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Abstract—This paper proposes a fully-concurrent access SRAM 

topology to handle high-concurrency operations on multiple rows 
in an SRAM array. Such high-concurrency operations are widely 
seen in both conventional and emerging applications where high 
parallelism is preferred, e.g., the table update in a database and 
the parallel feature update in graph computing. The proposed 
shift-based parallel access and compute architecture is enabled by 
integrating the shifter function into each SRAM cell, and by 
creating a datapath that exploits the high-parallelism of shift 
operations in multiple rows. An example of a 128-row 16-column 
shiftable SRAM in 65nm CMOS is designed. Post-layout SPICE 
simulations show improvements of 5.5x energy efficiency and 
27.2x speed in average over a conventional digital near-memory 
computing scheme. In addition, the design has been fabricated and 
the measurement results show support of up to 800MHz clock at 
1.0V and 1.2GHz at 1.2V. 
 
Index Terms—SRAM, high-concurrency access, database, 

graph computing. 
 

I. INTRODUCTION 
IGH-CONCURRENCY access to a structured memory array 
could be widely seen in many data-intensive applications. 

Some examples include the table management in database and 
the weight matrix read and update in graph applications. 
Conventionally, the read and write access to multiple rows of 
an embedded memory array is carried out row by row, 
sequentially. This is due to the sharing of the bitlines and 
peripheral circuitry for many rows, so as to balance the density 
and latency well for cache design in most conventional 
computing tasks. However, in data-intensive high-concurrency 
memory access applications, it has caused significant latency 
and become a performance bottleneck, as illustrated in Fig. 1(a). 
Furthermore, the energy consumption per access is also high 
due to charging of long bitlines with large parasitic capacitance 
in read and write operations. Therefore, it is time to re-think the 
memory access pattern and supporting circuits for emerging 
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high-concurrency applications. 
There has also been an emerging concept of compute-in-

memory (CIM) to reduce the data transfer cost between 
memory and processing units [1]–[3], actually supporting 
concurrent access to multiple rows. However, existing CIM 
techniques are limited in the computing functionalities and 
parallelism. On the one hand, the parallelism of near-memory 
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Fig. 1.  Comparison between conventional row-by-row data access to a dual-
port SRAM in (a), and proposed shift-based FAST SRAM supporting full-
concurrency parallel read & update in (b). 
 

 
Fig. 2.  Shift-based in-memory computing architecture. 
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computing style [4]–[6] is still limited by the SRAM data port 
with row-by-row serial access. On the other hand, high-
concurrency memory update, e.g., the feature update in graph 
computing applications [7], [8]), or the delta update of a cache 
table (and possibly weight update in neural networks [9]), could 
still be limited by the row-by-row access bottleneck. 
To tackle these high-concurrency read and write problems, 

this paper proposes FAST, namely a fully-concurrent access 
SRAM topology, as shown in Fig. 2. To demonstrate FAST, we 
take the static random-access memory (SRAM) in the CMOS 
technology for evaluations of functionality, latency, and energy 
efficiency. Contributions of this work include: 
(i) A dynamic shift-based SRAM capable of reading and 
writing multiple rows with full row concurrency. The 
SRAM cell, array, and supporting circuitry are presented; 

(ii) A fully-concurrent in situ read-compute-and-update 
architecture supporting a category of parallel computing 
operations achieved by adding a 1-bit ALU to each row;  

(iii) Analysis and evaluations of the proposed techniques 
based on a showcase of a 128-row 16-column FAST chip 
implemented in 65nm CMOS, and evaluation with 8-128 
columns showing significant improvement of speed and 
energy efficiency over the conventional SRAM solutions.  

In the rest of this paper, Section II presents the proposed 
FAST architecture. Section III evaluates the performance and 
costs. Section IV concludes this work. 

II. PROPOSED FAST MEMORY ARCHITECTURE AND CIRCUITS 
This section presents FAST, including the architecture, 

supporting circuits, and in situ computing capabilities. 
Simulation and evaluation results are provided in Section III. 

A. Overall Architecture 
The proposed system architecture is shown in Fig. 2. The 

bitline (BL) precharger and the row decoder are the same as 
those of a conventional SRAM array. The control decoder 
serves as an interface to the external processing units such as 
CPU or FPGA. The SRAM cell in the proposed architecture is 
designed to support in-cell shift function, so that each row could 
be cyclically shifted independently (to the right, for example). 
More circuit details will be introduced subsequently in Section 

II.B. Based on this, we add a 1-bit arithmetic logic unit (ALU) 
in each row, connecting the last cell and the first cell. This 1-bit 
ALU performs 1-bit logic computing, such as 1-bit add. By 
combining the shift operation and the 1-bit logic operation, 
multibit operation could be completed naturally in parallel 
between different rows.  
According to the different functions of 1-bit ALU, this 

scheme could support applications that needs parallel updates 
to the stored data in several rows. One simple scenario is a high-
concurrency access-intensive general cache, such as those of 
database table and weight matrix during training. 
It is noted that there are some emerging SRAM-based CIM 

schemes to reduce the data transfer costs by enabling in-SRAM 
computing [10]–[12]. In contrast, FAST SRAM is different in 
enabling row-wise in situ calculation with direct write-back 
support. We will show how to implement the multibit addition 
with cyclic right shift and 1-bit ALU subsequently. 

B. SRAM In-Memory Parallel Shifter 
As mentioned above, the shiftable SRAM design is a key 

enabler of the parallel search and computing architecture. In 
order to support in-row shift operation with less area and 
latency overhead, we propose a shiftable SRAM cell in Fig. 3, 
including the cell circuit structure in Fig. 3(a), the control flow 
chart in Fig. 3(b), and the step-by-step shift operations.  
Each shiftable SRAM cell includes a conventional SRAM 

cell, a CMOS transmission gate controlled by 𝜑! as the inter-
cell switch, and two NMOS switches controlled by 𝜑" and 𝜑"# 
as intra-cell switches.  
The shift operation between adjacent SRAM cells consists of 

three phases, shown as a shift-right function in Fig. 3. In phase 
1, the intra-cell switches controlled by 𝜑" and 𝜑"#	are turned 
off and the inter-cell switch controlled by 𝜑! is turned on. The 
remnant charge at node X will drive the two inverters to 
generate a path from the left cell to the right. In phase 2 and 
phase 3, the intra-cell switch controlled by 𝜑"  and 𝜑"#  are 
turned on one by one with other switches remaining off, so that 
each SRAM cell forms a closed loop to stabilize its datum. 
The timing of the control signals is shown in Fig. 3 (b). It 

could be conveniently generated by two-phase non-overlapping 
clock and a delayer. The control signals 𝜑!  and 𝜑"  are non-

 
Fig. 3.  FAST SRAM: (a) three SRAM in-row shifters in a row (SRAM access transistors not shown); (b) control diagram; (c) shift operation steps.  
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overlapping to avoid the data loss caused by the simultaneous 
turning-on of the switches. The control signal 𝜑"# is set to 𝜑" 
with a slight delay to provide sufficient time for data restoration 
in phase 2. The delay circuit could be simply realized by two 
serially connected inverters. 
Fig. 7 shows the transient waveforms during the shift 

operations, in which the three phase control signals and the 
internal nodes of the four SRAM cells in a row are included. 

C. One-Bit ALU for In-Row Computing Capabilities 
Based on the above in-memory shifter, by adding a 1-bit 

ALU to the end of each row (between LSB and MSB), the high 
parallel memory computing operation could be realized, as 
showcased in Fig. 4(a) with a full-adder (FA) example. For a q-
bit datum stored in the row, after q right-shift cycles along with 
the 1-bit FA, the external add operand will be added to the row 
and the data in this row are restored. An example of q=8 is 
shown in Fig. 4(b). Since the long interconnecting wires 
between the memory cells and ALU may result in large parasitic 
resistance and capacitance, folding each row back to form an 
evenly distributed loop is effective to limit the maximum 
distance to ~2x of the FAST SRAM design, shown as Fig. 6(b). 
It is also noted that, during the multi-bit add, the FA carry bit 

needs to be stored temporarily. The circuit diagram of passing 
the carry bit to the next stage is shown in Fig. 5(a). In phase 1, 
FA calculates 1-bit addition and outputs the sum and carry-out 
bit. The switch 𝜑! is turned on while 𝜑"# is turned off to store 
the carry bit on the node T1. In phase 3, the carry will be 
transmitted through the switch 𝜑"#, which will be used as the 

input carry of the next stage. An example is shown in Fig. 5. (b) 
to showcase the workflow. In addition, we propose a bit-width 
reconfigure method, shown as Fig. 5(c) using 16 cells as an 
example. When we need to connect two low-width words as a 
wide-width word, the routing unit will connect the shift line of 
these two words. In this case, two ALU will be cascaded. 
Fig. 8 shows the transient waveforms of the shift-based add 

 
Fig. 4.  Multi-bit addition with 1-bit full adder (FA). 
 

 
Fig. 5.  Full adder with carry propagation: (a) circuit; (b) timing diagram, and 
(c) multi-word configuration route unit. 

 
Fig. 6.  FAST SRAM (a) layout, and (b) in-row cross structure. 

 
Fig. 7.  Transient waveforms of shift operation. 

 
Fig. 8.  Transient waveforms of 4-bit add with a 1-bit full adder.  

 
Fig. 9.  The baseline of a fully-digital near-memory computing architecture. 
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operations, in which the phase control signals and the internal 
nodes of the four SRAM cells in a row are provided. 

III. BENCHMARKING AND DISCUSSION 
This section evaluates the proposed FAST SRAM in terms 

of array-level power and latency, along with application 
testbenches. Simulation results of circuit transient waveforms, 
chip layout, etc. are included.  

A. Chip Layout Design and Simulation Setting 
To evaluate the performance of the proposed FAST SRAM, 

a chip has been designed in a 65nm CMOS technology, as 
shown in the die photograph in Fig. 6. Post-layout parasitic 
exaction has been carried out for more accurate SPICE 
simulations.  The supply voltage is set to 1.0 V. 
For comparison purposes, a fully-digital near-memory 

computing architecture is chosen as the baseline design, shown 
as Fig. 9.  The baseline is the general-purpose SRAM assisted 
with custom digital logic circuits designed by the digital flow 
based on a standard cell library. This baseline is built with the 
same function as the FAST SRAM. For general benchmarks, 
the proposed architecture and the baseline architecture are both 
based on the conventional 6T SRAM structure. While 
simulating the performance and costs during the parallel update, 
we collect the energy consumption of each word update, and 

the latency of updating the whole array, i.e., the batch update 
latency.  

B. Simulation Result 
Energy Efficiency. Fig. 10 (a) shows the energy consumption 

comparison. When the number of rows is greater than 2 times 
of the bit width, the proposed FAST SRAM scheme has higher 
energy efficiency. As mentioned above, this advantage comes 
from a shorter critical charging and discharging path of a 
memory access. When the bit width is much less than the 
number of rows (which is commonly adopted in general SRAM 
design to reduce the costs of the the peripherals), the energy 
saving is significant. For example, the energy efficiency could 
be 4.4x higher than the baseline with 8-bit bit width and 512 
rows (here the number of rows is 64x of the bit width).  
Latency. Fig. 10 (b) shows the latency comparison, in which 

the proposed FAST SRAM scheme shows hundreds of times 
speedup. The reason behind this advantage is straightforward: 
the latency of baseline depends on the number of rows in the 
array to carry out the operations row by row, while the proposed 
FAST SRAM support full-concurrency operations on all the 
rows and the latency depends on the bit width. When the 
number of rows is larger compared to the bit width, the latency 
advantage of high parallelism becomes more significant. 
Fig. 11 provides more simulation results to highlight the 

trend of the latency and energy consumption of the proposed 
scheme under different bit width and number of rows.   

C. Performance Benchmarking 
FAST technique provides a new circuit functionality to 

support a category of parallel memory access with light logic 
operations and in-place updates. On the one hand, FAST SRAM 
could be useful for conventional applications such as database 
indexing, in-memory search or sorting, etc. Essentially, as 
conventional SRAM does not support access to multiple rows 
at a time, FAST SRAM provides a new potential to deal with 
other parallel data-update operations. On the other hand, since 
FAST can handle parallel search and update operations, it is 
also useful in emerging graph computing applications. 
As an example, table I compares the latency and energy 

performance of addition and update in FAST SRAM under a 
configuration of 128 rows in the benchmark. Compared with 
the fully-digital computing architecture, our design shows 5.5x 
energy saving and 27.2x speedup. The proposed FAST SRAM 
architecture benefits from the concurrent operations. 

 
Fig. 10.  Energy and latency comparison with different bit width. 

 
Fig. 11.  Latency of batch update and energy efficiency at different bit width, 
which is normalized into the same area. 

TABLE I 
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Cell Structure 10T 6T 20T 
Write Energy 76.2 fJ/bit 72.4 fJ/bit 219.7 fJ/bit 
Read Energy 74.8 fJ/bit 68.4 fJ/bit / 
Access Time 0.94 ns 0.94 ns 0.09 ns 

Calc. Energy * 0.38 pJ/OP / 2.09 pJ/OP 
Calc. Time * 0.025 ns/OP / 0.68 ns/OP 

* OP: 16-bit addition with data write-back to the FAST SRAM in 128-row 
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D. Test Results and Validation 
Since data transfer between SRAM cells is a dynamic logic, 

the noise margin is critical. In phase 2, the switches 𝜑"# and 
𝜑!	will be off. Therefore, the charge stored in the start point of 
the disconnected inverters loop in FAST SRAM will leak 
slowly, as shown in Fig. 12. Monte Carlo simulation validates 
the eye pattern of in-row shift with different cells. There is a 
300mV noise margin in the worst case. A tested macro in 55nm 
is fabricated with the test setup and results in Fig. 13. An FPGA 
generates the input data pattern and verifies read-out data. It 
works well at 0.8GHz – 1.2GHz under a 1.0V – 1.2V supply. 

E. Overheads, More Discussions, and Future Works. 
In the experimental chip design, the proposed FAST SRAM 

architecture adopts ten transistors per cell, including six original 
SRAM cell transistors and four switch transistors. This extra 
transistor count brings about 70% area overhead on the cell 
level in our design. The area overhead of shift control signal 
generation is only about 10% in a 16-column scenario. Fig. 14 
illustrates the area breakdown of a 128-row FAST SRAM die. 
Considering the peripherals, the FAST SRAM takes about 41.7% 
more area compared with the general-purpose SRAM. When 
the array size increases, it is difficult to utilize so many parallel 
computing units simultaneously. Therefore, there is a trade-off 
to share the ALUs among multiple rows to reduce area overhead. 
It is also noted that the proposed SRAM subarray could also 

be used as a general cache, especially for data-intensive 
applications such as multimedia processing and encryption. In 
addition, it can also realize more complex functions by 

replacing the 1-bit full adder into other 1-bit operation units. 
This architecture could serve as a data in-situ update accelerator 
with high energy efficiency for inference acceleration, database 
index search, and other applications with high-concurrency 
row-by-row operations. Introducing reconfigurable ALU could 
be efficient to support multiple computing methods with a small 
area overhead. Future work may also consider a reconfigurable 
design to deal with more versatile calculations such as floating-
point adder or integer multiplier. 

IV. CONCLUSION 
This paper has proposed a novel memory and architecture, 

namely FAST, which is capable of dealing with high-
concurrency row-wise memory operations. A chip designed in 
65nm CMOS technology has been showcased to demonstrate 
its efficiency in parallel memory access and data update 
operations. The overhead of the proposed design is mainly the 
area overhead. Future work that further harnesses the 
parallelism, flexibility, reconfigurability could be meaningful 
in data-intensive applications where high-concurrent memory 
access is the performance bottleneck. 
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Fig. 12. Noise tolerance and stability analysis. 

 
Fig. 13. Test environment and shmoo plot for the region of FAST SRAM. 

 
Fig. 14. Area breakdown on the die. 
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