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Abstract—Graph Neural Networks (GNNs) have shown success
in many real-world applications that involve graph-structured
data. Most of the existing single-node GNN training systems are
capable of training medium-scale graphs with tens of millions of
edges; however, scaling them to large-scale graphs with billions
of edges remains challenging. In addition, it is challenging to map
GNN training algorithms onto a computation node as state-of-
the-art machines feature heterogeneous architecture consisting of
multiple processors and a variety of accelerators.

We propose HyScale-GNN, a novel system to train GNN
models on a single-node heterogeneous architecture. HyScale-
GNN performs hybrid training which utilizes both the processors
and the accelerators to train a model collaboratively. Our system
design overcomes the memory size limitation of existing works
and is optimized for training GNNs on large-scale graphs. We
propose a two-stage data pre-fetching scheme to reduce the
communication overhead during GNN training. To improve task
mapping efficiency, we propose a dynamic resource management
mechanism, which adjusts the workload assignment and resource
allocation during runtime. We evaluate HyScale-GNN on a
CPU-GPU and a CPU-FPGA heterogeneous architecture. Using
several large-scale datasets and two widely-used GNN models,
we compare the performance of our design with a multi-GPU
baseline implemented in PyTorch-Geometric. The CPU-GPU
design and the CPU-FPGA design achieve up to 2.08× speedup
and 12.6× speedup, respectively. Compared with the state-of-the-
art large-scale multi-node GNN training systems such as P

3 and
DistDGL, our CPU-FPGA design achieves up to 5.27× speedup
using a single node.

Index Terms—GNN training, Heterogeneous architecture,
Large-scale graphs

I. INTRODUCTION

Graph Neural Networks (GNNs) have become state-of-the-

art models for representation learning on graphs, facilitating

many applications such as molecular property prediction [1],

[2], social recommendation system [3], [4], electronic design

automation [5], [6], etc. These domains often involve large-

scale graphs with over billion edges [7]. Scaling GNN training

systems to support such large graphs remains challenging.

Previous works [8]–[11] store the input graph in the device

memory (e.g., GPU global memory, FPGA local DDR mem-

ory) rather than the CPU memory because accessing data

from device memory via DDR channel is much faster than

accessing data from the CPU memory via PCIe. The drawback

of this setup is that the size of the device memory is limited

(usually 16 to 64 GB), so it cannot accommodate large-

scale graphs such as MAG240M [7] (202 GB); storing the

graph in the CPU memory can overcome this limitation, but

then the data needs to be fetched via PCIe which has lower

memory bandwidth. In addition to memory size limitation,

it is also challenging to map GNN training algorithms onto

a target platform because of the complex architecture of

modern machines. In particular, state-of-the-art nodes adopt

a heterogeneous architecture design to meet the performance

requirements of various applications [12], [13]. A hetero-

geneous architecture consists of multiple multi-core CPUs

connected to several accelerators; the connected accelerators

can be GPUs, FPGAs, or AI-specific accelerators [14]–[16].

Most of the existing works adopt a naive and static task

mapping [9], [17], [18] which treats the CPU as a preprocessor,

whose main purpose is to offload GNN computations to the

accelerator; this straightforward task mapping overlooks the

potential of utilizing the CPU resources for training. For

example, on a dual-socket AMD EPYC 7763 (7.2 TFLOPS)

platform equipped with a single Nvidia RTX A5000 (27.8

TFLOPS), utilizing CPU+GPU for training can potentially

provide a (7.2+27.8) / 27.8 = 1.26× speedup compared with

GPU-only training. In addition, the speed of executing GNN

training tasks depends on both the training algorithm and

the performance of the target platform; this makes static task

mapping inefficient.

Motivated by the challenges, we propose HyScale-GNN, a

hybrid GNN training system that can efficiently train GNN

models on a given heterogeneous architecture. We propose a

general processor-accelerator training protocol, which defines

how the processors and the accelerators should interact and

synchronize to collaboratively train a GNN model. The pro-

tocol is generic and can be adapted to various accelerators in-

cluding GPU, FPGA, or AI-specific accelerators. We propose

a dynamic resource management mechanism to efficiently map

GNN training tasks onto a given heterogeneous architecture.

The mechanism assigns GNN training tasks to both the CPUs

and the accelerators, and dynamically adjusts the workload

assignment during runtime. Unlike previous works that result

in CPU idling most of the time, our hybrid training system

efficiently utilizes both the CPUs and the accelerators to

collaboratively train a GNN model. In addition, HyScale-GNN

supports GNN training on large-scale graphs with billions

of edges. To accommodate large-scale graphs, our system

stores the input graph in the CPU memory, which can be

several terabytes on high-end nodes. To mitigate the expensive

PCIe communication overhead of reading data from the CPU

memory, we propose a two-stage feature prefetching scheme

to pre-load the required data onto the accelerator. While we

a
rX

iv
:2

3
0
3
.0

0
1
5
8
v
1
  
[c

s.
D

C
] 

 1
 M

a
r 

2
0
2
3



TABLE I
NOTATIONS OF GNN

Notation Description Notation Description

G(V, E) input graph topology hl

i
feature vector of vi at layer l

V set of vertices al

i
aggregated result of vi at layer l

E set of edges L number of GNN layers

X input feature matrix f l feature length of layer l

Vl sampled vertices at layer l N (i) neighbors of vi

El sampled edges at layer l φ(.) element-wise activation

X′ feature matrix of sampled vertices W l weight matrix of layer l

apply various optimizations in our system, these optimizations

do not alter the semantics of the GNN training algorithm; thus,

the convergence rate and model accuracy remain the same as

the original sequential algorithm.

We summarize the contributions of this work as follows:

• We propose HyScale-GNN, a hybrid GNN training sys-

tem that efficiently utilizes both the CPUs and the ac-

celerators to perform GNN training collaboratively. Our

system achieves the same convergence rate and model

accuracy as existing works [19]–[21] as the proposed

optimizations do not alter the original training algorithm.

• We propose a general processor-accelerator training pro-

tocol that enables HyScale-GNN to work with various

accelerators including GPUs, FPGAs, or AI-specific ac-

celerators.

• To support GNN training on large-scale graphs (such as

ogbn-papers100 [22] and MAG240M [7]), we propose to

store the input graph in the CPU memory, and perform

two-stage data prefetching to hide the communication

overhead.

• We propose a performance model which predicts the

training performance of our system based on algorithmic

parameters of the GNN training algorithm and platform

metadata. HyScale-GNN utilizes the predicted perfor-

mance to derive a coarse-grained task mapping onto the

target platform during the design phase.

• We propose a dynamic resource management mechanism,

which performs fine-grained task mapping by fine-tuning

the workload assigned to the CPUs and the accelerators

during runtime.

• We evaluate HyScale-GNN using several large-scale

graphs and two widely used GNN models: GraphSAGE

[2], and GCN [23]. On a dual-socket platform con-

nected to 4 high-end GPUs, and a dual-socket platform

connected to 4 high-end FPGAs, our CPU-GPU and

CPU-FPGA designs achieve up to 2.08× speedup, and

12.6× speedup compared with our multi-GPU baseline

implemented using PyTorch-Geometric [18], respectively.

Compared with the state-of-the-art distributed GNN train-

ing systems [19], [21] that use 16 to 64 GPUs on a multi-

node cluster, our CPU-FPGA design achieves up to 5.2×
speedup using only 4 FPGAs on a single-node.

II. BACKGROUND

A. Graph Neural Networks

We defined the notations related to a GNN in Table I. A

GNN learns to generate low-dimensional vector representation

(i.e., node embeddings) for a set of vertices (i.e., target vertices

VL), and the node embeddings can facilitate many downstream

applications as mentioned in Section I. A GNN model can be

expressed using the aggregate-update paradigm [24]:

a
l
v = AGGREGATE(hl−1

u : u ∈ N (v) ∪ {v}) (1)

h
l
v = φ(UPDATE(al

v,W
l)) (2)

During feature aggregation, for each vertex v, the feature

vectors hl−1
u of the neighbor vertices u ∈ N (v) are aggregated

into alv using algorithm-specific operators such as mean, max,

or LSTM. Since graph-structured data are non-Euclidean,

accessing the feature vectors hl−1
u of the neighbor vertices

incurs a massive volume of irregular data access. The feature

update phase is a multi-layer perceptron (MLP) followed by an

element-wise activation function φ (e.g., ReLU), which applies

a linear transformation and a non-linear transformation to alv ,

respectively. While there exist a variety of GNN models, these

models follow the aggregate-update paradigm. We list two

representative models as an example:

• GCN [23]: is one of the most widely-used GNN models.

The model can be specified as follows:

a
l
v = Sum(

1
√

D(v) ·D(u)
· hl−1

u )

h
l
v = ReLU

(

a
l
vW

l + b
l
)

(3)

Where D(v) denotes the degree of vertex v, and b
l

indicates the bias of the update function.

• GraphSAGE [2]: proposed a neighbor sampling algorithm

for mini-batch GNN training. The model can be specified

as follows:

a
l
v = h

l−1
v ||Mean

(

h
l−1
u

)

h
l
v = ReLU

(

a
l
vW

l + b
l
) (4)

Where || indicates the concatenation operation.

By adopting the aggregate-update paradigm in our system

design, our work is capable of training various GNN models.

B. Mini-batch GNN Training

We depict the workflow of mini-batch GNN training in

Figure 1. In each training iteration, a sampler first extracts

a mini-batch {G(V l, E l) : 1 6 l 6 L} from the original

graph G(V, E). The mini-batch serves as a computational

graph to perform GNN operations, namely feature aggregation

and feature update. During the forward propagation stage, the

GNN operations are performed for L iterations. The output

embeddings {hL
i : vi ∈ VL} are compared with the ground

truth for loss calculation. The calculated loss is then used as in-

put for backward propagation. Backward propagation performs

the same set of GNN operations as in forward propagation, but

in a reverse direction [25]; backward propagation produces the
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Fig. 1. Overview of mini-batch GNN training
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gradients for the weight matrix W
l in each layer, which are

then used to update the model weights.

Our work adopts synchronous Stochastic Gradient Descent

(SGD) [26] to train GNNs on multiple devices, which performs

a similar workflow as the original GNN training but with

few variations. During the first step, multiple mini-batches are

sampled and then each device is assigned one mini-batch. Each

device then performs forward/backward propagation as in the

original GNN training algorithm. Finally, the gradients within

each device are gathered and averaged. The averaged gradients

are then broadcast to each device to perform a global weight

update. Training in synchronous SGD on multiple devices is

algorithmically equivalent to training with a larger mini-batch

on a single device. For example, training on 4 GPUs with

mini-batch size 1024 is equivalent to training on 1 GPU with

mini-batch size 4096 [27].

C. Target Heterogeneous Architecture

Figure 2 shows the target heterogeneous architecture. It

consists of multiple CPUs and multiple accelerators. The

CPU memory on the platform forms a shared address space:

each CPU is able to access the CPU memory to which it is

connected, and can also access CPU memory that is connected

to other CPUs via processor interconnection channels such as

QPI [28]. Each accelerator is connected to a processor via

PCIe, and each accelerator is connected to a device memory

via DDR channels.
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III. SYSTEM DESIGN

In this Section, we first introduce the logical components

of HyScale-GNN in Section III-A. Then, we show how the

logical components run on a heterogeneous platform in Section

III-B. Finally, we introduce the Processor-Accelerator Training

Protocol in Section III-C, which defines how the processors

and the accelerators should interact to perform hybrid training.

A. Hybrid GNN Training System

HyScale-GNN consists of multiple logical components. We

depict the logical components (grey rounded rectangles) and

their input/output (green rectangles) in Figure 3, and describe

each component in the following:

Mini-batch Sampler: At the beginning of a training iteration,

the Mini-batch Sampler takes the graph topology G(V, E)
as input, and produces multiple mini-batches by executing a

sampling algorithm [2], [29].

Feature Loader: Given a mini-batch, the Feature Loader

extracts a mini-batch feature matrix X
′ from the original

feature matrix X . The extracted feature matrix X
′ contains

only the vertex features of the sampled vertices instead of all

the vertices in the input graph.

GNN Trainers: The GNN Trainers perform the forward

propagation and backward propagation of GNN training. They

take the mini-batch topology and mini-batch feature matrix as

inputs, and produce gradients for model weight update.

Synchronizer: After each GNN Trainer produces a set of

gradients, the Synchronizer performs an all-reduce operation

which gathers the gradients from each Trainer, takes the

average value of the gradients, and broadcasts the averaged

gradients back to each Trainer to update their model weights.

Runtime: The Runtime system manages the interaction and

data communication between the CPUs and the accelerators

based on our Processor-Accelerator Training Protocol (Sec-

tion III-C). In addition, it also performs Dynamic Resource

Management which fine-tunes the workload assignment on the

target platform during training.

B. Task mapping and Coordination

Our hybrid training system consists of a runtime thread,

several processor threads, and several accelerator threads.
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Each logical component (Section III-A) is mapped to one or

multiple threads. We show the task mapping and coordination

of HyScale-GNN in Figure 4. HyScale-GNN decomposes

GNN Training into four pipeline stages: Sampling, Feature

Loading, Data Transfer, and GNN Propagation: (1) Sampling:

mini-batch sampling can be performed on both the CPUs and

accelerators. In each training iteration, n mini-batches are

produced, where n is the number of GNN Trainers in the

system. After each mini-batch is produced, it is stored in the

CPU memory for Feature Loading. (2) Feature Loading: after

collecting all n mini-batches, the Feature Loader reads the

feature vector of the sampled vertices from the input feature

X , and stores the loaded features in a sub-matrix X
′. Feature

Loading is only performed on the CPUs. This is because an

input feature matrix X is too large to fit in the device memory

for large-scale graphs; thus, the feature matrix X is stored

in the CPU memory, and accessed by the Feature Loader

which runs on the CPUs. (3) Data Transfer: a mini-batch

can be either executed on the CPU, or on the accelerator. If

the mini-batch is executed on the accelerator, the mini-batch

topology {G(V l, E l) : 1 6 l 6 L} and mini-batch feature

matrix X
′ are transferred to the accelerator device memory

via PCIe. (4) GNN Propagation: in each training iteration,

each device (a processor or an accelerator) is assigned a mini-

batch topology and a mini-batch feature matrix; these serve

as the inputs for the GNN Trainers to perform forward and

backward propagation. Initially, the workload (i.e., mini-batch

size) assignment is decided based on our performance model

(Section V) at design time. If there is a workload imbalance

among the devices at runtime, the DRM engine (Section

IV-A) adjusts the workload assignment of the next training

iteration. After the propagations, each Trainer produces a set

of gradients that are later used to update the model weights;

each Trainer then sends a “DONE” signal to the Synchronizer

when the gradients are stored/transferred to the CPU memory.

Since all the accelerators are connected to the CPUs, and the

CPUs are connected to each other (Figure 2), it is natural to

run the Synchronizer on a CPU. After receiving the “DONE”

signals from all the Trainers, the Synchronizer performs an all-

reduce operation, which averages the gathered gradients, and

broadcasts the result back to each Trainer. The Runtime system

proceeds to the next training iteration after all the Trainers

update their local model weights and send an acknowledgment

to the Runtime system.

C. Processor-Accelerator Training Protocol

To perform hybrid training on a given heterogeneous archi-

tecture, we propose a general Processor-Accelerator Training

Protocol. The protocol consists of three layers: the appli-

cation layer consists of the logical components defined in



Section III-A; the programming layer consists of libraries

that are used to implement the logical components on multi-

core CPUs, GPUs, FPGAs, or AI-specific accelerators; the

physical layer consists of the actual hardware. HyScale-GNN

can be ported to various heterogeneous architectures since the

process-accelerator interaction is defined at the application

layer, which is not bound to a specific type of accelerator.

We show the data exchange and handshake signals in Figure

5. Note that Figure 5 does not depict the Feature Loading

stage since there is no data exchange or handshake signal in

that stage. In each pipeline stage, a barrier is set at the end

for synchronization. In addition, the Runtime system collects

the execution time of each stage to fine-tune the workload

assignment in the next iteration (Section IV-A).

IV. OPTIMIZATIONS

In order to achieve high GNN training throughput, we

develop various optimizations to perform efficient task map-

ping (Section IV-A) and to reduce communication overhead

(Section IV-B, IV-C). It is worth noticing that these optimiza-

tions do not alter the semantics of the original GNN training

algorithm. Thus, HyScale-GNN does not trade off the model

accuracy and convergence rate for higher training throughput.

A. Dynamic Resource Management

To efficiently map GNN training tasks onto a heterogeneous

architecture, we first utilize the predicted result from our

performance model (Section V) to initialize the GNN training

task mapping during compile time. Furthermore, we propose

a Dynamic Resource Management (DRM) engine that fine-

tunes the resource allocation, and task mapping to improve

GNN training throughput during runtime. The DRM engine

is a bottleneck-guided optimizer, which improves training

throughput by accelerating the bottleneck stage in each iter-

ation. The DRM engine features two functions to speedup

the bottlenecked stage: balance work and balance thread.

The balance work function balances the workload between

the CPU and the accelerator by varying the mini-batch size

assigned to the Trainers. The total mini-batch size executed on

the hybrid system remains the same after the re-assignment.

The balance thread function explores the performance trade-

off between CPU tasks (e.g., CPU Sampler, CPU Trainer),

and is only used when the bottleneck stage is a CPU task.

It speedups the bottleneck stage by reducing the number of

threads assigned to the fastest CPU task, and re-assign those

threads to the bottleneck stage.

Algorithm 1 describes how the DRM engine works in a

high-level view. First, the DRM engine bundles the Data

Transfer time and Training on Accelerator time because the

execution time of the two is highly correlated. For example,

if the workload assigned to the accelerator is reduced, the

Data Transfer time also reduces since fewer data needs to be

communicated. The DRM engine takes the execution time of

each stage as input and identifies the bottleneck stage and the

fastest stage. If the system is bottlenecked by an accelerator

task, then the DRM performs balance work to adjust the

Algorithm 1 Dynamic Resource Management

Input: execution time of Sampling on Accelerator TSA, Sam-

pling on CPU TSC, Feature Loading TLoad, Data Transfer TTran,

Training on CPU TTC, Training on Accelerator TTA

Output: thread assignment, workload assignment

1: TAccel = max(TTran, TTA)

2: Sorted all = sort(TSC, TSA, TLoad, TTC, TAccel)

3: fastest = Sorted list[4]

4: second = Sorted list[3]

5: bottleneck = Sorted list[0]

6:

7: Sorted CPU = sort(TSC, TLoad, TTC)

8: fastest CPU task = Sorted CPU[2]

9:

10: switch bottleneck do . Bottleneck-guided Optimizer

11: case TSA :
12: balance work(TSC, TSA)

13: case TAccel :
14: balance work(TTC, TAccel)

15: case TLoad :
16: balance thread(fastest CPU task, bottleneck)

17: case TSC :
18: if fastest == TSA then

19: balance work(TSC, TSA)

20: else if (fastest == TAccel and second == TSA) then

21: balance work(TSC, TSA)

22: else

23: balance thread(fastest, bottleneck)

24: end if

25: case TTC :
26: if fastest == TAccel then

27: balance work(TTC, TAccel)

28: else if (fastest == TSA and second == TAccel) then

29: balance work(TTC, TAccel)

30: else

31: balance thread(fastest, bottleneck)

32: end if

workload assignment between the CPUs and the accelerators

in the next iteration. If the system is bottlenecked by the

Feature Loader, the DRM engine performs balance thread

which re-allocates more threads to perform Feature Loading.

If the system is bottlenecked by the CPU Sampler, the DRM

engine can either perform balance work or balance thread to

speedup the CPU Sampler. The decision depends on which

stage runs the fastest. If the Accelerator Sampler runs the

fastest, the DRM engine performs balance work which in-

creases the workload assigned to the accelerators; if the fastest

task is the Accelerator Trainer, followed by the Accelerator

Sampler, then the DRM engine also assigns more workload to

the accelerators; otherwise, the DRM engine performs balance

thread which explores performance trade-offs between other

CPU tasks. Finally, if the system is bottlenecked by the CPU

Trainer, the DRM engine can also improve the performance



Feature 

Duplicator

S - PE

S - PE

S - PE

S - PE

Routing

Network

G - PE

G - PE

G - PE

G - PE

Intermediate

results MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

Result

Buffer
Intermediate

results

Intermediate

results

Intermediate

results

Weight

Buffer

Aggregate Update Aggregate Update
(0,0)

(0,2)

(0,5)

(1,2)

3"

Fig. 6. Hardware kernel designs and datapath

Batch 1

Batch 2

Batch 3

Sampling Feat. Loading Data Transfer Propagation

Sampling Feat. Loading Data Transfer

Batch 4

…

Sampling Feat. Loading

Sampling

(Accelerator)

(PCIe)

(CPU Memory)

(CPU)

Iteration 1 2 3 4

Fig. 7. Two-stage Feature Prefetching

by performing either balance work or balance thread; thus,

the improvement strategy is similar to when bottlenecked by

the CPU Sampler.

B. Two-stage Feature Prefetching

HyScale-GNN runs GNN training on both the CPUs and the

accelerators. For GNN Trainers that run on the accelerators,

the data needs to be fetched from the CPU memory and

then transferred to the accelerators via PCIe. To reduce the

expensive communication overhead, HyScale-GNN performs

Feature Prefetching. The idea is to pre-load the mini-batches

for the next training iteration onto the accelerators first, so

the accelerators do not have to wait for data when performing

GNN operations. Observing that the Feature Prefetching stage

can still bottleneck the system, we further decompose Feature

Prefetching into two pipeline stages: Feature Loading, and

Data Transfer. The Feature Loading stage loads the Mini-batch

Feature X
′ from the CPU memory, and the Data Transfer

stage sends the matrix X
′ to the accelerator via PCIe. The

two stages can run concurrently because they utilize different

memory channels (CPU RAM channel, and PCIe channel),

and there is no data dependency between mini-batches. Figure

7 shows an example of the Two-stage Feature Prefetching:

in iteration 4, while an accelerator is executing mini-batch

1, the feature matrix of mini-batch 2 is being transferred to

the accelerator via PCIe, and the feature matrix of mini-batch

3 is being loaded from the CPU memory, simultaneously.

Thus, when the accelerator executes mini-batch 2 in the next

iteration, the mini-batch topology and mini-batch features are

ready in the accelerator’s device memory. Note that Figure 7

only shows a simplified version of the system pipeline. For

each iteration, multiple mini-batches can be sampled, loaded,

transferred, and executed. It is also worth noting that our

system pipeline efficiently utilizes the various resources on

the heterogeneous architecture.

C. Hardware Kernel Design

GNN training incurs a massive amount of memory access,

and the expensive memory access overhead limits the training

throughput. Thus, we design dedicated hardware kernels and

datapath to reduce external memory access for the GNN

Propagation stage as shown in Figure 6. GNN propagation

consists of an aggregation stage and an update stage (Section

II-A). For the update stage, we adopt a systolic-array-based

design to perform Multi-Layer Perceptron (MLP); for the

aggregation stage, we adopt a scatter-gather design [17], [30]

to process multiple edges in parallel. Figure 6 shows an

example of a kernel with four sets of scatter-gather processing

elements (PEs) which can process four edges in parallel. To

maximize data reuse, HyScale-GNN first sorts the edges within

a mini-batch by their source vertex so that edges with the same

source vertex are executed in a back-to-back manner. When a

vertex feature is fetched from the external memory, the Feature

Duplicator broadcasts the fetched feature to all the scatter-PEs

(S-PEs). The feature is then stored in the local memory of the

S-PEs and reused Dout(v) times where Dout(v) is the out-

degree of vertex v. For example, in Figure 6, four edges are

processed. Assume Dout(v0) is 3, then the loaded feature X0

can be reused three times at most. Since the edges are sorted by

source vertex, the first three edges have the same source vertex

v0, and X0 is reused three times. The fourth S-PE remains

idle until X1 is read from memory. This design maximizes

the input data reuse since each vertex feature only needs to

be read once from memory, and the input memory traffic

is reduced from O(E1) to O(V0) (notations are defined in

Table I). To reduce memory footprint, we design a customized

datapath, which avoids writing the intermediate results back

to the memory during GNN Propagation. As shown in Figure

6, the output of the aggregate kernel is directly sent to the

update kernel, and the output of the update kernel is sent to

the aggregate kernel for feature aggregation in the next layer.

Therefore, only the final output is written back to the memory.

V. PERFORMANCE MODEL

To initialize the task mapping on a heterogeneous archi-

tecture, we propose a performance model to predict the per-

formance of HyScale-GNN. First, we define the GNN training



throughput as million of traversed edges per second (MTEPS):

Throughput =

∑n

i=0

∑L

l=1
|E l

i |

Texecution

(5)

We use n to denote the number of GNN Trainers running

on the system. Each Trainer executes one mini-batch in each

iteration. Therefore, the numerator denotes the total number

of edges traversed by all the Trainers in one iteration, and

the denominator denotes the execution time of one training

iteration (Section II-B). There are four pipeline stages in

our system (Section III-A): Sampling, Feature Loading, Data

Transfer, and GNN Propagation; thus, Texecution is modeled as:

Texecution = max(Tsamp, Tload, Ttrans, Tprop) (6)

Instead of formulating an equation, we estimate Tsamp by

running the sampling algorithm under different numbers of

threads and different mini-batch sizes, and deriving their

execution time during design phase. This is because the

computation pattern varies in different sampling algorithms

[2], [29], so it is not feasible to model the sampling time

Tsamp of various algorithms with a simple equation.

Tload and Ttran can be modeled as:

Tload =

∑n

i=0
|V0| × f0 × Sfeat

BWDDR

(7)

Ttrans =
|V0| × f0 × Sfeat

BWPCIe

(8)

The numerator in Equation 7 denotes the size of vertex

features that need to be loaded from the CPU memory, and

the numerator in Equation 8 denotes the size of vertex features

that need to be transferred to a single accelerator. Sfeat denotes

the data size, which is 4 bytes for a single-precision floating-

point. For Tload, the data is loaded from the CPU memory,

so the denominator is the CPU memory bandwidth; for Ttran,

the denominator is the PCIe bandwidth. We use “bandwidth”

to denote the effective bandwidth of performing burst data

transactions as opposed to the peak bandwidth.

Multiple GNN Trainers run in parallel, and Ttrain can be

modeled as:

Tprop = max
i∈n

(TTrainer,i) + Tsync (9)

The execution time of a single Trainer can be modeled as:

TTrainer = tforward prop + tbackward prop =
L
∑

l=1

⊕(tlaggregate, t
l
update)+

t1update +

L
∑

l=2

⊕(tlaggregate, t
l
update)

(10)

which is the total time to perform forward propagation and

backward propagation. The ⊕ operator depends on the kernel

design. If feature aggregation and feature update are pipelined

(e.g., Trainer on FPGA), then ⊕ is the max operator; if they

are not pipelined (e.g., Trainer on CPU), then ⊕ is the
∑

operator. tlaggregate and tlupdate can be modeled as:

tlaggregate =
|E l−1| × f l × Sfeat

BWDDR

(11)

tlupdate =
|V l| × f l × f l+1

N × freq.
(12)

The aggregation time tlaggregate is modeled as the traffic size

of fetching the feature vector of the source vertices, divided

by the memory bandwidth. The memory bandwidth depends

on where the Trainer is located: for the CPU Trainer, it

fetches data from the CPU memory; for Accelerator Trainer,

it fetches data from the device memory. Since |E l| edges are

processed during the l-th layer feature aggregation, the traffic

size can be modeled as |E l−1| × f l × Sfeat. The update time

tlupdate is modeled as the number of multiply-and-add (MAC)

operations that are performed during feature update, divided

by the computing power of the GNN Trainer. We model the

computing power as N × freq. where N is the number of

computation parallelism (e.g., MAC units) in each trainer, and

freq. is the operating frequency. Tsync can be model as:

Tsync =

∑L

l=1
f l−1 × f l × Sfeat

BWPCIe

× 2 (13)

The numerator is the model size (i.e., total size of all of

the weight matrices). The factor of 2 comes from the all-

reduce operation where the model is first gathered, averaged,

and then scattered back to each Trainer; thus, the data is

transferred through the PCIe twice. The denominator is the

PCIe bandwidth.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

1) Environment: We conduct our experiments on a dual-

socket server, which consists of two AMD EPYC 7763 CPUs.

We evaluate HyScale-GNN using two heterogeneous setups:

a CPU-GPU heterogeneous architecture, and a CPU-FPGA

heterogeneous architecture. For the CPU-GPU heterogeneous

architecture, the dual-socket server is connected to four Nvidia

A5000 GPUs; for the CPU-FPGA heterogeneous architecture,

the dual-socket server is connected to four Xilinx U250

FPGAs. We list the detailed specification of the CPU, GPU,

and FPGA in Table II. We implement the multi-GPU baseline,

and CPU-GPU design using Python v3.8, PyTorch v1.11,

CUDA v11.3, and PyTorch-Geometric v2.0.3. We develop our

FPGA kernels using Xilinx Vitis HLS v2021.2 [31].

TABLE II
SPECIFICATIONS OF THE PLATFORMS

Platforms
CPU

AMD EPYC 7763

GPU

Nvidia RTX A5000

FPGA

Xilinx Alveo U250

Technology TSMC 7 nm+ Samsung 8 nm TSMC 16 nm

Frequency 2.45 GHz 2000 MHz 300 MHz

Peak Performance 3.6 TFLOPS 27.8 TFLOPS 0.6 TFLOPS

On-chip Memory 256 MB L3 cache 6 MB L2 Cache 54 MB

Memory Bandwidth 205 GB/s 768 GB/s 77 GB/s



TABLE III
STATISTICS OF THE DATASETS AND GNN-LAYER DIMENSIONS

Dataset #Vertices #Edges f0 f1 f2

ogbn-products 2,449,029 61,859,140 100 256 47

ogbn-papers100M 111,059,956 1,615,685,872 128 256 172

MAG240M (homo) 121,751,666 1,297,748,926 756 256 153

TABLE IV
HARDWARE PARAMETERS AND RESOURCE UTILIZATION

Parallelism (n,m) LUTs DSPs URAM BRAM

(8, 2048) 72% 90% 48% 40%

2) GNN Models and Datasets: We choose two widely used

GNN models: GCN [23], and GraphSAGE [2] to evaluate our

system. We adopt a commonly used model setup: a two-layer

model with a hidden feature size of 256. We choose a medium-

scale dataset, and two large-scale datasets with over billion

edges for evaluation: ogbn-products, ogbn-papers100M [22],

and MAG-240M (homo) [7]. The ogbn-products dataset is a

medium-scale graph with 60 million edges; we include this

dataset to compare our performance with previous works. The

MAG-240M (homo) is the homogeneous version of the MAG-

240M dataset, which only preserves one type of vertex and one

type of edge in the original heterogeneous graph. Note that

MAG-240M (homo) still contains 1.3 billion edges, making

it a large-scale graph. Details of the datasets and the GNN-

layer dimensions are shown in Table III. We use the Neighbor

Sampler [2] to produce mini-batches; we set the mini-batch

size as 1024, and the neighbor sampling size of each layer is

25 and 10.

B. System Implementation

We show how the Processor-Accelerator Training Protocol

is implemented using the libraries in the programming layer

(Section III-C) in Listing 1; while we use GPU and FPGA as

examples, the processor-accelerator interaction is similar if the

protocol is adapted to other AI-accelerators. We implement the

Runtime system using Pthreads. We launch multiple threads

to exchange data, handshake, or launch accelerator kernels.

Data transfer and kernel launching can be realized using APIs

provided by the programming libraries such as CUDA and

OpenCL. To implement the handshake, we utilize the condition

wait function in Pthreads. For example, the Synchronizer

needs to wait for all the Trainers to complete GNN propagation

before averaging the gradients. Each Trainer increments the

“DONE” variable upon producing the gradients and then

prompts the synchronizer. When “DONE” equals the number

of Trainers, the Synchronizer proceeds to average the gathered

gradients.

We list the hardware parameters and resource utilization

of the FPGA design in Table IV. We use n and m to

denote the parallelism of the aggregate kernel and update

kernel, respectively. In particular, n indicates the number of

1 //send data to the accelerator

2 q.enqueueMigrateMemObjects(input, 0) //FPGA

3

4 cudaMemcpy(gpu_input, input, data_size,

cudaMemcpyHostToDevice); //GPU

5

6 //read data from the accelerator

7 q.enqueueMigrateMemObjects(result,

CL_MIGRATE_MEM_OBJECT_HOST)); //FPGA

8

9 cudaMemcpy(result, gpu_result, res_size,

cudaMemcpyDeviceToHost); //GPU

10

11 //launch an accelerator kernel

12 q.enqueueTask(gnn_krnl, NULL, &event)); //FPGA

13

14 gnn_krnl<<<dimGrid, dimBlock>>>(input); //GPU

15

16 //get execution time on the accelerator

17 start = getProfilingInfo(PROFILING_COMMAND_START);

18 end = getProfilingInfo(PROFILING_COMMAND_END);

19 time = end - start;

20

21 //handshake

22 Synchronizer_thread:

23 pthread_mutex_lock(&mutex);

24 while (DONE != n) //n is the number of Trainers

25 pthread_cond_wait(&cond, &mutex);

26 gather_data();

27 average_gradients();

28 pthread_mutex_unlock(&mutex);

29

30 Trainer_threads:

31 GNN_training(); //CPU function, or launch an

accelerator kernel

32 pthread_mutex_lock(&mutex);

33 DONE++

34 pthread_cond_signal(&cond);

35 pthread_mutex_unlock(&mutex);

Listing 1. System implementation

scatter-gather PEs. m indicates the number of multiply-and-

accumulate units in the systolic-array-based kernel design.

Figure 6 shows an example for n = 4 and m = 16.

C. Evaluation of Performance Model

We evaluate our performance model by comparing the pre-

dicted epoch time with the actual experimental result. Figure 8

shows the epoch time comparison on the MAG240M (homo)

dataset under various number of FPGAs. The prediction error

ranges from 5% to 14% on average. The error comes from

extra latency that is not formulated in our model. First,

there is an initial overhead when launching the kernel on an

accelerator. Second, the overhead of pipeline flushing [32] is

not included in the model. These two overheads are hard to

predict as they depend on various factors such as the target

accelerator and the version of the compiler.

D. Scalability

We evaluate the scalability of HyScale-GNN using our

performance model (Section V). We show the scalability of

HyScale-GNN in Figure 9. Using the CPU-FPGA platform as

an example, HyScale-GNN demonstrates good scalability to
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16 FPGAs. The limiting factor of scalability is the CPU mem-

ory bandwidth. As we use more accelerators, more mini-batch

feature matrices need to be loaded from the CPU memory. We

observe that the CPU memory starts to saturate when more

than 12 accelerators are used on the heterogeneous platform.

The first set of experiments which runs a GCN model on the

ogbn-products dataset shows lower scalability than other sets

of experiments. This is because the first set of experiments is

bottlenecked by the data transfer time (i.e., PCIe bandwidth),

which limits the amount of workload that can be assigned to

the accelerators and thus limits the achievable speedup.

E. Overall Performance

1) Performance evaluation: We evaluate the performance

of HyScale-GNN using a CPU-GPU heterogeneous archi-

tecture, and a CPU-FPGA heterogeneous architecture. We

compare the epoch time of HyScale-GNN with a state-of-the-

art multi-GPU GNN training implementation using PyTorch-

Geometric (PyG) [18]. The PyG baseline also runs on the

CPU-GPU heterogeneous architecture; however, it does not

utilize the CPU to perform hybrid training, so we regard it as

a multi-GPU baseline. We show the result in Figure 10. By

applying various optimizations and performing hybrid CPU-

GPU training, HyScale-GNN achieves up to 2.08× speedup

compared with the multi-GPU baseline. We discuss the effec-

tiveness of each optimization in Section VI-F. On the CPU-

FPGA heterogeneous architecture, HyScale-GNN achieves up

to 12.6× speedup compared with the multi-GPU baseline, and
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TABLE V
PLATFORM SETUP OF STATE-OF-THE-ART

number of

compute node(s)
Setup of each node Sample size

Hidden

dim.

PaGraph [20] 1
2 Xeon Platinum 8163

8 Nvidia V100
(25, 10) 256

P 3 [19] 4
1 Xeon E5-2690

4 Nvidia P100 (2016)
(25, 10) 32

DistDGLv2 [35] 8
96 vCPU

8 Nvidia T4
(15, 10, 5) 256

This Work 1
2 EPYC 7763

4 Xilinx U250
- -

5×−6× speedup compared with the CPU-GPU heterogeneous

architecture. This is because FPGAs feature customizable dat-

apath and memory organization, which allows the Accelerator

Trainer to minimize external memory access during GNN

training. In particular, all the intermediate results are stored

on-chip using the abundant on-chip memory of FPGA, and

only the final result is written back to the memory. In contrast,

GPUs suffer from frequent memory access throughout the

training since traditional cache policies fail to capture the data

access pattern in GNN training [33].

2) Comparison with State-of-the-art: Many works [9],

[17]–[21], [34], [35] have been proposed to accelerate GNN

training. However, only a few of the works are capable of

training GNN models on large-scale graphs. We choose three

representative GNN training systems for comparison, namely

PaGraph [20], P 3 [19], and DistDGLv2 [35]. We list the

platform setup of each work in Table V. We use SAGE to

indicate the GraphSAGE [2] model. Among the three large-

scale GNN training systems, PaGraph is the only work that

runs on a single node; P 3 and DistDGLv2 run on a distributed

platform with four nodes and eight nodes, respectively.

We compare the epoch time of our work, which runs on

a single node using only 4 FPGAs, with the aforementioned

training systems. For each set of experiments, we set the same

model configuration (sample size, hidden dimension) as the

work we are comparing with. As shown in Table VI, HyScale-

GNN achieves up to 6.9× and 5.27× speedup compared with

PaGraph and P 3, respectively. To provide a fair comparison,

we normalize the epoch time w.r.t. platform peak performance;

this metric shows the effectiveness and efficiency of the system

design itself, rather than relying on powerful hardware to



TABLE VI
EPOCH TIME (SEC) COMPARISON WITH STATE-OF-THE-ART

ogbn-products ogbn-papers100M Geo. mean

speedupGCN SAGE GCN SAGE

PaGraph 1.18 0.25 4.00 1.18 1x

This Work 0.27 0.49 0.58 1.91 1.76x

P 3 1.11 1.23 2.61 3.11 1x

This Work 0.27 0.28 0.57 0.59 4.57x

DistDGL v2 - 0.30 - 4.16 1x

This Work - 1.69 - 3.67 0.45x

deliver high performance. As shown in Table VII, HyScale-

GNN achieves 21×-71× speedup compared with state-of-

the-art systems after normalization. HyScale-GNN achieves

speedup for several reasons: (1) resource utilization: HyScale-

GNN utilizes both the processors and the accelerators to

train GNN models collaboratively. In particular, HyScale-GNN

utilizes both the CPU cores and the accelerators to compute;

and utilizes both the CPU memory and device memory to read

data concurrently. Our DRM engine (Section IV-A) further

ensures the tasks are efficiently mapped onto our platform. On

the other hand, PaGraph and P 3 do not take advantage of the

processors on the platform. (2) communication overhead: as

mentioned in Section VI-E1, FPGA-based solutions can effi-

ciently reduce the external memory access overhead compared

with GPU-based solutions. In addition, PaGraph only caches a

portion of the vertex features in the device memory, and needs

to fetch data from the CPU memory if it encounters a cache

miss; thus, the PCIe communication overhead becomes large

when training on large-scale graphs like ogbn-papers100M

since cache miss occurs frequently. P 3 incurs inter-node data

communication since the graph is partitioned and distributed

on each node, which causes extra communication overhead

compared with HyScale-GNN. Compared with DistDGLv2,

which runs on eight nodes with a total of 64 GPUs, HyScale-

GNN is able to achieve 0.45× of its performance using only

4 FPGAs on a single node machine. DistDGLv2 utilizes both

the processor and the accelerator to train GNN models collab-

oratively. However, DistDGLv2 adopts a static task mapping,

which can be inefficient. In addition, DistDGLv2 partitions the

input graph and distributes the partitions to each node, which

incurs inter-node communication overhead like P 3.

F. Ablation Study

In this section, we evaluate the effectiveness of the opti-

mizations applied in HyScale-GNN. We show the evaluation

on a CPU-FPGA heterogeneous architecture in Figure 11;

evaluation on the CPU-GPU heterogeneous architecture also

shows similar results. We start from a baseline design, which

adopts a traditional task mapping that offloads most of the

tasks (except tasks like sampling, synchronization, etc.) to the

FPGA. Then, we apply hybrid CPU-FPGA training with a

static task mapping; this leads to up to 1.13× speedup. The

system achieves up to 1.33× speedup after applying the DRM

TABLE VII
NORMALIZED EPOCH TIME (SEC×TFLOPS) COMPARISON WITH

STATE-OF-THE-ART

ogbn-products ogbn-papers100M Geo. mean

speedupGCN SAGE GCN SAGE

PaGraph 135.1 28.63 458.0 135.1 1x

This Work 2.59 4.70 5.55 18.34 21x

P 3 165.1 183.0 388.4 462.8 1x

This Work 2.59 2.69 5.47 5.66 71x

DistDGL v2 - 163.2 - 2263 1x

This Work - 16.20 - 35.23 25x
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Fig. 11. Impact of optimizations

optimization (Section IV-A). With the TFP (Section IV-B)

optimization applied, HyScale-GNN achieves up to 1.79×
speedup. This is because the data loading stage is often a

bottleneck in GNN training; if the training is dominated by

the GNN propagation stage (e.g., GraphSAGE model on the

ogbn-papers100M in Figure 11), then the TFP optimization

does not provide speedup.

VII. RELATED WORK

Several works have been proposed [9], [17], [34] to accel-

erate GNN training on a single node. However, these works

focus on using a single accelerator to perform GNN training

and do not support training with multiple accelerators. In

addition, works like GraphACT [9] and HP-GNN [17] stores

the input graph in the device memory, and thus cannot support

large-scale graphs [7] that exceed the device memory size.

Recently, several works [19], [21], [36] have been proposed

to train GNN on a multi-node platform. However, these works

require graph partitioning, which leads to issues like workload

imbalance, and high inter-node communication overhead. In

addition, graph partitioning may affect the convergence rate

and model accuracy [21]. In this work, we show that it is

feasible to train large-scale GNNs on a single node and achieve

high training throughput.

VIII. CONCLUSION

In this work, we proposed HyScale-GNN, a hybrid training

system that is optimized for training GNN models on large-

scale graphs. We proposed several optimizations to reduce the



communication overhead and perform efficient task mapping.

Our system achieved up to 12.6× speedup compared with a

multi-GPU baseline. In addition, using only four FPGAs on a

single node, HyScale-GNN is able to achieve 1.76×−4.57×
speedup compared with state-of-the-art training systems that

employ 8 to 16 GPUs.

We also observed some limitations of HyScale-GNN. First,

HyScale-GNN did not provide an effective solution if the

performance is bottlenecked by the Data Transfer stage (i.e.,

limited by PCIe bandwidth). In this case, the DRM engine

would reduce the workload assigned to the accelerator, which

limits the achievable speedup and scalability of the system.

Second, HyScale-GNN could not be directly extended to a

distributed platform with multiple nodes. If an input graph is

partitioned and distributed to each node like in DistDGL [21],

inter-node communication and synchronization are needed.

However, our protocol defines how the processor and the

accelerator should interact on a single node. It does not

support inter-node communication. In the future, we plan to

exploit techniques like data quantization to relieve the stress

on the PCIe bandwidth, and define a more general protocol

for training GNN models on distributed and heterogeneous

architectures.
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