (b), but for TNA. The
black curves below each Hovmöller diagram show their trends, with statistically significant (p , 0.10) positive trends
shown in pink and negative trends in blue. Units of each Hovmöller diagrams are percentage of area covered by
favorable CGI values, and the units of trends are % decade21.

J OURNAL OF CL IMATE VOLUME 355250



to 2014 and then under GHG emissions projected in RCP8.5
from 2015 to 2100. We analyze two portions of this simulation:
1) the years that overlaps with those we analyzed using rean-
alysis data (1980–2019) and 2) the continued projections from
2020 to 2100. Note that the years that overlap with those of
the reanalysis data are a mixture of those forced by historical
emission levels (until 2014) and RCP8.5 projections (2015 for-
ward). Averaged over 1980–2019, this simulation of CESM
features surface and tropospheric mean temperatures slightly
higher than observed in ERA5 or MERRA-2, but relative hu-
midity over the GOM, WSNA, and TNA slightly lower than

in the reanalysis sets. The simulation has lower PI and VWS
and higher x in the Atlantic during 1980–2019 than was calcu-
lated using the reanalysis data.

Given these differences, an ensemble of model simulations
would offer preferential advantages by averaging over differ-
ent biases and deficiencies present in any one particular simu-
lation. However, the volume of data we analyze here is
considerably larger than what is customarily examined in
studies of TC environmental factors: not only is there very
high spatial resolution, but our calculations of these parame-
ters are done with daily (rather than monthly) data. Given

FIG. 9. (a) Trend in the number of days with favorable values of various environmental factors across the NA basin in
the early (MJJ), middle [August–October (ASO)], and late months of the Atlantic TC season [November and December
(ND)] using ERA5 data. Favorable values of each parameter are as defined in the text: PI. 55 m s21, VWS, 10 m s21,
CGI. 0.3, x , 0.5, and LNB, 500 hPa, and log10L , 21.4. (b) As in (a), but using data fromMERRA-2. (c),(d) As in
(a) and (b), but for TNA. (e),(f) As in (a) and (b), but for GOM. (g),(h) As in (a) and (b), but for WSNA. Trends that
are statistically significant (p, 0.10) are marked with a cross; units in all panels are number of days per decade.
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this very large amount of data, we choose to introduce our
analysis of this single high-resolution simulation here in or-
der to illustrate the type of comparisons that are becoming
possible with high-resolution simulations, but we encourage
readers to bear in mind that future work will need to be
done to assess the robustness of these particular compari-
sons. Nevertheless, we document noteworthy trends in PI
that appear prominently both in the reanalysis data exam-
ined in section 3 and the projections in this simulation pre-
sented below.

The top row of Fig. 10 shows the number of days (averaged
over years 1980–2019) with PI . 55 m s21 in the simulation
during the early months of the season (left column) and in the
late part of the season (right column) across the North Atlan-
tic. The middle row shows how the number of days with high
PI changes in the projection of the next four decades: there is
a statistically significant increase in the number of days with
high PI during both the early and late parts of the season
across much of the subtropics. The bottom row shows that
this pattern continues into the last four decades of the twenty-

FIG. 10. (a) The average number of May–July days with PI . 55 m s21 during the period 1980–2019. (b) The average
number of November and December days with PI . 55 m s21 during the period 1980–2019. (c) The change in the aver-
age number of May–July days with PI. 55 m s21 during 2020–59 from the mean shown in (a) (1980–2019). (d) As in (c),
but for November and December. (e) The change in the average number of May–July days with PI . 55 m s21 during
2060–100 compared to 2020–59. (f) As in (e), but for November and December. Changes that are statistically significant
(at 90% confidence interval) are marked with a gray cross. Units in all panels are number of days.
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first-century simulation, with large increases in the central and
midlatitude Atlantic. The length of the season that features
high PI values becomes longer through the subtropics and
middle latitudes of the NA across the simulation of the remain-
der of this century.

As the climate warms, a potential barrier to tropical cyclone
formation rises: the strength of the thermodynamic disequilib-
rium at the surface usually grows with warming, but not as
rapidly as the exponentially increasing saturation deficit (if
relative humidity remains the same) in the midtroposphere
(e.g., Emanuel et al. 2010; Korty et al. 2017). The ratio of
midtropospheric entropy deficits to surface disequilibrium,

as measured by x, increases with warming, which is deleterious
to tropical cyclone formation and intensification. Time series
of x show that it rises in all months of the season in the high-
resolution simulation through 2100 (graphs not shown).

Figure 11 shows trends in the number of days with favorable
values of each environmental parameter across the entire basin
(top row) and in subregions of the basin; trends that are statisti-
cally significant (p , 0.10) are marked with a cross. In the por-
tion of this simulation overlapping with the period examined in
the reanalyses (left column; 1980–2019), there are statistically
significant increases in the number of days featuring high values
of PI in the early and late months of the season when integrated

FIG. 11. As in Fig. 9, but for two periods of the coupled high-resolution simulation with CESM. (left) The trend in
the number of days with favorable conditions during the period 1980–2019 (forced here with a mixture of observed and
projected emissions; see text for details). (right) The trend from 2020 to 2100, continuing under the RCP8.5 projection.
The crosses represent trends that are statistically significant (p, 0.10) during the period.
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over the entire NA and when integrated over the WSNA; there
is also a statistically significant increase in the GOM during
ASO. Trends in PI are generally upward in the other subre-
gions and in other months, although not significantly. Given
that the period 1980–2019 was forced with a mixture of ob-
served emissions and projections, direct comparisons with the
behavior in Fig. 9 should be treated with caution. Yet there
are strong similarities in the increase of PI across the full basin
and in the subregions examined: the sign of the increase in
each part of the season (early, middle, and late) and in each
subregion of the basin matches the sign of trends in ERA5
(higher in all cases, except for MJJ in the TNA). The trends
are statistically significant in both ERA5 and in CESM during
ND in the full basin, in ASO in the GOM, and in MJJ and in
ND in the WSNA. Further trends toward high PI are pro-
jected to continue through 2100 (right columns) in the basin as
a whole and in most months in the three subregions.

There is less coherence between the sign of VWS changes in
this simulation and what was found with the reanalyses, but
most of the trends both in CESM and in the reanalyses are in-
significant for the period of 1980–2019. As noted above, there
is a consistent decrease in days with favorable x in the CESM
simulation, which and continues under the projections to 2100.
In the reanalyses, most trends in x were insignificant between
1980 and 2019 and the sign was in several instances inconsis-
tent between ERA5 and MERRA-2. Because there are fewer
days with low x in warmer climates, measures like the ventila-
tion index, which incorporate x, are most often driven toward
fewer days with favorable values in most months and subre-
gions. The common thread observed in this simulation and in
the reanalyses is an expansion in coverage of high PI especially
in subtropical latitudes in all months of the season. This is con-
sistent with results reported by Dwyer et al. (2015) and in sev-
eral model analyses (e.g., Ting et al. 2015, 2019).

5. Conclusions

We analyzed two high-resolution reanalysis products and
found several changes in large-scale environmental factors consis-
tent with the lengthening of the North Atlantic TC season re-
ported between 1980 and 2019. Days with high PI become more
frequent in subtropical and midlatitude parts of the basin, and
there are statistically significant increases in the WSNA in the
early, middle, and late months of the season in both ERA5 and
MERRA-2 datasets (see Figs. 9g,h). There is also a statistically
significant increase in the number of days with high PI in the
GOM during the early and middle months of the season in both
datasets. There are increases in the TNA later in the storm season
(ASO in both ERA5 and MERRA-2; ND also in MERRA-2),
and across the entire basin there are statistically significant in-
creases in the number of days with high PI. Projections from a
high-resolution simulation for the remainder of the twenty-first
century showed the number of days with high PI is likely to con-
tinue increasing in the GOM and WSNA, which leads to a trend
of a longer season of favorable PI in subtropical latitudes.

The thermodynamic parameter x is a strong function of tem-
perature, and we found that its calculation is sensitive to both
the choices of what pressure levels are used in calculating

boundary layer entropy as well as to subtle differences in bound-
ary layer temperature and humidity values between ERA5 and
MERRA-2. This sensitivity can lead to divergent results in some
regions and months in metrics like the ventilation index and
underscores a need for more careful consideration of this param-
eter. Indeed, Lee et al. (2020) have shown that a statistical
downscaling method that draws on genesis indices can yield
wildly divergent results in TC activity arise if relative humidity is
used in the index in place of x. Emanuel et al. (2010) introduced
x into an updated genesis index, arguing that it might explain
the decreases in TC counts modeled in CMIP3 and CMIP5 sim-
ulations. Yet in the years since, it has become clear that down-
scaling methods that draw on environmental conditions
produce more storms in hotter climates forced by higher
carbon dioxide levels (Emanuel 2013; Korty et al. 2017;
Emanuel 2021). Thus, we feel more attention to the role this
parameter plays in setting the climatology of TCs is warranted.
More broadly, how important changes in humidity are to the
count and intensity of TCs, and how best to represent this
dependency in environmental indices, are questions worthy
of more careful examination.
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