
Low-latency Mini-batch GNN Inference on

CPU-FPGA Heterogeneous Platform

Bingyi Zhang

University of Southern California

Los Angeles, CA, USA

bingyizh@usc.edu

Hanqing Zeng

Meta AI

Menlo Park, CA, USA

zengh@meta.com

Viktor Prasanna

University of Southern California

Los Angeles, CA, USA

prasanna@usc.edu

Abstract—Mini-batch inference of Graph Neural Networks
(GNNs) is a key problem in many real-world applications. In
this paper, we develop a computationally efficient mapping of
GNNs onto CPU-FPGA heterogeneous platforms to achieve low-
latency mini-batch inference. While the lightweight preprocessing
algorithm of GNNs can be efficiently mapped onto the CPU
platform, on the FPGA platform, we design a novel GNN
hardware accelerator with an adaptive datapath denoted as
Adaptive Computation Kernel (ACK) that can execute various
computation kernels of GNNs with low-latency: (1) for dense
computation kernels expressed as matrix multiplication, ACK
works as a systolic array with fully localized connections, (2)
for sparse computation kernels, ACK follows the scatter-gather
paradigm and works as multiple parallel pipelines to support the
irregular connectivity of graphs. The proposed task scheduling
hides the CPU-FPGA data communication overhead to reduce
the inference latency. We develop a fast design space exploration
algorithm to generate a single accelerator for multiple target
GNN models. We implement our accelerator on a state-of-the-
art CPU-FPGA platform and evaluate the performance using
three representative models (GCN, GraphSAGE, GAT). Results
show that our CPU-FPGA implementation achieves 21.4−50.8×,
2.9− 21.6×, 4.7× latency reduction compared with state-of-the-
art implementations on CPU-only, CPU-GPU and CPU-FPGA
platforms.

Index Terms—Graph Neural Network, Mini-batch inference,
FPGA acceleration

I. INTRODUCTION

Graph Neural Networks (GNNs) have become a revolu-

tionary technique in graph-based machine learning. Many

vendors have adopted GNNs in their commercial systems,

such as recommendation systems [1], social media, knowl-

edge databases, etc. In these systems, data are represented

as graphs, where vertices correspond to entities and edges

encode the relationship among entities. A fundamental task in

these systems is mini-batch GNN inference: given a batch of

target vertices, infer their embeddings (vector representations)

with low-latency. For example, in recommendation systems of

Alibaba [1] and Facebook [2], multiple users make a batch of

requests at a time and inference latency directly determines

the quality of service.

There are two major challenges for mini-batch inference.

(1) neighborhood explosion: the widely used GNNs [3], [4],

[5] follow the message-passing paradigm: in a L-layer model,

a vertex recursively aggregates information from its L-hop

neighbors. The receptive field is defined as the set of neighbors

Fig. 1: Recursive message passing of GNNs results in ex-

ponential computation and communication cost, and low

computation-to-communication (C2C) ratio

passing messages to the target vertex. In the example shown

by Figure 1, the receptive field consists of all the vertices

within L-hop. In a large graph, the size of the receptive field

quickly explodes w.r.t. model depth L. Therefore, mini-batch

GNN inference suffers from two issues. First, the computation

and communication costs grow exponentially with the depth

of GNN. This hinders the deployment of deeper GNNs on

memory constrained accelerators. It has been proven [6], [7]

that deeper GNNs have higher accuracy than shallower ones.

Second, the computation-to-communication (C2C) ratio is low,

thus making it not suitable for hardware acceleration. (2)

load imbalance: GNN computation involves various kinds

of kernels, including dense computation kernels and sparse

computation kernels. To support various kernels, previous

work [8], [9], [10] designed hybrid accelerators that for

each kernel, a dedicated hardware module is designed and

initialized independently. For example, in GraphACT [9], the

Feature Aggregation Module executes the sparse kernel and

Feature Transformation Module executes the dense kernel.

However, it is challenging to achieve load balance among

hardware modules in a hybrid accelerator. For example, the

workload of feature aggregation is unpredictable and depends

on the connectivity of the input graphs. The load imbalance

leads to hardware under-utilization and extra latency.

Recently, model depth-receptive field decoupling [7] has

been proposed to resolve the neighborhood explosion chal-

lenge. Under the decoupling principle, GNN depth is chosen

to be independent of the receptive field. As shown in Figure

2, for a target vertex, it selects a small number of important

11

2022 IEEE 29th International Conference on High Performance Computing, Data, and Analytics (HiPC)

2640-0316/22/$31.00 ©2022 IEEE
DOI 10.1109/HiPC56025.2022.00015

20
22

 IE
EE

 2
9t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 H
ig

h
Pe

rf
or

m
an

ce
 C

om
pu

tin
g,

 D
at

a,
 a

nd
 A

na
ly

tic
s (

H
iP

C
) |

 9
78

-1
-6

65
4-

94
23

-6
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
H

iP
C

56
02

5.
20

22
.0

00
15

Authorized licensed use limited to: University of Southern California. Downloaded on May 11,2023 at 04:29:25 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: An example of Decoupled GNN model

neighbors as the receptive field N , and then performs message

passing within N . The key property of a Decoupled GNN is

that the size of N remains fixed while the GNN becomes

deeper, thus reducing the computation complexity from expo-

nential to linear w.r.t. model depth. Each layer only propagates

information within N . Compared with original GNN models

(Figure 1), the Decoupled GNN models theoretically lead to

significantly less computation cost and memory bandwidth

requirement and thus are well-suited for hardware acceleration.

While there have been many GNN accelerators [8], [11],

[10], [12], [9] proposed, none of them is designed or optimized

for low-latency mini-batch inference. Specifically, [8], [11],

[10], [12] are for full-graph inference and [9] is for mini-

batch training. Full-graph GNN inference has very different

computation characteristics from mini-batch inference. In full-

graph inference, all vertices in the graph are target vertices.

Through careful vertex reordering [13], [14] and graph parti-

tioning [8], [10], full-graph execution can achieve high data

reuse by exploiting common neighbors. However, in mini-

batch inference, it is more challenging to improve data reuse

since the target vertices arrive randomly and rarely share

common neighbors. In addition, GraphACT [9] is built on

a specific training algorithm [15] to improve computation-

to-communication ratio only during training. While the com-

putation pipeline of GraphACT can be adapted to inference,

its performance may be sub-optimal due to load imbalance

(challenge (2) above).

In this paper, we accelerate mini-batch inference of Decou-

pled GNN models. Decoupling leads to high computational ef-

ficiency and makes it attractive for acceleration. Computations

on the Decoupled model involves identifying important neigh-

bors (Section III-B), and computation intensive GNN kernels

(Section IV-A). Identifying important neighbors is lightweight,

but requires irregular memory access and complex control

flow. This can be efficiently executed on a CPU while the

latter can be accelerated by FPGA which offers massive data

parallelism. We show that a CPU-FPGA heterogeneous plat-

form can effectively accelerate Decoupled GNNs. On FPGA

platform, we design a unified hardware accelerator consisting

of (1) adaptive datapath that can execute various computation

kernels of GNNs with low-latency, thus overcoming the load-

imbalance challenge, (2) memory organization that can hide

data communication overhead to further reduce the inference

latency. Our main contributions are:

• By analyzing the computation and communication cost

of mini-batch GNN inference, we identify “model depth-

receptive field” decoupling as a key model design tech-

nique towards low-latency accelerator design.

• We propose a system design on CPU-FPGA platforms

to accelerate mini-batch inference of Decoupled GNN

models:

– We develop a novel hardware accelerator with both

the sparse and dense computation modes to execute

various GNN computation kernels with low latency.

– We customize the memory organization with dou-

ble/triple buffering techniques on FPGA to reduce

data access latency and enable data prefetching.

– We perform task scheduling to hide the CPU-FPGA

data movement overhead.

• We develop a design space exploration algorithm that

given 1) a specification of the target FPGA device, and

2) a set of target GNN models with various depths and

receptive field sizes, generates a single hardware that

achieves low-latency inference without reconfiguration.

• We implement our accelerator on a state-of-the-art CPU-

FPGA platform and evaluate its performance using three

representative models (GCN, GraphSAGE, GAT). We

achieve 21.4−50.8×, 2.9−21.6×, 4.7× latency reduction

compared with state-of-the-art implementations on CPU-

only, CPU-GPU and CPU-FPGA platforms.

II. BACKGROUND

A. GNN Acceleration on FPGA

Field Programmable Gate Array (FPGA) has been exten-

sively studied for accelerating machine learning tasks [16],

[17]. A high-end FPGA device has significant hardware re-

sources, including Lookup Tables (LUTs), on-chip memories

(BRAMs, URAMs), etc. Hardware programmability of FPGAs

allows users to exploit the fine-grained data parallelism in

a computation task. An FPGA is attractive for low-latency

computations compared with GPU which is mainly optimized

for coarse-grained thread-level parallelism.

GNN accelerators on FPGA: GraphACT [9] proposes a

hybrid accelerator on FPGA for sub-graph sampling based

GNN training. BoostGCN [10] accelerates the full-graph

GNN inference through partition-centric feature aggregation.

Deepburning-GL [12] is a design automation framework to

generate FPGA accelerators for full-graph GNN inference.

AWB-GCN [18] exploits data sparsity in various computation

kernels of GNN. As discussed in Section I, previous GNN

accelerators on FPGA [9], [10], [12], [18] are not suitable

for mini-batch GNN inference. In this work, we develop an

optimized FPGA accelerator to achieve low-latency mini-batch

GNN inference (Section III).

B. Graph Neural Network

The related notations are defined in Table I. Graph Neural

Networks (GNNs) [3], [4] are proposed for representation

learning on graphs, facilitating tasks such as node classification

[4], [3], link prediction [19] and graph classification [20]. The

12

Authorized licensed use limited to: University of Southern California. Downloaded on May 11,2023 at 04:29:25 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Notations

Notation Description Notation Description

G(V, E) input graph vi ith vertex

V set of vertices eij edge from vi to vj

E set of edges L number of GNN layers

N # of vertices in the receptive field NL(i) L-hop neighbors of vi

hl
i feature vector of vi at layer l N receptive field

H vertex feature matrix W l weight matrix of layer l

input to an L-layer GNN is a graph G(V, E ,X) where each

vertex v ∈ V has a feature vector xv ∈ X . The outputs are

node representation vectors hL for each vertex v. As shown in

Algorithm 1, in layer l, v’s neighbors {u|(u, v) ∈ E} perform

message passing to generate the layer output hl
v , where each

“message” is the h
l−1
u of the previous layer. Thus, performing

message passing recursively for L layers means each vertex v
aggregates information from all its L-hop neighbors.

Algorithm 1 Recursive message-passing paradigm of GNN

Input: Input graph: G(V, E); Initial vertex features of input graph:{
h

0
1,h

0
2,h

0
3, ...,h

0
|V|

}
; Set of target vertices: {v1, v2, ..., vm}

Output: Output embeddings:
{
h

L
v1
,hL

v2
,hL

v3
, ...,hL

vm

}

for vi ∈ {v1, v2, ..., vm} do
for l = 1 to L do

for vj ∈ NL−l(i) do

z
l
j = aggregate

(
h

l−1

k : k ∈ N1(j)
⋂
NL−l+1(i)

)

h
l
j = update

(
z
l
j ,h

l−1

j ,W l
)

We define receptive field of v as the set of all vertices

that pass messages to v. Thus, for an L-layer GNN following

Algorithm 1, the receptive field of v includes all vertices which

are up to L hops away from v. The size N of the receptive

field grows exponentially with the depth L of the model:

N ≈ O(dL), where d is the average degree of the graph.

We denote GNNs following such recursive message-passing

paradigm as Coupled models since the size of receptive field

N depends on the model depth L. Note that the size of the

GNN model, which equals the total size of all the weight

matrices {|W l| : 1 � l � L}, is independent of the size of

the graph.

Specification of a Coupled model: A Coupled GNN model is

specified by: (1) number of layers L, (2) aggregate() function

that defines operator for aggregating the neighbor information

(e.g., aggregate() of GraphSAGE [4]: zl
j = Mean

(
h
l−1
i : vi ∈

N1(j)∪ {j}
)
), (3) hidden dimension of each layer fl for 0 �

l � L, (4) update() function (e.g., h
l
j = ReLU(W l

h
l−1
j))

with learnable matrix W
l (1 � l � L).

A main challenge for Coupled GNN models is the low

Computation-to-Communication (C2C) ratio. We profile the

execution of mini-batch inference of GraphSAGE [4] using

a prior FPGA accelerator (GraphACT)1 [9]. The CPU-FPGA

1GraphACT is an accelerator for training the GraphSAGE model, including
forward propagation for inference and back propagation for calculating weight
gradients. In Figure 3, we only perform the forward propagation of GraphACT
for inference.

Breakdown execution time

Flickr (L
=2)

Flickr (L
=3)

Flickr (L
=4)

Reddit (L
=2)

Reddit (L
=3)

Reddit (L
=4)

Yelp (L
=2)

Yelp (L
=3)

Yelp (L
=4)

ogbn-products (L
=2)

ogbn-products (L
=3)

ogbn-products (L
=4)

10-5

100

T
ot

al
 e

xe
cu

tio
n

tim
e

 (
lo

g-
sc

al
e)

Sampling Data Transmission GNN Operations

Fig. 3: Experimental analysis of mini-batch inference using

Coupled GraphSAGE [3] model: (1) Breakdown of execution

time, (2) Roofline analysis (vertical axis is in log-scale)

platform and the graphs are specified in Section V-A. The

graph is stored in the external memory of the host processor,

since the sizes of realistic graphs are often much larger than

the on-chip capacity of FPGAs. We further perform vertex

sampling on the L-hop neighborhood (following the recom-

mended parameters [4]) to optimize the inference latency. As

shown in Figure 3-(1), the data transmission between CPU and

FPGA incurs significant execution time overhead because the

number of neighbors grows exponentially with the depth of

GNN model. The execution time also increases exponentially

with the GNN depth. Moreover, the hardware accelerator has

low utilization < 30% (computed by
achieved performance

peak performance
×100%).

The roofline analysis (Figure 3) demonstrates that mini-batch

inference of Coupled GNN model is memory-bound, and

the overall performance is limited by the available PCIe

bandwidth.

C. Decoupling of Model Depth and Receptive Field

Algorithm 2 Inference process of Decoupled GNN models

Input: G(V, E ,X0); Number of layers L; Size of receptive field N ;
A batch of target vertices Vt; GNN layer operators (aggregate(),
update());

Output: Representation vectors of target vertices: {hL
v : v ∈ Vt}

1: for v ∈ Vt do
2: Identify N important neighbors Nimp(v) for v.
3: Build vertex-induced subgraph G′(v) using Nimp(v)

⋃
{v}

4: Extract the input vertex features F(v) = {h0
u : u ∈ G′(v)}.

5: for l← 1 to L do
6: Message passing within G′(v) using the layer-l operators

7: Obtain representation vector of vertex v through Readout().

Recently, [7] proposed a decoupling principle where the

GNN depth L and the receptive field size N are specified

independently. Decoupling is proposed based on the obser-

vation that in the Coupled GNN models, most neighbors in-

volved in message-passing do not provide useful information.

13

Authorized licensed use limited to: University of Southern California. Downloaded on May 11,2023 at 04:29:25 UTC from IEEE Xplore. Restrictions apply.

Therefore, the key is to identify the important neighbors of

the target vertex before applying message passing. As shown

in Algorithm 2, for each target vertex v, we first define its

receptive field Nimp as the important neighbors of v, where

Nimp is independent of L. Then, we build a vertex-induced

subgraph G′(v) from Nimp(v)
⋃{v}. Next, the GNN message

passing is performed within G′(v) for L layers using the GNN

layer operators. The representative vector hemb
v is generated via

applying the Readout() function (e.g., Max()) to the outputs

of the last GNN layer. For example, h
emb
v = Max({hL

u :
u ∈ Nimp(v)

⋃{v}}). Figure 2 (See Introduction Section)

shows an example. Note that the decoupling principle can be

applied to widely used models (e.g., GCN, GraphSAGE, GIN,

GAT) since it does not change the GNN layer operators (e.g.,

aggregate and update). We define the GNNs constructed by

the decoupling principle as the Decoupled models.

Specification of Decoupled model: A Decoupled model is

specified by: (1) number of layers L, (2) number of important

neighbors for the target vertex N (i.e., size of the receptive

field), (3) the sampling algorithm to obtain the important

neighbors, (4) aggregate() function, (5) hidden dimension of

each layer fl, 0 � l � L, (6) update() function with learnable

weight matrix W
l, 1 � l � L.

Accuracy of Decoupled model: When choosing appropriate

neighbors N (see [7]), a Decoupled model in general achieves

higher accuracy than the original Coupled model. See [7] for

detailed theoretical and empirical evaluation.

III. PROPOSED APPROACH

A. Overview

As shown in Section II-B, Coupled GNN models are in-

herently memory-bound for mini-batch inference due to the

exponential growth of the receptive field, making them hard

to be accelerated even with well-optimized hardware pipelines.

We identify that Decoupled GNN models are more suitable to

be accelerated, due to their high C2C ratio (Section III-B).

Therefore, the objective of our hardware design is to achieve

low-latency mini-batch inference of Decoupled GNN models.

For simplicity, in the rest of the paper, we use mini-batch and

batch interchangeably. We define the performance metric as

latency of a batch (Figure 9): given a batch of C target

vertices and a pre-trained Decoupled GNN, latency is the

time duration from receiving the C target vertex indices to

obtaining the vertex representation vectors (See Figure 9). We

consider a general scenario in which batches can come in

intermittently with variable inter-batch latency, following the

Facebook recommendation system [2].

To map Decoupled GNN models on CPU-FPGA platforms,

we first identify and characterize the various computation ker-

nels of GNNs (Section IV-A). Then, we design a novel unified

architecture named Adaptive Computation Kernel (ACK, see

Section IV-B), capable of executing both the sparse and dense

computation without any runtime reconfiguration. Finally, we

propose a design space exploration algorithm (Section IV-E) to

generate a single hardware design point for various GNN mod-

els. Our design is thus advantageous compared with previous

FPGA accelerators (e.g., BoostGCN [10], Deepburning-GL

[12] , HP-GNN [18]) which require regenerating a hardware

design for each GNN model.

Fig. 4: System design

B. Analysis of Decoupled Models

We compare the computation and communication charac-

teristics of Coupled and Decoupled GNN models. Using an

L-layer Coupled GNN model to generate embedding for a

target vertex, the information in the L-hop neighborhood is

needed. In a Decoupled GNN model, N and L are specified

independently. To simplify the analysis, we assume fi = f
(i = 0, 1, ..., L), and illustrate using the GraphSAGE [4]

model. The comparison is shown in Table II. Usually, the

receptive field of Coupled GNNs O(dL) is much larger than

that of Decoupled ones. To summarize, Decoupled models

achieve small computation and communication cost, high

C2C ratio and require small on-chip memory, making them

attractive for hardware acceleration.

TABLE II: Comparison of Coupled and Decoupled GNNs

Receptive
Field Size

Comp.
Cost

Comm.
Cost

C2C
Ratio

Coupled GNNs O(dL) O(dLf2) O(dLf) O(f)

Decoupled GNNs N � O(dL) O(NLf2) O(Nf) O(Lf)

Important Neighbor Identification (INI): INI (line 2 of

Algorithm 2) is the key to achieve high accuracy with a

Decoupled model. Following [7], we use the Personalized

PageRank (PPR) [21] score as the metric to indicate the

importance of neighbor vertices w.r.t. a given target vertex.

We use the local-push algorithm [22] to compute approximate

PPR scores. There are several benefits of using this approach:

(1) As shown in [7], PPR score is a good metric to reflect

neighbor importance. Empirically, Decoupled models based on

PPR achieve high accuracy with a small number of neighbor

vertices (e.g., 100 − 200 vertices) [7]. (2) The computation

complexity of the local-push algorithm is low and is indepen-

dent of graph size [23]. (3) The local-push algorithm can be

easily parallelized across multiple CPU cores.

C. System Design

Figure 4 depicts the proposed system.

14

Authorized licensed use limited to: University of Southern California. Downloaded on May 11,2023 at 04:29:25 UTC from IEEE Xplore. Restrictions apply.

Design Time: At design time, given the specification of the

target FPGA platform and a set of Decoupled GNN models

(see Section IV-E), we generate a single hardware accelerator

and deploy it on the target FPGA platform. The overhead

of generating the accelerator is a one-time cost. The trained

GNN models are stored in the FPGA DDR memory. User can

specify which model to use at runtime.

Algorithm 3 Parallel Mini-batch Inference on CPU-FPGA

Input: A batch of target vertices Vt; A Decoupled GNN model
(already trained and stored in FPGA DDR memory);

Output: Representation vectors of target vertices: {hL
v : v ∈ Vt}

1: while there is an idle CPU thread do � CPU
2: Pick a target vertex v from Vt and remove v from Vt

3: Extract important neighbors and build vertex-induced sub-
graph G′(v)

4: Send vertex features and edges of G′(v) to FPGA

5: while there is an idle PE do � FPGA
6: Load vertex features and edges of G′(v) for a target vertex v
7: for l← 1 to L do � Inference using ACK
8: for each kernel from the kernels of layer l do
9: Configure the execution mode of ACK for kernel

10: Execute kernel on ACK
11: Send representation vector hL

v back to CPU

Runtime: The overall execution process between CPU and

FPGA is described in Algorithm 3. The input graph (including

the edges and vertex features) is stored in the host memory.

During runtime, the host processor receives the indices of

a batch of target vertices and the GNN model specified by

the user. On the host platform, the CPU performs important

neighbor identification (line 2 of Algorithm 2) and constructs

the vertex-induced subgraph for the target vertices. We use

parallel threads on the CPU to execute the local-push algo-

rithm [23] for multiple target vertices concurrently. Then, the

CPU extracts the features of input vertices and the edges

of the subgraph, and sends them to the FPGA accelerator

through the PCIe interconnection. The CPU also performs task

allocation for the accelerator based on the specification of the

GNN model. For example, for inferring a target vertex using

a L-layer model with 2 kernels (e.g., feature aggregation and

feature transformation of a GCN [3] layer), the host program

allocates 2L kernels for the accelerator to execute. On the

FPGA platform, the input data from PCIe is directly sent to

the accelerator through QDMA [24]. The FPGA accelerator

consists of Npe multiple parallel and independent processing

elements (PEs) where each PE processes one target vertex

at a time. Adaptive Computation Kernel (ACK) executes

the L layers sequentially (see Algorithm 3). For each layer,

ACK executes the kernels sequentially. The ACK execution

mode corresponding to a kernel (see Section IV-B) is set by

the control bits of the hardware multiplexers in ACK. The

overhead of switching execution modes is just one clock cycle.

IV. HARDWARE ARCHITECTURE

The proposed FPGA accelerator (Figure 4) consists of Npe

parallel and independent processing elements (PEs). Each PE

contains an Adaptive Computation Kernel (ACK) to execute

various computation kernels in GNNs, an Edge Buffer to store

the edges, a Weight Buffer to store the Weight matrices and

a Feature/Result Buffer to store the vertex features. An ACK

contains a 2-D mesh of ALUs (Section IV-B).

Adaptive Computation Kernel

Fig. 5: The details of a Processing Element

A. Computation Kernels of GNNs

We summarize the various computation kernels in four

widely used GNN models: GCN [3], GraphSAGE [4], GIN

[25], GAT [5]:

Feature Aggregation (FA): FA can be implemented by a

Scatter phase followed by a Gather phase. In Scatter phase,

each vertex vi sends its features hi to its neighbors in the

vertex-induced subgraph. The vertex features are multiplied

by the edge weight to generate the intermediate results. In

Gather phase, each vertex aggregates the incoming interme-

diate results through aggregate() function (e.g., element-wise

Max, Mean) to generate the aggregated features zi.

Feature Transformation (FT): The aggregated features zi

are transformed through the update() function. In the widely

used GNN models (e.g. GCN, GraphSAGE, GIN, GAT), the

update() is a single-layer MLP with an element-wise activation

function (e.g., ReLU, LeakyReLU).

Attention: Some GNN models (e.g., GAT) exploit the Atten-

tion mechanism to generate data-dependent edge weights. The

weight of edge eij is calculated based on (hi, hj , Watt, a).

Watt is the attention weight matrix that is multiplied with hi

and hj . a is the vector that is multiplied with Watthi||Watthj

to get the edge weight eij .

FT and Attention are dense computation kernels involving

dense matrix multiplication, while FA is a sparse computation

kernel due to the sparsity and irregularity of the graphs. If we

execute the different kernels using different hardware modules,

the load imbalance can lead to hardware under-utilization and

increased latency (See Section IV-C).

B. Hardware Modules

To address the load imbalance challenge, we propose

Adaptive Computation Kernel to execute various computation

kernels of GNNs using the same set of computation resources.

15

Authorized licensed use limited to: University of Southern California. Downloaded on May 11,2023 at 04:29:25 UTC from IEEE Xplore. Restrictions apply.

Adaptive Computation Kernel (ACK): ACK contains an

array of Arithmetic Logical Units (ALUs) of size psys × psys.

An ALU can execute various arithmetic operations including

Multiplication, Addition, Multiply-Accumulation, Min, Max,

etc. The proposed ACK has two execution modes – Systolic

Mode and Scatter-Gather Mode – that can support FA, FT and

Attention (Section IV-A).

Fig. 6: Two data paths realizing the dense (left) and sparse

(right) execution modes of ACK

Systolic Mode: The array of ALUs are organized as a two-

dimension systolic array. Systolic array is an efficient archi-

tecture for dense matrix multiplication, which has localized

interconnections as shown in Figure 6. Systolic Mode supports

dense matrix multiplication in FT and Attention. In Systolic

Mode, ACK can execute the multiplication of weight matrix

W and Feature matrix Hin (See Table I, each row of Hin is

a vertex feature vector hi) to obtain the output feature matrix

Hout. Weight Buffer streams the weight matrices of MLP

(FT) or the attention weight matrix to the systolic array, and

Feature/Result Buffer streams multiple vertex feature vectors

into the systolic array. Systolic array of size psys × psys can

execute p2sys Multiply-Accumulation operations per cycle. Both

the Weight Buffer and the Feature Buffer have port width of

psys data, and can send psys data to the systolic array per cycle.

Fig. 7: The architecture of the routing network

Scatter-Gather Mode: The PE executes feature aggregation

(FA) following the Scatter-Gather paradigm (Algorithm 4).

The array of ALUs is partitioned into equal number of Scatter

Units and Gather Units. In each Scatter Unit, the ALUs are

organized as a vector multiplier that multiplies the vertex

feature vector by the scalar edge weight. In each Gather

Unit, the ALUs execute the aggregate() function. Suppose

the feature vector has the format 〈src, features〉, where src
denotes the index of the source vertex and the features is

the feature vector of the source vertex. Edge has the format

〈src, dst, weight〉, where src, dst, weight denote the source

vertex index, destination vertex index, edge weight respec-

tively. The generated intermediate results (updates) by the

Scatter Units have the format 〈dst, features〉. The N vertices

in the receptive field are equally partitioned to the Gather

Units. The routing network (Shown in Figure 7) performs all-

to-all interconnection between Scatter Units and Gather Units.

It routes the intermediate results 〈dst, features〉 generated

by Scatter Units to the corresponding Gather Units based

on the index dst. For example, suppose a Gather Unit is

responsible for accumulating the results for vertices v1 − v64.

All intermediate results that have dst ranging from 1 to 64
will be routed to this Gather Unit. This routing network is

implemented as a butterfly network [26] which has close-to-

optimal routing throughput for all-to-all communication (See

Table 4 of [26] for the detailed evaluation of routing network).

Algorithm 4 FA using Scatter-Gather Paradigm

while not done do
for each edge e〈src, dst, weight〉 do � Scatter Unit

Produce update u←Scatter(src.features, e.weight)

for each update u〈dst, features〉 do � Gather Unit
Update vertex dst← Gather(u.features)

When the execution of a kernel is completely finished,

the ACK can start to execute the next kernel. In our de-

sign, the number of Scatter units and Gather Units both

equals psg, where psg is decided by psg = psys/2. The

Feature/Result Buffer have psg banks. Each bank stores

the feature vectors of a partition of the vertex-induced

subgraph (Algorithm 2). Each bank is connected to a

Gather Unit. Each Scatter or Gather Unit has 2psg ALUs.

Fig. 8: RAW Unit (left)

Note that read-after-write

(RAW) data hazard may oc-

cur when accumulators in

the Gather Unit read the old

feature vertex vector from

the Feature/Result Buffer.

To resolve the RAW data

hazard, we implement a

RAW Unit before Gather

Unit as shown in Figure 8. In the RAW Unit, there is a RAW

detector to detect the RAW data hazard and a small Reorder

Buffer (implemented as a FIFO) to cache the input data when

RAW is detected. The data in the Reorder Buffer will be sent

to Gather Unit when there is no RAW data hazard.

Activation Unit: The Activation Unit executes the element-

wise activation function in FT and the Softmax function in At-

tention. These functions are implemented using Xilinx High-

Level Synthesis (HLS). For example, the Softmax function

is implemented by using hls::exp(x) function as the

building block.

Double/triple buffering: In a Processing Element, there are

three Feature/Result Buffers for triple buffering. The first

Buffer stores the vertex feature vectors of the current GNN

layer. The second Buffer stores the vertex feature vectors of

the next GNN layer. The third Buffer is used for prefetching

16

Authorized licensed use limited to: University of Southern California. Downloaded on May 11,2023 at 04:29:25 UTC from IEEE Xplore. Restrictions apply.

the input vertex feature vectors of the next target vertex.

Similarly, Edge Buffer is also designed with triple buffering.

Weight buffer is implemented using double buffering, where

one buffer is used for storing the weight matrix of the current

layer, and the other buffer is used to prefetch and store

the weight matrix of the next layer. Through double/triple

buffering, memory access and computation are overlapped to

reduce the overall inference latency.

C. Load Balance

The key benefit of our design is that we use the same set

of computation resources in a single hardware module (ACK)

to execute various computation kernels with high efficiency.

Therefore, we are able to assign all the on-chip computation

resources to ACKs. In contrast, in the hybrid accelerators

[8], [9], [10], the computation resources are divided among

different hardware modules to execute different computation

kernels. Suppose for a single GCN layer, feature aggregatgion

(FA) has workload α1 > 0 and feature transformation (FT)

has workload α2 > 0, and the total computation resource is

β. In our design, we use β for ACKs. Therefore, the latency

for executing this single GCN layer of our design is: α1+α2

β .

In the hybrid accelerator, suppose the hardware module for

FA uses β1 resources and the hardware module for FT uses

β − β1 resources. The latency for executing this single GCN

layer is max
(

α1

β1

, α2

β−β1

)
. It can be proved that:

α1 + α2

β
� max

(
α1

β1

,
α2

β − β1

)
(β > 0, β1 > 0, β−β1 > 0)

(1)

where the equality is achieved when α1

β1

= α2

β−β1

. In the

Decoupled GNN model, the workload of FA, α1 is usually un-

predictable because the number of edges in the receptive field

varies with the target vertex as well as with the connectivity of

the input graph. Moreover, varying the receptive field size can

vary the workload α1, α2 at different rate. Therefore, in a fixed

hybrid accelerator, it is hard to keep load balance for various

input graphs and Decoupled models with various receptive

field sizes. The load imbalance incurs increased latency. To

execute GNN models with more than two computation kernels

(e.g., GAT), load imbalance can be more severe in hybrid

accelerators.

D. Task Scheduling on CPU-FPGA

Figure 9 shows the proposed task scheduling for mini-batch

inference, based on Algorithm 3. The host processor performs

Important Neighbor Identification and builds a vertex-induced

subgraph for each target vertex. If there is an idle PE, it loads

the input vertex feature vectors of the vertex-induced subgraph

of a target vertex. The PE also prefetches the input data for an

unprocessed target vertex. After loading the input data, the PE

executes the L-layer GNN forward propagation for the target

vertex. Finally, the PE sends the representation vector of the

target vertex back to the host processor.

CPU-FPGA data communication: Using the proposed

scheduling, the execution of the accelerator and the CPU-

FPGA data movement are overlapped for all but the first vertex

Fig. 9: Task scheduling for mini-batch GNN inference on

CPU-FPGA platform

in a batch. Denote tinitialization = tload + tINI as the initialization

overhead of a batch, where tINI is the latency of runing INI

for a vertex using a single CPU thread on the host processor.

tload is the latency of loading the induced subgraph (vertex

features; edges) for a target vertex. Section V-C shows that

tinitialization is negligible compared with total inference latency.

E. Design Space Exploration

We perform design space exploration (DSE) to determine

the hardware parameters. The inputs to our DSE are (1)

available hardware resources (NDSP: number of DSPs) on

FPGA, (2) arithmetic operations in the given set of Decoupled

GNN models that needs to be supported. Given the inputs, the

DSE determines the number of DSPs in an ALU NALU, the

size of ACK in a PE psys×psys, the number of PEs Npe in the

accelerator. The proposed design has the following properties:

• The proposed accelerator can execute a GNN model as

long as the ALU can support all the arithmetic operations

in this GNN model. NALU is determined based on the

arithmetic operations of a given Decoupled GNN model.

• The size of the ACK psys × psys in a PE determines the

latency of inferring a single target vertex, and the number

of PEs Npe decides how many target vertices can be

inferred concurrently. Thus, the total on-chip computation

resources should be exhausted by Npe · p2sys. The value of

Npe depends on the batch size: for large batch sizes, both

large and small Npe work well since sufficient parallelism

is available across target vertices; for small batch sizes, it

is desirable to set Npe as small in order to still achieve low

latency. Since batch sizes vary significantly in real-world

applications, we minimizes Npe by maximizing psys×psys

in a PE.

• To efficiently implement Scatter Unit, Gather Unit and

routing network, psys is chosen to be power of 2.

The above analysis leads to the following DSE algorithm:

1) Determine NALU based on all the arithmetic operations

(given GNN models) to be supported.

2) Maximize the ALU array size: psys = 2

⌊
log

2

√
NDSP/NALU

⌋

17

Authorized licensed use limited to: University of Southern California. Downloaded on May 11,2023 at 04:29:25 UTC from IEEE Xplore. Restrictions apply.

Latency (GCN, Flickr, BS = 64)

(3
,6

4)

(3
,1

28
)

(3
,2

56
)

(5
,6

4)

(5
,1

28
)

(5
,2

56
)

(8
,6

4)

(8
,1

28
)

(8
,2

56
)

(1
6,

64
)

(1
6,

12
8)

(1
6,

25
6)

100

La
te

nc
y

(m
s) CPU-only

CPU-GPU
BoostGCN
Our work

Latency (GCN, Reddit, BS = 64)

(3
,6

4)

(3
,1

28
)

(3
,2

56
)

(5
,6

4)

(5
,1

28
)

(5
,2

56
)

(8
,6

4)

(8
,1

28
)

(8
,2

56
)

(1
6,

64
)

(1
6,

12
8)

(1
6,

25
6)

100

La
te

nc
y

(m
s) CPU-only

CPU-GPU
BoostGCN
Our work

Latency (GCN, Arxiv, BS = 64)

(3
,6

4)

(3
,1

28
)

(3
,2

56
)

(5
,6

4)

(5
,1

28
)

(5
,2

56
)

(8
,6

4)

(8
,1

28
)

(8
,2

56
)

(1
6,

64
)

(1
6,

12
8)

(1
6,

25
6)

100

La
te

nc
y

(m
s) CPU-only

CPU-GPU
BoostGCN
Our work

Latency (GraphSAGE, Flickr, BS = 64)

(3
,6

4)

(3
,1

28
)

(3
,2

56
)

(5
,6

4)

(5
,1

28
)

(5
,2

56
)

(8
,6

4)

(8
,1

28
)

(8
,2

56
)

(1
6,

64
)

(1
6,

12
8)

(1
6,

25
6)

100

La
te

nc
y

(m
s) CPU-only

CPU-GPU
GraphACT
BoostGCN

Our work

Latency (GraphSAGE, Reddit, BS = 64)

(3
,6

4)

(3
,1

28
)

(3
,2

56
)

(5
,6

4)

(5
,1

28
)

(5
,2

56
)

(8
,6

4)

(8
,1

28
)

(8
,2

56
)

(1
6,

64
)

(1
6,

12
8)

(1
6,

25
6)

100

La
te

nc
y

(m
s) CPU-only

CPU-GPU
GraphACT
BoostGCN

Our work

Latency (GraphSAGE, Arxiv, BS = 64)

(3
,6

4)

(3
,1

28
)

(3
,2

56
)

(5
,6

4)

(5
,1

28
)

(5
,2

56
)

(8
,6

4)

(8
,1

28
)

(8
,2

56
)

(1
6,

64
)

(1
6,

12
8)

(1
6,

25
6)

100

La
te

nc
y

(m
s) CPU-only

CPU-GPU
GraphACT
BoostGCN

Our work

Latency (GAT, Flickr, BS = 64)

(3
,6

4)

(3
,1

28
)

(3
,2

56
)

(5
,6

4)

(5
,1

28
)

(5
,2

56
)

(8
,6

4)

(8
,1

28
)

(8
,2

56
)

(1
6,

64
)

(1
6,

12
8)

(1
6,

25
6)

100

La
te

nc
y

(m
s) CPU-only CPU-GPU Our work

Latency (GAT, Reddit, BS = 64)

(3
,6

4)

(3
,1

28
)

(3
,2

56
)

(5
,6

4)

(5
,1

28
)

(5
,2

56
)

(8
,6

4)

(8
,1

28
)

(8
,2

56
)

(1
6,

64
)

(1
6,

12
8)

(1
6,

25
6)

100

La
te

nc
y

(m
s) CPU-only CPU-GPU Our work

Latency (GAT, Arxiv, BS = 64)

(3
,6

4)

(3
,1

28
)

(3
,2

56
)

(5
,6

4)

(5
,1

28
)

(5
,2

56
)

(8
,6

4)

(8
,1

28
)

(8
,2

56
)

(1
6,

64
)

(1
6,

12
8)

(1
6,

25
6)

100

La
te

nc
y

(m
s) CPU-only CPU-GPU Our work

Fig. 10: Comparison of inference latency (Batch Size=64) for Decoupled GNN models with various depth and receptive field.

Y-axis is in log-scale. X-axis denotes (number of layers L, size of receptive field N)

3) Determine the number of PEs: Npe =
⌊
NDSP/NALU

psys×psys

⌋

Many modern FPGAs have multiple Super Logic Regions

(SLRs) with limited interconnection among SLRs. We perform

the proposed DSE algorithm separately for each SLR. Note

that the routing network has psys/2 input ports and psys/2
output ports with (32×psys)-bit data width (since we use 32-bit

data format). Its hardware cost is O(p2sys log psys) which also

increases with psys. Step 2 of maximizing psys in our DSE

may incur additional hardware overhead due to expanding

the routing network to be power of 2. Fortunately, as shown

in [26], even a large-scale 512-bit 32-input-32-output routing

network only consumes less than 189K LUTs, which is far

smaller (< 18%) than the total LUTs of state-of-the-art FPGA

boards. Since all computation is performed with ALU, as

long as LUT consumption is < 100% the latency will not be

affected. In the large-scale FPGA device, such as Alveo U250,

psys does not exceed 16. Therefore, the routing network is not

the resource bottleneck in our design.

V. EXPERIMENTS

A. Hardware Details and Baseline Platforms

We use High-level Synthesis (HLS) to develop the hardware

templates. The obtained hardware parameters through DSE

are annotated into the developed hardware templates, and

we use the vendor’s tool to synthesize the hardware design

18

Authorized licensed use limited to: University of Southern California. Downloaded on May 11,2023 at 04:29:25 UTC from IEEE Xplore. Restrictions apply.

and generate the accelerator bitstream. Then, the bitstream is

deployed on the target FPGA platform. We perform DSE to

generate a hardware accelerator on a state-of-the-art FPGA

platform (Xilinx Alveo U250) for three widely used GNN

models (GCN, GraphSAGE, GAT). The FPGA is hosted by

an Intel Xeon Gold 5120 CPU. Figure 11 depicts the gener-

ated system design (Figure 4) on the CPU-FPGA platform.

Based on the arithmetic operation in the three GNN models,

each ALU consumes 5 DSPs. The ACK in each PE has

an ALU array of size 16 × 16. In the ACK, there are 8

Scatter Units and 8 Gather Units. Each of the Scatter Units

and Gather Units has an ALU array of size 2 × 8. The

routing network is a butterfly network of 8 input ports and

8 output ports. Each input/output port has 512-bit width.

Fig. 11: Proposed CPU-FPGA

implementation with the accel-

erator design on Xilinx Alveo

U250

On Alveo U250, there

are 8 PEs in four Super

Logic Regions (SLRs)

with each SLR having

2 PEs. The hardware

synthesis and Place&Route

(P&R) are performed using

Vitis 2021.1. The above

accelerator on Alveo U250

consumes 762K LUTs,

10854 DSPs, 1853 BRAMs

and 1050 URAMs. The

resource utilization is reported after P&R. On the host

processor, we use 8 threads to execute important neighbor

identification. We deploy the host program on the host

processor (Intel Xeon Gold 5120 CPU) and accelerator

bitstream on the FPGA (Xilinx Alveo U250). The host

processor and FPGA are connected through the PCIe 3.0×16
which form our target CPU-FPGA platform.

TABLE III: Specifications of platforms

Platforms
CPU

AMD Ryzen 3990x
GPU

Nvidia RTX3090
FPGA

Alveo U250

Technology TSMC 7 nm TSMC 7 nm TSMC 16 nm
Frequency 2.90 GHz 1.7 GHz 300 MHz

Peak Performance 3.7 TFLOPS 36 TFLOPS 0.72 TFLOPS
On-chip Memory 256 MB L3 cache 6 MB L2 cache 54 MB

Memory Bandwidth 107 GB/s 15.6 GB/s (PCIe) 15.6 GB/s (PCIe)

Baseline Platforms: We compare the following platforms in

our experiments: (1) Baseline 1: CPU-only platform (AMD

Ryzen 3990x), (2) Baseline 2: CPU-GPU platform (Intel

Xeon Gold 5120 CPU + Nvidia RTX3090), (3) Baseline 3
:

CPU-GraphACT (Intel Xeon Gold 5120 CPU + GraphACT

[9]), (4) Baseline 4: CPU-BoostGCN (Intel Xeon Gold 5120

CPU + BoostGCN [10]), (5) Our work: CPU-FPGA (Intel

Xeon Gold 5120 CPU + proposed accelerator). The spec-

ifications of various platforms are shown in Table III and

Table IV. To execute mini-batch inference, the CPU-only

platform uses Pytorch with Intel MKL as the backend and

the CPU-GPU plaform uses the Pytoch library with CUDA

as the backend. Using PyTorch dataloader, the baseline CPU-

GPU platform exploits data prefetching and double buffering

to overlap loading data from host to GPU global memory

and computations in the GPU streaming processor. Note that

GraphACT supports GraphSAGE only. BoostGCN can support

GCN and GraphSAGE. However, BoostGCN needs to generate

a separate FPGA bitstream for each GNN model.

Latency measurement: In our experiments, we measure the

latency of a batch defined in Section III-A and Figure 9.

For all the baselines and our work, the measured latency of

a batch is the duration from the time when host processor

start receiving the indices of a batch of target vertices to

the time the inference for all the vertices in the batch has

been completed and stored in the CPU. The overheads of

Important Neighbor Identification and the data movement

between the CPU and GPU/FPGA through PCIe are included

in our measured latency.

TABLE IV: Platform specifications of GNN accelerators

GraphACT [9] This paper BoostGCN [10]

Platform Xilinx Alveo U200 Xilinx Alveo U250 Intel Stratix 10 GX
Frequency 300 MHz 300 MHz 250 MHz

Data format Float32 Float32 Float32
Peak Performance 249.6 GFLOPS 614 GFLOPS 640 GFLOPS
On-chip Memory 35.8 MB 45 MB 32 MB

Memory Bandwidth 15.6 GB/s (PCIe) 15.6 GB/s (PCIe) 15.6 GB/s (PCIe)

Benchmark: We evaluate various Decoupled Models (GCN,

GraphSAGE, GAT) that can achieve superior accuracy. As

shown in [7], the Decoupled Models (N < 200 and L = 3 or

5) can already achieve higher accuracy than the original Cou-

pled GNN models (GCN, GraphSAGE, GAT). The Decoupled

Models can achieve higher accuracy when L is increased. To

evaluate Decoupled models with various L and N , we set the

hidden dimension of each GNN layer as fl = 256, (1 � l � L)
following [7]. We set the number of layers L as 3, 5, 8,

16 respectively. We specify the size of the receptive field

N as 64, 128, 256. As shown in [2], the producation-scale

recommendation systems in Facebook typically use batch size

64, 128, 256. We evaluate our design using a wider range of

batch sizes 32, 64, 128, 256, 512. We use three representative

graph datasets for evaluation as listed in Table V.

B. Comparison with State-of-the-art

We show the comparison results (latency of a batch) using

various GNN models, L and N in Figure 10. Our CPU-

FPGA implementation achieves 21.4 − 50.8×, 2.9 − 21.6×,

4.7×, 1.2× speedup compared with CPU-only, CPU-GPU,

CPU-GraphACT, and CPU-BoostGCN, respectively. Note that

BoostGCN does not support GAT and needs to generate an

accelerator for each GNN model.

On the CPU-only platform, the processor can directly (with-

out PCIe overhead) access data from the host memory and

TABLE V: Dataset Statistics

Dataset Vertices Edges Features fin Classes Degree

Flickr (FL) [15] 89,250 899,756 500 7 10
Reddit (RE) [4] 232,965 116,069,191 602 41 50

ogbn-arxiv (OA) [27] 169,343 1,166,243 128 7 40

19

Authorized licensed use limited to: University of Southern California. Downloaded on May 11,2023 at 04:29:25 UTC from IEEE Xplore. Restrictions apply.

Latency batch ()

BS=32 BS=64 BS=128 BS=256 BS=512

100

102

La
te

nc
y

(m
s) CPU-only

CPU-GPU
GraphACT
BoostGCN

Our work

Latency batch

BS=32 BS=64 BS=128 BS=256 BS=512

100

102

La
te

nc
y

(m
s) CPU-only

CPU-GPU
GraphACT
BoostGCN

Our work

Latency batch ()

BS=32 BS=64 BS=128 BS=256 BS=512

100

102

La
te

nc
y

(m
s) CPU-only

CPU-GPU
GraphACT
BoostGCN

Our work
Latency batch ()

BS=32 BS=64 BS=128 BS=256 BS=512
100

102

La
te

nc
y

(m
s) CPU-only

CPU-GPU
GraphACT
BoostGCN

Our work

Fig. 12: Latency under various Batch Sizes (BS) for GraphSAGE and Flickr dataset

the processor has large shared L3 cache. However, the feature

aggregation of GNN results in irregular memory access pattern

and low data reuse. The processor has limited L1 (32 KB) and

L2 (512 KB) cache. The data exchange (vertex features;weight

matrices;edges) among L1 cache, L2 cache, and L3 cache

becomes the performance bottleneck and results in reduced

sustained performance. For example, on multi-core platform,

loading data from L3 cache incurs latency of 32ns and loading

data from L2 cache incurs latency of 5−12ns. Compared with

the CPU, the ACK in our accelerator can access data in one

clock cycle during the inference execution.

For the CPU-GPU platform, although the GPU has higher

peak performance, the GPU has higher latency than our CPU-

FPGA platform because: (1) GPU has extra latency of loading

data from host memory to GPU global memory and loading

data from GPU global memory to GPU on-chip memory, while

in our CPU-FPGA implementation, the FPGA accelerator can

directly load data to the on-chip memory through QDMA

from the host memory. (2) Similar to CPU, GPU has limited

private L1 cache size (32 KB), therefore data exchange (vertex

features;weight matrices;edges) between L2 cache and L1

cache becomes the performance bottleneck.

We compare our CPU-FPGA implementation with

GraphACT (Baseline 3) and BoostGCN (Baseline 4).

GraphACT is optimized for subgraph-based mini-batch

training which has similar computation pattern as the mini-

batch inference of Decoupled GNN models. BoostGCN is

the state-of-the-art FPGA accelerator for full-graph inference.

Compared with CPU-GraphACT and CPU-BoostGCN, our

CPU-FPGA implementation achieves lower latency because

(1) our proposed ACK can efficiently execute various

kernels in GNN. GraphACT and BoostGCN follow the

hybrid design that two hardware modules are initialized for

feature aggregation and feature transformation, respectively.

The load imbalance of the two modules leads to hardware

under-utilization on GraphACT and BoostGCN. (2) We adopt

the Scatter-Gather paradigm to achieve massive computation

parallelism for feature aggregation. GraphACT has limited

computation parallelism in its Feature Aggregation Module.

Latency for various batch sizes: We compare the mini-batch

inference latency with other platforms under various batch

sizes. Figure 12 shows the experimental results using the Flickr

dataset for the GraphSAGE model. We only show these results

due to space limitation. The results under other experimental

settings is similar. Under various batch sizes, our CPU-FPGA

implementations still achieve significantly lower latency than

the CPU-only platform, CPU-GPU platform, CPU-GraphACT

and CPU-BoostGCN.

C. Analysis of Execution Time

We perform a detailed analysis of the total execution time

using the Xilinx Runtime (XRT) profiler to analyze the execu-

tion time of host program, CPU-FPGA data transfer, and the

execution time of the computation kernels on the FPGA.

Initialization overhead tinitialization: We measure the initializa-

tion overhead in our task scheduling (Figure 9). We use the

results in Figure 13 for illustration since other experimental

settings have similar results. The initialization overhead is

0.5%− 6% of the total execution time, which is negligible.

Latency (GCN, Flickr, BS = 64)

(3,64)
(3,128)

(3,256)
(5,64)

(5,128)
(5,256)

(8,64)
(8,128)

(8,256)
(16,64)

(16,128)

(16,256)
10-1

100

101

102

La
te

nc
y

(m
s)

Total latency Initi lization overhead

Fig. 13: Comparison of the initialization overhead and the total

inference latency under various settings

20

Authorized licensed use limited to: University of Southern California. Downloaded on May 11,2023 at 04:29:25 UTC from IEEE Xplore. Restrictions apply.

TABLE VI: Average latency of loading the input data for a

target vertex through PCIe interconnection

Flickr obgn-arxiv Reddit

N = 64 12.6 μs 3.5 μs 15.1 μs
N = 128 29.1 μs 7.7 μs 32.3 μs
N = 256 72.5 μs 17.1 μs 72.7 μs

Overhead of CPU-FPGA data communication: To perform

inference on a target vertex, the feature vectors of its N
important neighbors and the edges in the induced subgraph

are loaded from the host memory to the on-chip memory of a

PE through PCIe. Note that the input data are directly sent to

the on-chip memory through the QDMA. As shown in Table

VI, we measure the average latency for loading the input data

for a target vertex through PCIe. The above latency is hidden

by our task scheduling for most target vertices (See Figure 9).

TABLE VII: Overhead of INI (tINI)

Flickr ogbn-arxiv Reddit

Time per vertex (μs) 96 37.6 87.1

Overhead of INI (tINI): On the host platform, we use 8 threads

to execute INI. The measured overhead of INI tINI is shown in

Table VII. Note that the measured overhead tINI is the time of

INI for a vertex using single CPU thread on the host processor.

The host processor can execute INI for 8 vertices concurrently.

The average latency of INI is negligible compared with the

total latency of mini-batch inference (2− 100 ms). Moreover,

The overhead tINI for most vertices is hidden by our task

scheduling (See Figure 9).

VI. CONCLUSION

In this paper, we proposed a novel hardware accelerator

design to achieve low-latency mini-batch inference on CPU-

FPGA heterogeneous platform. On various GNN models,

we achieved load-balance and high hardware utilization via

the novel Adaptive Computation Kernel design. As a result,

our CPU-FPGA implementation achieves significant latency

reduction under various GNN models and batch sizes, com-

pared with state-of-the-art CPU, CPU-GPU and CPU-FPGA

implementations.

ACKNOWLEDGMENT

This work is supported by the National Science Foundation

(NSF) under grants CCF-1919289 and OAC-2209563.

REFERENCES

[1] H. Yang, “Aligraph: A comprehensive graph neural network platform,”
in Proceedings of the 25th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, 2019, pp. 3165–3166.

[2] U. Gupta, C.-J. Wu, X. Wang, M. Naumov, and B. Reagen, “The archi-
tectural implications of facebook’s dnn-based personalized recommen-
dation,” in 2020 IEEE International Symposium on High Performance

Computer Architecture (HPCA). IEEE, 2020, pp. 488–501.

[3] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[4] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proceedings of the 31st International

Conference on Neural Information Processing Systems.
[5] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and

Y. Bengio, “Graph attention networks,” 2017.
[6] G. Li, M. Müller, G. Qian, and B. Perez, “Deepgcns: Making gcns go

as deep as cnns,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2021.
[7] H. Zeng, M. Zhang, Y. Xia, A. Srivastava, R. Kannan, V. Prasanna,

L. Jin, and R. Chen, “Decoupling the depth and scope of graph neural
networks,” Advances in Neural Information Processing Systems, 2021.

[8] M. Yan, L. Deng, X. Hu, L. Liang, Y. Feng, X. Ye, Z. Zhang, D. Fan,
and Y. Xie, “Hygcn: A gcn accelerator with hybrid architecture,” in
2020 IEEE International Symposium on High Performance Computer

Architecture (HPCA). IEEE, 2020, pp. 15–29.
[9] H. Zeng and V. Prasanna, “Graphact: Accelerating gcn training on cpu-

fpga heterogeneous platforms,” in Proceedings of the 2020 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays, 2020.
[10] B. Zhang, R. Kannan, and V. Prasanna, “Boostgcn: A framework

for optimizing gcn inference on fpga,” in 2021 IEEE 29th Annual

International Symposium on Field-Programmable Custom Computing

Machines (FCCM). IEEE, 2021, pp. 29–39.
[11] T. Geng, A. Li, R. Shi, C. Wu, T. Wang, Y. Li, P. Haghi, A. Tumeo,

S. Che, S. Reinhardt et al., “Awb-gcn: A graph convolutional network
accelerator with runtime workload rebalancing,” in 2020 53rd Annual

IEEE/ACM International Symposium on Microarchitecture, 2020.
[12] S. Liang, C. Liu, Y. Wang, H. Li, and X. Li, “Deepburning-gl: an

automated framework for generating graph neural network accelerators,”
in 2020 ICCAD. IEEE, 2020, pp. 1–9.

[13] B. Zhang, H. Zeng, and V. Prasanna, “Hardware acceleration of large
scale gcn inference,” in 2020 IEEE 31st International Conference on

Application-specific Systems, Architectures and Processors (ASAP).
[14] T. Geng, C. Wu, Y. Zhang, H. You, M. Herbordt, Y. Lin, and A. Li,

“I-gcn: A graph convolutional network accelerator with runtime locality
enhancement through islandization,” in MICRO-54, 2021.

[15] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna, “Graph-
SAINT: Graph sampling based inductive learning method,” in Interna-

tional Conference on Learning Representations, 2020.
[16] Z. Choudhury, S. Shrivastava, L. Ramapantulu, and S. Purini, “An fpga

overlay for cnn inference with fine-grained flexible parallelism,” ACM

Transactions on Architecture and Code Optimization (TACO).
[17] A. Sateesan, S. Sinha, and K. Smitha, “Dash: Design automation for

synthesis and hardware generation for cnn,” in 2020 International

Conference on Field-Programmable Technology (ICFPT). IEEE, 2020.
[18] Y.-C. Lin, B. Zhang, and V. Prasanna, “Hp-gnn: Generating high

throughput gnn training implementation on cpu-fpga heterogeneous
platform,” arXiv preprint arXiv:2112.11684, 2021.

[19] M. Zhang and Y. Chen, “Link prediction based on graph neural net-
works,” Advances in Neural Information Processing Systems, 2018.

[20] R. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and J. Leskovec,
“Hierarchical graph representation learning with differentiable pooling,”
arXiv preprint arXiv:1806.08804, 2018.

[21] B. Bahmani, A. Chowdhury, and A. Goel, “Fast incremental and
personalized pagerank,” arXiv preprint arXiv:1006.2880, 2010.

[22] R. Andersen, F. Chung, and K. Lang, “Local graph partitioning using
pagerank vectors,” in 2006 47th Annual IEEE Symposium on Founda-

tions of Computer Science (FOCS’06). IEEE, 2006, pp. 475–486.
[23] M. Aggarwal, B. Zhang, and V. Prasanna, “Performance of local push

algorithms for personalized pagerank on multi-core platforms,” in HiPC

2021. IEEE, 2021, pp. 370–375.
[24] “Xilinx qdma ip.” [Online]. Available:

https://www.xilinx.com/products/intellectual-property/pcie-qdma.html
[25] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph

neural networks?” arXiv preprint arXiv:1810.00826, 2018.
[26] Y.-k. Choi, Y. Chi, W. Qiao, N. Samardzic, and J. Cong, “Hbm

connect: High-performance hls interconnect for fpga hbm,” in The 2021

ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays, 2021.
[27] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and

J. Leskovec, “Open graph benchmark: Datasets for machine learning on
graphs,” arXiv preprint arXiv:2005.00687, 2020.

21

Authorized licensed use limited to: University of Southern California. Downloaded on May 11,2023 at 04:29:25 UTC from IEEE Xplore. Restrictions apply.

