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Abstract—This paper proposes a fully-concurrent access SRAM
topology to handle high-concurrency operations on multiple rows
in an SRAM array. Such high-concurrency operations are widely
seen in both conventional and emerging applications where high
parallelism is preferred, e.g., the table update in a database and
the parallel feature update in graph computing. The proposed
shift-based parallel access and compute architecture is enabled by
integrating the shifter function into each SRAM cell, and by
creating a datapath that exploits the high-parallelism of shift
operations in multiple rows. An example of a 128-row 16-column
shiftable SRAM in 65nm CMOS is designed. Post-layout SPICE
simulations show improvements of 5.5x energy efficiency and
27.2x speed in average over a conventional digital near-memory
computing scheme. In addition, the design has been fabricated and
the measurement results show support of up to 800MHz clock at
1.0V and 1.2GHz at 1.2V.

Index Terms—SRAM, high-concurrency access, database,
graph computing.

I. INTRODUCTION

HIGH—CONCURRENCY access to a structured memory array
could be widely seen in many data-intensive applications.
Some examples include the table management in database and
the weight matrix read and update in graph applications.
Conventionally, the read and write access to multiple rows of
an embedded memory array is carried out row by row,
sequentially. This is due to the sharing of the bitlines and
peripheral circuitry for many rows, so as to balance the density
and latency well for cache design in most conventional
computing tasks. However, in data-intensive high-concurrency
memory access applications, it has caused significant latency

and become a performance bottleneck, as illustrated in Fig. 1(a).

Furthermore, the energy consumption per access is also high
due to charging of long bitlines with large parasitic capacitance
in read and write operations. Therefore, it is time to re-think the
memory access pattern and supporting circuits for emerging
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Fig. 1. Comparison between conventional row-by-row data access to a dual-
port SRAM in (a), and proposed shift-based FAST SRAM supporting full-
concurrency parallel read & update in (b).
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Fig. 2. Shift-based in-memory computing architecture.

high-concurrency applications.

There has also been an emerging concept of compute-in-
memory (CIM) to reduce the data transfer cost between
memory and processing units [1]-[3], actually supporting
concurrent access to multiple rows. However, existing CIM
techniques are limited in the computing functionalities and
parallelism. On the one hand, the parallelism of near-memory
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Fig. 3. FAST SRAM: (a) three SRAM in-row shifters in a row (SRAM access transistors not shown); (b) control diagram; (c) shift operation steps.

computing style [4]-[6] is still limited by the SRAM data port
with row-by-row serial access. On the other hand, high-
concurrency memory update, e.g., the feature update in graph
computing applications [7], [8]), or the delta update of a cache
table (and possibly weight update in neural networks [9]), could
still be limited by the row-by-row access bottleneck.

To tackle these high-concurrency read and write problems,
this paper proposes FAST, namely a fully-concurrent access
SRAM topology, as shown in Fig. 2. To demonstrate FAST, we
take the static random-access memory (SRAM) in the CMOS
technology for evaluations of functionality, latency, and energy
efficiency. Contributions of this work include:

(1) A dynamic shift-based SRAM capable of reading and
writing multiple rows with full row concurrency. The
SRAM cell, array, and supporting circuitry are presented;

(i) A fully-concurrent in situ read-compute-and-update
architecture supporting a category of parallel computing
operations achieved by adding a 1-bit ALU to each row;

(iii) Analysis and evaluations of the proposed techniques
based on a showcase of a 128-row 16-column FAST chip
implemented in 65nm CMOS, and evaluation with 8-128
columns showing significant improvement of speed and
energy efficiency over the conventional SRAM solutions.

In the rest of this paper, Section II presents the proposed
FAST architecture. Section III evaluates the performance and
costs. Section IV concludes this work.

II. PROPOSED FAST MEMORY ARCHITECTURE AND CIRCUITS

This section presents FAST, including the architecture,
supporting circuits, and in situ computing capabilities.
Simulation and evaluation results are provided in Section III.

A. Overall Architecture

The proposed system architecture is shown in Fig. 2. The
bitline (BL) precharger and the row decoder are the same as
those of a conventional SRAM array. The control decoder
serves as an interface to the external processing units such as
CPU or FPGA. The SRAM cell in the proposed architecture is
designed to support in-cell shift function, so that each row could
be cyclically shifted independently (to the right, for example).
More circuit details will be introduced subsequently in Section

I1.B. Based on this, we add a 1-bit arithmetic logic unit (ALU)
in each row, connecting the last cell and the first cell. This 1-bit
ALU performs 1-bit logic computing, such as 1-bit add. By
combining the shift operation and the 1-bit logic operation,
multibit operation could be completed naturally in parallel
between different rows.

According to the different functions of 1-bit ALU, this
scheme could support applications that needs parallel updates
to the stored data in several rows. One simple scenario is a high-
concurrency access-intensive general cache, such as those of
database table and weight matrix during training.

It is noted that there are some emerging SRAM-based CIM
schemes to reduce the data transfer costs by enabling in-SRAM
computing [10]-[12]. In contrast, FAST SRAM is different in
enabling row-wise in situ calculation with direct write-back
support. We will show how to implement the multibit addition
with cyclic right shift and 1-bit ALU subsequently.

B. SRAM In-Memory Parallel Shifter

As mentioned above, the shiftable SRAM design is a key
enabler of the parallel search and computing architecture. In
order to support in-row shift operation with less area and
latency overhead, we propose a shiftable SRAM cell in Fig. 3,
including the cell circuit structure in Fig. 3(a), the control flow
chart in Fig. 3(b), and the step-by-step shift operations.

Each shiftable SRAM cell includes a conventional SRAM
cell, a CMOS transmission gate controlled by ¢, as the inter-
cell switch, and two NMOS switches controlled by ¢, and ¢, 4
as intra-cell switches.

The shift operation between adjacent SRAM cells consists of
three phases, shown as a shift-right function in Fig. 3. In phase
1, the intra-cell switches controlled by ¢, and ¢, are turned
off and the inter-cell switch controlled by ¢, is turned on. The
remnant charge at node X will drive the two inverters to
generate a path from the left cell to the right. In phase 2 and
phase 3, the intra-cell switch controlled by ¢, and ¢,,; are
turned on one by one with other switches remaining off, so that
each SRAM cell forms a closed loop to stabilize its datum.

The timing of the control signals is shown in Fig. 3 (b). It
could be conveniently generated by two-phase non-overlapping
clock and a delayer. The control signals ¢, and ¢, are non-
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Fig. 5. Full adder with carry propagation: (a) circuit; (b) timing diagram, and
(c) multi-word configuration route unit.

overlapping to avoid the data loss caused by the simultaneous
turning-on of the switches. The control signal ¢, is set to ¢,
with a slight delay to provide sufficient time for data restoration
in phase 2. The delay circuit could be simply realized by two
serially connected inverters.

Fig. 7 shows the transient waveforms during the shift
operations, in which the three phase control signals and the
internal nodes of the four SRAM cells in a row are included.

C. One-Bit ALU for In-Row Computing Capabilities

Based on the above in-memory shifter, by adding a 1-bit
ALU to the end of each row (between LSB and MSB), the high
parallel memory computing operation could be realized, as
showcased in Fig. 4(a) with a full-adder (FA) example. For a ¢-
bit datum stored in the row, after ¢ right-shift cycles along with
the 1-bit FA, the external add operand will be added to the row
and the data in this row are restored. An example of ¢=8 is
shown in Fig. 4(b). Since the long interconnecting wires
between the memory cells and ALU may result in large parasitic
resistance and capacitance, folding each row back to form an
evenly distributed loop is effective to limit the maximum
distance to ~2x of the FAST SRAM design, shown as Fig. 6(b).

It is also noted that, during the multi-bit add, the FA carry bit
needs to be stored temporarily. The circuit diagram of passing
the carry bit to the next stage is shown in Fig. 5(a). In phase 1,
FA calculates 1-bit addition and outputs the sum and carry-out
bit. The switch ¢, is turned on while ¢, is turned off to store
the carry bit on the node TI. In phase 3, the carry will be
transmitted through the switch ¢,,, which will be used as the

(b)
Fig. 6. FAST SRAM (a) layout, and (b) in-row cross structure.
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Fig. 9. The baseline of a fully-digital near-memory computing architecture.

input carry of the next stage. An example is shown in Fig. 5. (b)
to showcase the workflow. In addition, we propose a bit-width
reconfigure method, shown as Fig. 5(c) using 16 cells as an
example. When we need to connect two low-width words as a
wide-width word, the routing unit will connect the shift line of
these two words. In this case, two ALU will be cascaded.

Fig. 8 shows the transient waveforms of the shift-based add
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operations, in which the phase control signals and the internal
nodes of the four SRAM cells in a row are provided.

III. BENCHMARKING AND DISCUSSION

This section evaluates the proposed FAST SRAM in terms
of array-level power and latency, along with application
testbenches. Simulation results of circuit transient waveforms,
chip layout, etc. are included.

A. Chip Layout Design and Simulation Setting

To evaluate the performance of the proposed FAST SRAM,
a chip has been designed in a 65nm CMOS technology, as
shown in the die photograph in Fig. 6. Post-layout parasitic
exaction has been carried out for more accurate SPICE
simulations. The supply voltage is set to 1.0 V.

For comparison purposes, a fully-digital near-memory
computing architecture is chosen as the baseline design, shown
as Fig. 9. The baseline is the general-purpose SRAM assisted
with custom digital logic circuits designed by the digital flow
based on a standard cell library. This baseline is built with the
same function as the FAST SRAM. For general benchmarks,
the proposed architecture and the baseline architecture are both
based on the conventional 6T SRAM structure. While
simulating the performance and costs during the parallel update,
we collect the energy consumption of each word update, and

4
TABLEI
COMPARISON BETWEEN SRAM CACHE AND PROCESSING IN MEMORY
FAST SRAM SRAM Digital
Cell Structure 10T 6T 20T
Write Energy 76.2 fI/bit 72.4 fJ/bit 219.7 £l/bit
Read Energy 74.8 fJ/bit 68.4 fJ/bit /
Access Time 0.94 ns 0.94 ns 0.09 ns
Calc. Energy * 0.38 pJ/OP / 2.09 pJ/OP
Calc. Time * 0.025 ns/OP / 0.68 ns/OP

* OP: 16-bit addition with data write-back to the FAST SRAM in 128-row
parallelism

the latency of updating the whole array, i.e., the batch update
latency.

B. Simulation Result

Energy Efficiency. Fig. 10 (a) shows the energy consumption
comparison. When the number of rows is greater than 2 times
of the bit width, the proposed FAST SRAM scheme has higher
energy efficiency. As mentioned above, this advantage comes
from a shorter critical charging and discharging path of a
memory access. When the bit width is much less than the
number of rows (which is commonly adopted in general SRAM
design to reduce the costs of the the peripherals), the energy
saving is significant. For example, the energy efficiency could
be 4.4x higher than the baseline with 8-bit bit width and 512
rows (here the number of rows is 64x of the bit width).

Latency. Fig. 10 (b) shows the latency comparison, in which
the proposed FAST SRAM scheme shows hundreds of times
speedup. The reason behind this advantage is straightforward:
the latency of baseline depends on the number of rows in the
array to carry out the operations row by row, while the proposed
FAST SRAM support full-concurrency operations on all the
rows and the latency depends on the bit width. When the
number of rows is larger compared to the bit width, the latency
advantage of high parallelism becomes more significant.

Fig. 11 provides more simulation results to highlight the
trend of the latency and energy consumption of the proposed
scheme under different bit width and number of rows.

C. Performance Benchmarking

FAST technique provides a new circuit functionality to
support a category of parallel memory access with light logic
operations and in-place updates. On the one hand, FAST SRAM
could be useful for conventional applications such as database
indexing, in-memory search or sorting, etc. Essentially, as
conventional SRAM does not support access to multiple rows
at a time, FAST SRAM provides a new potential to deal with
other parallel data-update operations. On the other hand, since
FAST can handle parallel search and update operations, it is
also useful in emerging graph computing applications.

As an example, table I compares the latency and energy
performance of addition and update in FAST SRAM under a
configuration of 128 rows in the benchmark. Compared with
the fully-digital computing architecture, our design shows 5.5x
energy saving and 27.2x speedup. The proposed FAST SRAM
architecture benefits from the concurrent operations.
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D. Test Results and Validation

Since data transfer between SRAM cells is a dynamic logic,
the noise margin is critical. In phase 2, the switches ¢, and
¢, will be off. Therefore, the charge stored in the start point of
the disconnected inverters loop in FAST SRAM will leak
slowly, as shown in Fig. 12. Monte Carlo simulation validates
the eye pattern of in-row shift with different cells. There is a
300mV noise margin in the worst case. A tested macro in 55nm
is fabricated with the test setup and results in Fig. 13. An FPGA
generates the input data pattern and verifies read-out data. It
works well at 0.8GHz — 1.2GHz under a 1.0V — 1.2V supply.

E. Overheads, More Discussions, and Future Works.

In the experimental chip design, the proposed FAST SRAM
architecture adopts ten transistors per cell, including six original
SRAM cell transistors and four switch transistors. This extra
transistor count brings about 70% area overhead on the cell
level in our design. The area overhead of shift control signal
generation is only about 10% in a 16-column scenario. Fig. 14
illustrates the area breakdown of a 128-row FAST SRAM die.
Considering the peripherals, the FAST SRAM takes about 41.7%
more area compared with the general-purpose SRAM. When
the array size increases, it is difficult to utilize so many parallel
computing units simultaneously. Therefore, there is a trade-off
to share the ALUs among multiple rows to reduce area overhead.

It is also noted that the proposed SRAM subarray could also
be used as a general cache, especially for data-intensive
applications such as multimedia processing and encryption. In
addition, it can also realize more complex functions by

replacing the 1-bit full adder into other 1-bit operation units.
This architecture could serve as a data in-situ update accelerator
with high energy efficiency for inference acceleration, database
index search, and other applications with high-concurrency
row-by-row operations. Introducing reconfigurable ALU could
be efficient to support multiple computing methods with a small
area overhead. Future work may also consider a reconfigurable
design to deal with more versatile calculations such as floating-
point adder or integer multiplier.

IV. CONCLUSION

This paper has proposed a novel memory and architecture,
namely FAST, which is capable of dealing with high-
concurrency row-wise memory operations. A chip designed in
65nm CMOS technology has been showcased to demonstrate
its efficiency in parallel memory access and data update
operations. The overhead of the proposed design is mainly the
area overhead. Future work that further harnesses the
parallelism, flexibility, reconfigurability could be meaningful
in data-intensive applications where high-concurrent memory
access is the performance bottleneck.
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