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Abstract

The phenomenon of orbital relaxation upon excitation of core electrons is a ma-
jor problem in the linear-response treatment of core-hole spectroscopies. Rather than
addressing relaxation through direct dynamical correlation of the excited state via
equation-of-motion coupled cluster theory (EOMEE-CC), we extend the alternative
similarity-transformed equation-of-motion coupled cluster theory (STEOMEE-CC) by
including the core-valence separation (CVS) and correlation of triple excitations only
within the calculation of core ionization energies. This new method, CVS-STEOMEE-
CCSD+-cT, significantly improves on CVS-EOMEE-CCSD and unmodified CVS-STEOMEE-
CCSD when compared to full CVS-EOM-CCSDT for K-edge core-excitation energies
of a set of small molecules. The improvement in both absolute and relative (shifted)
peak positions is nearly as good as for transition-potential coupled cluster (TP-CC),
which includes an explicit treatment of orbital relaxation, and CVS-EOMEE-CCSD*,

which includes a perturbative treatment of triple excitations.



1 Introduction

Coupled cluster (CC) theory is one of the most powerful methods for treating dynamical cor-
relation in molecules, and is capable of computing highly accurate ground state energies of
small molecules.! Beyond the ground state, coupled cluster has been extended to excited
states via the time-dependent linear-response formalism,?? the closely related equation-
of-motion approach,*% as well as other approaches such as the symmetry-adapted cluster
technique.”® Equation-of-motion coupled-cluster (EOM-CC) theory can be used for excited
(EE-EOM-CC), electron-attached (EA-EOM-CC), and ionized state (IP-EOM-CC) energies,
as well as multiply-ionized/attached states and even spin-flip excitations (SF-EOM-CC).%10
EOM-CC is able to do this by taking advantage of the similarity transformation of the Hamil-
tonian, which guarantees size-extensivity of the excited state total energy (although exci-
tation energies are not in general size-consistent with respect to charge separation). While
the ground state CC wavefunction is single reference, the Cl-like nature of the EOM-CC
wavefunction can capture significant multi-reference character of excited states. !1:12
Nooijen et al. proposed an alternative approach to EOM-CC of using a second similarity
transformation of the Hamiltonian, followed by diagonalization in a small (CIS-like) excita-
tion space.!®!* In this similarity-transformed equation of motion coupled cluster (STEOM-
CC) theory, the second similarity transformation simultaneously captures the dynamical
correlation of all low-lying excited states. In comparison, EOM-CC determines the wave-
function for a single excited state and incorporates dynamical correlation effects via explicit
inclusion of higher excitations in the excited state wavefunction. The STEOM-CC similarity
transformation uses the wavefunctions of a number of ionized and electron-attached states
in order to build the transformation. This transformation can be viewed as decoupling the
“active” single-electron excitations from the double excitations, much as the ground state
coupled cluster equations decouple the reference from single and double excitations. Thus,

while STEOM-CC obtains the excited state energies by diagonalization only in the space of

single excitations, it achieves an accuracy much greater than that of CIS or EOM-CCS.



Both EOMEE-CCSD and STEOMEE-CCSD have been highly successful at describing
valence excited states of predominately single-excitation character, but some modifications to
the theory are necessary for application in the x-ray regime. X-ray excited states, necessary
for simulating spectra such as NEXAFS, XES, and RIXS, are not bound states, but are
resonances embedded deep in the valence continuum. For EOM-CC, the core-valence sepa-
ration (CVS) approach of Coriani and Koch % has been highly successful, although it is also

7

possible to employ other techniques such as damped response,!” complex scaling/complex

18720 etc. However, the CVS does not address the other major issue

absorption potential,
encountered in the x-ray regime: orbital relaxation. Due to the presence of a core hole in
the excited state wavefunction, the valence orbitals undergo considerable contraction and
rotation. CVS-EOMEE-CCSD incompletely captures this effect and hence overestimates
core vertical excitation energies by 1-3 eV (vide infra). The addition of triple excitations,
either full CVS-EOMEE-CCSDT?! or an approximate treatment of triples,?? is necessary to
fully treat the relaxation effects within standard EOM-CC theory.

The CVS can be ported from EOM-CC to STEOM-CC in a relatively straightforward
manner.2? However, STEOM-CC also offers an alternative approach to the orbital relax-
ation issue. Here we propose a modification of CVS-STEOMEE-CCSD which efficiently and
accurate treats orbital relaxation for core excited states, which we dub CVS-STEOMEE-
CCSD+cT. This method compares favorably with standard CVS-(ST)EOM-CCSD, and
achieves similar performance compared to an approximate inclusion of triples (CVS-EOMEE-

CCSD*), as well as to an explicit inclusion of relaxation effects in the reference via TP-

CCSD. %



2 Theoretical Methods

2.1 EOM-CC

The coupled cluster ground state?® is characterized by a non-hermitian similarity transforma-

tion of the Hamiltonian which decouples the reference from the space of excited determinants,

H=eTHeT, (1)
N
=3 Ti= Y ttala+ 1 Y alajaait oo 2)
k=1 ai abz]
(Do H|®g) = Ecc, (3)
(@7 i [H|®o) =0, 0<k<N, (4)

where |®g) is a zeroth order description of the wave function (single determinant) and
|7 %) are the kth excited determinants. In EOM-CCSD, the CC equations are solved
in the space of single and double excitations and hence N = 2.

The transformed Hamiltonian H, defined via the cluster operators Tk, provides the means
to obtain excited states as well. The ground state coupled cluster energy is an eigenvalue of

H with distinct right and left eigenfunctions due to the non-hermitian nature of the similarity

transformation,

HER(0)|®o) = EccR(0)|®o), R(0) =1, (5)

(@0l L(0)H = (®0|L(0)Eco,  L(0) =1+ A, (6)

Explicit diagonalization of the transformed Hamiltonian, shifted by the ground state

energy, vields the vertical excitation energies w; and their associated right and left eigen-



functions,

(H — Ecc) R(m)|®) = [H, R(m)]|®o) = wy, R(m)|Dy), (7)

R(m) =Y Ri(m) = ro(m) + > _ri(m)ala; + Zr alalaa;+---,  (8)
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Note that the left-hand eigenfunction equations are not explicitly connected. The connected-
ness of the right eigenfunction equations allows for a solution purely in terms of Ry and R».
Only one set of eigenfunctions is necessary to obtain the energy, although both are necessary
in order to calculate properties (including transition properties) and analytic gradients.26:27
We will use R(m)/L(m) to refer to generic EOM-CC excitation/de-excitation operators, or a
subscript E'F to refer specifically to the EOMEE-CC amplitudes. STEOMEE-CC requires,

in addition, singly ionized and electron-attached states which are formed via the application

of non-number-conserving excitation operators (here only for the right-hand side),

N
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2.2 STEOM-CC

Similarity transformed equation-of-motion coupled cluster theory* starts with the definition

N

of the transformed Hamiltonian, G,

{eg}é = H{cY, (13)
qu paq+ ngg ;Ly z];asar : (14)

pqrs
where the braces denote operator normal ordering (essentially, this ensures that {eS } has no
internal contractions). The transformation operator S has components in both the electron-

attached, or (1,0), and ionized, or (0, 1), sectors of Fock space,

S=5%+5", (15)
+t = Z St = Z salae + = Z ;’Z labajae " (16)
k ae abe]
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where e and m are associated with sets of n,.,. active virtual and n,... active occupied
orbitals (transformed back to the canonical MO space).

As noted by Nooijen,'* the S, amplitudes are not necessary for the solution of the
STEOMEE-CC equations as they simply cause rotations within the singles excitation space,
and hence a diagonalization within the full singles space is invariant. In fact, diagonalization
within the full rather than the active singles space is desirable as the portion of the solution
falling outside the active space serves as a measure of active space insufficiency. 14

The transformation amplitudes S* may be easily obtained by renormalization of a set of



solutions of the EOMIP-CC and EOMEA-CC equations,

Nosact

Spt == i) (UZY),,, G (18)
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She =" () (U, Ones (19)
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where the extra minus sign for the IP-coefficients comes from the contraction over the hole
line A in (18). The matrices Uy are the transformation matrices which diagonalize the
STEOM effective Hamiltonian. They are derived from the single excitation parts of the
IP/EA solutions,

(U-)r = D Sena(N), (20)

(Ui)er = D 0usr? (V). (21)
f

In (18)—(21), the factor d,, indicates that the active orbitals (indexed by k) are simply
a subset of the canonical molecular orbitals (indexed by p), typically the orbitals within a
small energy range around the Fermi level. The solutions R[P/ £A(A) typically correspond
to principal ionizations from and electron attachments to these active orbitals. The active

orbitals may also be chosen as linear combinations of molecular orbitals, 2328

with the proper
transformation matrix replacing the Kronecker delta.

The excited states are obtained by solving the eigenvalue equations,
(G, Ry (m)]|Bo) = wi Ry (m)| Do) (22)

The left-hand eigenvalue equations formally require a solution in the full singles and doubles
space, although computation of properties and transition strengths can be simplified by a

perturbative approximation of L.



2.3 Core Excited States

The direct calculation of core excited states, even for the 1s orbitals of first row elements
with energies on the order of 100-500 eV, is fraught with difficulties. Standard EOMEE-CC
calculations are difficult or impossible to converge, and even when convergence is achieved,
the energies may be contaminated by spurious couplings to high-lying valence excited deter-
minants which form an unphysical discretization of the valence continuum. 2’

As a remedy to this problem, Coriani and Koch'® adapted the core-valence separation
scheme first introduced by Cederbaum, Domcke, and Schirmer?3® to EOM-CC. In CVS-EOM-
CC, amplitudes which correspond to purely valence excitations are explicitly zeroed. This

leaves only components involving one or more core orbitals (indicated by capital roman

letters),

» a 1 a 1 a
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This formulation eliminates all core-valence couplings and recovers the core-excited states as
bound solutions. A number of variations on this basic theme exist, such as including only one
or a small number of symmetry-related core orbitals in the “core” set and treating the rest
as valence,?! solving the ground state equations in the frozen-core approximation,?! etc. In
this work we target a single core orbital in each calculation and define R as in (23), with an
all-electron solution of the ground state. Note that we purposefully avoid test molecules with
symmetric nuclei as these cases require either treating the symmetric and anti-symmetric
core molecular orbitals equally or breaking the symmetry via orbital localization.

Within STEOMEE-CCSD, the CVS can be applied in two places, giving rise to CVS-
STEOMEE-CCSD. First, the selection of the active space must include the core orbital(s)
of interest, and when solving for these core ionization wavefunctions the CVS is necessary
to stabilize convergence. Second, the solution of the eigenvalue equations (22) may also use

the CVS in defining the excitation operator Ry in order to accelerate the computation. Note



that if only one core orbital is included in the CVS treatment, then the diagonalization step
scales as only (’)(nmotng), where n, is the number of virtual orbitals. The application of the
CVS to the Rrp operator does not induce a similar restriction on the S- operator. Because
this operator contains information from both valence and core ionized wavefunctions, it must
necessarily span the full molecular orbital space. The combined valence and core nature of S
also allows for the simultaneous and balanced determination of core and valence excitation
energies.” In principle it may be possible to construct an S~ and hence G operator using only
core ionization wavefunctions if no valence excitations are desired. We have not explored
this possibility as the valence IP solutions are rarely a bottleneck in practice.

The CVS eliminates most convergence issues and recovers excitation energies which are
systematically improvable towards the experimental value with increasing basis set size and
level of excitation.?"3? However, at the singles and doubles level, large errors remain which
are attributable to the significant orbital relaxation from the ground to the excited core-hole
state. We previously introduced the transition-potential coupled cluster method (TP-CC),?*
which accounts for orbital relaxation explicitly by performing the calculation with molecular
orbitals optimized for a fractional core-hole. Instead, the STEOMEE-CC approach offers an
alternative.

The ionization part of the similarity transformation, defined by the solution of the stan-
dard EOMIP-CC equations, provides all of the necessary dynamical correlation for the oc-
cupied orbitals. Then, since the inclusion of triple excitations in EOMEE-CC provides a
necessary level of correlation to account for core-hole orbital relaxation, we propose that
inclusion of triple excitations, only in the FOMIP-CC' solutions, is sufficient to account for
orbital relaxation in STEOMEE-CC. This modification introduces an additional transfor-

mation operator Sy,
NO;act

== Y (N (U, Gk

KA=1

*The ground state, IP/EA, and G computations may be shared, although separate diagonalization steps
are still necessary as the core and valence wavefunctions are not strictly orthogonal and have different
structure. The diagonalization(s) are computational very inexpensive, however.



where at least one of ¢j& must be an active core orbital, and kA refer to the no. active
core orbitals. Since STEOMEE-CC only requires elements of G with at most two lines at
the top and bottom, diagrammatically, the only modifications necessary to the formation of
the twice-transformed Hamiltonian are,

g Sig(ikllbe),

gt =S (gk|lbe).
The diagonalization step proceeds exactly the same as in unmodified CVS-STEOM-CCSD.
We denote this new method as CVS-STEOMEE-CCSD+-cT (“singles and doubles plus core
triples”). For a single core orbital, the solution of the CVS-EOMIP-CCSDT equations scales
as O(n2n?), which is the same as the ground state CCSD equations. Also note that the
connectivity of the EOMIP-CCSDT equations is preserved even without including triple
excitations in the ground state.

Although we expect CVS-STEOMEE-CCSD+-cT to be similar in overall accuracy to the
existing CVS-EOM-CCSD* and TP-CCSD(1/2) methods, there are several advantages to
CVS-STEOMEE-CCSD+cT over these alternatives. First, CVS-STEOMEE-CCSD+cT is
more computationally efficient than CVS-EOM-CCSD* as triple excitations are only included
in the ionization potential calculations, and not in the excitation energy calculation. In the
case of CVS-EOM-CCSD*, the triple excitation contributions must also be included for each
excitation, while for CVS-STEOMEE-CCSD+cT these contributions are only included once
for each core orbital, irrespective of the number of excitations sought from that orbital.
Second while we may expect CVS-STEOMEE-CCSD+cT and TP-CCSD(1/2) to incur sim-
ilar overall computational costs, a TP-CCSD calculation is inherently specific to one core
orbital /edge, as the reference orbitals must be specifically optimized. In CVS-STEOMEE-
CCSD+cT the reference orbitals are the standard canonical orbitals, and importantly, the

valence excitations obtained are almost precisely the same as within standard STEOM-CCSD
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(except for a very small core orbital contribution). We expect this property to be important
for the calculation of excited state x-ray spectra, e.g. for transient XAS spectroscopy. A
final important advantage of STEOM-CC in general is that a large number of excitations

can be calculated without significantly raising computational cost or memory consumption.

3 Computational Details

CVS-STEOMEE-CCSD and CVS-STEOMEE-CCSD+cT were implemented in a develop-
ment version of the CFOUR program package.? In all cases we included all canonical or-
bitals with orbital energies between -20 and +10 eV as active orbitals. A single core orbital
was included in the CVS treatment and STEOM principal IP solution in each calculation.
We observed only very small (a few 10s of meV) changes upon expansion of the active space.

The test set consisted of four vertical core excitation energies from each 1s core orbital
of H,0, CO, HCN, HF, HOF, HNO, CH,, CH,, NH,, H;CF H,COH, H,CO, H,CNH, and
H,NF. This includes a total of 94 vertical excitation energies. The core excitations were
selected as those for which we could reliably converge all methods tested, which typically
consisted of the first four excitations of dominant single excitation character. All calculations
utilized the aug-cc-pCV'TZ basis set with all electrons correlated, except for H,O where aug-
cc-pCVQZ was used. In order to avoid complications due to missing relativistic effects,
basis set incompleteness (particularly for Rydberg core excitations), geometric effects, and
data quality and availability, which would all be a concern when comparing directly to
experimental data, we have used full CVS-EOM-CCSDT as a benchmark, as in previous

work. %4

4 Results and Discussion

In the following discussion and in Figs. 1 and 2, the “shortened” names of the CVS-EOM
methods will be used, e.g. CCSD = CVS-EOM-CCSD, with the exception of TP-CCSD(1/2).
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Absolute Error (eV)
=
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Figure 1: Error distributions with respect to CVS-EOM-CCSDT for absolute vertical core
excitation energies.

The distribution of “absolute” (i.e. unmodified vertical) excitation energy deviations from
CCSDT are depicted in Figure 1. The absolute energy deviation for a method X is calculated
as F(X)— E(CCSDT) where E is a vertical core excitation energy. The “relative” excitation
energy deviations are depicted in Figure 2. These deviations are determined in two ways:
a) from excitation energies measured relative to the lowest excitation energy in each edge
E,q(X) = E(X) — E1(X), and b) from excitation energies measured downwards from the
ionization edge, E,.q(X) = IP(X) — F(X), and then deviations are computed as before. In
the former case the first excitation energy (which has zero relative error by definition) is not
included in the distribution. The use of the ionization edge or excitation onset as a reference
causes a shift of the entire spectrum which is method- and molecule-specific. Note that the
core ionization potentials for CVS-STEOMEE-CCSD are identical to EOMIP-CCSD, while
those for CVS-STEOMEE-CCSD+-cT are the same as “EOMIP-CCSD(2,3)”, i.e. EOMIP-
CC with a CCSD ground state and an EOMIP-CCSDT ionized state.

From Figure 1, it is clear that both “purely singles and doubles” methods, CCSD and

STEOM-CCSD are prone to large errors in absolute vertical core excitation energies. In the
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Figure 2: Error distributions for relative vertical excitation energy errors with respect to
CVS-EOM-CCSDT. (a) Error in position relative to lowest excitation energy within the
pre-edge region, and (b) error relative to the corresponding ionization edge.
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case of CCSD, errors are as large as 3 eV but uniformly positive, reflecting the tendency
of orbital relaxation to lower the excitation energies. STEOM-CCSD errors cover a slightly
larger range, with a few states predicted too low, but overall the performance of the two
methods is similar. The remaining methods: TP-CCSD(1/2) (which includes explicit orbital
relaxation), CCSD* (which includes explicit triple excitations in the excited state), and our
new method STEOM-CCSD+-cT, all improve significantly, lowering absolute errors to less
than 1 eV and less than 0.5 eV in the typical case.

On the other hand, Figure 2 represents a more useful picture of error characteristics by
including a shift of the spectrum for each ionization edge. Since such as shift is almost
always applied when comparing to experimental spectra, these error distributions reflect the
remaining errors which directly affect the structure of the pre-edge region. Large errors here
(larger than the experimental line widths of ~ 0.3 ¢V) can lead to errors in assignment and
analysis of experimental spectra. Errors for CCSD and STEOM-CCSD are indeed reduced,
although observed deviations from CCSDT cover almost 1.5 eV for CCSD and 2.5 eV for
STEOM-CCSD. Here we note that STEOM-CCSD does indeed display noticeably worse
performance compared to CCSD, with the larger number of outliers (almost all valence 7*
states) significantly stretching the error distribution. This effect is particularly striking in
Figure 2b where the otherwise nicely compact error distribution of STEOM-CCSD is ruined
by large positive errors for such valence states (here, a positive error indicates that the valence
states lie too low, or conversely that the Rydberg series lies too high). TP-CCSD(1/2) and
CCSD* essentially achieve the goal of relative errors in the range of 0.3 eV for both types of
relative error.

Errors for STEOM-CCSD+-cT relative to the ionization edge (Figure 2b) show a fairly
compact distribution but an overall downward shift of ~ 0.3 eV for the entire excitation
spectrum. This may be due to imbalance in the level of correlation of the core ionization
potential, which now includes full triples, and the excitation spectrum, which derives largely

from the valence electron affinity calculation which remain purely singles and doubles. An
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approximate treatment of triples in the core ionization potential calculation would further
speed up the calculation and also possibly correct for this excessive gap. When comparing to
the lowest excitation energy (Figure 2a), STEOM-CCSD+cT displays a compact distribution
flanked by two outlying wings. The positive wing is essentially entirely due to CH,, where
the gap between the excitation into the lone pair and the Rydberg states is overestimated by
0.6 eV. The negative wing is dominated by the fluorine K-edges of HOF and H,NF, which
underestimate the gap between the mixed 0*/3s excitation and the remaining excitations
by 0.4-0.5 eV. While these cases represent challenging electronic structures for STEOM-
CCSD+cT, the overall pre-edge structure is maintained well except for these single gaps.
Noticeably, the large errors for 7* valence states present in STEOM-CCSD are almost entirely

eliminated in STEOM-CCSD+cT due to the improved description of the core hole.

5 Conclusions and Future Work

The problem of orbital relaxation is central to the accurate computation of core-hole spectra.
While our previous work focused on an explicit inclusion of core relaxation via the use of
orbitals optimized for fractional core occupation, here we show that a simple modification of
similarity-transformed equation-of-motion theory can similarly address this important prob-
lem. Using full CVS-EOM-CCSDT as a benchmark, our new CVS-STEOMEE-CCSD+cT
method reduces errors in absolute vertical core excitation energies by a factor of ~ 5 com-
pared to CVS-EOMEE-CCSD, and also improves errors in pre-shifted excitation spectra to
less than 0.5 eV, except for the challenging cases of CH, and fluorine K-edges with valence-
Rydberg mixing. The addition of triple excitations only affects the core ionization calculation
and scales as O(n.n?n}) for n. active core, n, occupied, and n, virtual orbitals. This re-
sults in a modest increase in computational effort compared to standard CVS-EOM-CCSD,
since the solution of the electron-attachment problem is typically the main bottleneck in

STEOM-CC other than the ground state.
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We are currently implementing CVS-STEOM-CC excited state and transition properties,
which require little additional development over the standard theory.!*?* Importantly, the
inclusion of triple excitations in the core ionization potential calculation does not directly
enter the computation of these properties. However, inclusion of triple excitations should
indirectly improve the quality of the transition moments. We are currently working on im-
plementing these properties. In another vein, the approximate inclusion of triple excitations
may offer an equally effective and even more computationally inexpensive option. With the
advances developed in this and future work, we are confident that similarity-transformed
equation-of-motion theory will find significant use in core-hole spectroscopy, not only due to
the excellent accuracy exhibited in our benchmark, but also due to the ability of STEOM
to treat large numbers of excited states efficiently, its ability to treat core and valence states

on an even footing, and its proven computational efficiency.
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