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Abstract—As one type of associative memory, content-
addressable memory (CAM) has become a critical component in
several applications, including caches, routers, pattern matching,
etc. Compared with the conventional CAM that could only
deliver a “matched or not-matched” result, emerging multi-
level CAM is capable of delivering “the degree of match” with
multi-level distance calculation. This feature has been desired
in the applications that need beyond-Boolean matching results.
However, existing multi-level CAM designs are limited by the
bit-cell device discharging current mismatch and vulnerability
to the timing of sensing operations for distance calculation. This
inherent constraint makes it difficult to further improve the
accuracy and scalability towards higher-accuracy and higher-
dimension matching. In this work, we propose CapCAM, a multi-
level Capacitive Content Addressable Memory. It could be im-
plemented based on either SRAM or emerging technologies, e.g.
the ferroelectric field-effect transistor (FeFET). CapCAM could
provide linear and stable voltage drop scaled by the match degree
and need no strict timing for result sensing, which embraces the
high-accuracy and high-scalability search. The inherent enabler
of CapCAM is the charge-domain computing mechanism. This
paper will present the basic concept, operating mechanisms,
detailed circuit designs and circuit-level simulations of CapCAM.
Besides, we apply CapCAM to few-shot learning applications,
and compare CapCAM with the current-domain TCAM designs.
Results show 99.2% accuracy for a 5-way 5-shot classification
task with our proposed CapCAM design, while considering 1-fF
capacitors, 20-domain FeFETs, and 256 columns. In contrast, the
prior work based on discharging dynamics requires strict timing
controls and suffers from accuracy degradation under the same
configuration, which demonstrates CapCAM’s capability of low-
power, accurate, and scalable multi-level CAM computing.
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Fig. 1. The basic concept of ML-CAM and ML-TCAM.

Index Terms—Content-Addressable Memory, Multiple-Level
CAM, Ferroelectric FET, Low-Power Design, Pattern Matching.

I. INTRODUCTION

VARIOUS data-intensive applications require frequent
parallel data search to figure out whether the data in a

memory array match the input data stream [1]–[10]. These
applications include caches, routers, networking, and other
mapping-aware applications. Recent reports even show that
it is also promising for emerging applications like deep
learning [7], [8], DNA sequence alignment [9], [10], etc. In
these scenarios, content-addressable memory (CAM) has been
a critical component that could support intrinsic in-situ data
search in parallel for all stored memory vector candidates in
the rows of a memory array without the need of pouring out
data to the external for matching computing. The result of
searching is either “match” or “mismatch” for each vector
comparison, and would be encoded by following peripherals.
In addition to CAM, ternary CAM (TCAM) is often utilized
to support the extra “don’t care” or ‘X’ search rule claimed
by the ‘X’ bits, which could be applied to bypass some certain
bits. For each bit location, if either the input bit or the store bit
is an ‘X’ bit, the matching result of this bit location is always
“match”, so the vector matching result is determined by other
bit locations.
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Fig. 2. FeFET device and typical ID-VG curve [28]–[32], [37]–[39].

There have been CAM and TCAM designs based on both
CMOS SRAM and nonvolatile memory (NVM) devices (e.g.
MTJ, RRAM, FeFET) or other emerging devices [11]–[27].
These designs show the difference in density, power, latency,
scalability, reliability, etc. Moreover, it is noted that conven-
tional CAM and TCAM designs output boolean matching
results between the input data stream and the stored data
patterns. In other words, the search result in each row is either
“fully matched” or “not fully matched”. Recently, the report
in [7] has shown a new CAM or TCAM category, defined
as multi-level CAM (ML-CAM) or ML-TCAM, as illustrated
in Fig. 1. ML-CAM search output could deliver the “match
degree” feature for each row vector according to the hamming
distance, and offer practical and efficient support to feature
classifications, and further, few-shot learning applications [7].

However, the existing ML-CAMs or ML-TCAMs still face
many challenges to calculate “match degree”. The design in [7]
track the settling slope of the matching results. However,
this is not scalable, reliable, or accurate due to the high
peripheral sensing overhead and intrinsic FeFET device vari-
ations. In this paper, we propose a new kind of ML-CAM
and ML-TCAM designs based on capacitors, and define them
as CapCAM: a multi-level Capacitive Content Addressable
Memory. CapCAM could provide linear and stable voltage
output scaled by the match degree, so the peripheral sensing
overhead is reduced significantly. Besides, CapCAM handles
the memory device variations by using capacitors with much
less variations, especially cycle-to-cycle variations, thanks to
the much more mature capacitor technology. This enhances
the scalability and reliability of ML-CAMs and ML-TCAMs.

Itemized contributions of this work include:
• We propose a new operating theory of capacitive ML-

CAM and ML-TCAM, i.e. the proposed CapCAM, for
enhanced power efficiency, scalability, and reliability;

• We propose four different CapCAM designs, FeFET-
based ML-CAM/ML-TCAM, and SRAM-based ML-
CAM/ML-TCAMs;

• At the circuit level, we evaluate the proposed four ML-
CAM and ML-TCAM designs in terms of functionality,
energy consumption, latency, area, and also reliability;

• At the application level, we evaluate the CapCAM in
few-shot learning applications with different mapping
methods and compare with existing ML-TCAM designs.

In the rest of this paper, Section II reviews FeFET device
basics, the existing CAM/TCAM designs and ML-CAM/ML-
TCAM background. Section III shows the details of the pro-
posed CapCAM based on CMOS SRAM and FeFET devices.
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Fig. 3. FeFET write operations. (a) FeFET biasing scheme; (b) Write for
positive polarization; (c) Write for negative polarization.
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Section IV evaluates the proposed designs at the circuit level.
Section V evaluates the proposed designs at the application
level. Section VI concludes this work.

II. BACKGROUND

A. The FeFET Device Basics

FeFET is essentially a MOSFET (either a planar FET or a
FinFET) with a ferroelectric (FE) material layer sandwiched
in the gate stack, as illustrated in Fig. 2(a) [28]–[39]. While
the FeFET devices have been proposed for many years [28],
the recent fast progress has been achieved with the success
of the material and structure improvement,which makes the
FeFET devices embrace smaller dimensions, lower operating
voltage, higher endurance, etc. Recent works have shown that
the FeFET could be successfully fabricated on 20-nm-thick
SOI technology [37], and exhibit a high ON/OFF ratio beyond
106, implying the capability of large memory arrays [32].
Another report has even shown an FeFET with 10 ns pro-
gramming time at 1.8 V operating voltage and endurance of
1012 cycles [38]. Besides, the FeFET physical mechanism has
been widely explored by many modeling works, which makes
FeFETs more interpretable and further provides practical EDA
tools [40]–[42]. In the future, more FeFET research is expected
to be carried out for a smaller size, a lower operating voltage,
higher endurance, less variations, better understanding of the
physical mechanism, and more accurate modeling.

The key to understanding the difference between a MOS-
FET and an FeFET is the FE layer polarization behavior.
FeFETs utilize the polarization direction in the FE layer to
store the memory state. When applying a positive gate voltage
pulse to the FE layer, an n-type FeFET accumulates electrons
in the nucleation-dominated channel and the domains in the
FE layer switch to the positive state probabilistically, which
reduces the device threshold voltage (Vth). Similarly, when
applying a negative voltage, the FeFET Vth increases [40],
[41]. Fig. 2(b) shows the FeFET ID-VG curve. In detail,
writing an FeFET is essentially a process of modulating the
amplitude and the pulse width of the gate voltage across the
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FE layer. Higher gate voltage amplitude and larger pulse width
both lead to more switched domains [41]. Therefore, to ensure
a certain amount of switched domains, the required pulse
width decreases with higher applied gate voltage amplitude,
as illustrated in Fig. 3. Note that the FeFET could store multi-
level states through fine polarization tuning.

Reading an FeFET is to detect the FeFET Vth using the
drain-source current IDS . It could be done in both current
mode and voltage mode. The current mode is carried out
through a current-voltage conversion followed by sense ampli-
fiers (SA), as shown in Fig. 4(a). The voltage mode is carried
out by pre-charging the sense line and tracking the voltage
change. If the FeFET is in the high Vth state, the voltage
change is negligible. Otherwise, the voltage change could be
sufficient for SA to detect, as shown in Fig. 4(b).

B. CAM and TCAM: Operations and Existing Designs

The functionality of CAM and TCAM is shown in Fig. 5. A
CAM or TCAM is usually organized as a 2D array. The stored
vector data are placed row-wise (one row for one vector), and
the input data stream is sent into the array through vertical
searchlines SL and SL. For both CAM and TCAM, during
the search operation, the matchline ML is firstly pre-charged
and then left floating. After that, each cell compares the bitline
input with the stored data in a differential XNOR style. The
ML will be discharged if any mismatch occurs. Therefore,
the settling-down behavior of ML in each row indicates the
search comparison result.

There have been many existing CAM and TCAM designs
using CMOS technology and NVM devices. The widely used
CAM and TCAM designs are 10T CMOS CAM and 16T
CMOS TCAM, as illustrated in Fig. 6(a) and Fig. 6(b) respec-
tively [11]. The SRAM-based designs are mature, stable, and
fast, but occupy more area (due to more transistors) and more
leakage power (due to the SRAM leakage currents). Many new
SRAM-based designs have been proposed to improve area-
and energy-efficiency. For example, [12] proposes a dense
and energy-efficient reconfigurable SRAM/CAM/TCAM with
push-rule SRAM cells at the cost of stability. Other de-
signs that enhance SRAM-based CAM/TCAM flexibility, such
as two-direction search and computing-in-memory reconfig-
urablity, have also been explored [13], [14]. Moreover, high-
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performance FinFET technologies also provide SRAM-based
CAM/TCAMs with a rich design space to explore [15], [16].

C. The ML-CAM and ML-TCAM Background

Recently, non-volatile TCAMs are receiving more atten-
tion. Some NVM-based CAM/TCAM designs include the 4-
transistor-2-MTJ (4T-2MTJ) TCAM in Fig. 6(c) [18], the 2-
transistor-2-RRAM (2T2R) TCAM in Fig. 6(d) [21], and the
4-transistor-2-FeFET (4T2F) TCAM in Fig. 6(e) [23], the
2FeFET TCAM in Fig. 6(f) [24]. Compared with the CMOS-
based designs, the NVM-based designs are not only much
more compact but also eliminate the standby leakage power
consumption. Among them, the CAM/TCAM designs based
on MTJ and RRAM have higher write energy and longer
write latency in write operations due to the current-driven
write mechanism. Besides, the low ON-OFF ratio of MTJ
and RRAM also leads to high sensing complexity and costs.
Last but not the least, MTJ and RRAM suffer from the device
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variations of ON-state and OFF-state currents, which limits the
scalability and reliability significantly. By contrast, FeFETs
exhibit a high ON/OFF ratio (e.g. 106 [32]), and consume
no DC power during write and search operations. The FeFET-
based design in Fig. 6(f) further shows FeFET as both memory
and comparison device to achieve very high density.

ML-CAM and ML-TCAM could not only distinguish
whether the input vector and the stored data match exactly,
but also output the number of the matched cells, or rather the
match degree. An existing design in [7], as illustrated in Fig. 7,
achieves the functionality in the current mode by sensing
the discharging dynamics: ML is pre-charged firstly, and the
output sense amplifier on the ML senses the decreasing slope
of ML voltage after the input pattern is applied to SL/SL.
With more mismatched bits, ML is discharged more quickly.
This time-domain method needs careful and strict timing and
is highly vulnerable to the device variations, especially when
many comparisons mismatch, which results in weak scalability
towards a large array. This challenge is overcome in this work
by adopting the proposed capacitive search method, as to be
further discussed.

D. ML-CAM and ML-TCAM Applications

Recent research has demonstrated the potential of utilizing
high-performance CAM/TCAMs in meta-learning (learning
to learn) applications. Meta-learning aims at learning new
concepts with only a few samples, e.g., few-shot classification
as a supervised version of meta-learning. CAM/TCAMs are
capable of efficiently searching for an input query vector
and updating their entries with new samples learned, where
ML-CAM and ML-TCAMs could further implement custom
distance metrics. Thus, these designs are useful in both metric-
based and model-based meta-learning methods [7], [43]–[45].
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Fig. 9. (a) and (b): Schematic and layout of the proposed SRAM-based ML-
TCAM; (c) Schematic and layout of the proposed FeFET-based ML-TCAM.

Metric learning algorithms that learn a distance metric
over objects have been proved successful in few-shot learning
applications [46], [47]. Such algorithms typically involve a
nearest neighbor search (NNS) step to carry out the final
decision, which can be solved by CAM/TCAMs with high per-
formance and energy-efficiency. Conventional TCAMs could
solve NNS by range encoding schemes, where a tradeoff exists
between hot update flexibility and code compactness [48]–
[51]. Some of these encoding schemes require exponential row
expansion, and are impractical for real applications [48]–[50],
while others are limited on short ranges despite the ability to
solve multiple NNS using one TCAM search operation without
row expansion [51]. A one-shot learning accelerator with
aggressive quantization and range encoding has demonstrated
high accuracy and energy-efficiency of this method [43], [44].

ML-CAM and ML-TCAM designs are more useful in
another method for solving NNS, which is to perform an
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approximate nearest neighbor search (ANNS) with a distance
metric easier for query, e.g., Hamming distance. Locality
sensitive hashing (LSH) is commonly used in ANNS to reduce
the dimension and hash the problem into a metric space easier
for computation [52], and the original NNS problem could
then be easily solved with high probability. By extending
the LSH function into a ternary locality sensitive hashing
(TLSH) function, TCAMs are leveraged to perform NNS with
higher performance [53]. Existing ML-TCAM design in [7]
outputs match degree (equivalent to Hamming distance) and
utilizes LSH to transfer real-valued feature vector into binary
signatures. The work in [45] implements a customized distance
metric that achieves high accuracy and has been experimen-
tally demonstrated with a 2-bit FeFET multi-bit CAM array.
Moreover, these designs could be used in memory-augmented
neural networks (MANN) [54] with their ability to update the
entries, which is useful in meta-learning when new samples
are seen and learned. The proposed CapCAM designs could
improve the scalability of these existing designs, mitigating
the impacts of device variation and timing effects.

III. PROPOSED CAPCAM
A. CapCAM Operation Theory

The proposed CapCAM supports two basic capacitive multi-
level content searching schemes: capacitive coupling for ML-
CAM and charge re-distribution for ML-TCAM. The ML-
CAM and ML-TCAM schematics and layouts are demon-
strated in Fig. 8 and Fig. 9 respectively, and will be further
elaborated in Section III-B and III-C. The two operating
theories are illustrated in Fig. 10.

Fig. 10(a) shows the capacitive coupling operation theory
[55]. The capacitors in all cells within a row short their top
plates through ML. Firstly, ML is discharged to GND, and
each capacitor bottom plate is also initially grounded. After
that, ML is left floating, and each capacitor bottom plate
receives a voltage input determined by the XNOR matching
result of each cell. A “match” result charges the bottom plate
to VDD, while a “mismatch” result keeps the bottom plate
at GND. Due to the capacitive coupling, the shorted top plate
will converge to the average voltage of the inputs weighted by
the capacitor size.

The charge re-distribution operation theory is illustrated
in Fig. 10(b). The capacitor in each cell is charged to

VDD through pre-charging ML. Then, the capacitor may be
discharged to GND or stay unchanged subsequently by the
pull-down path determined by the matching result of each
cell. A “match” result keeps the capacitor at VDD, while a
“mismatch” result discharges the capacitor to GND. At last,
these capacitors (some may have been discharged) are shorted,
resulting in the charge re-distribution towards a weighted
voltage at the top plate.

B. Proposed ML-CAM in SRAM and FeFET

The ML-CAM could be achieved by both SRAM and
FeFET. The SRAM-based ML-CAM is shown in Fig. 8(a).
Two cross-coupled inverters in the SRAM cell generate ‘0’
and ‘1’ at two ends. If the input matches the stored SRAM
data, the transmission gate (T1 or T2) on the same side of ‘1’
will be turned on, and charge the node X to VDD. Otherwise,
the transmission gate on the same side of ‘0’ will be turned
on and keep X at GND. Therefore, an XNOR operation is
implemented by charging the capacitor bottom plate through
two transmission gates controlled by the stored bit and the
external search pattern bits.

The FeFET-based ML-CAM is shown in Fig. 8(b), and the
two n-type FeFETs (M1 and M2) store complementary states
(one positive Vth and one negative Vth). For the FeFET with
negative Vth (representing the stored datum ‘1’), the device is
turned-on, so the corresponding input voltage on SL or SL on
the same side could arrive at X , and charge X to VDD with
input ‘1’ or keep X at GND with input ‘0’; for the FeFET
with positive Vth (representing ‘0’), the device is turned-off,
so the input on the same side would not affect the voltage at
X . Therefore, the XNOR operation is implemented between
the FeFET source inputs and the FeFET stored ON/OFF states.

For both SRAM-based and FeFET-based ML-CAM, the
step-by-step operation is shown as below:

• Step 1: ML, SL and SL are all grounded, which leads
to the capacitor bottom plate voltage reset to GND;

• Step 2: With ML floating, the inputs driven by SL and
SL set the capacitor bottom plate voltage to either VDD
or GND, depending on the matching XNOR results;

• Step 3: sense the ML voltage and compare it with pre-
defined reference voltages to digitize the match degree.
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Fig. 11. A transient waveform snapshot of the proposed SRAM-based ML-
CAM: (a) Single-cell simulation; (b) 3-column simulation with 4 “match
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Taking the SRAM-based ML-CAM as an example, Fig. 11
shows a transient waveform snapshot, where the “match de-
gree” of 0, 1/3, 2/3, and 1 in a 3-column array is shown.

C. Proposed ML-TCAM in SRAM and FeFET

The proposed ML-CAM does not support storing the ‘X’
state. In the ML-CAM structures, one of the two voltage inputs
from SL or SL is sent to X , either through one transmission
gate turned on in the SRAM-based structure, or one FeFET
in the FeFET-based structure. To avoid a short circuit between
SL and SL, there must be at least one path open between X
and the input (SL or SL), so storing an ‘X’ state could not
be supported in the capacitive coupling scheme for ML-CAM.
Thus, we propose ML-TCAM to support both stored ‘X’ state
and input ‘X’ state that bypass certain bits at the corresponding
bit location.

The proposed SRAM-based ML-TCAM is shown in
Fig. 9(a). Two SRAM cells storing the data Q1 and Q2

are connected together through BL and BL, and control
two NMOS pass transistors (M1 and M3), respectively. The
input SL and SL are connected to two search transistors
M2 and M4, respectively. M1/M2 and M3/M4 provide two
possible pull-down paths between X and ground. When a
match occurs, both pull-down paths are OFF because there
are at least one OFF-state transistors on each path. Otherwise,
if a mismatch occurs, there is one ON pull-down path with two
ON-state transistors, as illustrated in Fig. 9(a). To pre-charge
the capacitor, one CMOS transmission gate (S) is adopted.

The step-by-step operation of the SRAM-based ML-TCAM
is shown as follows:
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• Step 1: S is turned on to pre-charge the capacitor through
ML, while SL and SL are set to GND;

• Step 2: S is turned off to floating ML, and then SL and
SL are driven by the corresponding input (VDD/GND
for ‘1’, GND/VDD for ‘0’ and GND/GND for ‘X’). The
capacitor may be discharged if Q1/SL or Q2/SL are both
high; Otherwise, the capacitor is not discharged.

• Step 3: SL and SL are both grounded and then S
is turned on for charge re-distribution; the settled ML
voltage indicates the match degree.

The proposed FeFET-based ML-TCAM is shown in
Fig. 9(b). Compared with the FeFET-based ML-CAM, one
CMOS transmission gate (S) for pre-charging is added be-
tween ML and the capacitor, and two FeFET sources are
grounded directly. It is noted that, besides the complementary
bits, the two FeFETs could be configured to exhibit both high
Vth or one high positive Vth plus one low positive Vth to
represent the ‘X’ state. The FeFET with low positive Vth is
OFF at zero gate biasing and could be turned on at a proper
VR > 0, while the FeFET with high positive Vth is OFF at
both zero gate biasing and the preset VR (> 0).

The step-by-step operation of the FeFET-based ML-TCAM
is slightly different from that of the SRAM-based ML-TCAM:

• Step 1: S is turned on, and BL and BL are set to GND to
prevent an ON pull-down path between ML and ground;

• Step 2: S is turned off, and BL and BL are driven by the
corresponding input (VR/GND for ‘1’, GND/VR for ‘0’
and GND/GND for ‘X’). The capacitor may be discharged
if the FeFET with low positive Vth is turned on by the
VR input. Otherwise, the capacitor is not discharged. The
operation scheme is summarized in Fig. 9(b);
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Fig. 13. Energy and latency simulation results of SRAM-based and FeFET-
based ML-CAM/ML-TCAM cells.

• Step 3: Same as Step 3 in the SRAM-based ML-TCAM
operation scheme.

Taking the FeFET-based ML-TCAM as an example, Fig. 12
shows a transient waveform snapshot, where the match degree
of 0, 1/3, 2/3, and 1 in a 3-column array is shown.

Though the charge redistribution operation scheme for ML-
TCAM supports storing ‘X’ states that ML-CAM does not,
it has brought latency and energy overheads. As charging
and discharging the capacitors make up most of the search
latency and energy, and ML-TCAMs require full charging of
the cell capacitors instead of partial charging in ML-CAMs
(VDD-VML or VML), ML-CAMs have less latency and energy
compared with ML-TCAMs. Moreover, SRAM-based ML-
CAM could also achieve higher density since it involves only
one SRAM cell rather than two SRAM cells in SRAM-based
ML-TCAM. Therefore, one can choose to implement ML-
CAM or ML-TCAM based on the application requirements.

D. Sensing Method of CapCAM

In the existing ML-TCAM design in [7], a self-referenced
sense amplifier (SRSA) [56] is exploited under a custom tim-
ing control to sense the dynamic discharging rate of ML. As
discussed above, this is not scalable due to device variations.
Thanks to the new CapCAM designs that do not rely on
the ML discharge dynamics but a settled static voltage, the
sensing schemes could be significantly simplified.

While using a shared ADC is practical, typical multi-
level CAM/TCAM applications do not need to output match
degrees of all the rows, but to select the best matched row,
similar to conventional CAM/TCAM. We exploit a sensing
method that compares the ML voltage with a single-slope
decreasing reference VREF . The row with the highest match
degree is found first when the first ‘1’ appears. Moreover,
in some applications, VREF could be further optimized to
reduce sensing latency. For example, VREF could start with
an initial voltage that maximizes the probability of finding
the largest match degree at first guess, and then increases or
decreases depending on the number of rows larger than VREF .
A binary search method could also be used to improve the
search efficiency. In case multiple best-matched rows with
same match degree emerge, an arbiter or priority encoder
might be needed based on specific application requirements.
We would discuss this sensing method further with application
examples in Section V, showing that over 80% samples could

Capacitor: 1 fF
Column #: 32

Capacitor: 5 fF
Column #: 32

Capacitor: 5 fF
Column #: 256

Capacitor: 1 fF
Column #: 256

(a)

(c) (d)

(e) (f)

(b)

Theory
Simulation

Fig. 14. Noise margin and variation Monte Carlo simulation results of Cap-
CAM (100,000 samples) under different column widths and cell capacitances:
(a) Standard deviation of ML voltage normalized over VDD; (b) Noise
margin of CapCAM; (c)-(f): Simulated distribution of CapCAM ML voltage.

be sensed at first guess of VREF if application knowledge is
considered, which reduces much sensing latency and power.

Voltage-mode winner-take-all (WTA) circuits [57]–[63]
could also be used for sensing CapCAM. With MLs connected
to WTA input ports, typical WTA circuits involve inner nodes
each row to indicate by voltage whether the row has the largest
VML, i.e. “winner”. The non-winners have the inner node
voltage at VDD or GND, while the winner has its voltage
(might or might not depend on the match degree) different
from all other rows. These inner nodes could be then connected
to a conventional CAM/TCAM sense amplifier to select the
best matched row. With high-speed, low-power WTA circuits,
the overhead of this sensing method is relatively small. For ex-
ample, with m rows, [59] in 0.18 µm CMOS technology could
achieve latency lower than 10 ns and power ∼ 10 µW/row
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by using ∼ m2 transistors. Meanwhile, [60], [61] in 0.35
or 0.5 µm CMOS technology involves 3m + 3 transistors,
and could operate with MHz frequency and ∼ 20 µW/row
power. Moreover, there are also WTA circuit designs that
support multiple most matched outputs [62]. However, this
analog sensing method requires good transistor matching in
WTA circuits, and circuit evaluation in advanced technologies
nodes are desired in the future. WTA circuits also suffer from
accuracy and latency degradation when the confidence of the
application result is low, and multiple most matched rows have
similar but relatively low match degrees.

The sensing complexity increases with array size in that
a large number of rows would introduce significant sensing
latency overhead and device matching requirements. Existing
WTA design with 4k rows and 1 µs search latency has been
proposed [63], exceeding typical row number requirements of
few-shot learning applications (less than 100). The number
of columns mainly impact search power and the desired
resolution of sense amplifiers. Search power is proportional to
the number of columns for our charge-domain CAM/TCAM
designs, while all the mentioned WTA designs could distin-
guish ∼ mV voltage differences, which is sufficient for a
reasonable column width of less than 1000.

IV. CIRCUIT EVALUATION

A. Benchmark Settings

The MOSFETs and capacitors in all the designs are modeled
in a commercial 65 nm CMOS process. MIM capacitors are
used for cell capacitors. The FeFET-based ML-CAM and
ML-TCAM designs are simulated with the FeFET model
from [41] that captures FeFET variation, with W/L = 1, 200
ferroelectric domains (∼ 100nm × 100nm), 8nm ferroelectric
layer thickness and 19 ns τ0. The FeFET model has been
calibrated with ferroelectric device samples from the foundry.
The simulation is carried out for an array with 128 rows, and
the bitline parasitic capacitance is modeled as 12.8 fF. All the
four CapCAM cell structures adopt the same 2.0 fF capacitor
unless mentioned otherwise.

B. Energy and Latency Evaluation

Fig. 13 shows the latency and energy comparison between
different CapCAMs. We simulated the array at half-matched
case with a different supply voltage VDD. In the energy
benchmark, the multi-level CapCAMs are able to achieve
parallel search with low energy consumption (<10 fJ). It can
be observed that the energy is generally proportional to VDD2.
This is because CapCAMs operate at the charge-domain mode,
and that the search operation only consumes dynamic power
during charging and discharging the capacitors. ML-CAM
needs no pre-charge operation and operates with lower energy
than ML-TCAM.

In the latency benchmark, comparison between different
designs is also illustrated in Fig. 13. The CapCAMs can
achieve fast search operation (less than 1 ns). The ML-CAM
CapCAMs with no pre-charge operation operate at a higher
search speed than ML-TCAM. In addition, since the FeFET
model operates at a low-voltage mode, the FeFET-based

CapCAM can potentially achieve faster search operation, also
can be further improved with an enhanced fabrication process.
Comparison with existing TCAM designs is shown in Table I.

C. Multi-level Output Analysis

In the proposed CapCAM designs, the accuracy of match
degree is dominated by the capacitor matching instead of
FeFET or SRAM device variations. The match degree of a row
is weighted by the capacitors if FeFET or SRAM variations
are neglected, and ML voltage could be written as

VML =

∑n
i=1 CiVXi∑n

i=1 Ci
=

VDD
∑

VXi=VDD Ci∑
VXi=VDD Ci +

∑
VXi=GND Ci

(1)
where n is the total number of columns, Ci is the capacitance
of the i-th cell, and VXi is the voltage of the ‘X’ node
in Fig. 8 and Fig. 9, theoretically VDD when matched and
GND when mismatched. We denote C1 =

∑
VXi=VDD Ci and

C2 =
∑

VXi=GND Ci. If we assume that each Ci follows
an independent and identically distributed normal distribu-
tion N (µ, σ2), while the variation of the total capacitance∑n

i=1 Ci = C1 + C2 is relatively small compared with itself,
the variance of VML could be estimated as

Var(VML) = Var
(

VDD · C1

C1 + C2

)
≈ Var

(
VDD · C1

C1 + C2

∣∣∣∣C1 + C2 = nµ

)
=

k(1− k)σ2

nµ2
VDD2

(2)

where k is the match degree (the number of cells such that
VXi = VDD normalized by the total number of cells in a
row). Hence, the variance follows a parabolic trend, where
the largest variation Var(VML) ≈ σ2

4nµ2 VDD2 exists when half
of the columns are matched, and the variance is zero when
fully matched or mismatched. The largest supported number
of columns could be then estimated by the desired accuracy
and capacitance variance. For example, if unit capacitors of 2
fF with 1.4% σ are used, and ±3σ of the output is required to
be inside the ML least significant bit (LSB) voltage (0.3% bit
error rate), we could solve from

√
σ2

4nµ2 VDD2 ≤ 1
6

VDD
n and

get n ≤ 566.
We evaluate the multi-level output accuracy in FeFET-

based ML-TCAM with different cell capacitor sizes and
column numbers as an example of four CapCAM designs.
Both capacitance mismatch and FeFET device variations are
taken into consideration and are evaluated by Monte Carlo
simulations for 100,000 runs. In addition to Monte Carlo
simulations with MIM capacitors from 1 to 5 fF, capacitors
with standard deviation of 5% and 10% are also used for
simulations to demonstrate noise margin and variation of
CapCAMs under large capacitance mismatch. The FeFET
is modeled with the 200-domain model mentioned above,
and shows a Vth sigma value of 61.5 mV. With better
matching accuracy of capacitors over FeFETs, and the high
on/off ratio of FeFETs, the proposed designs could achieve
an excellent noise margin. Fig. 14(a) shows the simulated
standard deviation of ML voltage, which matches well with
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TABLE I
COMPARISON OF DIFFERENT TCAM DESIGNS

Latency Energy ML Scalability Density

FeFET-ML [7]1 355 ps 0.40 fJ/b Yes Limited Good
FeFET-based ML-TCAM2 269 ps 3.89 fJ/b Yes Good Good

SRAM-TCAM [64] 582 ps 1.0 fJ/b No Good Limited
SRAM-based ML-TCAM2 251 ps 4.01 fJ/b Yes Good Limited

MTJ-TCAM [65] 1000 ps 40.5 fJ/b No Good Good
RRAM-TCAM [66] 155 ps 0.71 fJ/b No Good Good

1 No sensing overhead or device variation included.
2 Assuming no device variations and ideal timing control in this work, no sensing

overhead included.

M
L 

Vo
lta

ge
 (V

)
M

L 
Vo

lta
ge

 (V
)

Median
10%~90%
25%~75%

Median
10%~90%
25%~75%

Dynamic ML-TCAM
FeFET: 200 domains

Column #: 8
Max σ = 0.427 LSB

CapCAM
Capacitor: 1 fF

Column #: 8
Max σ = 0.036 LSB

Dynamic ML-TCAM
FeFET: 2000 domains

Column #: 8
Max σ = 0.119 LSB

Dynamic ML-TCAM
FeFET: 200 domains

Column #: 32
Max σ = 0.982 LSB

Dynamic ML-TCAM
FeFET: 2000 domains

Column #: 32
Max σ = 0.251 LSB

CapCAM
Capacitor: 5 fF

Column #: 8
Max σ = 0.009 LSB

CapCAM
Capacitor: 1 fF

Column #: 32
Max σ = 0.078 LSB

CapCAM
Capacitor: 5 fF

Column #: 32
Max σ = 0.018 LSB

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 15. Multi-level output linearity and noise margin Monte Carlo simulation of: (a)-(d) proposed FeFET-based ML-TCAM with different cell capacitance and
column number; (e)-(h) existing dynamic ML-TCAM with different FeFET variation and column number, where 2000-domain FeFETs (∼ 300nm × 300nm)
have Vth sigma value of 16.7 mV, and 200-domain FeFETs (∼ 100nm × 100nm) have Vth sigma value of 61.5 mV.

the theoretical analysis. Fig. 14(b) shows the noise margin of
CapCAMs with different cell capacitance and column number.
For all configurations in Fig. 14(b), all multi-level states
could be reliably distinguished. Fig. 14(c)-(f) shows simulated
distribution examples, each containing 5 consecutive match
degree near half-matched, where the variation is the largest. In
Fig. 14(e), the overlapping distributions show that, if the exact
hamming distance result is desired, the proposed design with
256 columns, cell capacitance of 1 fF, and an ideal ADC would
suffer from a 1.9% bit error rate when match degree is near
half-matched. However, in few-shot learning applications, we
only need to select a most matched row rather than computing
every Hamming distance. We will show in Section V that the
overlap would have almost no accuracy degradation compared
with software implementation.

Moreover, the proposed designs could achieve better linear-
ity and do not require strict timing controls since the settled
ML voltage is static, rather than the dynamic changing case
in [7]. In Fig. 15, comparison with the existing ML-TCAM
design in [7] is shown under different FeFET device variations.
The ML-TCAM design is evaluated with two different FeFET
sizes: 2000-domain FeFETs (∼ 300nm × 300nm) with sim-

ulated Vth sigma value of 16.7 mV, and 200-domain FeFET
(∼ 100nm × 100nm) with simulated Vth sigma value of 61.5
mV. As shown by the results, CapCAM has better scalability
towards a larger number of columns and smaller devices.
We could reliably distinguish the match degree states, while
the existing dynamic ML-TCAM of a large-size array using
deeply-scaled transistors faces challenge of distinguishing
neighbor states. For example, a 256-column dynamic ML-
TCAM array with 200-domain FeFETs has a maximum output
voltage σ of 0.982× its LSB voltage (58% bit error rate), while
the proposed FeFET-based CapCAM with same configuration
and 1-fF unit capacitors has a σ only 0.078× its LSB voltage
(1.5× 10−10 bit error rate).

D. Area Overhead

Fig. 8(c), (d) and Fig. 9(b), (c) show the layouts for the
proposed ML-CAM and ML-TCAM designs without the extra
capacitor. We have evaluated the area in a 65 nm CMOS
technology, where a 1-fF MIM capacitor is about 0.71 µm2,
and an SRAM cell is about 0.52 µm2.

For SRAM-based ML-CAM and ML-TCAM designs, the
adopted 1 fF MIM capacitors could be stacked on top of the
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TABLE II
ACCURACY OF FEW-SHOT LEARNING TASKS

5-way Acc. 20-way Acc.
Model TCAM Circuit 1-shot 5-shot 1-shot 5-shot

Baseline Prototypical Network [46] N/A 98.4% 99.5% 94.6% 98.5%

256-bit LSH with BN CapCAM / Dynamic ML-TCAM [7]1 96.8% 98.8% 90.6% 96.4%
256-bit LSH w/o BN CapCAM / Dynamic ML-TCAM [7]1 93.0% 97.4% 82.4% 92.3%
256-bit LSH with BN Dynamic ML-TCAM [7] with timing constraint2 43.7% 54.5% 52.6% 66.4%
256-bit LSH with BN Dynamic ML-TCAM [7] with timing constraint3 20.6% 20.8% 7.2% 8.1%
256-bit LSH with BN Deeply-scaled dynamic ML-TCAM [7]4 94.1% 97.5% 86.8% 93.8%
256-bit LSH with BN Deeply-scaled CapCAM4 96.8% 98.8% 90.6% 96.4%

4-bit quantized range encoding CapCAM / Dynamic ML-TCAM [7]1 97.1% 99.2% 91.3% 97.1%
4-bit quantized range encoding Dynamic ML-TCAM [7] with timing constraint2 97.0% 99.1% 91.3% 97.1%
4-bit quantized range encoding Dynamic ML-TCAM [7] with timing constraint3 39.3% 40.9% 49.8% 47.4%
4-bit quantized range encoding Deeply-scaled dynamic ML-TCAM [7]4 90.4% 96.0% 81.1% 90.6%

4-bit quantized range encoding Deeply-scaled CapCAM4 97.1% 99.2% 91.3% 97.1%
1 Assuming ideal timing control, FeFET-based ML-TCAM with 1-fF capacitors and 200-domain FeFETs, or dynamic ML-TCAM

in [7] with 200-domain FeFETs shows no noticeable difference from software implementation. The ML-TCAM and dynamic
ML-TCAM are evaluated separately with the same network structure.

2 200-domain FeFETs (∼ 100nm× 100nm) with Vth sigma value of 61.5 mV are used for simulation, assuming only the 64 most
matched states could be sensed with variation.

3 200-domain FeFETs are used for simulation, assuming only the 32 most matched states could be sensed with variation.
4 20-domain FeFETs (∼ 30nm × 30nm) with Vth sigma value of 234 mV are used for simulation, assuming ideal timing control.

transistors within the cell footprint. The layout in Fig. 8(c)
shows an ML-CAM area of 0.91 µm2 (1.75× of an SRAM
cell), almost the same as a conventional 10T SRAM CAM
cell. ML-TCAM in Fig. 9(b) has an area of 1.90 µm2 (3.65×
an SRAM cell), which is about 25% larger than a conventional
16T SRAM TCAM cell due to the use of two extra transistors.

For FeFET-based ML-CAM and ML-TCAM designs, the
impact of the extra capacitors could be more significant. The
layouts in Fig. 8(d) and Fig. 9(c) show that, when neglecting
the capacitor, an ML-CAM cell has an area similar to a
2FeFET TCAM (about 0.31 µm2, projected from the 45-nm
FeFET TCAM in [24]), while an ML-TCAM cell has 2× area
of a 2FeFET TCAM. The overall area is thus determined by
the MIM capacitor area (0.71 µm2).

Therefore, when it comes to FeFET-based ML-CAM/ML-
TCAM designs, or if a larger cell capacitance is adopted in
SRAM-based designs for better matching accuracy, the extra
capacitor dominates the overall cell area. This overhead could
be significantly reduced by adopting high-κ capacitors [67]–
[69] in more advanced technologies, which is commonly pro-
vided along with FeFET fabrication processes. More advanced
capacitor technologies, such as pillar or 3D capacitors [70]–
[72], could also further mitigate the area overhead.

V. APPLICATION BENCHMARK AND DISCUSSIONS

A. Benchmark Settings

We evaluate the FeFET-based ML-TCAM as an example
of our proposed CapCAMs in few-shot learning applications
on a commonly used dataset, the Omniglot dataset [73]. We
use a prototypical network [46], an efficient model commonly
used for few-shot learning applications, as a base model.
Two CAM/TCAM-based methods are used to solve the NNS
problem in the last layer: LSH or range encoding.

For the LSH method, we substitute an LSH function layer
for the fully connection layer, same as [7] in the prototypi-

cal network. The width of LSH results is a hyperparameter
that should balance accuracy and hardware performance. In
addition, we also noticed that adding a batch normalization
(BN) layer before the LSH layer could significantly improve
the accuracy till near the prototypical network baseline, since
normalizing the original Euclidean space could contribute to
higher LSH probability of maintaining the distance metric,
which is further discussed below. The complete model contains
four convolutional blocks, each comprising a 64-filter 3 × 3
convolution, a batch normalization layer, a ReLU layer and
a 2 × 2 max-pooling layer. A 64-dimensional feature space
is then batch-normalized and sent into the LSH layer to
generate binary signatures, and the signatures are compared
in an N × M ML-CAM/ML-TCAM array, where N is the
same as the N -way K-shot task that classifies the samples of
N classes, and M is the same as the width of LSH output.

For the range encoding method, we take the encoding
method from [43], [44], which utilizes ML-CAM for more
compact coding. A same network with four convolutional
blocks is used to extract the 64-dimensional feature space.
Each 32-bit floating-point number in a feature vector is then
quantized to 5 ranges based on their mean and variation, and
further coded into a 4-bit thermometer code (range 1: “0000”,
range 2: “1000”, range 3: “1100”, range 4: “1110”, range
5: “1111”), whose Hamming distance represents the range
distance. Hence each 64-dimensional feature becomes a 256-
bit binary code, and is programmed into the N × 256 ML-
CAM/ML-TCAM array.

The few-shot learning applications are described by N -way
K-shot tasks. In an N -way K-shot task, a classifier learns
from a support set containing N classes with K samples
each, and it is then evaluated on a query set containing the
same N classes with 1 sample each. Both the training stage
and testing stage contain multiple tasks with non-overlapping
N classes, so the model learns from a large dataset and is
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Fig. 16. Comparison of two most matched distances in 20-way 5-shot tasks: (a) Euclidean distance (used in software baseline); (b) 256-bit LSH; (c) 4-bit
quantized range encoding. The distance is the complement of match degree.

Fig. 17. Few-shot learning accuracy for different number of columns.

then tested many times on small unseen tasks to evaluate an
overall performance. With a larger N and a smaller K, the
task becomes more difficult to solve.

B. Accuracy and Noise Margin Analysis

Table II shows the few-shot learning accuracy under differ-
ent circumstances. For both methods, we evaluate 256-column
ML-TCAM arrays. It is shown that, with either a 256-bit
LSH function and batch normalization or 4-bit quantized range
encoding, the FeFET-based ML-TCAM could achieve high
accuracy close to the prototypical network baseline. As we
have demonstrated in section IV, the proposed CapCAM could
reliably separate all the multi-level states with 1-fF capacitors,
200-domain FeFETs, and 256 columns.

The application benchmark results in Table II reveals that, in
practice, the output variation control is not the most essential
factor that affects the overall accuracy as long as the variation
is not too high. Existing dynamic ML-TCAM in [7] using 200-
domain FeFETs with a maximum σ 2.36× its LSB voltage
(83% bit error rate) or the same CapCAM configuration as
Fig. 14(e) with 1.9% bit error rate could still exhibit accuracy
almost the same as software implementations. The major
insight from the benchmark is that, the major limiting issue
for dynamic ML-TCAM designs is the difficulty to sense the
states far from fully matched. For dynamic ML-TCAM designs
based on discharge rates, a small match degree indicates a
large amount of cells discharging and a short discharge time on
the ML parasitic capacitance. Such a critical timing constraint

causes dynamic ML-TCAM to suffer from significant accuracy
loss when only 64 most matched states could be distinguished.

The range encoding method is more resistant to the timing
constraint and begins to suffer accuracy degradation till only
32 most matched states could be distinguished. Hence, the
demonstrated capability to distinguish the 8 most matched
states in [7] is not sufficient for such applications, and the
timing control must be further improved for practical use.

We also evaluate how deeply-scaled devices would affect
ML-CAM/ML-TCAMs. Dynamic ML-TCAMs begin to suffer
accuracy degradation when the FeFETs are scaled to 20
domains (∼ 30nm × 30nm) with Vth sigma value of 234 mV.
In this case, the maximum output σ of dynamic ML-TCAM is
12× its LSB voltage, while the proposed CapCAM is almost
not affected.

The batch normalization layer is also proved to be important
in the LSH method, as shown in Table II. This is because LSH
relies on the randomly generated hyperplanes to determine the
binary signature, and that normalized features save the number
of hyperplanes needed. The range encoding scheme could
achieve higher accuracy and is easier for sensing compared
with the LSH scheme, but it is also less resistant to FeFET
device variation for dynamic ML-TCAMs.

Fig. 16 shows the most matched distance vs. the second
matched distance for each sample in 20-way 5-shot tasks,
which indicates the sensing difficulty. It is easier for samples
near the upper-left corner, and more difficult for the ones
near the diagonal, especially for those near the center (half-
matched), where ML variation is the largest. Fortunately, the
frequency near the diagonal or the center is relatively low,
ensuring accuracy close to the software baseline. With range
encoding, samples have less mismatch bits, and thus require
less timing margin. The VREF that maximizes the probability
for distinguishing the states with first guess could also be
optimized with Fig. 16. For example, in the range encoding
scheme in Fig. 16(c), 81.5% samples could be correctly sensed
with a VREF corresponding to 43 mismatch cells.

C. Impact of Array Size

We evaluate the impact of array size on few-shot learning
applications. While there are several encoding and quantiza-
tion schemes, we evaluate the LSH method as an example.
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Fig. 17 shows the accuracy of different few-shot learning tasks
with different column numbers where the column number
corresponds to the number of hyperplanes used to separate
the feature space and generate LSH binary signatures. More
column numbers could help improve the accuracy in distance
metric mapping. It could be seen that a 256-bit or 512-bit LSH
layer could achieve high accuracy comparable to the prototyp-
ical network baseline. Though conventional CAM arrays do
not exceed 144-bit width for variation and sensing peripheral
complexity control [11], the proposed ML-CAM/ML-TCAM
arrays with higher variation tolerance and simplified sensing
peripherals could provide a lower cost solution.

VI. CONCLUSION

In this paper, we propose CapCAM: a multi-level capac-
itive CAM that could provide static, scalable, and accurate
match degree outputs beyond the Boolean outputs. It outper-
forms existing multi-level CAM designs based on dynamic
match degree output sensing scheme by providing device-
variation-mitigated and sensing-timing-error-tolerated static
ouputs. Four different CapCAM designs, FeFET-base ML-
CAM/ML-TCAM, and SRAM-based ML-CAM/ML-TCAM
designs are proposed. The simulation results on circuit-level
and application-level show excellent scalability and immu-
nity against device variation. We have analyzed the noise
margin and output variation of the proposed CapCAM cir-
cuits, and their impact on few-shot learning applications
with different distance metric mapping methods. Overhead of
extra capacitors and sensing peripherals are also discussed.
The proposed CapCAM could achieve accuracy similar to
software implementations in few-shot learning applications,
and higher accuracy than existing dynamic ML-CAM-based
designs considering the sensing timing constraints or deeply
scaled memory devices.
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