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Abstract—General matrix-matrix multiplication (GEMM) is
the key computation kernel in many applications. GEMM has
been supported on various hardware platforms, including CPU,
GPU, FPGA. To optimize the performance of GEMM, developers
use on-chip electrical static random access memory (E-SRAM) to
exploit the data locality of GEMM. However, intensively accessing
E-SRAM for GEMM can lead to significant energy consumption,
which is not energy-efficient for commercial data centers.

In this paper, we evaluate the optical static random access
memory (O-SRAM) for GEMM. O-SRAM is a promising tech-
nology that has extremely low access latency and low energy
consumption compared with the traditional E-SRAM. First, we
propose an O-SRAM based wafer-scale system for GEMM and a
baseline E-SRAM based system. Second, we build the theoretical
performance models of the two systems to analyze their energy
consumption of on-chip memory accesses. Then, we conduct
simulation-based experiments to evaluate the energy consumption
of the two system. The evaluation results show that O-SRAM
based system is 7× more energy efficient than the baseline E-
SRAM based system.

Index Terms—Optical static random access memory, general
matrix-matrix multiplication (GEMM), energy efficiency

I. INTRODUCTION

General matrix-matrix multiplication (GEMM) is a key
computation kernel in a broad range of applications, such
as scientific computing [1], machine learning [2], [3], [4],
etc. For example, in the well-known Convolutional Neural
Networks (CNNs), the convolution operation on 2-D images
can be transformed into GEMM operations [5]. State-of-
the-art machine learning frameworks (e.g., Tensorflow [6],
Pytorch [7]) regard GEMM as the key computation kernel to
be supported. Many state-of-the-art computing libraries have
supported GEMM on various computing platforms, including
CPU, GPU, and FPGA. For example, Intel Math Kernel
Library (MKL) [8] supports GEMM on CPU platforms. Nvidia
CUDA [9] library supports GEMM on Nvidia GPU platforms.
AMD Xilinx [10] developed libraries to support GEMM on
various FPGA platforms.

To optimize the performance of GEMM, a commonly used
strategy is to exploit the data locality of GEMM by using on-
chip memory to cache the input matrices. Data caching in the
on-chip memory can reduce the external memory accesses to
the DRAM. For example, the GEMM function in Intel MKL
library stores the matrix in the caches (L1/L2/L3 caches) of
CPU. The GEMM function in CUDA library uses the cache

of the GPU streaming processor to store the input matrices,
that can increase the on-chip data reuse. The GEMM on
FPGA exploit the on-chip block memory (BRAM, URAM)
to cache the input matrix for data reuse [11]. While the
data caching in the on-chip memory can reduce the external
memory accesses for GEMM, there are still significant amount
of on-chip memory accesses. As shown in [12], accessing the
on-chip memory takes a significant amount (30%) of energy
consumption for executing GEMM, becoming a significant
energy bottleneck for data center. For example, Google’s
data centers [13] consumed around 15.5 terawatt-hours in the
year of 2020. Therefore, reducing the energy consumption
of accessing on-chip memory can potentially save the carbon
emission by the data centers.

Optical random access memory (O-SRAM) has been looked
upon as a promising pathway towards achieving ultra-fast
and energy-efficient memory access [14]. However, despite
several proposals [15], [16], [17], [18], [19], [20], [21], [22],
[23], a robust, manufacturing-friendly, low-power O-SRAM
had remained elusive. Recently, an ultra-fast and energy-
efficient O-SRAM has been proposed featuring compatibility
to existing silicon photonics foundry process [24]. The work in
[24] has shown that an-optimized optical memory build using
well-known silicon photonic device primitives can operate at
the speed of 20 Gb/s and requires ultra-low static/switching
energy consumption. Such recent advances in O-SRAM and
their potential for mass manufacturing, makes O-SRAM as
a promising alternative for traditional electrical SRAM for
GEMM to save energy consumption. It is to be noted, however,
that in general O-SRAMs have the disadvantage of high-
area consumption. Specifically, despite achieving lower area
compared to previous works, the O-SRAM presented in [24]
is nearly 1000× larger than a traditional E-SRAM, which
dramatically limits the density of O-SRAM. Therefore, it is
non-trivial to evaluate energy efficiency of GEMM by simply
replacing the E-SRAM with O-SRAM in a hardware platform
(CPU, GPU, FPGA).

In this paper, we evaluate the energy efficiency of GEMM
on a wafer-scale system with O-SRAM. Wafer-scale system
[25] is a type of very-large integrated circuit built on an entire
silicon wafer. For example, Cerebras [26], [27] has developed
wafer-scale system to accelerate various applications of Arti-
ficial Intelligence. O-SRAMs are well-suited for wafer-scale



systems since optical data can be seamlessly transferred across
large-distances on a wafer-scale system with high-fidelity and
at ultra-high speeds that are orders of magnitude faster than
their electrical counterparts. Further, the large size of wafer-
scale chips allow accommodating reasonable size of O-SRAM
on-chip to accelerate GEMM. Thereby, we first propose an
O-SRAM based wafer-scale system for GEMM to evaluate
its energy consumption of on-chip memory accesses. At the
same time, we build a baseline system with E-SRAM based
on-chip memory. To evaluate their energy consumption, we
build an accurate energy consumption model. Thereby, we
perform simulation-based experiment to evaluate two systems.
Our main contributions are:

• We propose a theoretical E-SRAM/O-SRAM based ar-
chitectures for GEMM on wafer-scale systems.

• We build accurate energy models to estimate the energy
efficiency of E-SRAM based system and O-SRAM based
system for GEMM.

• We perform detailed evaluation to compare the energy
efficiency of two systems. The experimental results show
that O-SRAM based system is up to 7× more energy-
efficient than the E-SRAM based system.

II. BACKGROUND

A. Optical Random Access Memory

The optical memory used in our evaluation framework is
shown in Feature 1. Photodiodes D1 and D2 along with
ring resonators R1 and R2 form a cross-coupled pair, such
that R1 in resonance ensures R2 is not in resonant to the
incoming light wavelength and vice-versa. This creates a
bistable circuit that can hold 1 bit of data in the optical domain.
Photodiodes D3-D4 and ring resonators R3-R6 form the read-
write path for the bistable optical circuit. The key highlights
of the optical memory, shown in Figure 1 are as follows
1) use of well-known silicon photonic devices (photodiodes
and ring resonator) make the proposed O-SRAM amenable
to large-scale manufacturing on existing foundry process 2)
the photodiodes as well as ring resonators are in reverse
bias mode, thereby consuming minimal electrical power 3)
functionally the O-SRAM is similar to E-SRAM featuring
differential read and write operations, ensuring high robustness
of optical data written/retrieved from the O-SRAM. A detailed
description of the functioning and design of the O-SRAM can
be found in [24].

B. Wafer-Scale system

Here, we will give a general introduction to the envi-
sioned wafer-scale system based on O-SRAM. Arrays of O-
SRAM cells would be fabricated on the wafer-scale chip
in a typical silicon photonics foundry. The on-wafer optical
memory would interface with electrical processing engines
based on CMOS transistor technology. An electro-optic dif-
ferential sense-amplifier would enable high-speed, low-energy
conversion of optical data to electrical domain to be used
by electrical processing engines. Thus, optical memory would

Fig. 1: Optical SRAM built using silicon photodiodes and ring
resonators

serve as ultra-fast on-chip memory seamlessly integrated with
electrical processing engines.

III. APPROACH

A. Block Matrix Multiplication

We use C = A × B to denote the GEMM operation,
where A, B and C are dense matrices. For simplicity, we let
A,B,C ∈ Rn×n where n is the dimension of the matrices.
In the real-world applications, the matrices may not be fully
stored in the registers of the processors. On-chip memory are
used to store the input matrix for on-chip data reuse. To exploit
the data locality of GEMM, the block matrix multiplication are
used to execute the GEMM on the modern processors. In block
matrix multiplication, the matrices A,B,C are partitioned
to small blocks of size s × s where s is the dimension of
small blocks usually decided based on the register size of the
processor. We use Aij ∈ Rs×s to denote the block at ith row
and jth column in A. Using the above data partitioning, the
block matrix multiplication is shown in Algorithm 1.

Algorithm 1 Block Matrix Multiplication

Input: Input matrics A,B ∈ Rn×n;
Output: Output matrix C ∈ Rn×n

1: for i← 1 to n
s do

2: for j ← 1 to n
s do

3: Initialize Cij in the registers
4: for k ← 1 to n

s do
5: Load Aik from on-chip memory
6: Load Akj from on-chip memory
7: Cij = Cij +Aik ×Akj

8: Store Cij back to the external memory

B. Assumptions

To evaluate the energy efficiency of E-SRAM and O-SRAM,
we propose the baseline E-SRAM system (Figure 2) and the
O-SRAM wafer-scale system (Figure 3). The proposed system
are organized based on the properties of E-SRAM and O-
SRAM. We make the following assumptions:
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• The input matrices A and B can be fully stored in the
on-chip memory of E-SRAM/O-SRAM based systems.

• In the O-SRAM based system, the on-chip optical mem-
ory resides in optical domain and the computation units
(PE arrays) are in electrical domain. Two domains are
connected through the optical-to-electrical interface.

• In the E-SRAM based system, the E-SRAM and PE array
operate at the same clock frequency.

• In the O-SRAM based system, the optical on-chip mem-
ory has very high operating frequency and can send input
data to multiple PE arrays concurrently. For example, the
optical memory can operate at 20 GHz [24] while the PE
array in electrical domain can operate at 500 MHz.

C. Proposed system
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Fig. 2: The abstraction of E-SRAM based system.
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Fig. 3: The abstraction of O-SRAM based wafer-scale system.

E-SRAM based system: In the E-SRAM based system, the
on-chip memory is logically arranged as 1-D ring structure.
For example, on Cerebras WSE-2 wafer-scale system, the 1-D
ring of on-chip memory can be easily formed through the on-
wafer interconnection [28] of the processors. Each E-SRAM

on the 1-D ring is connected to a Processing Element (PE)
Array. The PE array is organized as 2-D systolic array, which
will be elaborated later. The reasons for organizing the on-chip
memory as the 1-D ring are two-fold: (1) E-SRAM has much
lower operating frequency than O-SRAM. By distributing the
E-SRAM into multiple blocks on the 1-D ring, the multiple E-
SRAM blocks are able to achieve the same memory bandwidth
as the single O-SRAM. (2) The PE arrays with 1-D ring
on-chip memory can perform the block matrix multiplication
efficiently using Algorithm 2.

Algorithm 2 Block Matrix Multiplication on 1-D ring

Input: Input matrics A,B ∈ Rn×n; p: number of PE arrays;
Output: Output matrix C ∈ Rn×n

1: Partition A and B into p× p partitions
2: Assign Ai1,Ai2, ...,Aip to E-SRAM[i], i = 1, 2, 3, ..., p
3: Assign B1i,B2i, ...,Bpi to E-SRAM[i], i = 1, 2, 3, ..., p
4: for i← 1 to p do
5: E-SRAM[i] sends its partitions of B to E-SRAM[(i+1)%N ]
6: E-SRAM[i] receives the data from E-SRAM[(i− 1)%N ]
7: for m← 1 to p Parallel do ▷ PE array m
8: j ← (m+ i)%p
9: for k ← 1 to p do

10: # execute Amk×Bkj based on small block size s×s
11: Cmj = Cmj +Amk ×Bkj

12: Store Cmj back to the external memory

O-SRAM based wafer-scale system: In the O-SRAM based
wafer-scale system, the on-chip memory is logically arranged
as a one block of memory. Note, unlike E-SRAM, O-SRAM
arrays communicate data through optical waveguides that are
suitable for long distance communication at ultra-high speed
making a single logical block of memory array feasible. In
contrast, E-SRAM logical blocks are usually implemented in
smaller sub-arrays to limit the length of metal wires and reduce
parasitic capacitances and resistances to ensure high clock
speed. The optical memory is connected to the PE arrays
through the optical-to-electrical interface. Due to the extremely
high frequency/memory bandwidth of the optical memory, it
can serve the data requests from multiple parallel PE arrays
concurrently. To execute the block matrix multiplication, the
p parallel PE arrays can calculate p output blocks Cij con-
currently.

Algorithm 3 Block Matrix Multiplication on O-SRAM based
wafer-scale system

Input: Input matrics A,B ∈ Rn×n; p: number of PE arrays;
Output: Output matrix C ∈ Rn×n

1: for d← 1 to n
s×p

do
2: for m← 1 to p parallel do ▷ PE array m
3: i = (d− 1)× p+m
4: for j ← 1 to n

s
do

5: Initialize Cij in the registers of PE array
6: for k ← 1 to n

s
do

7: Load Aik from the optical memory
8: Load Akj from the optical memory
9: Cij = Cij +Aik ×Bkj

10: Store Cij back to the external memory
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D. Hardware Modules

Processing Element (PE) Array: In both E-SRAM based and
O-SRAM based system, the PE array is logically arranged
as the 2-D systolic array (Figure 4), which is an efficient
architecture for matrix-matrix multiplication. Since the 2-D
systolic array has fully localized interconnection, it can be
easily formed by the processors on the wafer-scale system
(e.g., Cerebras WSE-2). Each PE is a Multiply-Accumulation
(MAC) Unit. Suppose the PE array has the size of psys×psys
and it uses the output stationary dataflow [5]. Therefore, the PE
array can execute p2sys multiplication-accumulation operation
per clock cycle and each data will be reused for psys times in
the systolic array.

PE

𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠

𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠

Fig. 4: The diagram of PE array

Organization of On-chip Memory: In the E-SRAM based
system, each E-SRAM connected to a PE array has the data
port of 2×psys×d bits, where d is the bit width of a single data
element. The E-SRAM can output 2× psys data elements per
clock cycle to satisfy the data requirement of a PE array. In the
O-SRAM based system, the single optical on-chip memory has
data port width of 2×psys×d bits. Since the optical memory
has very high clock frequency, it can serve the data requests of
multiple PE arrays concurrently. Suppose the optical on-chip
memory in optical domain has the frequency of fop and the
PE array in electrical domain has the frequency of fel, the data
requests of fop

fel
PE arrays can be served by the optical on-chip

memory concurrently.

Optical-to-electrical interface: Leveraging the differential
readout of O-SRAM in [24], we designed an electro-optic
sense amplifier at 22nm Globalfoundries node that can operate
at a frequency of 20GHz. The power-performance metrics
were scale to get an estimate for operation at 12nm node.
The electro-optic sense amplifier was designed as a two stage
amplifier, where the first stage acts as a pre-amplifier consist-
ing of photodiodes that convert incoming light to differential
electrical signals and the second stage is a high-speed dynamic
comparator [29] that generates high or low electrical voltage
in response to a input differential signal. Based on 12nm
node, the energy consumption for sensing and conversion of
a single bit of optical data to electrical data was estimated to
be 5.26× 10−3pJ .

IV. PERFORMANCE MODEL

In this section, we perform detailed theoretical analysis of
the energy efficiency for the two systems. We use the following
notations:

• Size of the input matrices A,B: n× n; The bit width of
each data element: d.

• The number of PE arrays in both systems: p; The dimen-
sion of each PE array: psys × psys.

• The switching energy consumption of accessing 1-bit
data from E-SRAM: Eswitching

eletrical ; The switching energy
consumption of accessing 1-bit data from O-SRAM:
Eswitching

optical ; The switching energy consumption of transfer-
ring 1-bit data from optical domain to electrical domain:
Eop2el.

• The total energy consumption of p PE arrays to execute
A×B: EPE-arrays

To execute the block matrix multiplication on PE arrays, the
input matrices A, B are partitioned to small blocks of size
psys × psys. Executing the block matrix multiplication of A
and B involves 2n3 data accesses (n3 data accesses to A and
n3 data accesses to B) if there is no data reuse. Since each
data element will be reused for psys times in the PE array,
there will be 2n3

psys
data accesses to the on-chip memory in

total.
Energy consumption on E-SRAM based system: In E-
SRAM based system, there are 2n3

psys
data accesses to the on-

chip memory. Moreover, according to line 5-6 of Algorithm
2, there are n2p data accesses due to the data communication
among the p parallel E-SRAM blocks. Therefore, the overall
energy consumption of E-SRAM based system is:

EE-SRAM = Estatic
E-SRAM + Eswitching

E-SRAM + EPE-arrays

Estatic
E-SRAM = SE-SRAM ×

n3

p× p2sys
× 1

fpe
× P static

electrical

Eswitching
E-SRAM = (

2n3

psys
+ n2p)× d× Eswitching

electrical

(1)

where Estatic
E-SRAM is the memory static energy consumption,

SE-SRAM is the total size of E-SRAM, fpe is the frequency of
PE, n3

p×p2
sys
× 1

fpe
denotes the total execution time and P static

electrical

denotes the per-bit static power of E-SRAM. P static
electrical can be

calculated by P static
electrical = Estatic

electrical × fpe where Estatic
electrical × fpe

is the per-bit static energy consumption of E-SRAM.
Energy consumption on O-SRAM based system: In O-
SRAM based system, there are 2n3

psys
data accesses to the

on-chip memory. Moreover, accessing the optical memory
needs to go through the optical-to-eletrical interface, leading to
additional energy consumption. Therefore, the overall energy
consumption of O-SRAM based system is:

EO-SRAM = Estatic
O-SRAM + Eswitching

O-SRAM + EPE-arrays

Estatic
O-SRAM = SO-SRAM ×

n3

p× p2sys
× 1

fpe
× P static

optical

Eswitching
O-SRAM =

2n3

psys
× d× (Eswitching

optical + Eop2el)

(2)
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where SO-SRAM is the total size of O-SRAM and P static
optical denotes

the per-bit static power of O-SRAM.

V. EVALUATION

A. Experimental Setup

The power, performance estimates for O-SRAM was ob-
tained from electro-optic simulations using Lumerical Inter-
connect [30]. Estimates for E-SRAM was based on SRAM
design in Globalfoundries 12nm node, compute and PE array
primitives were synthesized to obtain power-performance-
area estimates at 12nm Globalfoundries PDK. Finally, SPICE
simulations were used to obtain the energy estimate for the
optical-to-electrical interface.

Using the above technology, the frequency of the electrical
domain is fel = 500 MHz and the frequency of the optical
domain is fel = 20000 MHz. We set the size of single PE
array to be psys × psys = 16× 16. For both two systems, we
set number of PE arrays to be p =

fop

fel
= 40. The data width

is set as d = 32.

TABLE I: The area of two systems

On-chip Memory PE Array Total

E-SRAM system 9.77 mm2

(4 MB) 5.92 mm2 15.69 mm2

O-SRAM system 3.84× 104 mm2

(2 MB) 5.92 mm2 3.84× 104 mm2

Area: We assume that the wafer-scale O-SRAM system is
implemented on the standard 300mm wafer, where the area
is 70,650 mm2. The area of 1-bit optical memory cell is
2400µm2. A single 300mm wafer can be deployed with
up to 3.5MB optical memory. The area of 1-bit eletrical
memory cell is 0.305µm2. A single O-SRAM bit-cell occupies
the same area as 1KB of E-SRAM. Each PE array takes
1.48× 105µm2 area. We assume the optical on-chip memory
is 2 MB that stores input matrices A,B of size 512 × 512.
The total E-SRAMs in the E-SRAM based system is 4 MB for
double buffering (used for data communication within 1-D ring
structure). The area of two systems are shown in Table I. Note
that the wafer-scale O-SRAM based system has much larger
area than the E-SRAM based system. Since our objective is
to compare the energy efficiency, and the two systems using
same size pf PE arrays and similar amount of on-chip memory,
the comparison is fair. Further, note that unlike E-SRAMs
systems, O-SRAMs are amenable to large wafer-scale chips
due to feasibility in long distance optical transfer of data. See
Section VI about the area of optical memory in the future.
Energy Consumption: The energy consumption of two mem-
ory devices are shown in Table II and III. Table II and III
demonstrate the per-bit energy consumption denoting the en-
ergy consumption for accessing a single bit of data. Compared
with electrical memory device, the optical memory device has
very small switching power. The PE array has operating volt-
age Vdd = 0.3V and works under the temperature 25◦C. For
each PE (MAC) in the PE array to operate on two 32-bit input

TABLE II: Energy consumption of optical memory (Note
that optical memory device has electrical part and optical
part. Therefore, the static/switching energy consumption has
electrical/optical part.)

Per-bit energy Consumption (pJ/bit)

Static power Switching power

Electrical Optical Electrical Optical

2.5× 10−6 1.67× 10−6 1.04 3.5× 10−5

TABLE III: Energy consumption of electrical memory (The
static power consumption is calculated based on the frequency
fel = 500 MHz)

Per-bit Energy Consumption (pJ/bit)

Static power Switching power

1.175× 10−6 4.68

data at 500 MHz frequency, the energy consumption is 1.1pJ .
In O-SRAM based system, the per-bit energy consumption of
optical-to-electrical interface is 5.26× 10−3pJ .

B. Comparison of Energy Efficiency

To compare the energy efficiency, the two systems execute
the matrix multiplication A×B with matrix size of 512×512
(n = 512), which can be fully stored in the on-chip memory.
The breakdown energy consumption are shown in Figure 5.
The PE arrays on the two systems consume the same amount
of energy (around 1.85 × 107pJ). On the E-SRAM based
system, the on-chip optical memory consumes 4.08 × 109pJ
energy. On the O-SRAM based system, the on-chip electrical
memory consumes 5.91 × 108pJ energy. The O-SRAM is
7.27× more energy efficient than the E-SRAM. Considering
the energy consumption of PE arrays, the O-SRAM based
system is 7.07× more energy efficient than the E-SRAM based
system.

Fig. 5: The comparison of energy consumption (y-axis is in
log-scale)
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Break down energy consumption: Figure 6 and Figure
7 show the break down energy consumption of E-SRAM
or O-SRAM, respectively. The E-SRAM has static energy
consumption of 37.6 pJ and switching energy consumption of
4.08×109 pJ . Compared with the static energy consumption,
the switching energy consumption is negligible for E-SRAM.
The O-SRAM has static energy consumption of 66.7 pJ ,
switching energy consumption of 5.61 × 108 and 2.81 × 106

energy consumption of optical-to-eletrical memory interface.

Fig. 6: Break down energy consumption of E-SRAM (y-axis
is in log-scale)

Fig. 7: Break down energy consumption of O-SRAM (y-axis
is in log-scale)

VI. DISCUSSION

Through the modeling of energy consumption, we demon-
strate that optical memory has very low energy consumption
on wafer-scale system for GEMM compared with electrical
memory. The main reason for the low energy consumption
is that the O-SRAM considered in this work uses reverse
biased photodiodes and ring-resonator consuming minimal
static power dissipation. Additionally, the ultra-high speed of
O-SRAM also helps in reducing the energy consumption. In
optical memory, the main energy consumption is the energy
consumption of optical-to-electrical interface.

Remark on area of optical memory: Although optical mem-
ory has very low energy consumption, it occupies significant
area compared with the electrical, limiting the density of the
optical memory. Various approaches can be used to lower the
area overhead of optical memory, including storing multi-bit
data in a single bit-cell using techniques of wavelength divi-
sion multiplexing and exploration of novel emerging optical
memory materials and devices [31], [32] and ensuring their
compatibility with commercial silicon foundry processes.

VII. CONCLUSION

Optical memory systems have been explored for a long time
and is considered as a promising technology to achieve mem-
ory access speeds beyond state-of-the-art electrical memories.
Recent advances in optical memory technologies have made
it imperative to quantify system-level benefits of such ultra
high-speed, energy-efficient, but area-expensive memories for
complex compute operations. In this paper, we perform com-
prehensive modeling of the energy consumption of O-SRAM
based system for GEMM. The evaluation results show that
using the state-of-the-art optical memory technology, the O-
SRAM based system is 7× more energy efficient than the
E-SRAM based system.
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