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Abstract

The phenomenon of orbital relaxation upon excitation of core electrons is a ma-

jor problem in the linear-response treatment of core-hole spectroscopies. Rather than

addressing relaxation through direct dynamical correlation of the excited state via

equation-of-motion coupled cluster theory (EOMEE-CC), we extend the alternative

similarity-transformed equation-of-motion coupled cluster theory (STEOMEE-CC) by

including the core-valence separation (CVS) and correlation of triple excitations only

within the calculation of core ionization energies. This new method, CVS-STEOMEE-

CCSD+cT, significantly improves on CVS-EOMEE-CCSD and unmodified CVS-STEOMEE-

CCSD when compared to full CVS-EOM-CCSDT for K-edge core-excitation energies

of a set of small molecules. The improvement in both absolute and relative (shifted)

peak positions is nearly as good as for transition-potential coupled cluster (TP-CC),

which includes an explicit treatment of orbital relaxation, and CVS-EOMEE-CCSD*,

which includes a perturbative treatment of triple excitations.
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1 Introduction

Coupled cluster (CC) theory is one of the most powerful methods for treating dynamical cor-

relation in molecules, and is capable of computing highly accurate ground state energies of

small molecules.1 Beyond the ground state, coupled cluster has been extended to excited

states via the time-dependent linear-response formalism,2,3 the closely related equation-

of-motion approach,4–6 as well as other approaches such as the symmetry-adapted cluster

technique.7,8 Equation-of-motion coupled-cluster (EOM-CC) theory can be used for excited

(EE-EOM-CC), electron-attached (EA-EOM-CC), and ionized state (IP-EOM-CC) energies,

as well as multiply-ionized/attached states and even spin-flip excitations (SF-EOM-CC).9,10

EOM-CC is able to do this by taking advantage of the similarity transformation of the Hamil-

tonian, which guarantees size-extensivity of the excited state total energy (although exci-

tation energies are not in general size-consistent with respect to charge separation). While

the ground state CC wavefunction is single reference, the CI-like nature of the EOM-CC

wavefunction can capture significant multi-reference character of excited states. 11,12

Nooijen et al. proposed an alternative approach to EOM-CC of using a second similarity

transformation of the Hamiltonian, followed by diagonalization in a small (CIS-like) excita-

tion space.13,14 In this similarity-transformed equation of motion coupled cluster (STEOM-

CC) theory, the second similarity transformation simultaneously captures the dynamical

correlation of all low-lying excited states. In comparison, EOM-CC determines the wave-

function for a single excited state and incorporates dynamical correlation effects via explicit

inclusion of higher excitations in the excited state wavefunction. The STEOM-CC similarity

transformation uses the wavefunctions of a number of ionized and electron-attached states

in order to build the transformation. This transformation can be viewed as decoupling the

“active” single-electron excitations from the double excitations, much as the ground state

coupled cluster equations decouple the reference from single and double excitations. Thus,

while STEOM-CC obtains the excited state energies by diagonalization only in the space of

single excitations, it achieves an accuracy much greater than that of CIS or EOM-CCS.
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Both EOMEE-CCSD and STEOMEE-CCSD have been highly successful at describing

valence excited states of predominately single-excitation character, but some modifications to

the theory are necessary for application in the x-ray regime. X-ray excited states, necessary

for simulating spectra such as NEXAFS, XES, and RIXS,15 are not bound states, but are

resonances embedded deep in the valence continuum. For EOM-CC, the core-valence sepa-

ration (CVS) approach of Coriani and Koch16 has been highly successful, although it is also

possible to employ other techniques such as damped response,17 complex scaling/complex

absorption potential,18–20 etc. However, the CVS does not address the other major issue

encountered in the x-ray regime: orbital relaxation. Due to the presence of a core hole in

the excited state wavefunction, the valence orbitals undergo considerable contraction and

rotation. CVS-EOMEE-CCSD incompletely captures this effect and hence overestimates

core vertical excitation energies by 1–3 eV (vide infra). The addition of triple excitations,

either full CVS-EOMEE-CCSDT21 or an approximate treatment of triples,22 is necessary to

fully treat the relaxation effects within standard EOM-CC theory.

The CVS can be ported from EOM-CC to STEOM-CC in a relatively straightforward

manner.23 However, STEOM-CC also offers an alternative approach to the orbital relax-

ation issue. Here we propose a modification of CVS-STEOMEE-CCSD which efficiently and

accurate treats orbital relaxation for core excited states, which we dub CVS-STEOMEE-

CCSD+cT. This method compares favorably with standard CVS-(ST)EOM-CCSD, and

achieves similar performance compared to an approximate inclusion of triples (CVS-EOMEE-

CCSD*), as well as to an explicit inclusion of relaxation effects in the reference via TP-

CCSD.24
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2 Theoretical Methods

2.1 EOM-CC

The coupled cluster ground state25 is characterized by a non-hermitian similarity transforma-

tion of the Hamiltonian which decouples the reference from the space of excited determinants,

H̄ = e−T̂HeT̂ , (1)

T̂ =
N∑
k=1

T̂k =
∑
ai

tai a
†
aai +

1

4

∑
abij

tabij a
†
aa
†
bajai + · · · , (2)

〈Φ0|H̄|Φ0〉 = ECC , (3)

〈Φa1...ak
i1...ik

|H̄|Φ0〉 = 0, 0 < k ≤ N, (4)

where |Φ0〉 is a zeroth order description of the wave function (single determinant) and

|Φa1...ak
i1...ik

〉 are the kth excited determinants. In EOM-CCSD, the CC equations are solved

in the space of single and double excitations and hence N = 2.

The transformed Hamiltonian H̄, defined via the cluster operators T̂k, provides the means

to obtain excited states as well. The ground state coupled cluster energy is an eigenvalue of

H̄ with distinct right and left eigenfunctions due to the non-hermitian nature of the similarity

transformation,

H̄R̂(0)|Φ0〉 = ECCR̂(0)|Φ0〉, R̂(0) = 1̂, (5)

〈Φ0|L̂(0)H̄ = 〈Φ0|L̂(0)ECC , L̂(0) = 1̂ + Λ̂. (6)

Explicit diagonalization of the transformed Hamiltonian, shifted by the ground state

energy, yields the vertical excitation energies ωi and their associated right and left eigen-

4



functions,6

(
H̄ − ECC

)
R̂(m)|Φ0〉 = [H̄, R̂(m)]|Φ0〉 = ωmR̂(m)|Φ0〉, (7)

R̂(m) =
N∑
k=0

R̂k(m) = r0(m) +
∑
ai

rai (m)a†aai +
1

4

∑
abij

rabij (m)a†aa
†
bajai + · · · , (8)

〈Φ0|L̂(m)(H̄ − ECC) = 〈Φ0|L̂(m)ωm, (9)

L̂(m) =
N∑
k=1

L̂k(m) =
∑
ai

lia(m)a†iaa +
1

4

∑
abij

lijab(m)a†ia
†
jabaa + · · · , (10)

Note that the left-hand eigenfunction equations are not explicitly connected. The connected-

ness of the right eigenfunction equations allows for a solution purely in terms of R̂1 and R̂2.

Only one set of eigenfunctions is necessary to obtain the energy, although both are necessary

in order to calculate properties (including transition properties) and analytic gradients. 26,27

We will use R̂(m)/L̂(m) to refer to generic EOM-CC excitation/de-excitation operators, or a

subscript EE to refer specifically to the EOMEE-CC amplitudes. STEOMEE-CC requires,

in addition, singly ionized and electron-attached states which are formed via the application

of non-number-conserving excitation operators (here only for the right-hand side),

R̂IP (m) =
N∑
k=1

R̂IP ;k(m) =
∑
i

ri(m)ai +
1

2

∑
aij

raij(m)a†aajai + · · · (11)

R̂EA(m) =
N∑
k=1

R̂EA;k(m) =
∑
a

ra(m)a†a +
1

2

∑
abi

rabi (m)a†aa
†
bai + · · · (12)
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2.2 STEOM-CC

Similarity transformed equation-of-motion coupled cluster theory14 starts with the definition

of the transformed Hamiltonian, Ĝ,

{eŜ}Ĝ = H̄{eŜ}, (13)

Ĝ =
∑
pq

gpqa
†
paq +

1

4

∑
pqrs

gpqrsa
†
pa
†
qasar + · · · (14)

where the braces denote operator normal ordering (essentially, this ensures that {eŜ} has no

internal contractions). The transformation operator Ŝ has components in both the electron-

attached, or (1, 0), and ionized, or (0, 1), sectors of Fock space,

Ŝ = Ŝ+ + Ŝ−, (15)

Ŝ+ =
∑
k

Ŝ+
k =

∑
ae

saea
†
aae +

1

2

∑
abej

sbajea
†
aa
†
bajae + · · · , (16)

Ŝ− =
∑
k

Ŝ−k =
∑
im

smi a
†
mai +

1

2

∑
ijmb

sbmji a
†
ma
†
bajai + · · · , (17)

where e and m are associated with sets of nv;act active virtual and no;act active occupied

orbitals (transformed back to the canonical MO space).

As noted by Nooijen,14 the Ŝ1 amplitudes are not necessary for the solution of the

STEOMEE-CC equations as they simply cause rotations within the singles excitation space,

and hence a diagonalization within the full singles space is invariant. In fact, diagonalization

within the full rather than the active singles space is desirable as the portion of the solution

falling outside the active space serves as a measure of active space insufficiency.14

The transformation amplitudes Ŝ± may be easily obtained by renormalization of a set of
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solutions of the EOMIP-CC and EOMEA-CC equations,

Sbmji = −
no;act∑
κλ=1

rbji(λ)
(
U−1−

)
λκ
δκm, (18)

Sbaje =

nv;act∑
κλ=1

rbaj (λ)
(
U−1+

)
λκ
δκe, (19)

where the extra minus sign for the IP-coefficients comes from the contraction over the hole

line λ in (18). The matrices U± are the transformation matrices which diagonalize the

STEOM effective Hamiltonian. They are derived from the single excitation parts of the

IP/EA solutions,

(U−)κλ =
∑
n

δκnrn(λ), (20)

(U+)κλ =
∑
f

δκfr
f (λ). (21)

In (18)–(21), the factor δκp indicates that the active orbitals (indexed by κ) are simply

a subset of the canonical molecular orbitals (indexed by p), typically the orbitals within a

small energy range around the Fermi level. The solutions R̂IP/EA(λ) typically correspond

to principal ionizations from and electron attachments to these active orbitals. The active

orbitals may also be chosen as linear combinations of molecular orbitals,23,28 with the proper

transformation matrix replacing the Kronecker delta.

The excited states are obtained by solving the eigenvalue equations,

[Ĝ, R̂1(m)]|Φ0〉 = ωmR̂1(m)|Φ0〉. (22)

The left-hand eigenvalue equations formally require a solution in the full singles and doubles

space, although computation of properties and transition strengths can be simplified by a

perturbative approximation of L̂2.
14
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2.3 Core Excited States

The direct calculation of core excited states, even for the 1s orbitals of first row elements

with energies on the order of 100–500 eV, is fraught with difficulties. Standard EOMEE-CC

calculations are difficult or impossible to converge, and even when convergence is achieved,

the energies may be contaminated by spurious couplings to high-lying valence excited deter-

minants which form an unphysical discretization of the valence continuum.29

As a remedy to this problem, Coriani and Koch16 adapted the core-valence separation

scheme first introduced by Cederbaum, Domcke, and Schirmer30 to EOM-CC. In CVS-EOM-

CC, amplitudes which correspond to purely valence excitations are explicitly zeroed. This

leaves only components involving one or more core orbitals (indicated by capital roman

letters),

R̂CV S =
∑
aI

raI (m)a†aaI +
1

2

∑
abIj

rabIj(m)a†aa
†
bajaI +

1

4

∑
abIJ

rabIJ(m)a†aa
†
baJaI + · · · . (23)

This formulation eliminates all core-valence couplings and recovers the core-excited states as

bound solutions. A number of variations on this basic theme exist, such as including only one

or a small number of symmetry-related core orbitals in the “core” set and treating the rest

as valence,21 solving the ground state equations in the frozen-core approximation,31 etc. In

this work we target a single core orbital in each calculation and define R̂ as in (23), with an

all-electron solution of the ground state. Note that we purposefully avoid test molecules with

symmetric nuclei as these cases require either treating the symmetric and anti-symmetric

core molecular orbitals equally or breaking the symmetry via orbital localization.

Within STEOMEE-CCSD, the CVS can be applied in two places, giving rise to CVS-

STEOMEE-CCSD. First, the selection of the active space must include the core orbital(s)

of interest, and when solving for these core ionization wavefunctions the CVS is necessary

to stabilize convergence. Second, the solution of the eigenvalue equations (22) may also use

the CVS in defining the excitation operator R̂1 in order to accelerate the computation. Note
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that if only one core orbital is included in the CVS treatment, then the diagonalization step

scales as only O(nrootn
2
v), where nv is the number of virtual orbitals. The application of the

CVS to the R̂IP operator does not induce a similar restriction on the Ŝ− operator. Because

this operator contains information from both valence and core ionized wavefunctions, it must

necessarily span the full molecular orbital space. The combined valence and core nature of Ŝ−

also allows for the simultaneous and balanced determination of core and valence excitation

energies.∗ In principle it may be possible to construct an Ŝ− and hence Ĝ operator using only

core ionization wavefunctions if no valence excitations are desired. We have not explored

this possibility as the valence IP solutions are rarely a bottleneck in practice.

The CVS eliminates most convergence issues and recovers excitation energies which are

systematically improvable towards the experimental value with increasing basis set size and

level of excitation.21,32 However, at the singles and doubles level, large errors remain which

are attributable to the significant orbital relaxation from the ground to the excited core-hole

state. We previously introduced the transition-potential coupled cluster method (TP-CC), 24

which accounts for orbital relaxation explicitly by performing the calculation with molecular

orbitals optimized for a fractional core-hole. Instead, the STEOMEE-CC approach offers an

alternative.

The ionization part of the similarity transformation, defined by the solution of the stan-

dard EOMIP-CC equations, provides all of the necessary dynamical correlation for the oc-

cupied orbitals. Then, since the inclusion of triple excitations in EOMEE-CC provides a

necessary level of correlation to account for core-hole orbital relaxation, we propose that

inclusion of triple excitations, only in the EOMIP-CC solutions, is sufficient to account for

orbital relaxation in STEOMEE-CC. This modification introduces an additional transfor-

mation operator Ŝ−3 ,

Scbmkji = −
nO;act∑
κλ=1

rcbkji(λ)
(
U−1−

)
λκ
δκm,

∗The ground state, IP/EA, and Ĝ computations may be shared, although separate diagonalization steps
are still necessary as the core and valence wavefunctions are not strictly orthogonal and have different
structure. The diagonalization(s) are computational very inexpensive, however.
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where at least one of ijk must be an active core orbital, and κλ refer to the nO;act active

core orbitals. Since STEOMEE-CC only requires elements of Ĝ with at most two lines at

the top and bottom, diagrammatically, the only modifications necessary to the formation of

the twice-transformed Hamiltonian are,

gmi ← Scbmkji 〈jk‖bc〉,

gmaei ← −Sabmijk 〈jk‖be〉.

The diagonalization step proceeds exactly the same as in unmodified CVS-STEOM-CCSD.

We denote this new method as CVS-STEOMEE-CCSD+cT (“singles and doubles plus core

triples”). For a single core orbital, the solution of the CVS-EOMIP-CCSDT equations scales

as O(n2
on

4
v), which is the same as the ground state CCSD equations. Also note that the

connectivity of the EOMIP-CCSDT equations is preserved even without including triple

excitations in the ground state.

Although we expect CVS-STEOMEE-CCSD+cT to be similar in overall accuracy to the

existing CVS-EOM-CCSD* and TP-CCSD(1/2) methods, there are several advantages to

CVS-STEOMEE-CCSD+cT over these alternatives. First, CVS-STEOMEE-CCSD+cT is

more computationally efficient than CVS-EOM-CCSD* as triple excitations are only included

in the ionization potential calculations, and not in the excitation energy calculation. In the

case of CVS-EOM-CCSD*, the triple excitation contributions must also be included for each

excitation, while for CVS-STEOMEE-CCSD+cT these contributions are only included once

for each core orbital, irrespective of the number of excitations sought from that orbital.

Second while we may expect CVS-STEOMEE-CCSD+cT and TP-CCSD(1/2) to incur sim-

ilar overall computational costs, a TP-CCSD calculation is inherently specific to one core

orbital/edge, as the reference orbitals must be specifically optimized. In CVS-STEOMEE-

CCSD+cT the reference orbitals are the standard canonical orbitals, and importantly, the

valence excitations obtained are almost precisely the same as within standard STEOM-CCSD
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(except for a very small core orbital contribution). We expect this property to be important

for the calculation of excited state x-ray spectra, e.g. for transient XAS spectroscopy. A

final important advantage of STEOM-CC in general is that a large number of excitations

can be calculated without significantly raising computational cost or memory consumption.

3 Computational Details

CVS-STEOMEE-CCSD and CVS-STEOMEE-CCSD+cT were implemented in a develop-

ment version of the CFOUR program package.33 In all cases we included all canonical or-

bitals with orbital energies between -20 and +10 eV as active orbitals. A single core orbital

was included in the CVS treatment and STEOM principal IP solution in each calculation.

We observed only very small (a few 10s of meV) changes upon expansion of the active space.

The test set consisted of four vertical core excitation energies from each 1s core orbital

of H2O, CO, HCN, HF, HOF, HNO, CH2, CH4, NH3, H3CF H3COH, H2CO, H2CNH, and

H2NF. This includes a total of 94 vertical excitation energies. The core excitations were

selected as those for which we could reliably converge all methods tested, which typically

consisted of the first four excitations of dominant single excitation character. All calculations

utilized the aug-cc-pCVTZ basis set with all electrons correlated, except for H2O where aug-

cc-pCVQZ was used. In order to avoid complications due to missing relativistic effects,

basis set incompleteness (particularly for Rydberg core excitations), geometric effects, and

data quality and availability, which would all be a concern when comparing directly to

experimental data, we have used full CVS-EOM-CCSDT as a benchmark, as in previous

work.24

4 Results and Discussion

In the following discussion and in Figs. 1 and 2, the “shortened” names of the CVS-EOM

methods will be used, e.g. CCSD = CVS-EOM-CCSD, with the exception of TP-CCSD(1/2).
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Figure 1: Error distributions with respect to CVS-EOM-CCSDT for absolute vertical core
excitation energies.

The distribution of “absolute” (i.e. unmodified vertical) excitation energy deviations from

CCSDT are depicted in Figure 1. The absolute energy deviation for a method X is calculated

as E(X)−E(CCSDT) where E is a vertical core excitation energy. The “relative” excitation

energy deviations are depicted in Figure 2. These deviations are determined in two ways:

a) from excitation energies measured relative to the lowest excitation energy in each edge

Erel(X) = E(X) − E1(X), and b) from excitation energies measured downwards from the

ionization edge, Erel(X) = IP (X)− E(X), and then deviations are computed as before. In

the former case the first excitation energy (which has zero relative error by definition) is not

included in the distribution. The use of the ionization edge or excitation onset as a reference

causes a shift of the entire spectrum which is method- and molecule-specific. Note that the

core ionization potentials for CVS-STEOMEE-CCSD are identical to EOMIP-CCSD, while

those for CVS-STEOMEE-CCSD+cT are the same as “EOMIP-CCSD(2,3)”, i.e. EOMIP-

CC with a CCSD ground state and an EOMIP-CCSDT ionized state.

From Figure 1, it is clear that both “purely singles and doubles” methods, CCSD and

STEOM-CCSD are prone to large errors in absolute vertical core excitation energies. In the
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(a)

(b)

Figure 2: Error distributions for relative vertical excitation energy errors with respect to
CVS-EOM-CCSDT. (a) Error in position relative to lowest excitation energy within the
pre-edge region, and (b) error relative to the corresponding ionization edge.
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case of CCSD, errors are as large as 3 eV but uniformly positive, reflecting the tendency

of orbital relaxation to lower the excitation energies. STEOM-CCSD errors cover a slightly

larger range, with a few states predicted too low, but overall the performance of the two

methods is similar. The remaining methods: TP-CCSD(1/2) (which includes explicit orbital

relaxation), CCSD* (which includes explicit triple excitations in the excited state), and our

new method STEOM-CCSD+cT, all improve significantly, lowering absolute errors to less

than 1 eV and less than 0.5 eV in the typical case.

On the other hand, Figure 2 represents a more useful picture of error characteristics by

including a shift of the spectrum for each ionization edge. Since such as shift is almost

always applied when comparing to experimental spectra, these error distributions reflect the

remaining errors which directly affect the structure of the pre-edge region. Large errors here

(larger than the experimental line widths of ∼ 0.3 eV) can lead to errors in assignment and

analysis of experimental spectra. Errors for CCSD and STEOM-CCSD are indeed reduced,

although observed deviations from CCSDT cover almost 1.5 eV for CCSD and 2.5 eV for

STEOM-CCSD. Here we note that STEOM-CCSD does indeed display noticeably worse

performance compared to CCSD, with the larger number of outliers (almost all valence π∗

states) significantly stretching the error distribution. This effect is particularly striking in

Figure 2b where the otherwise nicely compact error distribution of STEOM-CCSD is ruined

by large positive errors for such valence states (here, a positive error indicates that the valence

states lie too low, or conversely that the Rydberg series lies too high). TP-CCSD(1/2) and

CCSD* essentially achieve the goal of relative errors in the range of 0.3 eV for both types of

relative error.

Errors for STEOM-CCSD+cT relative to the ionization edge (Figure 2b) show a fairly

compact distribution but an overall downward shift of ∼ 0.3 eV for the entire excitation

spectrum. This may be due to imbalance in the level of correlation of the core ionization

potential, which now includes full triples, and the excitation spectrum, which derives largely

from the valence electron affinity calculation which remain purely singles and doubles. An
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approximate treatment of triples in the core ionization potential calculation would further

speed up the calculation and also possibly correct for this excessive gap. When comparing to

the lowest excitation energy (Figure 2a), STEOM-CCSD+cT displays a compact distribution

flanked by two outlying wings. The positive wing is essentially entirely due to CH2, where

the gap between the excitation into the lone pair and the Rydberg states is overestimated by

0.6 eV. The negative wing is dominated by the fluorine K-edges of HOF and H2NF, which

underestimate the gap between the mixed σ∗/3s excitation and the remaining excitations

by 0.4–0.5 eV. While these cases represent challenging electronic structures for STEOM-

CCSD+cT, the overall pre-edge structure is maintained well except for these single gaps.

Noticeably, the large errors for π∗ valence states present in STEOM-CCSD are almost entirely

eliminated in STEOM-CCSD+cT due to the improved description of the core hole.

5 Conclusions and Future Work

The problem of orbital relaxation is central to the accurate computation of core-hole spectra.

While our previous work focused on an explicit inclusion of core relaxation via the use of

orbitals optimized for fractional core occupation, here we show that a simple modification of

similarity-transformed equation-of-motion theory can similarly address this important prob-

lem. Using full CVS-EOM-CCSDT as a benchmark, our new CVS-STEOMEE-CCSD+cT

method reduces errors in absolute vertical core excitation energies by a factor of ∼ 5 com-

pared to CVS-EOMEE-CCSD, and also improves errors in pre-shifted excitation spectra to

less than 0.5 eV, except for the challenging cases of CH2 and fluorine K-edges with valence-

Rydberg mixing. The addition of triple excitations only affects the core ionization calculation

and scales as O(ncn
2
on

4
v) for nc active core, no occupied, and nv virtual orbitals. This re-

sults in a modest increase in computational effort compared to standard CVS-EOM-CCSD,

since the solution of the electron-attachment problem is typically the main bottleneck in

STEOM-CC other than the ground state.
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We are currently implementing CVS-STEOM-CC excited state and transition properties,

which require little additional development over the standard theory.14,23 Importantly, the

inclusion of triple excitations in the core ionization potential calculation does not directly

enter the computation of these properties. However, inclusion of triple excitations should

indirectly improve the quality of the transition moments. We are currently working on im-

plementing these properties. In another vein, the approximate inclusion of triple excitations

may offer an equally effective and even more computationally inexpensive option. With the

advances developed in this and future work, we are confident that similarity-transformed

equation-of-motion theory will find significant use in core-hole spectroscopy, not only due to

the excellent accuracy exhibited in our benchmark, but also due to the ability of STEOM

to treat large numbers of excited states efficiently, its ability to treat core and valence states

on an even footing, and its proven computational efficiency.
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