2022 IEEE 29th International Conference on High Performance Computing, Data, and Analytics (HiPC) | 978-1-6654-9423-6/22/$31.00 ©2022 IEEE | DOI: 10.1109/HiPC56025.2022.00015

2022 IEEE 29th International Conference on High Performance Computing, Data, and Analytics (HiPC)

Low-latency Mini-batch GNN Inference on
CPU-FPGA Heterogeneous Platform

Bingyi Zhang
University of Southern California
Los Angeles, CA, USA

bingyizh@usc.edu

Abstract—Mini-batch inference of Graph Neural Networks
(GNNs) is a key problem in many real-world applications. In
this paper, we develop a computationally efficient mapping of
GNNs onto CPU-FPGA heterogeneous platforms to achieve low-
latency mini-batch inference. While the lightweight preprocessing
algorithm of GNNs can be efficiently mapped onto the CPU
platform, on the FPGA platform, we design a novel GNN
hardware accelerator with an adaptive datapath denoted as
Adaptive Computation Kernel (ACK) that can execute various
computation kernels of GNNs with low-latency: (1) for dense
computation kernels expressed as matrix multiplication, ACK
works as a systolic array with fully localized connections, (2)
for sparse computation kernels, ACK follows the scatter-gather
paradigm and works as multiple parallel pipelines to support the
irregular connectivity of graphs. The proposed task scheduling
hides the CPU-FPGA data communication overhead to reduce
the inference latency. We develop a fast design space exploration
algorithm to generate a single accelerator for multiple target
GNN models. We implement our accelerator on a state-of-the-
art CPU-FPGA platform and evaluate the performance using
three representative models (GCN, GraphSAGE, GAT). Results
show that our CPU-FPGA implementation achieves 21.4—50.8 %,
2.9 —21.6x%, 4.7x latency reduction compared with state-of-the-
art implementations on CPU-only, CPU-GPU and CPU-FPGA
platforms.

Index Terms—Graph Neural Network, Mini-batch inference,
FPGA acceleration

1. INTRODUCTION

Graph Neural Networks (GNNs) have become a revolu-
tionary technique in graph-based machine learning. Many
vendors have adopted GNNs in their commercial systems,
such as recommendation systems [1], social media, knowl-
edge databases, etc. In these systems, data are represented
as graphs, where vertices correspond to entities and edges
encode the relationship among entities. A fundamental task in
these systems is mini-batch GNN inference: given a batch of
target vertices, infer their embeddings (vector representations)
with low-latency. For example, in recommendation systems of
Alibaba [1] and Facebook [2], multiple users make a batch of
requests at a time and inference latency directly determines
the quality of service.

There are two major challenges for mini-batch inference.
(1) neighborhood explosion: the widely used GNNs [3], [4],
[5] follow the message-passing paradigm: in a L-layer model,
a vertex recursively aggregates information from its L-hop
neighbors. The receptive field is defined as the set of neighbors

Hanqging Zeng
Meta Al
Menlo Park, CA, USA
zengh@meta.com

Viktor Prasanna
University of Southern California
Los Angeles, CA, USA
prasanna@usc.edu

Receptive field, including 1-,
" 2-, and 3-hop neighbors

- - --0-0000-00-0-0-0-00-

©
L=3 Target vertex

Fig. 1: Recursive message passing of GNNs results in ex-
ponential computation and communication cost, and low
computation-to-communication (C2C) ratio

passing messages to the target vertex. In the example shown
by Figure 1, the receptive field consists of all the vertices
within L-hop. In a large graph, the size of the receptive field
quickly explodes w.r.t. model depth L. Therefore, mini-batch
GNN inference suffers from two issues. First, the computation
and communication costs grow exponentially with the depth
of GNN. This hinders the deployment of deeper GNNs on
memory constrained accelerators. It has been proven [6], [7]
that deeper GNNs have higher accuracy than shallower ones.
Second, the computation-to-communication (C2C) ratio is low,
thus making it not suitable for hardware acceleration. (2)
load imbalance: GNN computation involves various kinds
of kernels, including dense computation kernels and sparse
computation kernels. To support various kernels, previous
work [8], [9], [10] designed hybrid accelerators that for
each kernel, a dedicated hardware module is designed and
initialized independently. For example, in GraphACT [9], the
Feature Aggregation Module executes the sparse kernel and
Feature Transformation Module executes the dense kernel.
However, it is challenging to achieve load balance among
hardware modules in a hybrid accelerator. For example, the
workload of feature aggregation is unpredictable and depends
on the connectivity of the input graphs. The load imbalance
leads to hardware under-utilization and extra latency.
Recently, model depth-receptive field decoupling [7] has
been proposed to resolve the neighborhood explosion chal-
lenge. Under the decoupling principle, GNN depth is chosen
to be independent of the receptive field. As shown in Figure
2, for a target vertex, it selects a small number of important

2640-0316/22/$31.00 ©2022 IEEE 11
DOI 10.1109/HiPC56025.2022.00015

Authorized licensed use limited to: University of Southern California. Downloaded on May 11,2023 at 04:29:25 UTC from IEEE Xplore. Restrictions apply.

L=3N=6
200006 6

L=2N=6
200 ®06 6

26080 ® ® Q0@ ®06 6

20006 6 Q0 @®06 6

Readout() 20 @006 ®

Readout()

@

Target vertex

(@) Important neighbor

@

Vertex-induced edge Target vertex

Fig. 2: An example of Decoupled GNN model

neighbors as the receptive field NV, and then performs message
passing within A/. The key property of a Decoupled GNN is
that the size of N remains fixed while the GNN becomes
deeper, thus reducing the computation complexity from expo-
nential to linear w.r.t. model depth. Each layer only propagates
information within A/. Compared with original GNN models
(Figure 1), the Decoupled GNN models theoretically lead to
significantly less computation cost and memory bandwidth
requirement and thus are well-suited for hardware acceleration.

While there have been many GNN accelerators [8], [11],
[10], [12], [9] proposed, none of them is designed or optimized
for low-latency mini-batch inference. Specifically, [8], [11],
[10], [12] are for full-graph inference and [9] is for mini-
batch training. Full-graph GNN inference has very different
computation characteristics from mini-batch inference. In full-
graph inference, all vertices in the graph are target vertices.
Through careful vertex reordering [13], [14] and graph parti-
tioning [8], [10], full-graph execution can achieve high data
reuse by exploiting common neighbors. However, in mini-
batch inference, it is more challenging to improve data reuse
since the target vertices arrive randomly and rarely share
common neighbors. In addition, GraphACT [9] is built on
a specific training algorithm [15] to improve computation-
to-communication ratio only during training. While the com-
putation pipeline of GraphACT can be adapted to inference,
its performance may be sub-optimal due to load imbalance
(challenge (2) above).

In this paper, we accelerate mini-batch inference of Decou-
pled GNN models. Decoupling leads to high computational ef-
ficiency and makes it attractive for acceleration. Computations
on the Decoupled model involves identifying important neigh-
bors (Section III-B), and computation intensive GNN kernels
(Section IV-A). Identifying important neighbors is lightweight,
but requires irregular memory access and complex control
flow. This can be efficiently executed on a CPU while the
latter can be accelerated by FPGA which offers massive data
parallelism. We show that a CPU-FPGA heterogeneous plat-
form can effectively accelerate Decoupled GNNs. On FPGA
platform, we design a unified hardware accelerator consisting
of (1) adaptive datapath that can execute various computation
kernels of GNNs with low-latency, thus overcoming the load-
imbalance challenge, (2) memory organization that can hide
data communication overhead to further reduce the inference
latency. Our main contributions are:

e By analyzing the computation and communication cost
of mini-batch GNN inference, we identify “model depth-
receptive field” decoupling as a key model design tech-
nique towards low-latency accelerator design.

o We propose a system design on CPU-FPGA platforms
to accelerate mini-batch inference of Decoupled GNN
models:

— We develop a novel hardware accelerator with both
the sparse and dense computation modes to execute
various GNN computation kernels with low latency.

— We customize the memory organization with dou-
ble/triple buffering techniques on FPGA to reduce
data access latency and enable data prefetching.

— We perform task scheduling to hide the CPU-FPGA
data movement overhead.

o We develop a design space exploration algorithm that
given 1) a specification of the target FPGA device, and
2) a set of target GNN models with various depths and
receptive field sizes, generates a single hardware that
achieves low-latency inference without reconfiguration.

« We implement our accelerator on a state-of-the-art CPU-
FPGA platform and evaluate its performance using three
representative models (GCN, GraphSAGE, GAT). We
achieve 21.4—50.8 %, 2.9—21.6%, 4.7x latency reduction
compared with state-of-the-art implementations on CPU-
only, CPU-GPU and CPU-FPGA platforms.

II. BACKGROUND
A. GNN Acceleration on FPGA

Field Programmable Gate Array (FPGA) has been exten-

sively studied for accelerating machine learning tasks [16],
[17]. A high-end FPGA device has significant hardware re-
sources, including Lookup Tables (LUTSs), on-chip memories
(BRAMs, URAMs), etc. Hardware programmability of FPGAs
allows users to exploit the fine-grained data parallelism in
a computation task. An FPGA is attractive for low-latency
computations compared with GPU which is mainly optimized
for coarse-grained thread-level parallelism.
GNN accelerators on FPGA: GraphACT [9] proposes a
hybrid accelerator on FPGA for sub-graph sampling based
GNN training. BoostGCN [10] accelerates the full-graph
GNN inference through partition-centric feature aggregation.
Deepburning-GL [12] is a design automation framework to
generate FPGA accelerators for full-graph GNN inference.
AWB-GCN [18] exploits data sparsity in various computation
kernels of GNN. As discussed in Section I, previous GNN
accelerators on FPGA [9], [10], [12], [18] are not suitable
for mini-batch GNN inference. In this work, we develop an
optimized FPGA accelerator to achieve low-latency mini-batch
GNN inference (Section III).

B. Graph Neural Network

The related notations are defined in Table I. Graph Neural
Networks (GNNs) [3], [4] are proposed for representation
learning on graphs, facilitating tasks such as node classification
[4], [3], link prediction [19] and graph classification [20]. The

Authorized licensed use limited to: University of Southern California. Downloaded on May 11,2023 at 04:29:25 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Notations

Notation Description \ Notation Description
gV, €&) input graph ‘ v; i vertex
v set of vertices | €ij edge from v; to v;
& set of edges | L number of GNN layers
N # of vertices in the receptive field | N (i) L-hop neighbors of v;
hi feature vector of v; at layer [\ N receptive field
H vertex feature matrix ‘ wt weight matrix of layer [

input to an L-layer GNN is a graph G(V, £, X') where each
vertex v € V has a feature vector «,, € &X'. The outputs are
node representation vectors h” for each vertex v. As shown in
Algorithm 1, in layer [, v’s neighbors {u|(u,v) € £} perform
message passing to generate the layer output h!, where each
“message” is the h!~! of the previous layer. Thus, performing
message passing recursively for L layers means each vertex v
aggregates information from all its L-hop neighbors.

Algorithm 1 Recursive message-passing paradigm of GNN

Input: Input graph: G(V, £); Initial vertex features of input graph:
{n1,h3, hS, ..., k), }; Set of target vertices: {v1, vz, ..., vm }
Output: Output embeddings: {hfl,h52, hﬁ37 ey hfjm}
for v; € {v1,v2,...,vm } do
for(=1to L do
for vy € Np_i(i) do
z; = aggregate (hl Yok e M) N NL—141(2))

hé = update(hé ! Wl)

We define receptive field of v as the set of all vertices

that pass messages to v. Thus, for an L-layer GNN following
Algorithm 1, the receptive field of v includes all vertices which
are up to L hops away from v. The size N of the receptive
field grows exponentially with the depth L of the model:
N =~ O(d"), where d is the average degree of the graph.
We denote GNNs following such recursive message-passing
paradigm as Coupled models since the size of receptive field
N depends on the model depth L. Note that the size of the
GNN model, which equals the total size of all the weight
matrices {|[W'| : 1 <[< L}, is independent of the size of
the graph.
Specification of a Coupled model: A Coupled GNN model is
specified by: (1) number of layers L, (2) aggregate() function
that defines operator for aggregating the neighbor information
(e.g., aggregate() of GraphSAGE [4]: z]l. = Mean (hﬁ’1 tv; €
N1(j)U{j})), (3) hidden dimension of each layer f; for 0 <
I < L, (4) update() function (e.g., b} = ReLU(W'h’™"))
with learnable matrix W' (1 <1< L).

A main challenge for Coupled GNN models is the low
Computation-to-Communication (C2C) ratio. We profile the
execution of mini-batch inference of GraphSAGE [4] using
a prior FPGA accelerator (GraphACT)! [9]. The CPU-FPGA

'GraphACT is an accelerator for training the GraphSAGE model, including
forward propagation for inference and back propagation for calculating weight
gradients. In Figure 3, we only perform the forward propagation of GraphACT
for inference.

Breakdown of execution time

(=]
=3

‘ N Sampling [Data Transmission] GNN Operations

10

Total execution time
(log-scale)

2D ;5\ bc\ \ \ AN D A N D AR
s Vo e S 6& MR N
QO T (@ 6 ?\ ?\ o @Y @0 e (I (F (S
QQ‘O W
F &
oD Roofline Analysis
i ’{"PGA\{F;@M‘“’***: Peak performance (326 GFLOPS)
[27) of eI
S 2| e B - N
£ ch & s o GBI s * Xi-30ra
S d\N'\d‘-
E < Qe ogbn-products Flickr
‘ o L=2 * Reddit Yelp
10" 10° 10! 102

Operational Intensity (C2C Ratio) [FLOPS/byte]

Fig. 3: Experimental analysis of mini-batch inference using
Coupled GraphSAGE [3] model: (1) Breakdown of execution
time, (2) Roofline analysis (vertical axis is in log-scale)

platform and the graphs are specified in Section V-A. The
graph is stored in the external memory of the host processor,
since the sizes of realistic graphs are often much larger than
the on-chip capacity of FPGAs. We further perform vertex
sampling on the L-hop neighborhood (following the recom-
mended parameters [4]) to optimize the inference latency. As
shown in Figure 3-(1), the data transmission between CPU and
FPGA incurs significant execution time overhead because the
number of neighbors grows exponentially with the depth of
GNN model. The execution time also increases exponentially
with the GNN depth. Moreover, the hardware accelerator has
low utilization < 30% (computed by % % 100%).
The roofline analysis (Figure 3) demonstrates that mini-batch
inference of Coupled GNN model is memory-bound, and
the overall performance is limited by the available PCle
bandwidth.

C. Decoupling of Model Depth and Receptive Field

Algorithm 2 Inference process of Decoupled GNN models

Input: G(V, &, X O); Number of layers L; Size of receptive field NV;
A batch of target vertices V;; GNN layer operators (aggregate(),
update());

Output: Representation vectors of target vertices: {h%

1: forv eV, do
2: Identify N important neighbors Mmp(v) for v.

3: Build vertex-induced subgraph G'(v) using Nimp(v) U{v}

4: Extract the input vertex features F(v) = {h% : u € G'(v)}.

5.

6

7

:’UEVt}

for [+ 1to L do
Message passing within G’(v) using the layer-I operators
Obtain representation vector of vertex v through Readout().

Recently, [7] proposed a decoupling principle where the
GNN depth L and the receptive field size N are specified
independently. Decoupling is proposed based on the obser-
vation that in the Coupled GNN models, most neighbors in-
volved in message-passing do not provide useful information.

Authorized licensed use limited to: University of Southern California. Downloaded on May 11,2023 at 04:29:25 UTC from IEEE Xplore. Restrictions apply.

Therefore, the key is to identify the important neighbors of
the target vertex before applying message passing. As shown
in Algorithm 2, for each target vertex v, we first define its
receptive field AViyp as the important neighbors of v, where
/\/imp is independent of L. Then, we build a vertex-induced
subgraph G'(v) from Nimp(v) [J{v}. Next, the GNN message
passing is performed within G’(v) for L layers using the GNN
layer operators. The representative vector hS™ is generated via
applying the Readout() function (e.g., Max()) to the outputs
of the last GNN layer. For example, h™ = Max({hZ :
u € Nimp(v)U{v}}). Figure 2 (See Introduction Section)
shows an example. Note that the decoupling principle can be
applied to widely used models (e.g., GCN, GraphSAGE, GIN,
GAT) since it does not change the GNN layer operators (e.g.,
aggregate and update). We define the GNNs constructed by
the decoupling principle as the Decoupled models.
Specification of Decoupled model: A Decoupled model is
specified by: (1) number of layers L, (2) number of important
neighbors for the target vertex IV (i.e., size of the receptive
field), (3) the sampling algorithm to obtain the important
neighbors, (4) aggregate() function, (5) hidden dimension of
each layer f;, 0 <! < L, (6) update() function with learnable
weight matrix wh 1<I<L.

Accuracy of Decoupled model: When choosing appropriate
neighbors N\ (see [7]), a Decoupled model in general achieves
higher accuracy than the original Coupled model. See [7] for
detailed theoretical and empirical evaluation.

III. PROPOSED APPROACH
A. Overview

As shown in Section II-B, Coupled GNN models are in-
herently memory-bound for mini-batch inference due to the
exponential growth of the receptive field, making them hard
to be accelerated even with well-optimized hardware pipelines.
We identify that Decoupled GNN models are more suitable to
be accelerated, due to their high C2C ratio (Section III-B).
Therefore, the objective of our hardware design is to achieve
low-latency mini-batch inference of Decoupled GNN models.
For simplicity, in the rest of the paper, we use mini-batch and
batch interchangeably. We define the performance metric as
latency of a batch (Figure 9): given a batch of C' target
vertices and a pre-trained Decoupled GNN, latency is the
time duration from receiving the C target vertex indices to
obtaining the vertex representation vectors (See Figure 9). We
consider a general scenario in which batches can come in
intermittently with variable inter-batch latency, following the
Facebook recommendation system [2].

To map Decoupled GNN models on CPU-FPGA platforms,
we first identify and characterize the various computation ker-
nels of GNNs (Section IV-A). Then, we design a novel unified
architecture named Adaptive Computation Kernel (ACK, see
Section IV-B), capable of executing both the sparse and dense
computation without any runtime reconfiguration. Finally, we
propose a design space exploration algorithm (Section IV-E) to
generate a single hardware design point for various GNN mod-
els. Our design is thus advantageous compared with previous

FPGA accelerators (e.g., BoostGCN [10], Deepburning-GL
[12] , HP-GNN [18]) which require regenerating a hardware
design for each GNN model.

Host
Processor

FPGA DDR N -)
[memory [Trained Model 1]@[Trained Model m]

=i
Rz

[eLIVZY

Edge

Buffer Adaptive

Weight Buffer

Computation Result

Kernel (ACK) Buffer
L T

Processing Element
FPGA platform

Feature/

Host

Memor
Input
Graph

QobmA

QDMA

2

1
Npe Processing Elements

Fig. 4: System design

B. Analysis of Decoupled Models

We compare the computation and communication charac-
teristics of Coupled and Decoupled GNN models. Using an
L-layer Coupled GNN model to generate embedding for a
target vertex, the information in the L-hop neighborhood is
needed. In a Decoupled GNN model, N and L are specified
independently. To simplify the analysis, we assume f; = f
(i = 0,1,...,L), and illustrate using the GraphSAGE [4]
model. The comparison is shown in Table II. Usually, the
receptive field of Coupled GNNs O(d*) is much larger than
that of Decoupled ones. To summarize, Decoupled models
achieve small computation and communication cost, high
C2C ratio and require small on-chip memory, making them
attractive for hardware acceleration.

TABLE II: Comparison of Coupled and Decoupled GNNs

Receptive Comp. Comm. C2C

Field Size Cost Cost Ratio

Coupled GNNs o(dl) ow@dtf?) oty o)
Decoupled GNNs N < O(d¥) O(NLf?) O(Nf) O(Lf)

Important Neighbor Identification (INI): INI (line 2 of
Algorithm 2) is the key to achieve high accuracy with a
Decoupled model. Following [7], we use the Personalized
PageRank (PPR) [21] score as the metric to indicate the
importance of neighbor vertices w.r.t. a given target vertex.
We use the local-push algorithm [22] to compute approximate
PPR scores. There are several benefits of using this approach:
(1) As shown in [7], PPR score is a good metric to reflect
neighbor importance. Empirically, Decoupled models based on
PPR achieve high accuracy with a small number of neighbor
vertices (e.g., 100 — 200 vertices) [7]. (2) The computation
complexity of the local-push algorithm is low and is indepen-
dent of graph size [23]. (3) The local-push algorithm can be
easily parallelized across multiple CPU cores.

C. System Design
Figure 4 depicts the proposed system.

Authorized licensed use limited to: University of Southern California. Downloaded on May 11,2023 at 04:29:25 UTC from IEEE Xplore. Restrictions apply.

Design Time: At design time, given the specification of the
target FPGA platform and a set of Decoupled GNN models
(see Section IV-E), we generate a single hardware accelerator
and deploy it on the target FPGA platform. The overhead
of generating the accelerator is a one-time cost. The trained
GNN models are stored in the FPGA DDR memory. User can
specify which model to use at runtime.

Algorithm 3 Parallel Mini-batch Inference on CPU-FPGA

Input: A batch of target vertices V;; A Decoupled GNN model
(already trained and stored in FPGA DDR memory);
Output: Representation vectors of target vertices: {hy : v € V;}
1: while there is an idle CPU thread do > CPU
2: Pick a target vertex v from V; and remove v from V;
3: Extract important neighbors and build vertex-induced sub-
graph G'(v)
Send vertex features and edges of G'(v) to FPGA
while there is an idle PE do > FPGA
Load vertex features and edges of G’(v) for a target vertex v
for | < 1to L do > Inference using ACK
for each kernel from the kernels of layer [do
Configure the execution mode of ACK for kernel
Execute kernel on ACK
Send representation vector hZ back to CPU

SN

—_

Runtime: The overall execution process between CPU and
FPGA is described in Algorithm 3. The input graph (including
the edges and vertex features) is stored in the host memory.
During runtime, the host processor receives the indices of
a batch of target vertices and the GNN model specified by
the user. On the host platform, the CPU performs important
neighbor identification (line 2 of Algorithm 2) and constructs
the vertex-induced subgraph for the target vertices. We use
parallel threads on the CPU to execute the local-push algo-
rithm [23] for multiple target vertices concurrently. Then, the
CPU extracts the features of input vertices and the edges
of the subgraph, and sends them to the FPGA accelerator
through the PCle interconnection. The CPU also performs task
allocation for the accelerator based on the specification of the
GNN model. For example, for inferring a target vertex using
a L-layer model with 2 kernels (e.g., feature aggregation and
feature transformation of a GCN [3] layer), the host program
allocates 2L kernels for the accelerator to execute. On the
FPGA platform, the input data from PCle is directly sent to
the accelerator through QDMA [24]. The FPGA accelerator
consists of N, multiple parallel and independent processing
elements (PEs) where each PE processes one target vertex
at a time. Adaptive Computation Kernel (ACK) executes
the L layers sequentially (see Algorithm 3). For each layer,
ACK executes the kernels sequentially. The ACK execution
mode corresponding to a kernel (see Section IV-B) is set by
the control bits of the hardware multiplexers in ACK. The
overhead of switching execution modes is just one clock cycle.

IV. HARDWARE ARCHITECTURE

The proposed FPGA accelerator (Figure 4) consists of Ny
parallel and independent processing elements (PEs). Each PE
contains an Adaptive Computation Kernel (ACK) to execute

various computation kernels in GNNs, an Edge Buffer to store
the edges, a Weight Buffer to store the Weight matrices and
a Feature/Result Buffer to store the vertex features. An ACK
contains a 2-D mesh of ALUs (Section IV-B).

Processing Element

[Weight Buffer]

(
Edge

g T e
E ‘ﬁg Buffer

> ——

5 D | (e) ———
g Routing

Feature
/
Result
Buffer

Network

; Gather RAW !
! B A Unit = unit :
1 !
! g

Scatter
Unit

Wire connection —— Wire connection for Wire connection between
for systolic mode == scatter-gather mode computation units and buffers

Fig. 5: The details of a Processing Element

A. Computation Kernels of GNNs

We summarize the various computation kernels in four

widely used GNN models: GCN [3], GraphSAGE [4], GIN
[25], GAT [5]:
Feature Aggregation (FA): FA can be implemented by a
Scatter phase followed by a Gather phase. In Scatter phase,
each vertex v; sends its features h; to its neighbors in the
vertex-induced subgraph. The vertex features are multiplied
by the edge weight to generate the intermediate results. In
Gather phase, each vertex aggregates the incoming interme-
diate results through aggregate() function (e.g., element-wise
Max, Mean) to generate the aggregated features z;.

Feature Transformation (FT): The aggregated features z;
are transformed through the update() function. In the widely
used GNN models (e.g. GCN, GraphSAGE, GIN, GAT), the
update() is a single-layer MLP with an element-wise activation
function (e.g., ReLU, LeakyReLU).

Attention: Some GNN models (e.g., GAT) exploit the Atten-
tion mechanism to generate data-dependent edge weights. The
weight of edge e;; is calculated based on (h;, h;, Wy, a).
W,y is the attention weight matrix that is multiplied with h;
and h;. a is the vector that is multiplied with Wyh;||Wyh;
to get the edge weight e;;.

FT and Attention are dense computation kernels involving
dense matrix multiplication, while FA is a sparse computation
kernel due to the sparsity and irregularity of the graphs. If we
execute the different kernels using different hardware modules,
the load imbalance can lead to hardware under-utilization and
increased latency (See Section IV-C).

B. Hardware Modules

To address the load imbalance challenge, we propose
Adaptive Computation Kernel to execute various computation
kernels of GNN5s using the same set of computation resources.

Authorized licensed use limited to: University of Southern California. Downloaded on May 11,2023 at 04:29:25 UTC from IEEE Xplore. Restrictions apply.

Adaptive Computation Kernel (ACK): ACK contains an
array of Arithmetic Logical Units (ALUs) of size pgys X Dsys.
An ALU can execute various arithmetic operations including
Multiplication, Addition, Multiply-Accumulation, Min, Max,
etc. The proposed ACK has two execution modes — Systolic
Mode and Scatter-Gather Mode — that can support FA, FT and
Attention (Section IV-A).

1

(Weight Buffer

Gather
- Unit .
Gather
-
Gather
Unit

Gather
Unit

Edge
Buffer

Unit
Scatter
Unit

Scatter
Unit
Scatter
Unit

Scatter-Gather Mode

J

Routing
Network

9]
k=4
=
]
=
>
)
)
o<
=
[
=
3
=
©
(7]
w

Feature\Result
Buffer

[

Systolic Mode

Fig. 6: Two data paths realizing the dense (left) and sparse
(right) execution modes of ACK

Systolic Mode: The array of ALUs are organized as a two-
dimension systolic array. Systolic array is an efficient archi-
tecture for dense matrix multiplication, which has localized
interconnections as shown in Figure 6. Systolic Mode supports
dense matrix multiplication in FT and Attention. In Systolic
Mode, ACK can execute the multiplication of weight matrix
W and Feature matrix Hj, (See Table I, each row of Hj, is
a vertex feature vector h;) to obtain the output feature matrix
H,,. Weight Buffer streams the weight matrices of MLP
(FT) or the attention weight matrix to the systolic array, and
Feature/Result Buffer streams multiple vertex feature vectors
into the systolic array. Systolic array of size psys X psys can
execute pfys Multiply-Accumulation operations per cycle. Both
the Weight Buffer and the Feature Buffer have port width of
Dsys data, and can send psys data to the systolic array per cycle.

 switch Y switch ‘

Fig. 7: The architecture of the routing network

Scatter-Gather Mode: The PE executes feature aggregation
(FA) following the Scatter-Gather paradigm (Algorithm 4).
The array of ALUs is partitioned into equal number of Scatter
Units and Gather Units. In each Scatter Unit, the ALUs are
organized as a vector multiplier that multiplies the vertex
feature vector by the scalar edge weight. In each Gather
Unit, the ALUs execute the aggregate() function. Suppose
the feature vector has the format (src, features), where src
denotes the index of the source vertex and the features is
the feature vector of the source vertex. Edge has the format
(sre, dst, weight), where sre,dst, weight denote the source

vertex index, destination vertex index, edge weight respec-
tively. The generated intermediate results (updates) by the
Scatter Units have the format (dst, features). The N vertices
in the receptive field are equally partitioned to the Gather
Units. The routing network (Shown in Figure 7) performs all-
to-all interconnection between Scatter Units and Gather Units.
It routes the intermediate results (dst, features) generated
by Scatter Units to the corresponding Gather Units based
on the index dst. For example, suppose a Gather Unit is
responsible for accumulating the results for vertices v; — vg4.
All intermediate results that have dst ranging from 1 to 64
will be routed to this Gather Unit. This routing network is
implemented as a butterfly network [26] which has close-to-
optimal routing throughput for all-to-all communication (See
Table 4 of [26] for the detailed evaluation of routing network).

Algorithm 4 FA using Scatter-Gather Paradigm

while not done do
for each edge e(src,dst, weight) do > Scatter Unit
Produce update u < Scatter(src. features, e.weight)
for each update u(dst, features) do > Gather Unit
Update vertex dst < Gather(u. features)

When the execution of a kernel is completely finished,
the ACK can start to execute the next kernel. In our de-
sign, the number of Scatter units and Gather Units both
equals ps, where py, is decided by py, = psys/2. The
Feature/Result Buffer have p,, banks. Each bank stores
the feature vectors of a partition of the vertex-induced
subgraph (Algorithm 2). Each bank is connected to a
Gather Unit. Each Scatter or Gather Unit has 2p,, ALUs.
Note that read-after-write
(RAW) data hazard may oc-
cur when accumulators in
the Gather Unit read the old
feature vertex vector from
the Feature/Result Buffer.
To resolve the RAW data
hazard, we implement a
RAW Unit before Gather
Unit as shown in Figure 8. In the RAW Unit, there is a RAW
detector to detect the RAW data hazard and a small Reorder
Buffer (implemented as a FIFO) to cache the input data when
RAW is detected. The data in the Reorder Buffer will be sent
to Gather Unit when there is no RAW data hazard.
Activation Unit: The Activation Unit executes the element-
wise activation function in FT and the Softmax function in At-
tention. These functions are implemented using Xilinx High-
Level Synthesis (HLS). For example, the Softmax function
is implemented by using hls::exp (x) function as the
building block.

Double/triple buffering: In a Processing Element, there are
three Feature/Result Buffers for triple buffering. The first
Buffer stores the vertex feature vectors of the current GNN
layer. The second Buffer stores the vertex feature vectors of
the next GNN layer. The third Buffer is used for prefetching

Gather
Unit

Fig. 8: RAW Unit (left)

Authorized licensed use limited to: University of Southern California. Downloaded on May 11,2023 at 04:29:25 UTC from IEEE Xplore. Restrictions apply.

the input vertex feature vectors of the next target vertex.
Similarly, Edge Buffer is also designed with triple buffering.
Weight buffer is implemented using double buffering, where
one buffer is used for storing the weight matrix of the current
layer, and the other buffer is used to prefetch and store
the weight matrix of the next layer. Through double/triple
buffering, memory access and computation are overlapped to
reduce the overall inference latency.

C. Load Balance

The key benefit of our design is that we use the same set
of computation resources in a single hardware module (ACK)
to execute various computation kernels with high efficiency.
Therefore, we are able to assign all the on-chip computation
resources to ACKSs. In contrast, in the hybrid accelerators
[8], [9], [10], the computation resources are divided among
different hardware modules to execute different computation
kernels. Suppose for a single GCN layer, feature aggregatgion
(FA) has workload a; > 0 and feature transformation (FT)
has workload as > 0, and the total computation resource is
5. In our design, we use 3 for ACKs. Therefore, the latency
for executing this single GCN layer of our design is: 1%z,
In the hybrid accelerator, suppose the hardware module for
FA uses (31 resources and the hardware module for FT uses
3 — (31 resources. The latency for executing this single GCN

[e]3 [e3 .
/Ti7 ﬂ_%l) It can be proved that:

layer is max

a1 + Qo (&5} (6]
Smax |, z—— >0,6,>0,8-61 >0
3 X<51 3—51) (B>0,5 B—B1 > 0)
()
where the equality is achieved when 3+ = 22— In the

Decoupled GNN model, the workload of FlA, aq 18 uslually un-
predictable because the number of edges in the receptive field
varies with the target vertex as well as with the connectivity of
the input graph. Moreover, varying the receptive field size can
vary the workload a1, oo at different rate. Therefore, in a fixed
hybrid accelerator, it is hard to keep load balance for various
input graphs and Decoupled models with various receptive
field sizes. The load imbalance incurs increased latency. To
execute GNN models with more than two computation kernels
(e.g., GAT), load imbalance can be more severe in hybrid
accelerators.

D. Task Scheduling on CPU-FPGA

Figure 9 shows the proposed task scheduling for mini-batch
inference, based on Algorithm 3. The host processor performs
Important Neighbor Identification and builds a vertex-induced
subgraph for each target vertex. If there is an idle PE, it loads
the input vertex feature vectors of the vertex-induced subgraph
of a target vertex. The PE also prefetches the input data for an
unprocessed target vertex. After loading the input data, the PE
executes the L-layer GNN forward propagation for the target
vertex. Finally, the PE sends the representation vector of the
target vertex back to the host processor.

CPU-FPGA data communication: Using the proposed
scheduling, the execution of the accelerator and the CPU-
FPGA data movement are overlapped for all but the first vertex

Input data for target vertex v; H Ouput embedding for a target vertex

Completing
execution

Receive the indices of the target vertices

Time Axis

Host ™ important Neighbor Identification Jmeemmeemeemmeeneenh
processor: K

PCle

Injference ofv; - ‘ }ﬂﬁf‘k

Prefetch input data

Loading, input data
. foratarget vertex

for a target vertex

Inference of va:‘{ ‘

Latency of a batch
(Latency measured in our experiments)
Initialization overhead t;pitialization

Fig. 9: Task scheduling for mini-batch GNN inference on
CPU-FPGA platform

in a batch. Denote tipialization = tioad + tin1 as the initialization
overhead of a batch, where ¢ny is the latency of runing INI
for a vertex using a single CPU thread on the host processor.
tiaa 1s the latency of loading the induced subgraph (vertex
features; edges) for a target vertex. Section V-C shows that
tinitialization 15 Negligible compared with total inference latency.

E. Design Space Exploration

We perform design space exploration (DSE) to determine
the hardware parameters. The inputs to our DSE are (1)
available hardware resources (/Npsp: number of DSPs) on
FPGA, (2) arithmetic operations in the given set of Decoupled
GNN models that needs to be supported. Given the inputs, the
DSE determines the number of DSPs in an ALU Njyy, the
size of ACK in a PE pgys X pgys, the number of PEs N, in the
accelerator. The proposed design has the following properties:

o The proposed accelerator can execute a GNN model as
long as the ALU can support all the arithmetic operations
in this GNN model. Napy is determined based on the
arithmetic operations of a given Decoupled GNN model.

o The size of the ACK pgys X psys in a PE determines the
latency of inferring a single target vertex, and the number
of PEs N,. decides how many target vertices can be
inferred concurrently. Thus, the total on-chip computation
resources should be exhausted by IV, -pfys. The value of
Ny depends on the batch size: for large batch sizes, both
large and small IV, work well since sufficient parallelism
is available across target vertices; for small batch sizes, it
is desirable to set V. as small in order to still achieve low
latency. Since batch sizes vary significantly in real-world
applications, we minimizes Ny, by maximizing pgys X Dsys
in a PE.

« To efficiently implement Scatter Unit, Gather Unit and
routing network, pgy is chosen to be power of 2.

The above analysis leads to the following DSE algorithm:

1) Determine Napy based on all the arithmetic operations
(given GNN models) to be supported.

2) Maximize the ALU array size: pys = QLIOg'z V Nose/ NALUJ

Authorized licensed use limited to: University of Southern California. Downloaded on May 11,2023 at 04:29:25 UTC from IEEE Xplore. Restrictions apply.

Latency (GCN, Flickr, BS = 64)

—

2} I cPU-only [BoostGCN

S [CPU-GPU [Our work

=

>

5}

o

+— 10°

©

—
R AR O N B P P S
el € e ¥t el & e o

. Latency (GCN, Arxiv, BS 64)

2} I CPU-only [1BoostGCN|

£ | cru-PU I Our work

>

[5)

o

= 10°

(4}

—

SRR A A N I

el O e e e oY e o

LB P E P PP P PP P P
Vel et el et el & e o

Latency (GAT, Flickr, BS = 64)

Latency (GraphSAGE, Reddit, BS = 64)

I CPU-only [GraphACT [N Our work
I cPU-GPU I BoostGCN

I CcPU-only [CPU-GPU |:|Ourw0rk“

N @D S N D O D DO DD S
o B P P B P S

\@@\@@ @@\(@Q

Latency (GCN, Reddit, BS = 64)

—
(2} I CPU-only [1BoostGCN
1S [cPU-GPU I Our work
=

>

(&)

o

+= 100,

©

-

&

D D S DD S DD S DD S
bmqy%@@m@,ﬁobwqp@wqja

& & e @

Latency (GraphSAGE, Flickr, BS = 64)

[CPU-only ["GraphACT [Our work
[cPu-GPU [BoostGCN

NI

LB LB PP PP PP
S (\b‘ (\b~ 2 @« @« O @« \E\b. \:\ (\b~ (\b~

Latency (GraphSAGE, Arxiv, BS = 64)

—
2} N CPU-only [GraphACT [Our work
g I cPU-GPU I BoostGCN
>
(@)
o
+—= 10°
©
-
P PP PP S PP P PP S
eVl et el e eh e ¢!
Latency (GAT, Reddit, BS = 64)
—
g I CPU-only I CPU-GPU [Our work|
=
>
1)
c
o)
9
©
-

PP P «@,ﬁ@ & q‘?r,g@ & fi&rgo@

& eV € o e et el e @

S

Latency (GAT, Arxiv, BS = 64)

I CPU-only [CPU-GPU [] Our work |

N @D O N D PR O N D O
(\bb ’L(io%b 'L(io%b q/rﬁob']/%rfb

& o 3

&

CR
Q> N o
NN Q2o X

Fig. 10: Comparison of inference latency (Batch Size=64) for Decoupled GNN models with various depth and receptive field.
Y-axis is in log-scale. X-axis denotes (number of layers L, size of receptive field V)

Npsp/Naru
Dsys X Dsys

|

Many modern FPGAs have multiple Super Logic Regions
(SLRs) with limited interconnection among SLRs. We perform
the proposed DSE algorithm separately for each SLR. Note
that the routing network has pgys/2 input ports and peys/2
output ports with (32X psys)-bit data width (since we use 32-bit
data format). Its hardware cost is O(pZ10g peys) which also
increases with pgy. Step 2 of maximizing pgys in our DSE
may incur additional hardware overhead due to expanding
the routing network to be power of 2. Fortunately, as shown
in [26], even a large-scale 512-bit 32-input-32-output routing
network only consumes less than 189K LUTs, which is far

3) Determine the number of PEs: [V, = {

18

smaller (< 18%) than the total LUTs of state-of-the-art FPGA
boards. Since all computation is performed with ALU, as
long as LUT consumption is < 100% the latency will not be
affected. In the large-scale FPGA device, such as Alveo U250,
Dsys does not exceed 16. Therefore, the routing network is not
the resource bottleneck in our design.

V. EXPERIMENTS

A. Hardware Details and Baseline Platforms

We use High-level Synthesis (HLS) to develop the hardware
templates. The obtained hardware parameters through DSE
are annotated into the developed hardware templates, and
we use the vendor’s tool to synthesize the hardware design

Authorized licensed use limited to: University of Southern California. Downloaded on May 11,2023 at 04:29:25 UTC from IEEE Xplore. Restrictions apply.

and generate the accelerator bitstream. Then, the bitstream is
deployed on the target FPGA platform. We perform DSE to
generate a hardware accelerator on a state-of-the-art FPGA
platform (Xilinx Alveo U250) for three widely used GNN
models (GCN, GraphSAGE, GAT). The FPGA is hosted by
an Intel Xeon Gold 5120 CPU. Figure 11 depicts the gener-
ated system design (Figure 4) on the CPU-FPGA platform.
Based on the arithmetic operation in the three GNN models,
each ALU consumes 5 DSPs. The ACK in each PE has
an ALU array of size 16 x 16. In the ACK, there are 8
Scatter Units and 8 Gather Units. Each of the Scatter Units
and Gather Units has an ALU array of size 2 x 8. The
routing network is a butterfly network of 8 input ports and
8 output ports. Each input/output port has 512-bit width.
On Alveo U250, there

. Alveo U250
are 8 PEs l_n four Super SLRO SLR1 SLR2 SLR3
Logic ~ Regions (SLRs)
with each SLR having
FPGA FPGA FPGA FPGA
2 PES The ha_rdwa[‘e ‘ Shell H Shell H Shell H Shell ‘

synthesis and Place&Route EQe

(P&R) are performed using
Vitis 2021.1. The above
accelerator on Alveo U250
consumes 762K LUTs,
10854 DSPs, 1853 BRAMs
and 1050 URAMs. The
resource utilization is reported after P&R. On the host
processor, we use 8 threads to execute important neighbor
identification. We deploy the host program on the host
processor (Intel Xeon Gold 5120 CPU) and accelerator
bitstream on the FPGA (Xilinx Alveo U250). The host
processor and FPGA are connected through the PCIe 3.0 x 16
which form our target CPU-FPGA platform.

{ Prc:::?stsor }
Fig. 11: Proposed CPU-FPGA
implementation with the accel-

erator design on Xilinx Alveo
U250

TABLE III: Specifications of platforms

CPU GPU FPGA
Platforms AMD Ryzen 3990x Nvidia RTX3090 Alveo U250
Technology TSMC 7 nm TSMC 7 nm TSMC 16 nm
Frequency 2.90 GHz 1.7 GHz 300 MHz
Peak Performance 3.7 TFLOPS 36 TFLOPS 0.72 TFLOPS
On-chip Memory 256 MB L3 cache 6 MB L2 cache 54 MB
Memory Bandwidth 107 GB/s 15.6 GB/s (PCle) 15.6 GB/s (PCle)

Baseline Platforms: We compare the following platforms in
our experiments: (1) Baseline 1: CPU-only platform (AMD
Ryzen 3990x), (2) Baseline 2: CPU-GPU platform (Intel

Xeon Gold 5120 CPU + Nvidia RTX3090), (3) Baseline 3
CPU-GraphACT (Intel Xeon Gold 5120 CPU + GraphACT"®

[9]), (4) Baseline 4: CPU-BoostGCN (Intel Xeon Gold 5120
CPU + BoostGCN [10]), (5) Our work: CPU-FPGA (Intel
Xeon Gold 5120 CPU + proposed accelerator). The spec-
ifications of various platforms are shown in Table III and
Table IV. To execute mini-batch inference, the CPU-only
platform uses Pytorch with Intel MKL as the backend and
the CPU-GPU plaform uses the Pytoch library with CUDA
as the backend. Using PyTorch dataloader, the baseline CPU-
GPU platform exploits data prefetching and double buffering

to overlap loading data from host to GPU global memory
and computations in the GPU streaming processor. Note that
GraphACT supports GraphSAGE only. BoostGCN can support
GCN and GraphSAGE. However, BoostGCN needs to generate
a separate FPGA bitstream for each GNN model.

Latency measurement: In our experiments, we measure the
latency of a batch defined in Section III-A and Figure 9.
For all the baselines and our work, the measured latency of
a batch is the duration from the time when host processor
start receiving the indices of a batch of target vertices to
the time the inference for all the vertices in the batch has
been completed and stored in the CPU. The overheads of
Important Neighbor Identification and the data movement
between the CPU and GPU/FPGA through PCle are included
in our measured latency.

TABLE IV: Platform specifications of GNN accelerators

| GraphACT [9] This paper BoostGCN [10]
Platform Xilinx Alveo U200 Xilinx Alveo U250 Intel Stratix 10 GX
Frequency 300 MHz 300 MHz 250 MHz
Data format Float32 Float32 Float32
Peak Performance 249.6 GFLOPS 614 GFLOPS 640 GFLOPS
On-chip Memory 35.8 MB 45 MB 32 MB

Memory Bandwidth 15.6 GB/s (PCle) 15.6 GB/s (PCle) 15.6 GB/s (PCle)

Benchmark: We evaluate various Decoupled Models (GCN,
GraphSAGE, GAT) that can achieve superior accuracy. As
shown in [7], the Decoupled Models (N < 200 and L = 3 or
5) can already achieve higher accuracy than the original Cou-
pled GNN models (GCN, GraphSAGE, GAT). The Decoupled
Models can achieve higher accuracy when L is increased. To
evaluate Decoupled models with various L and N, we set the
hidden dimension of each GNN layer as f; = 256, (1 <1 < L)
following [7]. We set the number of layers L as 3, 5, 8§,
16 respectively. We specify the size of the receptive field
N as 64, 128, 256. As shown in [2], the producation-scale
recommendation systems in Facebook typically use batch size
64, 128, 256. We evaluate our design using a wider range of
batch sizes 32, 64, 128, 256, 512. We use three representative
graph datasets for evaluation as listed in Table V.

B. Comparison with State-of-the-art

We show the comparison results (latency of a batch) using
various GNN models, L and N in Figure 10. Our CPU-
FPGA implementation achieves 21.4 — 50.8x, 2.9 — 21.6X,
4.7x, 1.2x speedup compared with CPU-only, CPU-GPU,
CPU-GraphACT, and CPU-BoostGCN, respectively. Note that
BoostGCN does not support GAT and needs to generate an
accelerator for each GNN model.

On the CPU-only platform, the processor can directly (with-
out PCle overhead) access data from the host memory and

TABLE V: Dataset Statistics

Dataset Vertices Edges Features fi, Classes Degree
Flickr (FL) [15] 89,250 899,756 500 7 10
Reddit (RE) [4] 232,965 116,069,191 602 41 50

ogbn-arxiv (OA) [27] 169,343 1,166,243 128 7 40

Authorized licensed use limited to: University of Southern California. Downloaded on May 11,2023 at 04:29:25 UTC from IEEE Xplore. Restrictions apply.

Latency of a batch (N=64, L=3)

I CPU-only [] GraphACT [Our work

ms)

I cPU-GPU I BoostGCN

BS=32 BS=64 BS=128 BS=256 BS=512
Latency of a batch (N=64, L=6)

I cPu-GPU I BoostGCN

I cPU-only [GraphACT [Our work

BS=32 BS=64 BS=128 BS=256 BS=512

ms)

Latency of a batch (N=64, L=>5)

I CPU-only [] GraphACT [Our work
[cPu-GPU I BoostGCN

BS=32 BS=64 BS=128 BS=256 BS=512

Latency of a batch (N=64, L=16)
[N CPU-only [GraphACT [Our work
I cPuU-GPU I BoostGCN

BS=128

BS=32 BS=64 BS=256 BS=512

Fig. 12: Latency under various Batch Sizes (BS) for GraphSAGE and Flickr dataset

the processor has large shared L3 cache. However, the feature
aggregation of GNN results in irregular memory access pattern
and low data reuse. The processor has limited L1 (32 KB) and
L2 (512 KB) cache. The data exchange (vertex features;weight
matrices;edges) among L1 cache, L2 cache, and L3 cache
becomes the performance bottleneck and results in reduced
sustained performance. For example, on multi-core platform,
loading data from L3 cache incurs latency of 32ns and loading
data from L2 cache incurs latency of 5 —12ns. Compared with
the CPU, the ACK in our accelerator can access data in one
clock cycle during the inference execution.

For the CPU-GPU platform, although the GPU has higher
peak performance, the GPU has higher latency than our CPU-
FPGA platform because: (1) GPU has extra latency of loading
data from host memory to GPU global memory and loading
data from GPU global memory to GPU on-chip memory, while
in our CPU-FPGA implementation, the FPGA accelerator can
directly load data to the on-chip memory through QDMA
from the host memory. (2) Similar to CPU, GPU has limited
private L1 cache size (32 KB), therefore data exchange (vertex
features;weight matrices;edges) between L2 cache and L1
cache becomes the performance bottleneck.

We compare our CPU-FPGA implementation with
GraphACT (Baseline 3) and BoostGCN (Baseline 4).
GraphACT is optimized for subgraph-based mini-batch
training which has similar computation pattern as the mini-
batch inference of Decoupled GNN models. BoostGCN is
the state-of-the-art FPGA accelerator for full-graph inference.
Compared with CPU-GraphACT and CPU-BoostGCN, our
CPU-FPGA implementation achieves lower latency because
(1) our proposed ACK can efficiently execute various
kernels in GNN. GraphACT and BoostGCN follow the
hybrid design that two hardware modules are initialized for
feature aggregation and feature transformation, respectively.
The load imbalance of the two modules leads to hardware
under-utilization on GraphACT and BoostGCN. (2) We adopt

20

the Scatter-Gather paradigm to achieve massive computation
parallelism for feature aggregation. GraphACT has limited
computation parallelism in its Feature Aggregation Module.

Latency for various batch sizes: We compare the mini-batch
inference latency with other platforms under various batch
sizes. Figure 12 shows the experimental results using the Flickr
dataset for the GraphSAGE model. We only show these results
due to space limitation. The results under other experimental
settings is similar. Under various batch sizes, our CPU-FPGA
implementations still achieve significantly lower latency than
the CPU-only platform, CPU-GPU platform, CPU-GraphACT
and CPU-BoostGCN.

C. Analysis of Execution Time

We perform a detailed analysis of the total execution time
using the Xilinx Runtime (XRT) profiler to analyze the execu-
tion time of host program, CPU-FPGA data transfer, and the
execution time of the computation kernels on the FPGA.
Initialization overhead ¢j,jtialization: Ve measure the initializa-
tion overhead in our task scheduling (Figure 9). We use the
results in Figure 13 for illustration since other experimental
settings have similar results. The initialization overhead is
0.5% — 6% of the total execution time, which is negligible.

Latency (GCN, Flickr, BS = 64)
[Total latency [Initialization overhead | |

B 0D 0 N 0D 0 N 0D 0 N 0B 0
° (3,3\?’ (5?6 ©° \cy\(L @ff’ @° @f\% @ff" \\%*6\\65%(\6?6

Fig. 13: Comparison of the initialization overhead and the total
inference latency under various settings

Authorized licensed use limited to: University of Southern California. Downloaded on May 11,2023 at 04:29:25 UTC from IEEE Xplore. Restrictions apply.

TABLE VI: Average latency of loading the input data for a
target vertex through PCle interconnection

Flickr obgn-arxiv Reddit
N =64 12.6 us 3.5 us 15.1 ps
N =128 29.1 us 7.7 us 32.3 us
N =256 72.5 us 17.1 ps 72.7 us

Overhead of CPU-FPGA data communication: To perform
inference on a target vertex, the feature vectors of its N
important neighbors and the edges in the induced subgraph
are loaded from the host memory to the on-chip memory of a
PE through PCle. Note that the input data are directly sent to
the on-chip memory through the QDMA. As shown in Table
VI, we measure the average latency for loading the input data
for a target vertex through PCle. The above latency is hidden
by our task scheduling for most target vertices (See Figure 9).

TABLE VII: Overhead of INI (¢in1)

Flickr ogbn-arxiv Reddit

Time per vertex (us) 96 37.6 87.1

Overhead of INI (#in1): On the host platform, we use 8 threads
to execute INI. The measured overhead of INI ¢y is shown in
Table VII. Note that the measured overhead #yyg is the time of
INI for a vertex using single CPU thread on the host processor.
The host processor can execute INI for 8 vertices concurrently.
The average latency of INI is negligible compared with the
total latency of mini-batch inference (2 — 100 ms). Moreover,
The overhead ¢y for most vertices is hidden by our task
scheduling (See Figure 9).

VI. CONCLUSION

In this paper, we proposed a novel hardware accelerator
design to achieve low-latency mini-batch inference on CPU-
FPGA heterogeneous platform. On various GNN models,
we achieved load-balance and high hardware utilization via
the novel Adaptive Computation Kernel design. As a result,
our CPU-FPGA implementation achieves significant latency
reduction under various GNN models and batch sizes, com-
pared with state-of-the-art CPU, CPU-GPU and CPU-FPGA
implementations.

ACKNOWLEDGMENT

This work is supported by the National Science Foundation
(NSF) under grants CCF-1919289 and OAC-2209563.

REFERENCES

[1]1 H. Yang, “Aligraph: A comprehensive graph neural network platform,”
in Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2019, pp. 3165-3166.

[2] U. Gupta, C.-J. Wu, X. Wang, M. Naumov, and B. Reagen, “The archi-
tectural implications of facebook’s dnn-based personalized recommen-
dation,” in 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA). 1EEE, 2020, pp. 488-501.

[3] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proceedings of the 3l1st International
Conference on Neural Information Processing Systems.

P. Velickovi¢, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” 2017.

G. Li, M. Miiller, G. Qian, and B. Perez, “Deepgcns: Making gcns go
as deep as cnns,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2021.

H. Zeng, M. Zhang, Y. Xia, A. Srivastava, R. Kannan, V. Prasanna,
L. Jin, and R. Chen, “Decoupling the depth and scope of graph neural
networks,” Advances in Neural Information Processing Systems, 2021.
M. Yan, L. Deng, X. Hu, L. Liang, Y. Feng, X. Ye, Z. Zhang, D. Fan,
and Y. Xie, “Hygen: A gen accelerator with hybrid architecture,” in
2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA). 1EEE, 2020, pp. 15-29.

H. Zeng and V. Prasanna, “Graphact: Accelerating gcn training on cpu-
fpga heterogeneous platforms,” in Proceedings of the 2020 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, 2020.
B. Zhang, R. Kannan, and V. Prasanna, “Boostgen: A framework
for optimizing gen inference on fpga,” in 2021 IEEE 29th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM). 1EEE, 2021, pp. 29-39.

T. Geng, A. Li, R. Shi, C. Wu, T. Wang, Y. Li, P. Haghi, A. Tumeo,
S. Che, S. Reinhardt et al., “Awb-gcn: A graph convolutional network
accelerator with runtime workload rebalancing,” in 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture, 2020.

S. Liang, C. Liu, Y. Wang, H. Li, and X. Li, “Deepburning-gl: an
automated framework for generating graph neural network accelerators,”
in 2020 ICCAD. IEEE, 2020, pp. 1-9.

B. Zhang, H. Zeng, and V. Prasanna, “Hardware acceleration of large
scale gen inference,” in 2020 IEEE 31st International Conference on
Application-specific Systems, Architectures and Processors (ASAP).

T. Geng, C. Wu, Y. Zhang, H. You, M. Herbordt, Y. Lin, and A. Li,
“I-gen: A graph convolutional network accelerator with runtime locality
enhancement through islandization,” in MICRO-54, 2021.

H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna, “Graph-
SAINT: Graph sampling based inductive learning method,” in Interna-
tional Conference on Learning Representations, 2020.

Z. Choudhury, S. Shrivastava, L. Ramapantulu, and S. Purini, “An fpga
overlay for cnn inference with fine-grained flexible parallelism,” ACM
Transactions on Architecture and Code Optimization (TACO).

A. Sateesan, S. Sinha, and K. Smitha, “Dash: Design automation for
synthesis and hardware generation for cnn,” in 2020 International
Conference on Field-Programmable Technology (ICFPT). IEEE, 2020.
Y.-C. Lin, B. Zhang, and V. Prasanna, “Hp-gnn: Generating high
throughput gnn training implementation on cpu-fpga heterogeneous
platform,” arXiv preprint arXiv:2112.11684, 2021.

M. Zhang and Y. Chen, “Link prediction based on graph neural net-
works,” Advances in Neural Information Processing Systems, 2018.

R. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and J. Leskovec,
“Hierarchical graph representation learning with differentiable pooling,”
arXiv preprint arXiv:1806.08804, 2018.

B. Bahmani, A. Chowdhury, and A. Goel, “Fast incremental and
personalized pagerank,” arXiv preprint arXiv:1006.2880, 2010.

R. Andersen, F. Chung, and K. Lang, “Local graph partitioning using
pagerank vectors,” in 2006 47th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS’06). 1EEE, 2006, pp. 475-486.

M. Aggarwal, B. Zhang, and V. Prasanna, “Performance of local push
algorithms for personalized pagerank on multi-core platforms,” in HiPC
2021. IEEE, 2021, pp. 370-375.

“Xilinx qdma ip.” [Online]. Available:
https://www.xilinx.com/products/intellectual-property/pcie-qdma.html
K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” arXiv preprint arXiv:1810.00826, 2018.

Y.-k. Choi, Y. Chi, W. Qiao, N. Samardzic, and J. Cong, “Hbm
connect: High-performance hls interconnect for fpga hbm,” in The 2021
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, 2021.

W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and
J. Leskovec, “Open graph benchmark: Datasets for machine learning on
graphs,” arXiv preprint arXiv:2005.00687, 2020.

Authorized licensed use limited to: University of Southern California. Downloaded on May 11,2023 at 04:29:25 UTC from IEEE Xplore. Restrictions apply.

