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Abstract

The enantiopurification of racemic mixtures of chiral molecules is important for

a range of applications. Recent work has shown that chiral group-directed photoiso-

merization is a promising approach to enantioenrich racemic mixtures of BINOL, but

increased control of the diasteriomeric excess (de) is necessary for its broad utility. Here

we develop a cavity quantum electrodynamics (QED) generalization of time-dependent

density functional theory and demonstrate computationally that strong light-matter

coupling can alter the de of chiral group-directed photoisomerization of BINOL. The

relative orientation of the cavity mode polarization and the molecules in the cavity

dictates the nature of the cavity interactions, which either enhance the de of the (R)-

BINOL diasteriomer (from 17% to ≈ 40%) or invert the favorability to the (S )-BINOL

derivative (to ≈ 34% de). The latter outcome is particularly remarkable because it

indicates that the preference in diasteriomer can be influenced via orientational con-

trol, without changing the chirality of the directing group. We demonstrate that the

observed effect stems from cavity-induced changes to the Kohn-Sham orbitals of the

ground state.

Introduction

Chiral molecules are ubiquitous in food additives, pharmaceuticals, catalysts, and elsewhere;

the generation of enantiopure molecules is thus critical for these applications.1 Molecules

containing axial chirality like BINOL ([1,1’-binaphthalene]-2,2’-diol) and its derivatives are

of particular interest because they are popular chiral ligands for a wide range of asymmetric

catalytic reactions.2,3 Enantiopure BINOL (i.e., either pure R or S ) is typically obtained via

chiral chromatography, strategic recrystallization, or direct asymmetric synthesis. However,

separation methods often require large quantities of solvent or result in substantial loss

of starting material (i.e. the undesired isomer), while synthetic means rely upon already

enantiopure catalysts.2 Recently, chiral-group-directed photoisomerization was introduced as
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an alternative means of enantioenriching racemic mixtures of BINOL, and this strategy could

theoretically result in 100% yield and 100% diastereomeric excess (de).4 Upon excitation in

the presence of a base, BINOL is known to isomerize via an excited-state proton transfer

(ESPT) mechanism.5–7 When one of its two -OH groups is functionalized with a chiral

directing group [such as (S )-Boc-Proline, see Fig. 1] the isomerization is biased such that

the de at the photostationary state is dictated by the nature of this group and its impact on

the energetics of the excited state diastereomers. While this approach shows promise, the

best de observed in Ref. 4 (63%) was below the enantiopurity necessary for most applications

(>95%). Ultimately one would like to not only enhance this de but also to exert some control

over the chirality of the resulting product. Toward these aims, the present study explores how

strong light-matter coupling can modulate the obtainable de and diastereomeric preferences

in ESTP-driven purification of BINOL derivatives.
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Figure 1: Enantioenrichment of (S )-Boc-Proline functionalized BINOL [(S )-Boc-Pro-(R/S )-
BINOL] by ESPT. The yield (86%) and de (31%) correspond to those reported in Ref. 4.

Recently, there has been an explosion in interest harnessing strong light-matter interac-

tions in optical cavities for chemical applications,8–11 with a number of experimental and

computational studies demonstrating various aspects of control over chemical transforma-

tions.12–20 Cavity-induced changes to electronic structure could be particularly impactful

in the areas of asymmetric synthesis and purification where even small changes in energy

can have a large effect on the resulting enantiomeric/diastereomeric excess. Several recent

computational studies have demonstrated that > 1 kcal mol−1 changes to spin-state split-

tings21 or reaction barrier heights22,23 can be realized via strong coupling of molecules to

an optical cavity. In the context of the ESPT-driven diastereomeric enrichment depicted in

Fig. 1, energy changes of this magnitude would result in dramatic changes to the observed
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de. As an example, because the reaction reaches a photostationary equilibrium and the

molecules are assumed to obey Kasha’s rule,24 the de reported in Ref. 4 are determined

solely by the relative energies of the first excited states of the (S )-Boc-Pro-(R)-BINOL and

(S )-Boc-Pro-(S )-BINOL diastereomers. Consequently, the 63% de observed in that work

would correspond to a roughly 0.9 kcal mol−1 difference in energies in these states (see

Eqs. 8 and 9 below). A > 95% de would require increasing this energy difference by roughly

1.3 kcal mol−1. Given the magnitudes of energy changes predicted in other computational

studies of cavity-bound molecules, it is reasonable to expect that sufficiently strong light-

matter interactions could alter the relative energies of these states such that a > 95% de

would be attainable via the ESPT mechanism considered here.

In this work, we use ab initio cavity quantum electrodynamics (QED) methods to explore

how cavity interactions can influence the outcome of the ESPT-driven diastereomeric enrich-

ment protocol shown in Fig. 1. We develop a cavity QED generalization of time-dependent

density functional theory (TDDFT) for this problem in the Theory Section and outline the

details of our calculations in the Computational Details Section. In the Results and Dis-

cussion, we apply QED-TDDFT to this diastereomeric enrichment problem, and we find

that strong light-matter coupling can drive the de toward either diastereomer, depending on

orientation of the molecule relative to the cavity mode polarization. After some concluding

remarks, a complete derivation of the QED-TDDFT approach that we employ can be found

in Appendices A and B.

Theory

Computational cavity QED studies often use simple model Hamiltonians25,26 that describe

interactions between quantized radiation modes and few-level quantum emitters. A more

rigorous description of molecular degrees of freedom can be obtained from ab initio cavity

QED approaches, which resemble familiar electronic structure methods, but are generalized
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to describe both electron-electron and electron-photon interactions. Examples of calculations

performed using cavity QED extensions of density functional theory,27–42 coupled-cluster

theory,22,43–50 configuration interaction,51 or reduced-density-matrix methods? are becoming

increasingly commonplace. In this work, we adopt a QED-TDDFT formalism that most

closely resembles the Gaussian-basis formalism described in Ref. 40. A detailed derivation

of working equations for QED-TDDFT can be found in that work, and we present our own

derivation, which results in slightly different equations, in Appendix B. In this section, our

aim is to describe the approach with enough detail such that slight differences between the

formalism outlined in Ref. 40 and that which we use can be understood.

Interactions between electronic degrees of freedom and quantized radiation fields associ-

ated with an optical cavity can be described by the Pauli-Fierz (PF) Hamiltonian.52,53 We

limit our considerations to a cavity that supports a single photon mode, and we express this

Hamiltonian in the length gauge and under the dipole approximation as

ĤPF = Ĥe + ωcavb̂
†
b̂−

√︃
ωcav

2
(λ · µ̂)(b̂

†
+ b̂)

+
1

2
(λ · µ̂)2 (1)

Here, the first two terms are the usual electronic Hamiltonian (Ĥe) and the Hamiltonian for

the photon mode; ωcav is the fundamental frequency associated with this mode, and b̂
†
and

b̂ represent bosonic creation and annihilation operators, respectively. The third and fourth

terms in Eq. 1 represent the bilinear coupling between the electron and photon degrees of

freedom and the dipole self-energy, respectively. The symbol µ̂ represents the total molecular

dipole operator (electronic plus nuclear, i.e., µ̂ = µ̂e + µ̂n), and the coupling vector, λ,

parametrizes the strength of the photon-electron interactions. We are interested in single-

molecule coupling, in which case we take λ = λu, where u is a unit vector describing the

polarization of the cavity mode, and the magnitude of the coupling vector, λ, relates to the
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effective cavity mode volume as13

λ =

√︃
1

ϵ0Veff

(2)

Here, ϵ0 is the permittivity of free-space. At this point, we can note one difference between

the present formalism and that outlined in Ref. 40. In Ref. 40, the expectation value of

the dipole operator enters Eq. 1, rather than the dipole operator itself; in that case, as

described below, cavity interactions do not perturb the ground-state Kohn-Sham orbitals.

On the other hand, with the Hamiltonian in Eq. 1, the Kohn-Sham orbitals can relax to

account for the presence of the cavity. For this reason, we refer to QED-TDDFT based on

the formalisms outlined in Ref. 40 and herein as “unrelaxed” and “relaxed” QED-TDDFT,

respectively.

Similar to the case in Kohn-Sham DFT, the ground-state in QED-DFT maps onto a

non-interacting reference function of the form

|Ψ⟩ = |0e⟩ ⊗ |0p⟩ (3)

where |0e⟩ refers to a Kohn-Sham determinant of electronic spin orbitals, and |0p⟩ repre-

sents a zero-photon state. These functions can be determined via a modified Roothaan-Hall

procedure: (i) |0e⟩ can be determined as the Kohn-Sham determinant that minimizes the

electronic energy, given a fixed |0p⟩, and (ii) |0p⟩ can be determined as the lowest-energy

eigenfunction of ⟨ĤPF⟩e, where the subscript “e” indicates that we have integrated out the

electronic degrees of freedom. For the first step, electron correlation and exchange effects

can be accounted for using standard density functional approximations. For the second step,

⟨ĤPF⟩e can be expanded in a basis of photon-number states and diagonalized to find |0p⟩.

This procedure can be repeated until self-consistency. Herein lies the primary difference

between the relaxed and unrelaxed QED-TDDFT formalisms: in the former, the ground

state electronic orbitals are determined in the presence of the cavity interaction and dipole

self-energy terms, whereas those in the latter are not. We note that neither method considers
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any electron-photon correlation effects (such as those captured by electron-photon correla-

tion functionals described in Refs. 33,34,54), and the relaxed QED-DFT approach is the

same as that described in Ref. 50.

An equivalent representation of relaxed ground-state QED-DFT involves representing the

problem within the coherent-state basis,43 which is the basis that diagonalizes ⟨ĤPF⟩e. In

this way, we avoid the need to solve the second step of the modified Roothaan-Hall procedure

described above. Rather, we solve only the electronic problem with a modified Hamiltonian

of the form

ĤPF = Ĥe + ωcavb̂
†
b̂−

√︃
ωcav

2
(λ · [µ̂− ⟨µ̂⟩])(b̂

†
+ b̂)

+
1

2
(λ · [µ̂− ⟨µ̂⟩])2 (4)

where ⟨µ̂⟩ represents the expectation value of the molecular dipole with respect to the Kohn-

Sham determinant. Additional details regarding ground-state QED-DFT can be found in

Appendix A.

For excitation energies of cavity-bound molecules, we use a QED generalization of TDDFT;

a derivation of this approach can be found in Appendix B. The resulting generalized eigen-

value problem is40

⎛⎜⎜⎜⎜⎜⎜⎜⎝

A+∆ B +∆′ g† g†

B +∆′ A+∆ g† g†

g g ωcav 0

g g 0 ωcav

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

X

Y

M

N

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= Ω

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

X

Y

M

N

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(5)

On the left-hand side of Eq. 5, A and B are the same matrices that arise in the usual

(non-QED) TDDFT problem, ∆ and ∆′ represent dipole self-energy contributions, and g

arises from the bilinear coupling term. Explicit expressions for these quantities (for the case

of the random phase approximation) can be found in Appendix B. On the right-hand side
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of Eq. 5, the symbol Ω represents an excitation energy, and the vectors X, Y , M , and N

parametrize the corresponding QED-TDDFT excited state (see Eq. 31 in Appendix B) and

contain amplitudes corresponding to electronic excitations, electronic de-excitations, photon

creation, and photon annihilation, respectively. Given that the amplitudes for state n are

normalized as40

1 = (Xn)TXn − (Y n)TY n + (Mn)2 − (Nn)2 (6)

we can define a photon weight, wn
p , that quantifies the photon character of a given excited-

state as

wn
p =

(Mn)2 − (Nn)2

(Xn)TXn − (Y n)TY n + (Mn)2 − (Nn)2
= (Mn)2 − (Nn)2 (7)

Additional details can be found in Appendix B.

Computational Details

The QED-TDDFT method was implemented in hilbert,55 which is a plugin to the Psi456

electronic structure package. QED-TDDFT calculations on deprotonated (S )-Boc-Pro-(R/S )-

BINOL (charge = -1) molecules were performed using the 6-31G(d,p) basis set, using density-

fitted two-electron integrals and the cc-pVDZ-JKFIT auxiliary basis set. Geometries for

deprotonated (S )-Boc-Pro-(R/S )-BINOL were taken from Ref. 4, which were optimized for

the first singlet excited state in either molecule, at the B3LYP/6-31G(d,p) level of theory.

In our calculations, we consider the same electronically excited states, but we treat them at

the QED-TDDFT level of theory. Note that we have not re-optimized the geometries for

the excited states at this level of theory; as such, our calculations do not account for any

geometric relaxation effects stemming from the presence of the cavity. As mentioned in the

previous section, we use standard density functional approximations (SVWN3, PBE, and

B3LYP) from electronic structure theory in the QED-TDDFT calculations, and we neglect

electron-photon correlation effects.
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In all QED-TDDFT calculations performed in this work, we consider a single-mode cavity,

and details regarding the relative orientation of the cavity mode axis and the molecule can be

found in the Results and Discussion. We consider coupling strengths in the range λ = 0.01

to λ = 0.05, which correspond to effective mode volumes (Eq. 2) as large as ≈ 18.6 nm3

(for λ = 0.01) or as small as ≈ 0.74 nm3 (for λ = 0.05). We consider multiple values for

the fundamental frequency of the cavity mode (ωcav); additional details can be found in the

Results and Discussion.

Results and Discussion

As a representative example of cavity-enhanced ESPT-mediated enantioenrichment of BI-

NOL, we consider the case of (S )-Boc-Proline functionalized BINOL, which has previously

been examined at the TDDFT [B3LYP / 6-31G(d,p)] level of theory.4 The present QED-

TDDFT calculations take the molecules to be oriented as depicted in Fig. 2, with the xz

plane defined by the plane of the (S )-Boc-Pro functionalized naphthol moiety. Given this

configuration, we have considered cavity modes polarized along each cartesian axis (x, y,

and z), as well as along the axis defined by the molecular dipole moment for each molecule.

We consider three different fundamental frequencies. First, we take ωcav = ωR = 1.37630

eV, which is resonant with the energy of the first excited state of deprotonated (S )-Boc-Pro-

(R)-BINOL, as predicted by B3LYP / 6-31G(d,p). Second, we use ωcav = ωS = 1.33662 eV,

which is resonant with the energy of the first excited state of deprotonated (S )-Boc-Pro-(S )-

BINOL, as predicted by the same level of theory. Third, we use ωcav = 10.0 eV, which serves

as a non-resonant case. Now, before discussing any of our results, we note that analysis of

the vectors that parametrize the TDDFT and QED-TDDFT excited states (X, Y , M , and

N) indicate that the first excited state is dominated by highest occupied molecular orbital

(HOMO) to lowest unoccupied molecular orbital (LUMO) type transitions. This character

is maintained at all coupling strengths and frequencies considered below.
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Figure 2: Orientation of deprotonated (S )-Boc-Pro-(R/S )-BINOL used on the QED-
TDDFT-B3LYP calculations.

Table 1 shows relaxed QED-TDDFT predictions of the de for ESPT-mediated enantioen-

richment of (S )-Boc-Pro-(R/S )-BINOL, using the B3LYP functional and the 6-31G(d,p)

basis set. The de was determined as outlined in Ref. 4, as

de =

⃓⃓⃓⃓
f1 − f2
f1 + f2

⃓⃓⃓⃓
× 100% (8)

where f1 represents the fraction of the diastereomer that is in excess, f2 = 1 - f1 represents

the fraction of the other diastereomer, and these fractions are related to the energy difference

between the first excited electronic states of the deprotonated diastereomers by

∆E = E2 − E1 = −RT ln

(︃
1− f1
f1

)︃
(9)

Here, the thermal, rotational, and vibrational contributions to the total internal energy

and to the entropy were assumed to be equal for both diasteromers, and, thus, ∆G for

the photoisomerization is simply the difference in the electronic energies of the first excited

electronic states. The temperature, T , is taken to be 298.15 K. We note that this simple

analysis reproduces the correct qualitative observation that (S )-Boc-Pro-(R)-BINOL is the

preferred diasteromer, with TDDFT predicting a de of 17% and experiment giving 31%.4
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The data in Table 1 indicate that the computed diasteriomeric excesses are sensitive

to cavity interactions, and changes to the de depend strongly on the relative orientations

of the molecule and the cavity mode axis. For example, with a z-polarized cavity mode,

the de increases by 23–24%, from the cavity-free preference for the (S )-Boc-Pro-(R)-BINOL

diasteromer of 17% to as much as a 41% excess of the same diastereomer (with a coupling

strength of λ = 0.05 atomic units and ωcav = ωR or ωS). Interestingly, the preference for

the (S )-Boc-Pro-(R)-BINOL can be reversed when the cavity mode is polarized along the

molecular dipole moment, in which case we observe as much as 34% de of (S )-Boc-Pro-(S )-

BINOL (again, with a coupling strength of λ = 0.05 atomic units). For a x- and y-polarized

cavity modes, we find only modest decreases in the preference for the (S )-Boc-Pro-(R)-

BINOL diastereomer, for all choices of ωcav.

Table 1: Computed diastereomeric excess for (S)-Boc-Pro-(R/S)-BINOL from
relaxed QED-TDDFT calculations. The de was determined according to the
relative energies of the first electronic excited states of deprotonated (S)-Boc-
Pro-(R/S)-BINOL.

mode polarization
λ x y z dipole

0.00 17(R) 17(R) 17(R) 17(R)

0.01 17(R) 17(R) 18(R) 14(R)
ωcav = ωR 0.02 16(R) 16(R) 21(R) 7(R)

0.03 15(R) 14(R) 27(R) 5(S )
0.04 13(R) 13(R) 34(R) 19(S )
0.05 11(R) 12(R) 41(R) 34(S )

0.01 17(R) 17(R) 18(R) 15(R)
ωcav = ωS 0.02 16(R) 16(R) 21(R) 6(R)

0.03 15(R) 14(R) 27(R) 5(S )
0.04 13(R) 13(R) 34(R) 19(S )
0.05 11(R) 12(R) 41(R) 34(S )

0.01 17(R) 17(R) 18(R) 14(R)
ωcav = 10.0 eV 0.02 16(R) 16(R) 21(R) 6(R)

0.03 15(R) 14(R) 26(R) 5(S )
0.04 13(R) 13(R) 33(R) 19(S )
0.05 11(R) 12(R) 40(R) 34(S )

It is notable that the same conclusions can be drawn from the data in Table 1 for each

chosen ωcav, as the observed de for ωcav = ωR, ωS, and 10.0 eV are essentially identical. This
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insensitivity suggests that the changes to the de we observe derive from dipole-self-energy-

induced modifications to either the ground or excited electronic states. For the ground state,

when the Hamiltonian is represented in the coherent-state basis, the energy (at the mean-field

level) is independent of the cavity mode frequency (see Eq. 10 in Appendix A), and all cavity

effects stem from dipole self-energy. As for the excited-states, from a model Hamiltonian

perspective, we would expect interactions between the electronic excited states and the

photon degrees of freedom to be negligible in the case that the transition dipole moments

for the electronic states are small. Indeed, the data in Table 2 support this expectation;

transition dipole moments for these states are small in all cartesian directions, and the

oscillator strengths are only on the order of 10−5–10−4. Moreover, the photon weights, wn
p

for these states are extremely small (i.e., < 10−5) for all coupling strengths and frequencies

considered in Table 1. These small transition moments and photon weights are consistent

with the argument that the dipole self-energy must be responsible for the cavity effects we

observe.

Table 2: Transition dipole moments (units of ea0) and oscillator strengths (f)
corresponding to the first electric excited states of (S)-Boc-Pro-(R/S)-BINOL
calculated at the TDDFT [B3LYP/6-31G(d,p)] level of theory.

µx µy µz f

(S )-Boc-Pro-(R)-BINOL 0.0049 -0.0149 -0.0316 4.2 ×10−5

(S )-Boc-Pro-(S )-BINOL -0.0178 0.0109 -0.0600 1.3 ×10−4

We can confirm the importance of the dipole self-energy term’s influence on the ground

state by evaluating the de with energies derived from unrelaxed QED-TDDFT calculations.

Table 3 provides these data for the off-resonance case of ωcav = 10.0 eV. As in Table 1,

these data were generated using the B3LYP functional and the 6-31G(d,p) basis set, and

we consider four different cavity mode polarization axes. We find that the de is completely

insensitive to cavity interactions, remaining at roughly 17% for all coupling strengths and

cavity mode polarization axes. These results stand in stark contrast to those of Table 1 and

highlight the importance of ground-state orbital relaxation effects in the strong coupling
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regime.

Table 3: Computed diastereomeric excess for (S)-Boc-Pro-(R/S)-BINOL from
unrelaxed QED-TDDFT calculations. The de was determined according to the
relative energies of the first electronic excited states of deprotonated (S)-Boc-
Pro-(R/S)-BINOL.

mode polarization
λ x y z dipole

0.00 17(R) 17(R) 17(R) 17(R)

0.01 17(R) 17(R) 17(R) 17(R)
ωcav = 10.0 eV 0.02 17(R) 17(R) 17(R) 17(R)

0.03 17(R) 17(R) 17(R) 17(R)
0.04 17(R) 17(R) 17(R) 17(R)
0.05 17(R) 17(R) 17(R) 17(R)

Lastly, we explore whether the choice of exchange-correlation (XC) functional has any

effect on cavity-induced changes to the de. The formulation of QED-TDDFT that we use

lacks any photon-electron XC functional, so cavity effects only enter through the bilinear

coupling and dipole self-energy components of the Hamiltonian. As such, we expect cavity-

induced changes to the electronic structure to be insensitive to the choice of electronic XC

functional. Table 4 provides computed de values from relaxed QED-TDDFT calculations

performed using the SVWN3 and PBE functionals and the 6-31G(d,p) basis. We first note

that the cavity-free predictions for the de are in qualitative agreement with those from

B3LYP and experiment;57 the (S )-Boc-Pro-(R)-BINOL diastereomer is favored. However,

while PBE-derived results (15% de) are in good quantitative agreement with those from

B3LYP (17% de), SVWN3 predicts a slightly larger preference for (S )-Boc-Pro-(R)-BINOL

(39% de). Second, we note that the same general trends with respect to cavity mode po-

larization axis and coupling strength observed in Table 1 are present in the SVWN3 and

PBE data. For a z-polarized cavity mode, all three functionals predict an increase in the

preference for the (S )-Boc-Pro-(R)-BINOL diastereomer, and this increase amounts to as

much as 25 percentage points in the case of PBE (15% to 40% de) and 29 percentage points

for SVWN3 (29% to 58% de). When the cavity mode is polarized along the molecular dipole

moment (as predicted by SVWN3 or PBE), the preferred diastereomer can change. PBE
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predicts that at λ = 0.05, there will be a 40% de of (S )-Boc-Pro-(S )-BINOL [a 55 percentage

point swing from 15%(R)], whereas SVWN3 predicts that there will be 5% de of (S )-Boc-

Pro-(S )-BINOL at this coupling strength [a 44 percentage point swing from 39%(R)]. The

magnitudes of the swing from a preference for (S )-Boc-Pro-(R)-BINOL to one for (S )-Boc-

Pro-(S )-BINOL are comparable to that which was observed for B3LYP in Table 1. Also, as

was observed for the case of B3LYP, the de is not particularly sensitive to the presence of

the cavity when the cavity mode is polarized in the x- or y− directions.

Table 4: Computed diastereomeric excess for (S)-Boc-Pro-(R/S)-BINOL from
PBE and SVWN3 functionals with ωcav = 10.0 eV. The de was determined accord-
ing to the relative energies of the first electronic excited states of deprotonated
(S)-Boc-Pro-(R/S)-BINOL.

mode polarization
λ x y z dipole

0.00 15(R) 15(R) 15(R) 15(R)
0.01 14(R) 15(R) 16(R) 12(R)

PBE 0.02 13(R) 14(R) 19(R) 3(R)
0.03 11(R) 13(R) 24(R) 11(S )
0.04 9(R) 12(R) 32(R) 25(S )
0.05 6(R) 11(R) 40(R) 40(S )

0.00 39(R) 39(R) 39(R) 39(R)
0.01 38(R) 38(R) 39(R) 36(R)

SVWN3 0.02 37(R) 38(R) 42(R) 29(R)
0.03 35(R) 37(R) 47(R) 19(R)
0.04 33(R) 36(R) 52(R) 7(R)
0.05 31(R) 35(R) 58(R) 5(S )

The similarities between results obtained from each functional are more easily visualized

in Fig. 3, which depicts the change in the predicted energy gap between the (S )-Boc-Pro-

(R/S )-BINOL diastereomers for each functional (∆∆E), when considering cavity modes with

ωcav = 10.0 eV. We focus on the cases for which the most dramatic changes in the de are

observed: cavity modes polarized in the z-direction or along the molecular dipole moments.

At all coupling strengths, the B3LYP, PBE, and SVWN3 functionals provide comparable

results. For the largest coupling strength considered (λ = 0.05), the relative energies of

the (S )-Boc-Pro-(R/S )-BINOL diastereomers change by ≈ 0.30 to 0.32 kcal mol−1 or ≈

-0.54 to -0.67 kcal mol−1 when the cavity mode is polarized in the z-direction or along the
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molecular dipole moments, respectively. We can attribute the larger spread in ∆∆E when

the cavity is polarized along the dipole moments of the diastereomers to the fact that the

precise orientations of the dipole moments differ slightly at each level of theory. Nonetheless,

the qualitative behavior of each functional is similar.
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Figure 3: Change in the energy difference between the (S )-Boc-Pro-(R/S )-BINOL diastere-
omers (∆∆E, kcal mol−1) as a function of coupling strength for cavity modes with ωcav = 10.0
eV polarized along the z-direction and the direction defined by the molecular dipole moment
for each diastereomer.

Conclusions

We have demonstrated computationally that strong light-matter interactions can be lever-

aged to discriminate between diastereomers, within the specific context of ESPT-driven

enantioenrichment of BINOL. Changes to both the attainable de and the handedness of BI-

NOL are achievable, but the outcomes are highly sensitive to the relative orientation of the

molecules and the cavity mode polarization axis (see the molecular orientation in Fig. 2).

For example, a z-polarized cavity mode serves to enhance the predicted de for the cavity-free

favored diastereomer [(S )-Boc-Pro-(R)-BINOL] from 17% to ≈ 40%, while a cavity mode

polarized along the molecular dipole moment results in a reversed preference for (S )-Boc-

Pro-(S )-BINOL with predicted de as large as 34%. These outcomes are intriguing as they

suggest that precise control over molecular orientation within an optical cavity can enable
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the targeted generation of a preferred diastereomer without the need to change the chiral di-

recting group. Moreover, we note that the observed diastereomer discrimination is achieved

via strong coupling to linearly-polarized cavity modes. In this way, our work complements

other recent work on chiral optical cavities58 in which circularly-polarized cavity modes have

been shown to be effective at discriminating between enantiomers of chiral molecules.

We have found that the observed cavity effect is insensitive to the mode frequency,

which suggests that it can be attributed to cavity-induced modifications to the ground-

state electronic structure. Indeed, we only observe meaningful changes to the de when the

ground-state Kohn-Sham orbitals are allowed to relax within the cavity. As such, unrelaxed

QED-TDDFT should be used with caution since it does not account for important quantum

vacuum fluctuation effects that are the driving forces in many reactions that have been con-

sidered computationally.22,23 Such ground-state effects derive entirely from the dipole-self

energy component of the Hamiltonian and only become important in strong single-molecule

coupling scenarios. Hence, experimental realization of the effects that we have predicted will

require cavity architectures that support either a single photon mode with a few- or sub-nm3

volume,59 or multiple modes polarized along the same direction. For ground-states described

by mean-field cavity QED methods (such as QED-DFT), the latter case corresponds to a

cavity QED simulation in which the single-mode coupling strength is replaced by an effective

coupling deriving from the cumulative effect of multiple modes (i.e., λ2
eff =

∑︁
i λ

2
i ).

47

Appendix A: Ground-state QED-DFT

In this appendix, we provide additional details regarding our formulation of the QED-Kohn-

Sham ground-state problem. Given the Pauli-Fierz Hamiltonian in Eq. 4, which is repre-
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sented within the coherent-state basis, the ground-state QED-DFT energy is

E =
∑︂
µν

(Tµν + Vµν +
1

2
Jµν)γµν + Exc[ρα, ρβ, ...]

+ ⟨1
2
[λ · (µ̂− ⟨µ̂⟩)]2⟩ (10)

where, µ and ν index atomic basis functions, Tµν and Vµν are electron kinetic energy and

electron-nucleus potential energy integrals, respectively, and Jµν represents the coulomb

matrix

Jµν =
∑︂
λσ

⟨µλ|νσ⟩γλσ (11)

Here, ⟨µλ|νσ⟩ is a two-electron repulsion integral in physicists’ notation. The symbol γµν

represents an element of the one-particle reduced-density matrix

γµν =
Ne∑︂
i

c∗µicνi (12)

where Ne is the number of electrons and {cµi} are molecular orbital coefficients. Exc is

a standard electron exchange-correlation functional that depends upon the α- and β-spin

densities (ρα and ρβ, respectively), as well as additional quantities, depending on the density

functional approximation. The last term in Eq. 10 is the dipole self-energy. Note that, for

mean-field methods, the bilinear coupling term in Eq. 4 does not contribute to the total

energy when the Hamiltonian is represented in the coherent-state basis. Note also that this

energy expression could in principle be modified to include some fraction of exact Hartree-

Fock exchange.

To arrive at a useful expression for the dipole self-energy, we first note that, in the

coherent-state basis and within the cavity Born-Oppenheimer approximation, the operator

µ̂− ⟨µ̂⟩ consists of only electronic components, i.e.,

µ̂− ⟨µ̂⟩ = µ̂e − ⟨µ̂e⟩ (13)
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Now, the dipole-self energy operator takes the form

1

2
[λ · (µ̂e − ⟨µ̂e⟩)]2 =

1

2
(λ · µ̂e)

2

− (λ · µ̂e)(λ · ⟨µ̂e⟩)

+
1

2
(λ · ⟨µ̂e⟩)2 (14)

The dipole-squared operator can be expanded in terms of one- and two-electronic contribu-

tions as

(λ · µ̂e)
2 =

∑︂
i ̸=j

[λ · µ̂e(i)][λ · µ̂e(j)] +
∑︂
i

[λ · µ̂e(i)]
2 (15)

In second-quantized notation, this operator has the form

(λ · µ̂e)
2 =

∑︂
µνλσ

dµνdλσâ
†
µâ

†
λâσâν

−
∑︂
µν

qµν â
†
µâν (16)

The symbols â† and â represent fermionic creation and annihilation operators, respectively,

dµν represents a modified dipole integral

dµν = −
∑︂

a∈{x,y,z}

λa

∫︂
χ∗
µraχνdτ (17)

and qµν is a modified quadrupole integral

qµν = −
∑︂

ab∈{x,y,z}

λaλb

∫︂
χ∗
µrarbχνdτ (18)

Here, χµ represents an atomic basis function, λa is a cartesian component of λ, and ra is a

cartesian component of the position vector (e.g., for r = (x, y, z), rx = x). Given Eq. 16 and
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(λ · µ̂e) =
∑︂
µν

dµν â
†
µâν (19)

we arrive at the final second-quantized form of Eq. 14

1

2
[λ · (µ̂e − ⟨µ̂e⟩)]2 =

1

2

∑︂
µνλσ

dµνdλσâ
†
µâ

†
λâσâν

+
∑︂
µν

ODSE
µν â†µâν +

1

2
(λ · ⟨µe⟩)2 (20)

where

ODSE
µν = −(λ · ⟨µ̂e⟩)dµν −

1

2
qµν (21)

For a single Slater determinant, the expectation value of Eq. 20 is

⟨1
2
[λ · (µ̂e − ⟨µ̂e⟩)]2⟩ =

1

2

∑︂
µνλσ

dµνdλσ(γµνγλσ − γµσγλν) +
∑︂
µν

ODSE
µν γµν +

1

2
(λ · ⟨µe⟩)2 (22)

or

⟨1
2
[λ · (µ̂e − ⟨µ̂e⟩)]2⟩ =

∑︂
µν

(
1

2
JDSE
µν − 1

2
KDSE

µν +ODSE
µν )γµν

+
1

2
(λ · ⟨µe⟩)2 (23)

where

JDSE
µν = dµν

∑︂
λσ

dλσγλσ (24)

and

KDSE
µν =

∑︂
λσ

dµσdλνγλσ (25)

With all of the components of the energy (Eq. 10) defined, we can make this energy

stationary with respect to the orbitals that define the spin densities and density matrix,

while enforcing orthogonality of these orbitals. Doing so results in a set of Kohn-Sham
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equations that resembles those in the ordinary electronic problem, except for the presence

of dipole self-energy contributions. In other words, the orbitals in Kohn-Sham QED-DFT

are determined as eigenfunctions of the modified Kohn-Sham matrix

FKS
µν = Tµν + Vµν + Jµν + V xc

µν

+ ODSE
µν + JDSE

µν −KDSE
µν (26)

where V xc
µν represents the electron exchange-correlation potential matrix. Of course, this

Kohn-Sham matrix could be modified to include some fraction of exact Hartree-Fock ex-

change.

Appendix B: QED-RPA equations

In this appendix, we derive a cavity QED formulation of the random phase approximation

(RPA). QED-TDDFT equations are closely related to the QED-RPA ones, as is the case

with standard TDDFT and RPA. We approach this derivation from the point of view of

Rowe’s equation of motion.60

Consider an excited-state wave function

|Ψn⟩ = Ô
†
n|0e0p⟩ (27)

and the associated Schrödinger equation

ĤÔ
†
n|0e0p⟩ = EnÔ

†
n|0e0p⟩ (28)

Assuming |0e0p⟩ = |0e⟩ ⊗ |0p⟩ is an eigenfunction of Ĥ, we have

⟨0e0p|Â[Ĥ, Ô
†
n]|0e0p⟩ = Ωn⟨0e0p|ÂÔ

†
n|0e0p⟩ (29)
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where Ωn = En − E0, E0 is the energy associated with |0e0p⟩, and Â is defined such that

Â
†
|0e0p⟩ is an arbitrary state within the manifold of states spanned by Ô

†
n|0e0p⟩. If Ô

†
n

satisfies the killer condition, Ôn|0e0p⟩ = 0, then Eq. 29 is equivalent to

⟨0e0p|[Â, [Ĥ, Ô
†
n]]|0e0p⟩ = Ωn⟨0e0p|[Â, Ô

†
n]|0e0p⟩ (30)

To obtain the working equations for QED-RPA, we define an approximate transition op-

erator (which, like the usual RPA, does not actually satisfy the killer condition and represents

a potential disadvantage of the approach) as

Ô
†
n =

∑︂
ia

(Xn
aiX̂

†
ai + Y n

aiŶ
†
ai) +MnM̂

†
+NnN̂

†
(31)

with

X̂
†
ai = â†aâi (32)

Ŷ
†
ai = −â†i âa (33)

M̂
†

= b̂
†

(34)

N̂
†

= −b̂ (35)

Here, the labels i and a represent occupied and virtual molecular orbitals, respectively. The

expansion coefficients in Eq. 31 (Xn
ai, Y

n
ai, M

n, and Nn) can be determined as the eigenvectors

of the generalized eigenvalue problem given in Eq. 5 with the blocks on the left-hand side of
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that equation defined by

⟨0e0p| [X̂ai, [Ĥ, X̂
†
bj]] |0e0p⟩ = (A+∆)ai,bj (36)

⟨0e0p| [X̂ai, [Ĥ, Ŷ
†
bj]] |0e0p⟩ = (B +∆′)ai,bj (37)

⟨0e0p| [X̂ai, [Ĥ, M̂
†
]] |0e0p⟩ = gai (38)

⟨0e0p| [X̂ai, [Ĥ, N̂
†
]] |0e0p⟩ = gai (39)

⟨0e0p| [Ŷ ai, [Ĥ, Ŷ
†
bj]] |0e0p⟩ = (A+∆)ai,bj (40)

⟨0e0p| [Ŷ ai, [Ĥ, M̂
†
]] |0e0p⟩ = gai (41)

⟨0e0p| [Ŷ ai, [Ĥ, N̂
†
]] |0e0p⟩ = gai (42)

⟨0e0p| [M̂, [Ĥ, M̂
†
]] |0e0p⟩ = ωcav (43)

⟨0e0p| [M̂, [Ĥ, N̂
†
]] |0e0p⟩ = 0 (44)

⟨0e0p| [N̂ , [Ĥ, N̂
†
]] |0e0p⟩ = ωcav (45)

etc. The blocks on the right-hand side of Eq. 5 can similarly be defined using the appropriate

single commutators (see the right-hand side of Eq. 30). Above,

gai =

√︃
ωcav

2
dai (46)

and A and B are the standard matrices that arise in RPA, i.e.,

Aai,bj = δabδij(ϵa − ϵi) + ⟨aj||ib⟩ (47)

Bai,bj = ⟨ab||ij⟩ (48)

Here, ϵi and ϵa are orbital energies, and ⟨aj||ib⟩ = ⟨aj|ib⟩ − ⟨aj|bi⟩ is an antisymmetrized

two-electron integral in physicists’ notation. Dipole self-energy contributions arise in two

places here. First, one-electron components are contained within the orbital energies (if the

underlying QED-DFT procedure relaxes the Kohn-Sham orbitals to account for the presence
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of the cavity). Second, the tensors ∆ and ∆′ contain two-electron contributions, and the

form of these contributions is similar to that in the A and B matrices:

∆ai,bj = daidjb − dabdij (49)

∆′
ai,bj = daidbj − dajdib (50)

The QED-TDDFT equations we solve in this work are obtained by replacing the exchange

parts of the A and B matrices with appropriate derivatives of the exchange-correlation func-

tional. Given this form, there are a few important distinctions between our approach and

that outlined in Ref. 40. First, our reference state, |0e0p⟩, is determined via the modified

Kohn-Sham procedure described in the Theory Section, which includes cavity interactions,

whereas the ground-state in Ref. 40 is an unperturbed Kohn-Sham state. Cavity effects in

the ground-state calculation will affect the orbitals and orbital energies entering the QED-

TDDFT procedure. Second, the Hamiltonian entering our QED-TDDFT procedure is repre-

sented in the coherent-state basis (Eq. 4), whereas that used in Ref. 40 is not. Third, our ∆

and ∆′ matrices contain exchange-like contributions (the second terms in Eqs. 50 and 50),

whereas Ref. 40 ignores these quantities. When ignoring these exchange-like contributions,

∆ = ∆′, if the molecular orbitals are real-valued.

Supporting Information: Energies (Eh) of the first electronic excited states of deproto-

nated (S )-Boc-Pro-(R)-BINOL and (S )-Boc-Pro-(S )-BINOL molecules coupled to a 10 eV

cavity mode computed at the relaxed QED-TDDFT/6-31G(d,p) level of theory using the

PBE, B3LYP, and SVWN3 functionals.
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