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Upon coming into contact with a solid surface, a liquid droplet spreads rapidly during the
early moments due to inertial /capillary effects before the viscous dissipation slows it down.
The temporal evolution of the spreading radius depends on the viscosity of the liquid drop.
For low-viscosity liquids, the spreading radius follows a power-law, whereas for higher
viscosity liquids it scales linearly with time with additional logarithmic corrections. In this
work, the spreading dynamics of molten sand is investigated at isothermal conditions. The
molten sand is a mixture of Calcia, Magnesia, Alumina, and Silicate, commonly referred
to as CMAS, and is characterized by large viscosity, density, and surface tension. The
multiphase many-body dissipative particle dynamics (mDPD) model is carefully parame-
terized to simulate a highly viscous molten CMAS droplet at 1260 °C. Three-dimensional
(3D) simulations were carried out at different initial drop sizes and equilibrium contact
angles. Despite its unique properties, the spreading behavior of molten CMAS is in good
agreement with theory and experiments of viscous coalescence of drops. Importantly, the
two distinct spreading regimes are observed in the mDPD simulations. Due to the large vis-
cosity, a slower but a nonunique spreading rate is observed in the inertial regime. However,
the spreading rate in the viscous regime is in agreement with Tanner’s law. The spreading
radius remains unaffected by the initial drop size and collapses onto a master curve under
viscous time scaling in agreement with theory and experiments. For different equilibrium
angles, the spreading rate is observed to be nearly identical in the inertial regime. This
indicates a universal spreading behavior during the early stages of spreading unaffected
by both the initial drop size and the equilibrium contact angle. The contact line velocity
was also computed to assess its relation with the dynamic contact angle. The dynamic
contact angle data collapse when plotted as a function of the capillary number, displaying
a remarkable agreement with Hoffman’s description of dynamic contact angle evolution.
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I. INTRODUCTION

Droplets will start spreading on a solid surface as the liquid contacts with a surface. Droplet
spreading and wettability play a crucial role in many engineering processes and have garnered re-
newed attention due to their importance in self-cleaning [1], fabrication of microelectromechanical
systems [2] (MEMS), microfluidic devices [3], and high-quality inkjet printing [4]. The spreading
process is dictated by the capillary and the viscous forces and is a simple exercise in minimization
of potential and surface energies of the drop. The dynamic spreading of simple liquids, i.e., water,
water/glycerin mixtures, silicone oils, etc., has been extensively studied using experiments [5—8]
and numerical simulations [9-11]. Bianche et al. [5] observed that the spreading of a completely
wetting drop on a solid surface is analogous to droplet coalescence which has been studied in great
detail. Analytical solutions, based on Stokesian dynamics, have also been derived for the growth of
the radius at the neck between two coalescing droplets. Generally, the radius of the spreading area
follows a power law of the form r ~ * and is composed of two distinct regimes, an inertial regime
and a viscous regime. In the inertial regime, the large gradient of the interface curvature drives the
contact line and is resisted by the inertia of the drop. At this stage, the Laplace pressure drives a
capillary wave across the droplet surface. Once the capillary waves dissipate, the spreading enters
the viscous regime where the driving force is balanced by the viscous friction. When the effects of
gravity are negligible, a pure water drop spreads at a rate of #!/2 in the inertial regime and #'/!% in the
viscous regime. The spreading rate in the viscous regime corresponds to the well-known Tanner’s
law. However, the spreading rate of more viscous drops was observed to vary between 0 and 1 in the
inertial regime along with a logarithmic dependence on r as shown in Eq. (1), while Tanner’s law
was observed in the viscous regime [8]. This is the solution of the Stokes flow of two viscous drops
coalescing when the viscosity of the surrounding fluid is negligible [12]:

1% ~ (MR;/U)ln (1%) (1)

In the case of partial wettability, another factor that determines the spreading rate is the equi-
librium contact angle. In the case of low-viscosity liquids [7], drops with a smaller equilibrium
contact angles were observed to spread faster compared to drops with larger equilibrium contact
angles. It should be noted that in these experiments the spreading was inertial /capillary dominated.
When the spreading is viscous dominated [6], the spreading in the inertial regime was observed to
be independent of the equilibrium contact angle. This is consistent with the spreading-coalescence
analog. Another important aspect of wettability is the evolution of the contact angle in relation
to the speed of the contact line. This determines the shape of the interface which is important
in determining the boundary conditions. In fact, there are analytical expressions [13] (based on
asymptotic expansions) describing the evolution of the apparent contact angle (6,p) as a function
of the capillary number which is defined as Ca = pu. /o where u is the velocity of the contact
line, p is the dynamic viscosity and o is the surface tension. These expressions generally take the
form 6p ~ Ca'’? for Ca < 1, where 6 is the dynamic contact angle. Additionally, approximate and
empirical expressions, based on experiments, have also been developed [14,15].

Most of the previous studies of drop spreading on solid surfaces focused on relatively low
viscous fluids [16], while much less is known about the dynamics of spreading and wetting of
highly viscous fluids, i.e., greater than 1000 times the viscosity of water, such as a lot of molten
materials in 3D printing [17]. One particular area where the high-viscous fluids play an important
role and which is the subject of research in this paper pertains to the deposition of molten sand
particulates in gas turbine engines (GTEs) [18]. Rotorcrafts operating in dusty environments suffer
structural damage due to the ingestion of solid particulates into the gas turbine engines. The
ingested particles can cause erosion due to repeated impact, accumulate in air pathways leading
to blockages and cause material degradation due to the molten particulate deposits on the hot-
section components of the GTE. Environmental barrier coatings (EBC) offer protection against
kinetic impacts while the inertial particle separators filter out larger particles (>75 um) without
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FIG. 1. Left: Experimental measurement of the evolution of temperature 7' and wetting contact angle 0pe,n
of a molten CMAS drop, where the molten temperature of the CMAS is 1260 °C. Right: the setup of multiphase
DPD simulations of a 3D CMAS droplet spreading dynamics (isothermal process) on a hydrophilic surface with
equilibrium contact angle 6.4 = 39°.

a significant pressure drop at the compressor inlet. Smaller particles, however, pass through the
cold section and melt in the combustion chamber. The molten particulates, primarily composed of
the oxides of calcia-magnesia-alumina-silica (CMAS), adhere to and damage the thermal barrier
coating (TBC) on the hot-section components. The molten CMAS material has been observed to
infiltrate, react chemically with the thermal barrier coating and solidify into a glassy coating as
it cools down. This is referred to as “CMAS attack” [19]. In addition to the structural damage,
the CMAS penetration has also been observed to alter the thermal properties of the TBCs such as
volumetric heat capacity and thermal conductivity [20]. Some of the mitigation strategies involve
tailoring the TBC microstructure [21,22], accelerating the chemical reaction time between the
molten CMAS deposit and the coating to induce solidification and thus prevent penetration [19].
With the performance envelope of the GTEs ever expanding, the operating temperatures are bound
to increase which will only exacerbate CMAS attack. From a hydrodynamic point of view, it is
important to understand the fundamental process of droplet spreading to gain more insight into
CMAS attack and aid in the development of tailored functionalized surfaces [23,24].

The viscosity of CMAS is a strong function of temperature which reduces nonlinearly with
an increase in temperature [22]. A molten CMAS drop is more than 3000 times viscous (at
1260 °C) than a water drop and the surface tension is 6.4 times larger than the water-air surface
tension. The large viscosity and surface tension of CMAS provide an interesting regime of fluid
phenomena in itself but owing to its importance in understanding the CMAS attack on TBCs it
is crucial to understand the spreading dynamics. Toward developing a more fundamental insight
into the spreading dynamics of molten CMAS, a detailed numerical study is carried-out using
the many-body dissipative particle dynamics (mDPD) framework, which is a multiphase extension
of dissipative particle dynamics (DPD) [25]. As shown in Fig. 1, experiments were performed at
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the high-temperature contact angle facility at the Army Research Laboratory (ARL) in Aberdeen
Proving Ground to measure the equilibrium contact angle of a molten CMAS drop on a flat ceramic
coating surface. With a linear increase of temperature to the melting point of CMAS and then
holding it at 1260 °C for 40 min, the contact angle of a CMAS drop reaches to 0¢q = 39° & 1°
at the end of the experiment. In the experiment, spreading and melting processes are coupled
and the CMAS infiltrates into the coating. To simplify the problem and focus on the spreading
dynamics of the highly viscous CMAS drop, we consider an isothermal process and simulate the
spreading dynamics of a 3D CMAS drop using the mesoscale mDPD method, which is able to
accurately capture the contact line motion under the thermodynamic fluctuations as demonstrated
in many previous mDPD simulations of droplet dynamics [26-29]. Although the emphasis is not
laid upon the role of thermodynamic fluctuations on the contact line dynamics in this work, the
primary reason for choosing the mDPD framework, over other particle-based and continuum-based
methods, lies in the fact that the constitutive relation need not be prescribed in this framework.
The spreading and infiltration dynamics of molten CMAS have been investigated numerically by
several groups. Recently, Munuhe et al. [30] investigated CMAS spreading and infiltration into
porous TBC under nonisothermal conditions using the lubrication theory in a two-dimensional (2D)
axisymmetric configuration. Kabir et al. [31] employed a volume-of-fluid method to study CMAS
infiltration into “feathery” microstructures in a 2D geometry. The spreading of molten CMAS
on smooth substrates following an impact at a high velocity (up to 250 m/s) was systematically
investigated by Chaussonnet ef al. [32] for different CMAS morphologies and physical properties
using the smoothed particle hydrodynamics (SPH) method. In all these studies, the molten droplet
was treated as a Newtonian fluid and in the absence of experimental data on the exact rheology
of molten CMAS, the aforementioned advantage of mDPD allows for a better representation of
the underlying fluid dynamics. In fact, Song ef al. [33] reported that molten drops of volcanic ash
remain heterogenous, possibly due to the presence of crystals and bubbles, below a temperature of
1315 °C thereby implying a non-Newtonian nature of the melts.

DPD is a mesoscopic simulation method developed to study hydrodynamic phenomena [34].
Lately, mDPD has been widely used to study multiphase phenomena in soft-matter and rheological
problems [35]. In this method, each mDPD particle is a collection of atoms/molecules which are
alike. The system is representative of a coarse-grained molecular dynamics (MD) method and can
be rigorously derived from microscopic dynamics [36] as well as from fluctuating Navier-Stokes
equation [37]. Compared to MD, mDPD by design offers the advantage of taking larger integration
time-steps due to the soft interaction potentials [38]. The moving contact line (MCL) creates a
nonintegrable stress singularity at the solid-liquid boundary and requires a special treatment in
continuum-based models [39]. Typically, cutoffs are introduced at molecular and capillary length
scales to deal with the singularity. Incidentally, this does not pose a problem to particle-based
methods such as the one used in this work. At the solid-liquid interface, the no-slip boundary
condition developed for arbitrary-shaped geometries [40] is used in this work. In this work, sessile
drop simulations of molten CMAS at different radii and equilibrium contact angles are carried-out
at isothermal conditions. A previous experiment performed by Eddi et al. [8] is also used to compare
the spreading rates of the drop obtained in mDPD simulations.

The layout of this paper is as follows: The numerical method is introduced briefly in Sec. II
and is followed by a discussion on the simulation setup and parameter mapping in Sec. III. The
results describing the evolution of the contact area radius and the dynamic contact angle behavior
are presented in Sec. IV. Finally, the findings are summarized in Sec. V.

II. GOVERNING EQUATIONS

The interactions between mDPD particles are considered pairwise and their motion is governed
by the Newton’s second law of motion [41]. The position and velocity of the ith mDPD particle is
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tracked using

dl’l' dV,' D R C
o = Ve mis :Fi:;Fij"‘Fij"'Fija (2)

where m; denotes the mass of the particle i, r;, v;, and F; are its position, velocity, and force vectors,
respectively. The total force F; is taken to be the linear superposition of the dissipative (Fg), random

(Fﬁ), and conservative forces (Fg) between neighboring particles i and j, which are computed by

FS, = Aw.(ri))eij + B(pi + pjwa(rijei;, ©
Fg = —ywp(rij)(e; - vij)ei;, @
Bl = fos(r) @) ey, ®

where () is a weighting function which depends on the relative distance r;; = |r; — r;| between the
two particles i and j. These forces have a compact support and vanish beyond a cutoff distance r,.
The constants y, 8, A, and B determine the strengths of each individual force. The relative velocity
between a pair of particles is given by v;; = v; — v;. The forces between a pair of particles always
lie along the line of centers €;; = r;;/r;;. The Gaussian white noise &;; is a random variable drawn
from a Gaussian distribution with (&;;(t)) = 0 and (&;;(¢)&(t")) = (8udj1 + 8i8x)6(t —t") where
8;; is the Kronecker § and 8(+ — ¢') is the Dirac § function [42].

By design, a mDPD system is isothermal and the thermal equilibrium of the system is dependent
on the fluctuating and dissipative forces. In the presence of these forces, the system should recover
the canonical Gibbs-Boltzmann distribution [42]. This is referred to as the fluctuating-dissipation
theorem (FDT) [41] and leads to the following relation between the weights and the strengths of
these two forces:

wp = wy, B* =2yksT, (6)

where wp = a)l% = (1 —r;/rp)’ with s =0.5, rp = 1.45, and the nondimensional temperature
kgT = 1.0, where kg is the Boltzmann constant. At a molecular scale, the random (Brownian)
motion of particles persists even at thermal equilibrium leading to tiny thermal fluctuations. The
fluctuation-dissipation theorem ensures that these fluctuations remain bounded even under the action
of an external force via a dissipative force. This is what is referred to as the thermal equilibrium.
The nondimensional temperature, which remains a constant, affects the magnitude of the random
force. Throughout the course of the simulation, Eq. (6) is satisfied for all the pairwise interactions.
In many-body interactions, the conservative force is dependent on an attractive force and a local
density (o) dependent repulsive force. The local density of a particle is computed as weighted sum
of its neighbors, i.e., p; = Y w, (7;j)- In this work, w, is the Lucy kernel and is defined as [43]

( ) 105 1+3r,~j 1 r,~j 3 (7)
w, (1) = ——— — - .
L 167'rr§p Yep Fep

Furthermore, the weight functions for the attractive and the repulsive components of Fg are defined

as wc(r;j) =1 —1;j/rc and wq(r;;) = 1 — 1;j/rq, respectively. Throughout this work the following
cutoff distances are used: r., = ry = 0.75 and r, = 1.0. Particles representing the distinct phases
of a multiphase system are assigned a unique numeric ID at initialization to handle the pairwise
interactions. For example, in a binary system composed of liquid and solid particles, the force
parameters and the cutoff distances are assigned for liquid-liquid, liquid-solid, and solid-solid
interactions.
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III. PARAMETER MAPPING AND SIMULATION SETUP

A. Parameter mapping

To accurately represent the properties of the fluid, the mDPD parameters have to be chosen
carefully by mapping the mDPD parameters to the physical system of interest, i.e., molten CMAS.
The physical properties of molten CMAS are taken to be at 1260°C and the relevant physical
properties at this temperature are taken from the experimental work of Naraparaju et al. [22].
These are: density p; = 2690 kg/m?, surface tension o; = 0.46 N/m, and dynamic viscosity
u; = 3.6 Pa - s. Following Arienti et al. [44], reference length [L], mass [M], and time [T] scales
are computed to nondimensionalize the system. The reference quantities are defined in terms of the
reference units as

O L) B ) PR L ®)
e [L]3 ’ Iel [T]2 ’ Te! [T] .
Following this, the nondimensional (mDPD) parameters are defined as
P
o= o = P2, )
Pref P
(] D) o
o= = [T =[M]—, (10)
Oref o]
i oV
v=—=|[T]=I[L]"—. (11)
Vref Vi

To match both the viscosity and surface tension we eliminate [T] from Eqs. (10) and (11) and then
substitute [M] from Eq. (9). The resulting equation is given by

= (22, (12

Clearly, from Eq. (12) [L] can be estimated from p, o, and v which are computed a posteriori from
mDPD simulations and are not imposed as done in continuum-based methods.

To compute the kinematic viscosity v of the mDPD fluid, a doubly periodic Poiseuille (DPP)
flow [45] is setup. This has an exact solution given by

. Jxyd _ M
u(y) = > (1 7 ) (13)

where f, is the body force and d is the half-channel height. To simulate this flow, mDPD particles
are initialized in a doubly periodic box of size 30 x 80 x 10 mDPD units along the x-, y-, and
z-directions as shown in Fig. 2(a). Above the half-channel height, the particles are driven by a body
force f, imposed along the positive x-direction, and below the half-channel height, f, is imposed
along the negative x-direction. The system is allowed to relax for 10 mDPD time units without the
action of any body force to dissipate the additional energy from initialization. Following this, the
body force is applied and the system is run for 40 mDPD time units before it reaches a steady state.
Upon reaching the steady state, the average velocity along the y-direction is computed by binning
the particles into 80 slabs in the xz-direction for another 40 mDPD time units. Finally, the kinematic
viscosity v is computed from the least-squares approximation to the mDPD solution and is shown
in Fig. 2(b). For a simulation that is carried out withA = —40, B =25,y = 20, k3T = 1,r. = 1.0,
rq =7re = 0.75, rp = 1.45, and p = 6.74, the resulting viscosity is v = 29.093 in mDPD units.
The kinematic viscosity computed for different cutoff distances rp is shown in Fig. 2(c).

The surface tension, on the other hand, is computed using the thin liquid film method [46],
wherein the surface tension is computed from the normal and tangential stresses across the plane
using the Irving-Kirkwood equation given by

L
o= f [Pz — 0.5(pxx + pyy)ldz, (14)
0
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FIG. 2. (a) Setup of the DPP flow. The particles are colored by their velocities along the x-direction.
(b) The mDPD and the exact solution of the flow at steady state. (c) Viscosity v computed from the curve-fit to
the mDPD solution for different cutoff distances rp. The open star corresponds to rp = 1.45 and v = 29.093
in mDPD units, i.e., the values used for the molten CMAS drops.

where L. is the length of the domain along the z-direction, p_. is the normal, and p,., p,, are the
tangential stress components. The mDPD particles are initialized in a triply periodic domain of
size 52 x 52 x 20 mDPD units as shown in Fig. 3(a). The mDPD simulations are run with same
parameters and cutoff distances as in the DPP flow. As done in the case of the DPP flow, the system
is relaxed for 10 mDPD time units and the time-averaged surface tension is computed for the next
40 mDPD time units. The distribution of o for different attraction parameters A is shown in Fig. 3(b)
and the corresponding mean values are shown in Fig. 3(c). In this work, A = —40 is selected which
gives (o) = 9.287 £ 0.07 in mDPD units. Based on the physical properties of the molten CMAS
droplet and the computed nondimensional properties of the mDPD fluid, the reference units obtained
are: [L] = 17.017 um, [M] = 1.964 x 1073 kg, and [T'] = 6.297 us. The physical and the reference
quantities are tabulated in Table I.

B. Simulation setup

To examine the spreading behavior of molten CMAS, sessile drop simulations are performed on
a smooth substrate. The droplet and the wall are composed of randomly generated preequilibriated
mDPD particles. Simulations are carried out with drops of initial radii R = 8, 10, and 12 mDPD
units, which corresponds to 0.136 mm, 0.17 mm, and 0.204 mm, respectively, in physical units. In
experiments, molten CMAS exhibited extensive wetting on most TBC surfaces. The final contact
angles observed in these experiments were well-below 90° with some completely wetting the
samples. This is in agreement with the available body of experimental work from different groups
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FIG. 3. (a) Setup used in the thin liquid film method. (b) The distribution of o for different attraction
parameter (A) values. (c) Mean values of ¢ for different A. The open star corresponds to A = —40 and (o) =
9.287 in mDPD units, i.e., the values value used for the molten CMAS drops.

[21,22,47,48]. In light of this “sandphillic” behavior, three shallow equilibrium contact angles, i.e.,
Oeq = 39°, 55°, and 70°, are used to investigate the effect of 6.4 on droplet spreading. To obtain
the correct 6.4, the liquid-solid interfacial tension is altered by varying the attraction parameter Ay
between the liquid and solid particles. The equilibrium contact angle for different values of Ay is
shown in Fig. 4. Collectively, a total of five simulations are performed. All the simulations are
carried out with B =25, y =20, kT =1,r. =1.0,r4 =r,, =0.75, rp = 1.45, and p = 6.74.
The attraction parameter between the liquid particles Ay is set to the —40 and the same between
the liquid and solid particles Ay is set accordingly to obtain the required 6eq. The time integration
of the governing equations is carried out using a modified velocity-Verlet algorithm with time step
dt = 0.002. For CMAS, the capillary length /. = \/o /(pg) is 4.17 mm and hence the effects of
gravity on spreading can safely be ignored for the drop sizes under consideration in this work.
The Ohnesorge number, defined as Oh = u/+/o pR, is a useful indicator to demarcate viscous

TABLE I. Physical and reference properties of molten CMAS.

Property Physical units mDPD units
Density p 2690 kg/m? 6.74
Dynamic viscosity u 3.6Pa-s 196.08
Kinematic viscosity v 1.33 x 1073 m?/s 29.093
Surface tension o 0.46 N/m 9.287
Length [L] 17.017 x 10~° m 1.0
Mass [M] 1.964 x 1078 kg 1.0
Time [T] 6.297 x 105 1.0
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FIG. 4. Equilibrium contact angle is plotted as a function of the mDPD liquid-solid attraction parameter
Ajs. The open stars correspond to Ay = —28, —30, and —32, i.e., the parameters used in the simulations.

and inertial regimes. In this study, Oh = 8.77, 7.85, and 7.16 for R = 0.136 mm, 0.17 mm, and
0.204 mm, respectively.

The mDPD implementation [49] in the massively parallel open source code LAMMPS [50] is
used to perform the simulations. Furthermore, the evolution of the contact line and the dynamic
contact angle are tracked in this work to investigate the underlying spreading mechanisms. Given the
discrete nature of the numerical scheme, approximate curve-fitting approaches are taken to compute
the quantities of interest. First to compute the spreading radius , mDPD particles on the surface of
the drop are extracted based on the local number density. The particles with p € [0.45, 0.6] are iden-
tified as the surface particles. From these surface particles, a thin layer of particles that are in contact
with the solid surface are extracted and fitted to a circle of radius r. To compute the contact angle,
first the centroid and the radius of the surface particles are computed by averaging the minimum and
maximum spatial positions of the surface particles. Using these values as an initial guess, a sphere
is fit to the surface particles. Finally, the contact angle is defined as the angle between the tangent
of the fitted sphere and the horizontal wall.

IV. RESULTS

A. Spreading radius

To investigate the spreading behavior of molten CMAS, the spreading radius r is tracked over
time. The effect of initial drop size R and the equilibrium contact angle 6,, on the spreading radius r
is shown on the log-log plots in Figs. 5(a) and 5(b), respectively. The results in Fig. 5(a) correspond
to 0eq = 55° and those in Fig. 5(b) correspond to R = 0.17 mm. As a result of the large viscosity,
the spreading occurs over a long time before an equilibrium is reached. The case with 6. = 39° and
R = 0.17 mm takes the longest time owing to the small 6.,. More importantly, two distinct spreading
regimes can be identified in these plots. The formation of the neck at the interface during the early
moments of CMAS spreading is shown in Fig. 6. At this point, the droplet takes a distinctively
nonspherical shape. Once the capillary waves are dissipated, the droplet assumes the shape of a
spherical cap.
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FIG. 5. The effect of (a) initial drop size R and (b) equilibrium contact angle 6.4 on the spreading radius is
shown on a log-log plot.

To characterize these spreading regimes, well-established scaling laws developed in the context
of droplet coalescence are used. In an inertia dominated case, r/R = f(t//pR3 /o, 0q) whereas in a
viscosity dominated case, the temporal evolution is dependent on the viscous timescale 7, = uR/o.
Given the large Oh of the CMAS drops in this work, the spreading radius was scaled using the
viscous timescale. With this scaling, the spreading radii of different size drops collapse on to a
master curve for a given 64. This is shown in the log-log plot in Fig. 7(a). This indicates that the
contact line motion on a given surface is independent of the drop size. The drops spread over a longer
t /7, to reach equilibrium due to the effects of large viscosity. By fitting the data to a power law of
the form r/R ~ (t/7,)* using least-squares minimization, the exponent «, i.e., the spreading rate is
computed both at an early and late time. Figure 7 shows that the slope of the normalized spreading
radius changes smoothly from the inertial regime with o = 0.26 to the steady state with o = 0,
which does not change with droplet size R but changes when the equilibrium contact angle 0.4 varies.
The spreading rate in the inertial regime is in excellent agreement with the experimental results
[33] of molten volcanic ash droplets spreading on a smooth Alumina substrate. The experiments
report a spreading rate of 0.28 at 1272 °C under viscous scaling. Although the viscosity of volcanic
ash greater than that of CMAS (500 Pa-s), the surface tension (0.35-0.37 N/m) and the density
(20002895 kg/m?) are quite comparable. Compared to the CMAS used in this study, the volcanic
ash is characterized by 61% higher SiO, and 83% lower CaO by weight percentage which could be
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FIG. 6. A cross-section view (left) and an aerial view (right) of the spreading dynamics of a 3D CMAS
drop with a radius of R = 0.17 mm on a hydrophilic surface with 6.4 = 39°.

the reason for higher viscosity of molten volcanic ash. A spreading rate of approximately 0.26 in
the inertial regime is followed by a rate of approximately 0.1 in the viscous regime before the drop
reaches equilibrium. The spreading rate of « = 0.1 corresponds to the Tanner’s law of spreading
for vanishing contact angles wherein the spreading dynamics are controlled by the contact line
dissipation. However, no such collapse of data is observed for the spreading radius at different
Beq as shown in Fig. 7(b). However, the spreading rate in the inertial regime is fairly robust with
the curves only diverging once the effects of partial wetting kick-in. Interestingly, Bird et al. [7]
reported a spreading rate varying between 0.5 and 0.25 for 8.y = 3°-117°. The lower spreading
rates were attributed by the authors to the effects of finite equilibrium contact angle. The effects of
viscosity on the spreading are discussed in more detail in the next section.

B. Effect of viscosity

In their experiments with viscous fluids (u = 0.3-10.3 mPa - s), Bird et al. [7] observed in-
ertia dominated spreading. This is evident from the divergence of spreading radius when viscous
timescale t, is used. Aarts er al. [6], however, observed viscosity dominated coalescence exper-
iments with silicone oil drops with a wide range of viscosities but relatively low surface tension
(0.02 N/m). A linear relation between r/R and t /T, was observed but the logarithmic dependence,
predicted by the theory [12], was not observed. Eddi et al. [8] investigated the spreading of viscous
drops (10-1.12 Pa - s) and reported a continuously decreasing exponent ranging between 0.8 and 0.5
in the inertial regime before transitioning sharply to the viscous regime with an exponent consistent
with Tanner’s law. Following Eddi et al. [8], the spreading rate « = d Inr/d Int is computed. This
is shown in Fig. 8(a) as a function time. The spreading rate varies between 0.3 and 0.2 in the
inertial regime before plateauing. Due to the high viscosity of CMAS, the transition between the
two regimes is smooth and in accordance with experimental evidence. For comparison, experimental
data of pure glycerin drop from Eddi ef al. [8] is also plotted. The density, dynamic viscosity, and
surface tension of the glycerin drop used in the experiments are 1262 kg/m?, 1.12 Pa - s and 0.063
N/m, respectively. This particular data from the experiments was chosen since the viscosities of
glycerin and CMAS are of the same order-of-magnitude although the surface tension of CMAS
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FIG. 7. Nondimensional spreading radius as a function of time rescaled using the viscous timescale is
shown on a log-log plot for (a) R = 0.136 mm, 0.17 mm and 0.204 mm at 6., = 55° and (b) 6,4 = 36°, 55°,
and 70° at R = 0.17 mm. The least-squares fit to the power law in the inertial and viscous regimes are shown
in dashed black lines along with the exponent « of the power law.

is still seven times larger. Clearly, the CMAS drops exhibit a lower rate of spreading compared
to the glycerin drop. Since the simulations are of partially wetting fluids, the CMAS drops reach
equilibrium, i.e., « = 0, unlike the glycerin drop from experiments which is in a complete wetting
configuration and takes longer to reach equilibrium.

When, the spreading rate « is plotted as a function of nondimensional spreading radius »/R the
data collapses for different initial radii again in line with the experimental data. This is shown in
Fig. 8(b). The solid line in the plot is referred to as the “effective exponent” and is defined as

0= —FR (15)
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FIG. 8. Spreading rate as a function of (a) time and (b) nondimensional spreading radius /R is shown
on a semilogarithmic plot. The dashed line in panel (b) corresponds to Eq. (15). The spreading data of pure
glycerin drop (R =0.5mm, u = 1.12Pa-s, o = 0.063 N/m, and p = 1262 kg/m?) from Eddi et al. [8] is
represented by the open circles.

This equation is obtained by applying the definition of the spreading rate « =dInr/dInt to
Eq. (15). The experimental data from Eddi et al. [8] at lower viscosities agrees well with the curve in
the inertial regime indicating the effects of logarithmic correction. However, significant deviations
from curve appear at higher viscosities. The effects of logarithmic correction on the spreading radius
are not observed in this work since the correction is relevant in the asymptotic limit. Aarts ef al. [6]
estimate these effects to be prominent at » < 0.03R which is about 6 um for the largest drop
size used in the simulations. Unfortunately, this level of spatial resolution was not realized in the
simulations.

C. Contact angle evolution

The evolution of the contact angle is shown in Fig. 9. At early time, the contact angle evolution is
identical for all the curves with the differences appearing later on due to the effects of partial wetting
again reinforcing the observation that the early-time dynamics are independent of the equilibrium
contact angle. To investigate the dynamics of the moving contact line the contact line velocity u is
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FIG. 9. Time evolution of the apparent contact angle 0.

computed by taking a time-derivative of the spreading radius. The relationship between u¢ and 0,
is shown in Fig. 10(a) and as expected the contact line motion seizes as G, —> Ocq.

When the viscosity of the surrounding fluid is negligible compared to that of the drop, Cox [13]
derived an expression for contact angle evolution which is given by

8(0) = g(6,,) + Caln(x/L), (16)

where 6,, is the microscopic contact angle and x, L correspond to macroscopic and microscopic
length scales. The function g(6) is defined as

 x — sinxcosx
g0) = / ———dx. (I7)
0 2sinx

For 6 < 135°, g(6) can be approximated as 63/9 within 1% error. A simpler representation of the
Cox’s relation was presented by Hoffman [51] and Kistler [52]. Hoffman observed that the contact
angle data from his experiments closely followed a general curve when plotted as a function of Ca
with a certain shift factor. An empirical fit to this curve was obtained by Kistler and is given by

O = fu[Ca+ fi;' (Beg)]. (18)

where fy is referred to as the Hoffman function defined as

X 0.706
fin() = arceos {1 = 2tanh [5.16( 31w ) | (19)
In this work, the inverse Hoffman function f;; !'is approximated using the Hoffman-Voinov-Tanner
law [53] which is valid for Ca < 1 and is given by

—1 qu
fu =—> (20)

cr
where cr is a constant assumed to be about 72 rad>. In Cox’s theory, there are no restrictions placed
on the microscopic contact angle: it can be constant or velocity-dependent. In Eq. (18), which has
an identical functional form as Eq. (16), 8¢ is used instead of 6,,. Following this, the contact angle
is plotted as a function of Ca shifted by the approximate inverse Hoffman function given by Eq. (20)
and is shown in Fig. 10(b). The Hoffman function, given by Eq. (19) is overlaid on the simulation
data and is represented by the solid black curve. A very good agreement is observed between the
simulation results and the model. This indicates that the Cox’s theory is still valid for molten CMAS.
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FIG. 10. (a) The apparent contact angle 6, is plotted as a function of the contact line velocity u for drops
with different equilibrium contact angles 6.4. (b) The apparent contact angle 6,, is plotted as a function of the
capillary number Ca. The solid black curve is the model proposed by Kistler and is given by Eqgs. (18)—(20).

V. CONCLUDING REMARKS

A detailed numerical study was conducted to investigate the spreading dynamics of molten
CMAS on smooth surfaces using many-body dissipative dynamics. To this end, sessile drop simu-
lations were performed at isothermal conditions with different drop sizes and equilibrium contact
angles to investigate the effects of initial drop size and partial wetting. In particular, the temporal
evolution of the spreading radius and the dynamic contact angle were studied and compared with the
existing theory and experiments. Modeling CMAS, which has very high surface tension in addition
to being highly viscous and dense, required an equally large viscosity in the simulations typically
unseen in mDPD community.

The spreading of molten CMAS is clearly characterized by two distinct, inertia-dominated and
viscosity-dominated, regimes. In agreement with experimental evidence, the contact line spreading
was observed to be independent of the drop size throughout the entire spreading phase. This is
evident from the data collapse in Fig. 7(a), wherein a characteristic viscous timescale 7, was used to
rescale the data. This indicates a quantitative agreement with the theory of viscous coalescence of
drops. Although the spreading radius does not exhibit such collapse for different equilibrium contact
angles, the spreading in the inertial regime is quite identical with all the curves exhibiting an overall
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slope of 0.26. The spreading rate in the inertial regime agrees well with the available experimental
data of molten volcanic ash spreading on smooth surfaces which is between 0.26 and 0.31. The
curves in Fig. 7(b) begin to diverge as the effects of partial wettability become dominant. Within the
inertial regime, a nonunique spreading rate o was observed which is consistent with experiments.
The value of « in this work is between 0.3 and 0.2 in the inertial regime which is lower than what
was observed in the experiments of Eddi er al. [8]. This is attributed to the higher viscosity and
surface tension of CMAS. The logarithmic corrections on the spreading were not observed when «
is plotted as a function of r/R due to the lack of sufficient resolution to capture the very early-time
evolution of the contact line. Despite the unique properties of CMAS, a good agreement between the
simulation results and theory was observed for the dynamic contact angle evolution. The simulation
results are in good agreement with Hoffman’s model for dynamic contact angle.

The evidence presented in this work indicates that the spreading of molten CMAS is in good
agreement with that of other relatively lower viscosity fluids. This study further reinforces the
analogous behavior between droplet coalescence and droplet spreading. To gain a more fundamental
insight in to the role of interfacial dynamics on CMAS attack, the effects of surface roughness,
pressure, heat transfer, and phase change on the moving contact line need to be investigated and
will be the focus of future research.
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