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Abstract

The Mississippi River represents a major commercial waterway, and periods of anomalously low
river levels disrupt riverine transport. These low-flow events occur periodically, with a recent
event in the fall of 2022 slowing barge traffic and generating sharp increases in riverine
transportation costs. Here we combine instrumental river gage observations from the lower
Mississippi River with output from the Community Earth System Model v2 (CESM2) Large
Ensemble (LENS2) to evaluate historical trends and future projections of Mississippi River low
streamflow extremes, place the 2022 low-flow event in a broader temporal context, and assess
the hydroclimatic mechanisms that mediate the occurrence of low-flows. We show that the
severity and duration of low-flow events gradually decreased between 1950—-1980 coincident
with the establishment of artificial reservoirs. In the context of the last ~70 years, the 2022 low-
flow event was less severe in terms of stage or discharge minima than other low-flow events of
the mid- and late-20™ century. Model simulations from the LENS2 dataset show that, under a
moderate-high emissions scenario (SSP3-7.0), the severity and duration of low-flow events is
projected to decrease through to the end of the 21st century. Finally, we use the large sample
size afforded by the LENS2 dataset to show that low-flow events on the Mississippi River are
associated with cold tropical Pacific forcing (i.e., La Nifia conditions), providing support for the
hypothesis that the El Nifio-Southern Oscillation (ENSO) plays a critical role in mediating
Mississippi River discharge extremes. We anticipate that our findings describing the trends in
and hydroclimatic mechanisms of Mississippi River low-flow occurrence will aid water resource
managers to reduce the negative impacts of low water levels on riverine transport.

1 Introduction

On the world’s major river systems, periods of anomalously low river discharge or stage are
economically costly, and reflect the combined effects of hydrological drought, geomorphic
processes, and river management practices (Smakhtim 2001). In the fall of 2022, the
Mississippi River experienced one such low-flow event (Fig. 1a), where low river levels slowed
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barge traffic and resulted in sharp increases in downbound grain barge rates (USDA 2022;
USDOT 2022). The Mississippi River and its major tributaries represent an economically critical
waterway that is federally managed to facilitate navigation and mitigate flooding using a system
of levees, river training structures, spillways, and dams known as the Mississippi River and
Tributaries (MR&T) project (Camillo and Pearcy 2004). Despite the implementation of these
management efforts in the mid-20™" century, low-flow events remain disruptive and occur
periodically (Remo et al 2018; Turner 2022), with other notable low-flow events in 2012, 2006,
2000, and 1988 (Fig. 1b-d). As part of this study, we investigate how the 2022 low-flow event
compares to other historical events, and assess historical trends in the severity and duration of

low-flows.
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Figure 1. Recent Mississippi River low-flows in relation to soil moisture and El Nifio-Southern
Oscillation (ENSO): (a) Mississippi River basin soil moisture anomalies in September 2022
(Climate Prediction Center [CPC] Soil Moisture V2; Fan and van den Dool 2004) and location of
Vicksburg, Mississippi stream gage; River stage anomalies in relation to Nifio3.4 index during
historic low-flow events in (b) 2012, (c) 2006, (d) 2000, and (e) 1988.

In addition to management, climate variability and change also mediate the discharge of the
Mississippi River and its tributaries via their influence on precipitation, soil moisture, and
evapotranspiration (Mallakpour and Villarini 2016; Mufioz and Dee 2017; Mufioz et al 2018; van
der Wiel et al 2018; Wiman et al 2021; Luo et al 2023). Interannual variations in discharge and
flood hazard of the lower Mississippi River are strongly influenced by the El Nifio-Southern
Oscillation (ENSO), where El Nifio events are associated with positive soil moisture and
discharge anomalies that result in enhanced flood hazard (Chen and Kumar 2002; Muioz and
Dee 2017; Mufioz et al 2023) — particularly during eastern Pacific El Nifio events (Luo et al
2023). Historical low-flow events correspond to periods of anomalously low soil moisture within
the Mississippi River basin and are often preceded by La Nifia events (Fig. 1), although the
small sample size associated with the observational period precludes a robust statistical
assessment of how ENSO mediates the occurrence of low-discharge events (Fig. S1).
Attribution of greenhouse forcing on Mississippi River discharge also remains difficult to
evaluate due to the competing roles of climate change, land use change, and MR&T project
infrastructure on regional hydrology (Pinter et al 2008; Remo et al 2009; St. George 2018;
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Dunne et al 2022), as historical and projected trends in river discharge extremes are sensitive to
river engineering and emissions scenarios (Tao et al 2014; van der Wiel et al 2018; Munoz et al
2018; Dunne et al 2022]. This study uses ensemble earth system model simulations to evaluate
the roles of both internal climate variability and external forcing on the severity, duration, and
timing of low-flows on the lower Mississippi River.

Here we combine observations from instrumental river gage records with output from an earth
system model to evaluate historical trends and future projections of Mississippi River low
streamflow extremes, and assess the hydroclimatic mechanisms that mediate the occurrence of
low-flows. We focus our analyses on the lower Mississippi River at Vicksburg (USGS ID
07289000) after 1950 to encompass the period when contemporary river management practices
and infrastructure of the MR&T project were expanded (1950—1980) and established (1980—-
present) (Smith and Winkley 1996; Remo et al 2018). We first examine trends in observed
annual stage and discharge minima from 1950-2022, and then use output from the recently
published Community Earth System Model version 2 (CESM2) Large Ensemble (LENS2) to
examine historical and projected trends (1950—2100) in river runoff, soil moisture, and sea
surface temperatures under the SSP3-7.0 future emissions scenario (Danabasoglu et al 2020;
Rodgers et al 2021). The CESM2 LENS2 simulations do not simulate the influence of reservoirs
or other river management infrastructure, allowing us to test hypotheses concerning the drivers
of historical and projected changes in low-flows. Finally, the ensemble model simulations of sea
surface temperature and soil moisture anomalies are used to evaluate the role of internal
climate variability on low-flow occurrence.

2 Methods

2.1 Instrumental stream gage data

To evaluate observed trends in lower Mississippi River stages and discharge, daily stage and
discharge data were compiled for water years 1950 through 2022 for the stream gage at
Vicksburg, Mississippi (USGS ID 07289000). For the period 1950 through 2014, these data
were obtained directly from the United States Army Corps of Engineers (USACE). Daily
discharge and stage data for the period 2015 through 2022 were obtained from the United
States Geological Survey (USGS) National Water Dashboard (USGS 2022) and the USACE
Hydrologic Database (USACE 2022), respectively. From these daily stage and discharge data,
we computed the annual mean, minima, and maxima for each water year, as well as the
number of days in a water year where stages were <1.5 m (i.e., low-stage duration). We use the
threshold of <1.5 m because it is consist with the low water reference (5 feet) used by the
National Oceanic and Atmospheric Administration (NOAA) at the Vicksburg gage; the low water
reference is defined as a stage low enough to cause impacts to commerce and shipping..

2.2 Reanalysis datasets

To examine historical patterns of soil moisture and sea surface temperature anomalies
associated with low-flow events, we use the Extended Reconstructed Sea Surface Temperature
v5 (ERSST v5; Huang et al 2017) and Climate Prediction Center (CPC) Soil Moisture (Fan and
van den Dool 2004) reanalysis products. We computed the Nifi03.4 index in the 18 months
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before and after historic low-flow events in 2012, 2006, 2000, and 1988 from the ERSST
dataset following Munoz and Dee (2017). We also examined the full sea surface temperature
anomaly field for the month of these events as well as events in 1977, 1964, and 1954, where
anomalies are computed based on the long-term climatological mean for the period 1950-2021.
We also computed a composite mean sea surface temperature anomaly for all events and
tested the significance of the anomalies using bootstrapping of the full ERSST dataset for the
period 1950-2021 with n=10,000 iterations. We also examined soil moisture anomalies within
the Mississippi River basin for the same low-flow events using a similar procedure as above,
and express these anomalies as percent differences from the long-term climatological mean.

2.3 Ensemble model simulations

We employ open source, fully-coupled large ensemble numerical climate simulations from the
Community Earth System Model version 2 (CESM2), a state-of-the-art general circulation model
(GCM) developed at the National Center for Atmospheric Research (Danabasoglu et al 2020;
Rodgers et al 2021). The Large Ensemble dataset of CESM2, LENS2, contains a 100-member
Large Ensemble at ~1° horizontal resolution for the period 1850-2014 based on historical
radiative forcing, and the same number of members for the future climate (2015-2100) using
the SSP3-7.0 radiative forcing scenario (Rodgers et al 2021). In this study, we employed the 50-
member sub-ensembles based on the original CMIP6 biomass burning emissions protocol. A
runoff routing model known as the Model for Scale Adaptive River Transport (MOSART), is
integrated into CESM2 via the Community Land Model version 5 (CLMS5, (Lawrence et al 2019),
and simulates river discharge through the downslope routing of water from surface runoff,
subsurface runoff, and tributaries using a horizontal spatial resolution of ~0.5° although
hydrography and related inputs are at higher resolution (Li et al 2015). Importantly, MOSART
does not directly simulate the effects of reservoir operation, surface water withdrawal,
groundwater pumping, and irrigation on river discharge, so we use simulated discharge to
evaluate the role of climate variability and change on low-flows. River discharge simulated by
MOSART reproduces the seasonality and magnitude of the Mississippi River (Fig. S2) as well
as other large rivers reasonably well (Li et al 2015), and represents an improvement from the
River Transport Model (RTM) integrated into CESM1 used in prior work investigating the role of
climate variability and change on Mississippi River streamflow (Branstetter 2001; Munoz and
Dee, 2017; Wiman et al 2021; Dunne et al 2022).

From the LENS2 simulations, we extracted daily river discharge (QCHANR, m3/s), sea surface
temperature (SST, °K), and soil moisture (SOILLIQ,kg/m?) for subsequent analysis. For
QCHANR, we extracted data from the model grid cell closest to Vicksburg (32.315°N,
90.906°W). We then computed the annual minimum and mean for each simulated water year of
each ensemble member, extracted the day that annual minima occurred, and calculated the
ensemble mean. We also computed the 1%, 5%, and 10% lowest discharge events for each
ensemble member based on a quantile analysis, and used these quantiles to calculate low-flow
event duration and the relationships between low discharge events, soil moisture, and sea
surface temperatures. The timing of low-flows was used to extract sea surface temperature and
soil moisture patterns during and in the months prior to low-flow events; composite averages
maps and time series were produced to examine these patterns.
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Finally, we employed an unsupervised machine learning method known as Self Organizing
Maps (SOMs) to detect shifts in the frequency of sea surface temperature patterns in the
LENS2 simulations before and after low-flow events on the lower Mississippi River. The SOM
method allows us to examine tropical Pacific sea surface temperature anomalies associated
with low-flow events in both time and space. The SOM method preserves the underlying data
structure of high-dimensional data while projecting it into two-dimensional space. Each annual
sea surface temperature anomaly pattern is classified to a best-fit SOM node which minimizes
the Euclidean distance between the actual year's sea surface temperature pattern and a
predefined set of SOM nodes. (Kohonen 1990; Liu et al 2006; Johnson et al 2008; Liu and
Weisberg 2011). Here we use six nodes because, based on our prior work where we conducted
sensitivity analyses using different numbers of nodes (Dee and Steiger, 2022; Luo et al. 2023),
we found that six nodes maximized the number of meaningful SOMs produced, while assigning
fewer nodes did not fully capture observed variability in tropical Pacific sea surface temperature
patterns. Sea surface temperature fields were pre-processed prior to applying the SOM
algorithm by detrending (i.e., removal of the 100-year smoothed time series; Horton et al 2015),
and area-weighting by the cosine of latitude. Finally, we perform a simple frequency analysis for
each sea surface temperature pattern during low-flow years (lowest 1% and 10% discharge
quantiles) and ‘normal’ years (25-75% discharge quantiles). To test the significance of
frequency shifts in the SOM patterns, we compute the change in the frequency of each SOM
node in low-flow years relative to the frequency of this SOM node in normal years. We then
draw the same number of low-flow years from normal years with a 1000-iteration bootstrap
resampling and compute the frequency change of each SOM node in sampled years relative to
the ‘normal’ years as a background reference. The departure of low-flow SOM frequency
changes from the resampled distribution of normal frequency changes is then used to test
whether the frequency shifts of SOM patterns in low-flow years are unusual compared to the
background state. The SOM methodology avoids information loss common in composite
averaging techniques (Kohonen, 1990; Sheridan and Lee, 2011)) and provides critical
information surrounding the temporal shifts in tropical Pacific oceanic forcing during low-flow
years in the LENS2 dataset.

3 Results & Discussion
3.1 Historical trends of Mississippi River low-flows

The severity and duration of low-flows on the Mississippi River at Vicksburg has decreased from
the mid-20™ century to present (Fig. 2). Both annual minimum discharge (Qmin) and stage (Hmin)
gradually increased over water years 1950-2022, with the largest increases observed between
1950-1980 (Fig 2a) during the rapid expansion of reservoirs within the Mississippi River basin
(Smith and Winkley 1996; Remo et al 2018). Parallel trends in discharge and stage minima, as
well as the ratio of annual minimum to mean discharge (Qmin/ Qmean), imply that these increases
primarily reflect an increase in low-water discharge, while aggradation of the river bed around
Vicksburg likely plays a secondary influence (Harmar et a/ 2005; Wang and Xu 2018). The
duration of low stage events (i.e., number of days < 1.5 m stage) has also declined over the
period of analysis (Fig. 2b), where the duration of low-flow events in water years 1954 and 1964
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exceeded 150 days, while the longest duration low-flow events of the 215t century (2006 and
2012) were less than 100 days. These observed trends in river discharge and stage are

consistent across multiple gages of the lower Mississippi River and its tributaries (Turner 2022)
and have previously been attributed through statistical analyses of stream gage records to the

establishment of reservoirs throughout the basin during the mid-20™ century and geomorphic

adjustment of the channel to river engineering infrastructure (Jacobson & Galat, 2008; Remo et
al 2018). The tendency for reservoirs to reduce the severity and duration of low-flows is widely

observed on other regulated rivers (Smakhtin 2001; Verbunt et al 2005; DAl et al 2009;
Tijdeman et al 2018; Brunner et al 2019; Brunner and Naveau 2022), and reflects the ability of

dams to gradually release water stored in reservoirs downstream during hydrologic drought.
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Figure 2. Historic trends in lower Mississippi River low-flows: (a) annual minimum discharge
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In the context of increasing annual discharge and stage minima since the mid-20* century, the
low-flow event of 2022 is of moderate severity relative to other historical low-flow events (Fig. 2).
The discharge observed at Vicksburg during the nadir of the 2022 event on October 23 (~5200
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m?3/s) is lower than annual minima during other recent low-flow events in 2012 and 2006 (5650
and 5858 m?/s, respectively), but not as severe as annual minima in 1988, 1964, and 1954
(3900, 3570, and 3850 m3/s, respectively) during and shortly after the rapid expansion of
reservoirs (Fig. 2a). River stage minima follow a similar trajectory, where October 2022 stages
are higher than annual minimum stages during other low-flow events, particularly those prior to
1980. The severity of the 2022 low-flow event relative to other historic low-flow events within our
period of analysis may differ at other reaches of the Mississippi River, but the trend towards
increasing magnitudes of annual discharge minima observed at multiple gages across the basin
(Remo et al 2018; Turner 2022) implies that the 2022 event is of moderate severity within this
historical frame of reference. The pattern of soil moisture anomalies associated with historical
low-flow events (Fig. 2c) is consistent with those of the 2022 event (Fig. 1a), supporting our
assertion that the historical trend towards decreasing severity of low-flow events primarily
reflects management of the Mississippi River and its watershed.

3.2 Simulations of historic and projected low-flows

To isolate the influence of hydroclimatic change on lower Mississippi River discharge minima
from river management practices, we examine simulations of lower Mississippi River discharge
in the LENS2 dataset which uses historic and projected (SSP3-7.0 scenario) radiative forcing
but does not account for the influence of reservoirs and other river engineering infrastructure on
streamflow (Fig. 3). In the LENS2 dataset, the ensemble mean is composed of 40 individual
ensemble members, and should primarily reflect the response of the discharge to external
forcing because this external forcing is common across all ensemble members. Internal
variability is simulated in individual ensemble members, and the ensemble mean minimizes (but
does not remove) the influence of internal variability. The ensemble mean of simulated annual
minima (Qmin) diverges from observations, declining between 1950-2020 before increasing
abruptly through to the end of the 215t century, while the ratio of Qmin/Qmean is stable through the
simulation until declining after 2050 (Fig. 3a). The duration of simulated low-discharge events
(number of days < 0.05 percentile) follows a similar trajectory, increasing from a mean of 16 to
22 days between 1950-2020 before declining such that low-discharge events last <10 days by
the end of the 215t century (Fig. 3b). The moderate influence of historic anthropogenic forcing on
Mississippi River streamflow in the LENS2 dataset is consistent with other model simulations
(Tao et al 2014; Dunne et al 2022), implying that external forcing of the late 20" and early 21st
century has exerted a minor influence on streamflow during this time. Thus, we assert that the
divergence of simulated and observed trends during the historic period — where stream gage
data document increases in annual minima between 1950-2020 (Fig. 2a) while simulations
predict decreases in Qmin during this same period (Fig. 3a) — primarily reflect the influence of
reservoirs and other river infrastructure that are not included in the CESM2 simulations. The
observed increase in Qmin between 1950-2020 (slope of linear regression=39.77%) is well
outside the range of slopes simulated in LENS2 over the same time period (x=-4.89%,
0=11.77%), implying that observed trends are also not primarily driven by internal variability
(Fig. S3). Our approach, comparing trends in the ensemble mean of simulations without
reservoirs to trends observed in stream gage data, provides support to the hypothesis that
reservoirs play a critical role in regulating Mississippi River streamflow to reduce the severity of
low-flow events.
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Projections of Mississippi River discharge under a high emissions scenario show that the
severity, duration, and seasonality of low-flows shifts during the mid- and late-21st century (Fig.
3). Between 2050 and 2100, the ensemble mean of annual minima increases by ~60% while the
ratio of annual minimum to mean discharge (Qmin/Qmean) decreases as a result of larger
increases in mean and peak annual flows (Dunne et al 2022; Fig. 3a). The duration of low-flow
events mirrors these trends, with a ~70% decline in the number of low-flow days between 2050
and 2100 (Fig. 3b). The timing of low-flows also shifts ~20 days later in the year between the
late-20™" and late-21¢t centuries, such that simulated annual minima from 1950-2000 occur
between Aug. 28-Oct. 1 (0.1 and 0.9 percentiles; median=Sept. 14) but shift to Sept. 19-Oct.
20 (median=0ct. 4) between by 2050-2100 (Fig. 3c). A projected shift towards higher, shorter,
and later low-flows under a high emissions scenario harbors important implications for the
economic consequences of low-flow events, reducing their impact on shipping by alleviating
their severity and shifting them further from fall harvest of row crops currently planted in the
midwestern United States. We caution that although the trends in discharge we observe in the
CESM2 LENSZ2 simulations are broadly consistent with other model projections (Tao et al 2014;
Lewis et al 2019; Dunne et al 2022), simulations of Mississippi River discharge are sensitive to
the model and emissions scenario used, and do not include the influence of river management
practices or the geomorphic adjustments that arise from those management practices.
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Figure 3. Simulations of historic and projected (SSP3-7.0) trends in lower Mississippi River low-
flows using CESM2 large ensemble (LENS2) ensemble mean: (a) annual minimum discharge
(Qmin; blue) as a percentile of all values in the ensemble member, and ratio of annual minimum
discharge to annual mean discharge (Qumin/ Qmean) for the period 1950-2100 showing
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corresponding loess curves (lines); (b) number of low discharge days (lowermost 5% of daily
discharge values) for the period 1950-2100; (c) timing of annual minimum for the late 20t
(1950-2000) and late 21st centuries (2050-2100).

3.3 Hydroclimatic mechanisms of low-flows

The relatively small number of observed low-flow events since the mid-20™ century, together
with the confounding influence of reservoir operations, limit the statistical power of the
observational record to assess the influence of ENSO on low-flow events (Fig. 1). However, the
LENS2 simulations produced by CESM2 — which reproduces hydroclimatic teleconnections
associated with ENSO reasonably well (Capotondi et al 2020; Danabasoglu et al 2020) —
bolsters the sample size, and allows us to extend prior work analyzing the role of ENSO-related
variability on Mississippi River discharge (Twine et al 2005; Liang et al 2014; Munoz and Dee,
2017; Munoz et al 2022; Luo et al 2023) to evaluate the correspondence of La Nifia events to
low-flow events.
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Figure 4. Simulations from CESM2 large ensemble (LENS2) for the period 1930-2100 of (a)
sea surface temperature anomalies and (b) soil moisture anomalies, expressed as a percent
difference of the interquartile range, of the water year associated with the lowest 1% of
discharge events (n=90), and (c) sea surface temperature anomalies and (d) soil moisture
anomalies of the water year associated with the lowest 10% of discharge events (n=900) on the
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lower Mississippi River at Vicksburg. Stippling shows significance of the anomalies via
bootstrapping at the 95% level.

We use the LENS2 simulations to examine the role of tropical Pacific sea surface temperature
and soil moisture anomalies in low-flow events over the period 1930-2100, and find support for
the hypothesis that the El Nifio-Southern Oscillation (ENSO) modulates soil moisture and lower
Mississippi River discharge (Fig. 4). In the year of the lowest simulated discharge events (<1%;
n=90 years), the composite mean of sea surface temperature anomalies in the eastern
equatorial Pacific are -0.6 to -0.4°C (Fig. 4a), and strongly resembles the cold tongue
characteristic of La Nifa events (Philander, 1985). Simulated low-flow extremes also coincide
with negative soil moisture anomalies across the Mississippi River basin (Fig. 4b). Similar and
more pronounced patterns emerge for sea surface temperature (Fig 4c) and soil moisture
anomalies (Fig. 4d) for the lower 10% of simulated discharge events (£10%; n=900 years). The
influence of ENSO on soil moisture and streamflow within the Mississippi River basin is
documented in observations, reanalysis, and model simulations including CESM (Munoz and
Dee 2017; Munoz et al 2018; Luo et al 2023), where La Nifa conditions result in the poleward
displacement of the polar jet and reduce precipitation and soil moisture across the lower
Mississippi River valley and its western tributaries including the Arkansas and Missouri Rivers
(Ropelewski and Halpert 1986; Hoerling and Kumar 1997; Twine et al 2005; Luo et al. 2023).
We include both the historical and projected simulations in this analysis to increase sample size,
but this is sensitive to both internal climate variability and longer-term climate change.
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Figure 5: Self organizing map (SOM) and frequency analysis for the lowest 10% flow years on
the lower Mississippi River in the CESM2 LENS2 dataset with: (a) through (f) showing SOM
node spatial patterns 1 through 6 of SST anomalies in standardized units, with panel label
indicating the percent change in the frequency of that node during low-flow years relative to its
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frequency in normal years (25-75%); (g) the change in SOM node frequencies during the 10%
lowest flow years (n=900 years), where frequency changes of SOM nodes in low-flow events
are shown as red diamonds and gray box-plot show background event frequency changes
established via resampling with n=1000 iterations in normal years.

To further examine the influence of tropical Pacific sea surface temperature patterns on
Mississippi River low-flow events, we applied Self Organizing Maps (SOMs) to the CESM2
LENSZ2 dataset (Fig. 5). Our analysis, based on labeling each year’s sea surface temperature
field to one of six SOM map nodes of closest resemblance, shows that the lowest 10% of
simulated discharges are associated with SOM 1 (Fig. 5a) and SOM 2 (Fig. 5b) which feature
negative sea surface temperature anomalies across the eastern equatorial Pacific that closely
resemble La Nifia conditions (Philander 1985). In contrast, warmer sea surface temperatures
across this region are shown in SOM 5 (Fig. 5e) and SOM 6 (Fig. 5f), and the frequencies of
these El Nifio-like conditions decrease during Mississippi River low-flows (Fig. 5g). An additional
test examining only the lowest 1% flow years confirms these results, where the frequency of
SOM1 increases by 381%, indicating a strong increase in the frequency of tropical Pacific
cooling during the lowest-flow years (Fig. S4). We also examine how the frequency of the SOMs
for the lowest 10% of events differ against a resampling of the background in all years, and
show that the frequency of strong equatorial Pacific cooling associated with SOM 1 is
significantly greater, while El Nifio conditions associated with SOMs 5 and 6 are significantly
less frequent, during low-flow extremes (Fig. 5g). Taken together, the coupled composite SST
and soil moisture anomaly maps for low-flow events (Fig. 4) are consistent with shifts in the
frequency of SOMs associated with these same events (Fig. 5). These analyses provide strong
support for tropical Pacific modulation of low-flow events on the lower Mississippi River.

The projected decrease in low-flow severity and duration in the LENS2 simulations (Fig. 3) is
consistent with projections of sea surface temperature warming in the central and eastern
tropical Pacific simulated by coupled climate models in the 21st century (e.g., Collins et al. 2010;
Xie et al. 2010; Stevenson 2012; Cai et al. 2015; Zheng et al. 2016; Arias et al. 2021). The
CESM2 LENSZ2 simulations are no exception, and show pronounced sea surface temperature
warming across the tropical Pacific during the 21st century (Figure S5). These projected
changes in mean sea surface temperatures (i.e., warmer tropical Pacific background state), or
changes to the variability of ENSO, likely plays a role in modulating the severity and duration of
low-flow events on the lower Mississippi River, and provides an example of how changes in
mean ocean state may alter streamflow of a major river system.

We acknowledge important caveats in our use of the CESM2 LENS2 dataset to evaluate the
role of tropical Pacific sea surface temperatures on lower Mississippi River discharge. First, we
rely on a single model (CESM2) albeit with a large ensemble of 50 ensemble members. Biases
in the model’s representation of tropical Pacific sea surface temperature and air-sea fluxes are
well documented, and indicate that ENSO variance in CESM2 is exaggerated relative to
observations (Capotondi et al. 2020; Chen et al. 2021). Teleconnections linking tropical Pacific
sea surface temperature forcing to North American precipitation may be too strong in CESM2,
partially biasing our results with respect to spatial patterns in soil moisture anomalies. Our use
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of SOMs, however, which rely solely on the frequency of sea surface temperature patterns in
relation to low-flow events, provide evidence consistent with observations (Fig. 1) and simulated
anomalies (Fig. 4) that supports a broader hypothesis placing importance of ENSO variability on
Mississippi River discharge.

4 Conclusions

Given recent disruptions to riverine transportation on the Mississippi River as a result of low
river levels, here we combined observational and simulated datasets to investigate: (i) historical
trends in low-flows, (ii) projected trends in low-flows under a moderate-high emissions scenario
(SSP3-7.0), and (iii) the role of climate variability, namely ENSO, on low-flow occurrence.
Stream gage records from the Mississippi River at Vicksburg show that low-flows, measured in
terms of minimum annual stage, minimum annual discharge, and duration of low-stages, have
gradually become less severe since 1950, with the largest change between 1950-1980
coinciding with the establishment of upstream reservoirs (Fig. 2). In this context, the 2022 low-
flow event was less severe than several annual discharge and stage minima of the mid- and
late-20" century. We then use earth system model simulations from the CESM2-LENS2 dataset
to evaluate the response of Mississippi River low-flows to historic and projected changes in
climate, and show that low-flows are projected to become less severe in terms of discharge and
duration through to the end of the 215t century (Fig. 3). Finally, we extend prior work examining
the role of the El Nifio-Southern Oscillation (ENSO) on Mississippi River streamflow to show
that La Nifia conditions are strongly associated with low-flow events (Fig. 4).

Our findings provide broader context for the 2022 Mississippi River low-flow event, and support
the hypothesis that water resources management — particularly the expansion of artificial
reservoirs and the MR&T system during the mid-20"" century — exert a strong influence on the
severity of low-flows on a major commercial waterway. Further, we clarify how climate change
(i.e., anthropogenic forcing) and a dominant mode of climate variability (ENSO) influence the
properties and probability of Mississippi River low-flows. Our work implies that La Nifa
conditions increase the likelihood of low-flows on the lower Mississippi River. Given advances in
the seasonal predictability of ENSO (Wu et al 2021), we anticipate these findings will aid
reservoir operations to reduce the negative impacts of low river levels on river transport.
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