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Tolerancing for an Apple Pie:
A Fundamental Theory
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Tolerancing began with the notion of limits imposed on the dimensions of realized parts
both to maintain functional geometric dimensionality and to enable cost-effective part fab-
rication and inspection. Increasingly, however, component fabrication depends on more
than part geometry as many parts are fabricated as a result of a “recipe” rather than
dimensional instructions for material addition or removal. Referred to as process toleran-
cing, this is the case, for example, with IC chips. In the case of tolerance optimization, a
typical objective is cost minimization while achieving required functionality or “quality.”
This article takes a different look at tolerances, suggesting that rather than ensuring
merely that parts achieve a desired functionality at minimum cost, a typical underlying
goal of the product design is to make money, more is better, and tolerances comprise addi-
tional design variables amenable to optimization in a decision theoretic framework. We
further recognize that tolerances introduce additional product attributes that relate to
product characteristics such as consistency, quality, reliability, and durability. These
important attributes complicate the computation of the expected utility of candidate
designs, requiring additional computational steps for their determination. The resulting
theory of tolerancing illuminates the assumptions and limitations inherent to Taguchi’s
loss function. We illustrate the theory using the example of tolerancing for an apple pie,
which conveniently demands consideration of tolerances on both quantities and processes,
and the interaction among these tolerances. [DOI: 10.1115/1.4057040]
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1 Introduction

It is likely that the modern concepts of tolerancing have their
origins in the notion of interchangeability of parts [1,2]. Such con-
cepts date back over half a millennium as Gutenberg’s press (1450s)
relied on interchangeable letters. Over the ensuing years, it became
clear that making parts interchangeable is not as easy as one might
expect. Nonetheless, the emergence of steam power in the 1780s
demanded that parts be made with challenging accuracy. Benjamin
Franklin reported, in 1785, of a French gunsmith making muskets
with interchangeable parts. And, 100 years later, with emergence
of the Industrial Age, mass manufacturing on an assembly line
required part interchangeability.

Parker [3,4], working at the Royal Torpedo Factory in Scotland,
is credited by Liggett [5] with being the first to formally address
“position tolerance theory.” Since that time, tolerance theory has
emerged as a major subdiscipline of engineering design and manu-
facturing. In the earlier years, tolerances were mainly associated
with part geometry resulting in the discipline of geometric toleran-
cing. The need to properly interpret part specifications led to stan-
dards for dimensional tolerancing [6] and, with the emergence of
computers, Requicha and Voelcker [7-10] developed a theory of
geometric modeling that enabled computer-aided design.

A key problem in the setting of tolerances is referred to as the
problem of “stack-up” [11]. This problem occurs when a series of
parts must fit or work together within an overall tolerance. Problems
of this sort led to the notion of optimizing the allocation of the indi-
vidual part tolerances to achieve the overall desired tolerance at the
minimum cost [12—14].
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A major contributor to a theory of tolerancing is Taguchi [15].
His philosophy may be summarized in four statements: “It is
better to be precise and inaccurate than being accurate and impre-
cise; Quality should be designed into the product and not inspected;
Quality is achieved by minimizing the deviation from the target;
[and] The cost of quality should be measured as a function of the
deviation from target.” [16] This philosophy resulted in the
concept of the Taguchi loss function.

More recently, it is noted that several products are described not
so much by their dimensions as by a “recipe” according to which
they are manufactured. This is the case of integrated circuit chips
and food products such as an apple pie. In these cases, tolerances
largely determine the quality, lifetime, or reliability of the
product. These are important attributes not often captured by
product descriptions as they can significantly impact the proclivity
of consumers to purchase a product. Again, recognizing that
demanding narrower tolerances results in higher costs, several
researchers have sought to meet a set of performance requirements
at minimum cost [17,18].

The problem with minimizing manufacturing cost is that this
objective results in the trivial solution of manufacturing none of
the product. If the manufacturer manufactures no product, the man-
ufacturing cost is $0.00. This, obviously, is not a helpful solution.
To render the solution helpful, it is then necessary either to
impose constraints on the optimization problem or to change the
objective. Constraints typically take the form of a set of product
requirements, whereas an alternative objective may seek
minimum cost per item produced. Hazelrigg and Saari [19] note
that constraints only remove alternatives from the allowable set of
design choices and, if they remove the optimal point, that is, if
the constraints are active, they always penalize performance.
Thus, for optimal design, constraints should be avoided to the
extent possible. A way to avoid constraints is to change the objec-
tive function to one that more accurately reflects the preference of
the responsible decision maker. Noting that the underlying
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objective of a profit-making organization is to make money,
Hazelrigg [20] presents a framework for product design optimiza-
tion with this objective that also accounts for uncertainty.'

Tolerances introduce the opportunity to intentionally allow vari-
ability in a product, the incentive being to reduce the cost of man-
ufacture. As noted, this variability results in attributes of concern to
customers of the product that obtain directly from the
product-to-product variation. Product variability introduces risk
into a purchase decision that is not present in a deterministic
product. Optimization of tolerances must take this risk into
account. Thus, the purpose of this article is to show that the basic
logic of Hazelrigg’s framework, with minor modification, can be
applied to the optimization of both geometric and process tolerances
separately or concurrently with the product design, with the objec-
tive being the maximization of a measure of net revenue or profit.
The medium used to illustrate this application is the tolerancing
of an apple pie.” Although the optimization framework is designed
to an objective of profit maximization, it is conveniently adaptable
to other valid preferences.

2 A General Framework for Tolerancing

Hazelrigg and Saari [19] show that optimal system design, includ-
ing tolerances, demands that all design decisions be made using an
overall system preference. Thus, the underlying tenet of this article
is that the purpose of tolerancing is to increase the value, measured
as expected utility, E{u}, of a product to the producer of the
product. This is a sensible tenet for a number of reasons. First, it is
the producer of the product who decides what the tolerances should
be and, for rationality, this choice must be based on a preference of
the decision maker. Second, for a product that has multiple consum-
ers, it is, in general, not possible to express a joint consumer prefer-
ence that would enable rational choice of tolerances [21,22]. Third,
for most products, the consumers are too far removed from the tech-
nical aspects of a product to care about tolerances or even understand
them. Fourth, vendors or parts suppliers have conflicting interests
with the producer and, for this and other reasons, cannot be left to
select the tolerances on the parts they produce.

With this in mind, the product design optimization framework
that shall be used here is a modification of Hazelrigg’s framework
as shown in Fig. 1. The purpose of this framework is to enable

'The fact that this example demands the imposition of a self-imposed constraint
highlights the fact that minimization of cost is not a valid preference. It is important
that a theory of tolerancing enable the use of a valid preference that does not require
self-imposed constraints.

2Approximately 50 million apple pies are manufactured annually for sale in grocery
stores, generating an annual revenue of about a quarter of a billion dollars in 2020 (data
from Information Resources, Inc.). The tolerancing of an apple pie is very much an
engineering problem taken quite seriously by this industry, and it illustrates issues of
tolerancing not obvious in more complex examples.
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computation of an objective function, namely, expected utility,
E{u}, which is based on a logical and defensible preference of
the relevant decision maker and that enables product design optimi-
zation under uncertainty. There are three entry points in this frame-
work: description of a baseline design, specification of a set of
beliefs defined as “exogenous” variables that define the extant
uncertainty, and the expression of a preference from which we
will be able to determine a utility measure. A design is described
fully by its configuration, M, its dimensions, x, and tolerances, T,
on the variables x. These are deterministic design decision variables
subject to optimization. Typically, M consists of a set of statements
that describe the system in detail,® and the x are continuous real
numbers that may include weights, voltages, volumes, and other
such variables in addition to dimensions. The values of the vari-
ables, x, are toleranced, whereas the statements that comprise M
are not. While instantiations of the product or system achieve the
design descriptors, M, achieved values of x, X, will vary from the
design whenever T #0. The variables T comprise the tolerances
applied to X,4 while (M, x, T) are the attributes of the system
that are a function of the variability in X as determined by T. The
values of 7 would typically, but not necessarily, be determined by
a Monte Carlo simulation, taking into account the degree to
which the tolerance is not held with precision. 7 is an aggregate
parameter accounting for the variability in the achieved values X.
a(M,x) are the as-designed system attributes taking M and x to
have their nominal values, that is, with T =0. We might refer to
the attributes a as performance attributes, such as maximum
speed, acceleration, and gas mileage for a car, and the attributes 7
as quality attributes, such as reliability and lifetime. C(M, x, T) is
the cost of producing the system, and ¢(z, a, P, ) is the demand
for the system as a function of its attributes, = and a, price, P, and
possibly time, > P is a design variable chosen to maximize
E{u}. a and C are differentiable functions of x. R is the gross
revenue derived from the system. y are exogenous variables that
specify all uncertainties related to the system performance, cost,
demand, and other variables such as the weather. u, utility, is a
risk-adjusted measure of system performance in a specific simula-
tion case obtained by optimizing price. u is determined by the
overall system preference, for example, to make money, more is
better. The final measure of the system performance is expected
utility, E{u}, again typically obtained via a Monte Carlo simulation.
Optimization loops are used to optimize the tolerances, T, and

3For example, such a statement might be, “The car has four doors.” These state-
ments may include descriptions of manufacturing processes, operations, and mainte-
nance, and even distribution, sales, and disposal/recycling.

“Tolerances may be expressed in any convenient form that describes the variability
in the achieved variables, X, of x. For example, this may take the form of probability
distributions on X.

This framework enables C, R, and ¢ to be functions of time, 7.
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system design variables x. With this simple overview, we will now
look at the elements of this framework in more detail.

Without denying the possibility of a producer having alternative
preferences, the following is based on the notion that the underlying
preference of a producer is to make money, and more is better. A
full preference consists of three parts [23], the fundamental prefer-
ence—taken here to be for money—a time preference, and a risk
preference. A time preference is generally expressed through dis-
counting, and the risk preference is expressed through the curve
of utility versus money. The net value derived from a product, cor-
rected for its time value (discounted), is given by

Today
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where V is the net present value of profits, ¢ is the time per period,
and r is the discount rate per time interval (r=0 infers that equal
sums of money have equal value independent of when they are
received). Revenues are generated by selling things, and costs are
generated by buying things. Normally, one sells the product pro-
duced, and the revenue generated at time r by the sale of the
product is R(t) = q,(t)P(t), where g,(t) is the quantity sold at time
t and Py(¢) is the price at which it is sold. It is possible, however,
that the production of the product produces other salable items
(things that may appear to be “waste”), and the revenue generated
by their sale should be included.

Risk preferences derive from a decision maker’s willingness to
wager on an uncertain return. Generally this is calculated as a func-
tion of utility and presented as an Arrow-Pratt [24,25] measure of
absolute risk aversion (ARA).
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where 0x=(x—Xg) and 6T =(T —Typ). If we take the reference
point (Xo, To) to be a maximizing point of E{u(xq, T¢)}, then the
elements of the first-order term on the right-hand side of Eq. (3)
are zero. In addition, the elements of the second-order cross deriv-
atives, 62E{u}/(6‘XT8TT) =62E{u}/(8TT6XT), are zero, leaving,
to second order,

2
E{u(x, T)} — E{u(xo, To)} =%5XT8 gx{zu} oX
Xo
1 o E{u)
—5TT ST +--- 4
+2 o1 . + 4)

Note that we write the Taylor series in terms of the performance var-
iable E{u}. This differs from the work of Zhang et al. [31] and
Tarcolea and Paris [28], for example, who write the series in
terms of the Taguchi loss function. While these authors then
assume that the first-order term is zero since the loss function
achieves a minimum at the target value, when viewed as written
in Eq. (3), this would not appear to be the case in general. In
order that the first-order terms in Eq. (3) be zero, it is necessary
that the expected utility of the design be maximized with respect
to x and T, as the condition of design optimality for the variables
x is 0E{u}/ox =07, and for T is dE{u}/0T =07, This assures that
the second-order terms in Eq. (3), which are, in fact, negative loss
terms (i.e., benefit terms), dominate and that the loss related to T
is axisymmetric and quadratic about the reference design point
(%0, Tp) only if (xo, Tp) maximizes E{u}. Thus, to be precise, the
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where u(V) denotes the “utility” of V and p(V) is a measure of
ARA. Thus, if p(V) is positive, the individual is risk averse; if it
is negative, the individual is risk proverse; and if it is zero, the
individual is risk neutral. Utility is a cardinal measure commonly
determined via a decision maker’s response to a von Neumann—
Morgenstern lottery [26]. Utility is typically a random variable,
whereas expected utility is a deterministic, ordinal variable. Thus,
the use of expected utility as an objective for optimization converts
the nondeterministic function u into a deterministic objective func-
tion, E{u}, as is mathematically required for its existence [27].

The quantity of product sold at each point in time depends on the
demand for the product, which is a function of its attributes and its
price. The attributes of the product are a result of its design and its
tolerances. Variability in products is the result of nonzero toler-
ances. The more nearly identical that each individual product is to
anominal product, the more predictable it will be, and predictability
of a product may itself be an attribute of concern to customers, fre-
quently referred to as the product’s “quality” [28-30]. For example,
customers are often concerned about getting a “lemon,” particularly
in the purchase of a car, and they show this preference by paying
more for cars that have good reliability reports.

3 The Mathematics of Tolerances

Referring again to Fig. 1, the elements of M describe the configu-
ration of a product or a system. These elements typically are not con-
tinuous variables nor are tolerances applied to them. The variables, x,
on the other hand, are continuous real numbers and typically are
assigned tolerances. This differentiation between M and x, together
with the notion that variations in x are small because of small T,
enables us to write the expected utility of a design in the form of a
Taylor series in a region near a reference design, (Xo, To).

o1 oot
) + 5(5}( ,6T)

( ox ) N 3)
(x0,To) oT

optimization of tolerances must be done concurrent with the optimi-
zation of the design variables, x.

Unfortunately, concurrent optimization of both x and T can be a bit
onerous, so we may be inclined to simplify the procedure with some
approximations. To begin, it is reasonable to assume that the toler-
ances do not allow variations in the achieved values X that are large
enough to significantly alter the attributes a. This enables us to opti-
mize the design with respect to x while holding T = 0. Next, assuming
that 0E{u}/0T =~ 0 in the vicinity of Ty =0 and that typical tolerance
values are such that 6T is small, we can examine the rightmost term
of Eq. (4) assuming that the system is optimized only with respect
to x, and we will take Ty =0. Under these conditions, the negative
of this term approximates the Taguchi loss function.

OPE{u)
a(x, T)?

1
L~=8TT

2

F[-E{u}]
oT?

}5T ®)
To

Note that *[—E{u})/0T*=H is a positive definite Hessian matrix.
Therefore, to second order, a surface of constant loss forms an
n-dimensional hyperellipsoid, with the value of the loss dependent
on the eigenvalues and eigenvectors of the Hessian matrix. Further-
more, although typical formulations of loss functions in the case of
tolerances on multiple elements of x tend to treat the losses as inde-
pendent of each other, this formulation shows that, in general, they
are not independent. Indeed, the Taguchi loss functions are not line-
arly additive, that is, the total loss is not equal to the sum of the indi-
vidual loss functions, and it would be a mistake to optimize tolerances
individually.
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We now see that the Taguchi loss function relies on several under-
lying assumptions that were not obvious in the absence of the afore-
mentioned derivation. First, it requires that the basic system design,
namely, the variables x, be chosen to maximize E{u}, thus taking
uncertainty and risk into account. Second, it requires that §T be
small. But, just because 6T is small does not mean that nonzero tol-
erances necessarily have a small impact on E{u}. Indeed, tolerance
variables can have associated attributes, 7, such as reliability or
safety, that have profoundly large impact on E{u}. In these cases,
it is important that the decision maker’s risk preference be taken
into account. The Taguchi loss function does not do this.

So far, we have recognized that nonzero tolerances, T, impart
losses to the value of a system or a product. This alone would
prompt a selection of T =0. However, countering this, tolerances
come with an associated cost, and the smaller the tolerance, the
higher the cost. Accordingly, the total loss is the sum of the loss
function, Eq. (5), and the cost of the tolerance Cy(T),°

1 P[—E{u}]
Ly ~ =6TTd ———=| 16T +i Cp(T 6
or ¥ 5 { T |, i Cr(T) (6)
where the row vectori=[1, 1, ..., 1]. As noted in Sec. 5, it should

be expected that the distribution of X would be correlated with
Cr(T). At this point, one might be inclined to minimize L,,,. But
this would fail to account for the risk preference of the decision
maker. Instead, one should maximize E{u}. This is a simple task
only if the decision maker is risk neutral, that is, if utility equals
profit, or if the variation in u because of the nonzero tolerances is
sufficiently small that this is a reasonable approximation. Unfortu-
nately, as noted earlier, the latter is not always the case as the quality
attributes of a product have the potential to significantly affect
demand. Hence, the selection of optimal tolerances is not as easy
as the Taguchi method would have us believe.

Before proceeding further, it is appropriate to consider the terms
that comprise the Hessian matrix in Eq. (6). This matrix provides an
estimate of the expected utility loss because of a degradation (real or
perceived) in product quality, reflected as a shift in the demand
curve. Taking the variation in demand to be a continuous, differen-
tiable function of the quality attributes, we can write the demand
function in the form of a Taylor series,

a
WO =g+ Jor—eLsp... 0
ot PO

where e = —(P/q)(0q/6P) is the price elasticity. To minimize the loss
from reduced demand, depicted as the shaded area in Fig. 2, we
must re-optimize the price.

Let Ag =(dq/dr)ét denote the shift in the demand curve resulting
from a nonzero tolerance specification, ag be the increase in mar-
ginal production cost per unit, that is, the slope of the marginal
supply cost curve, and S, be the marginal supply cost at a produc-
tion rate of go. Then, the loss is given by

L=—qo8P — (P — So + 6P)5q + %&ﬁ ®)
where

sg=—eXsp—ng )
Py

Thus, L is a quadratic function of 6P. Solving for the minimum loss,
the optimum value of 6P is given by

) Aq(Py + aseqo) — Pogo(1 — e) — eqoSo

OP = —P,
eqo(2Py + aseqo)

(10)

®L. may contain additional terms relating to expenses such as warranty costs and
liability costs. We include these in the loss function to emphasize that they are associ-
ated with tolerances.
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This yields the interesting, albeit intuitive, result that, for high
demand elasticity (somewhat greater than unity), increasing toler-
ances results in lower optimal product prices, whereas for inelastic
demand, increasing tolerances results in higher optimal prices.
Examples show that optimal adjustment of product price to match
the selected tolerances can significantly improve profitability.

4 Computational Procedure

The computational framework follows the logic flow shown in
Fig. 1, which outlines a procedure for the optimization of the
product design, including tolerances, as a unified process. Unfortu-
nately, for most products, this can lead to a highly complex and time-
consuming set of computations. The complexity of the problem
makes it desirable to resort to Monte Carlo methods, which sacrifice
computational efficiency to achieve a more simplified and
less-prone-to-error mathematical formulation. However, even this
may leave the problem intractable. As a result, it is desirable to sepa-
rate the dimensional optimization of the product from the tolerance
optimization. The assumptions leading to Eq. (5) enable this separa-
tion. Thus, in practice, it is convenient to apply the framework in two
steps, first the optimization of the “dimensions” (target values of x) of
the product and then, based on these optimized values, the optimiza-
tion of the tolerances placed on the target values.

We shall begin our outline of the computational procedure under
the assumption that the basic product design has already been opti-
mized. Keep in mind that the validity of Eq. (5) depends on this
being the case. Tolerances place “constraints” on the variability of
the outcomes, X, of the decisions, X, with a concomitant cost. The
goal of the computational procedure is to enable a selection of
these constraints such that they maximize the value, measured as
the expected utility, of the product to the producer. Under the condi-
tion that the basic product design, assuming all x values achieve their
nominal value, is optimized to achieve maximum expected utility,
Egs. (8)—(10) afford some degree of independence from the basic
design in the consideration of tolerances. Indeed, in the case that
the decision maker is risk neutral, that is, for whom utility equals
profit, minimizing the expected loss is a solution. However, minimi-
zation of the loss does not assure maximization of expected utility for
decision makers who are not risk neutral. Because of this, we are
forced to compute a utility difference in the context of the expected
value of the basic design. This requires evaluation of the expected
utility of the basic design and evaluation of the total loss function
as a deviation from the expected utility of the basic design.

The first issue, which would appear to be overlooked in many
applications of the Taguchi loss function, is the need to take
product price into account as a variable of choice to the manufac-
turer that also must be optimized. The thing that makes the determi-
nation of the optimal price shift tricky is that the quality loss is not
realized on a product-by-product basis one by one as products come
off the production line, but rather on consumer perceptions based on
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a history of many products produced under the design variables and
tolerances of the product. Thus, in order to simulate the demand
shift, for each product outcome (achieved values of x on a
product-by-product basis), we must compute the product loss func-
tion. This requires the inner Monte Carlo simulation shown in Fig. 1
between the selection of tolerances, T, and their resulting quality
measure, 7. This nesting of Monte Carlo loops can result in substan-
tial increases in computational time. One approach to this problem
is to assume that there is no significant variability in the outcome of
x on a product-by-product basis, that is, a change large enough to
alter the attributes, a, and analyze only the impact of tolerance on
one particular product instantiation. This provides an approximate
result that can be later checked against a limited number of full sim-
ulations around the optimal tolerance design point.

The next problem we encounter is the appropriate expression for
the cost of achieving a specific tolerance level. One way to achieve a
given tolerance is to test to assure that all tolerances are met and to
discard any parts of or products that fail to meet the tolerance. This
results in a cost of wastage. The wastage costs result from the costs
of manufacturing unsalable product. It is obviously desirable to
keep wastage small. But this means maintaining tolerances with a
high per-product probability, and this often demands more sophis-
ticated and concurrently more expensive manufacturing equipment.
Ergo, as a tolerance is reduced, the manufacturer must consider
the purchase of more expensive manufacturing equipment. The tol-
erance cost model must reflect these costs.

While tolerances denote the limits of acceptable outcomes of X,
they do not describe distribution of these outcomes. Yet, this distribu-
tion is needed in order to compute the loss function. While it might
seem natural to describe the distributions of outcomes as Gaussian
with a mean and standard deviation, the Gaussian distribution has
the property that it extends infinitely in both positive and negative
directions. This causes problems for two key reasons. First, actual
parts do not have negative dimensions, and second, actual parts do
not get infinitely large. One might think that, for a Gaussian distribu-
tion, these are extremely rare occurrences that can be neglected. The
problem is, however, that a Monte Carlo analysis will interrogate the
distribution hundreds of millions, perhaps even billions, of times, and
rare events that will cause errors are bound to occur. Thus, we have
chosen to represent tolerances for the analyses presented here as beta
distributions, although other distributions can be used within the
context of the theory presented here. Beta distributions have finite
limits, can be skewed, and can be shaped based on the distribution
parameters « and /3.

Lastly, we need to discuss the formulation and determination of
the loss function. As noted earlier, the mathematics of the loss func-
tion confirm that it should take the form of an n-dimensional hyper-
ellipsoid. Let the orthogonal unit vectors X correspond to the
elements of x to form a Cartesian coordinate system. Note that
the critical point or center of a hyperellipsoid denoting a surface
of constant loss is located at the design point x,, with its axes
aligned with the orthogonal eigenvectors, v, of the Hessian matrix
H. Denote by X the coordinates of a point x in the rotated and trans-
lated coordinate system defined by v. The critical point of the hyper-
ellipsoid is at the center of this coordinate system. Then, the loss
function corresponding to Eq. (5) is given by the equation of a
hyperellipsiod in the rotated and translated coordinate system,

L

L=yZvl-5ci2
i

where v; are the eigenvalues of H and y is a proportionality constant.
The coordinates of x in the translated system are given by dx=
(x — Xo). Rotating the axes to the eigenvector system gives the coor-
dinates, X, in the eigenvector system.

x=6x'% (12)
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where
A Vi
Vi= T
VViVi

are unit vectors comprising a coordinate system where the loss func-
tion hyperellipsoids are centered on the coordinate system with their
axes aligned with the eigenvectors of the Hessian matrix.

13)

5 Apple Pie

As an illustration of the decision theoretic formulation of the
tolerancing problem, we have chosen the tolerancing of an apple
pie. The detailed geometric tolerancing of an apple pie would be
a formidable task and, in the end, rather futile. No two pies are
exactly alike nor would anyone want that they would be. So, geo-
metric tolerancing is not appropriate for a pie, save for, perhaps,
the diameter of the pie as it has to fit in a box for marketing pur-
poses. Instead of describing an apple pie by its detailed dimen-
sions, which would involve volumes of numbers, we describe
and tolerance an apple pie by its recipe. Accordingly, tolerances
are placed on the measurable parameters of the recipe, including
amounts of ingredients and processing parameters such as
baking time and temperature. The apple pie recipe used in this
example is given below.

Apple Pie

Ingredients

1
5 CUp sugar, more to taste

1
3 cup packed brown sugar

3 tablespoons all-purpose flour
1 teaspoon ground cinnamon

1
1 teaspoon ground ginger

1
I teaspoon ground nutmeg

6—7 cups peeled and sliced tart apples
1 tablespoon lemon juice
dough for double-crust pie
1 tablespoon butter
1 large egg white
Process
Preheat oven, 375 deg.
Toss apples with lemon juice, add sugar, toss to coat
Combine sugars, flour and spices

1
Roll half of dough to g—in.—thick circle,

transfer to 9-in. pie plate,
trim even with rim
Add filling, dot with butter

1
Roll remaining dough to g-in.—thick circle

Place over filling, trim even with rim, seal, and flute edge
Cut slits in top

Beat egg white until foamy, brush over crust

Sprinkle with sugar

Cover with foil, bake 25 min

Remove foil and bake another 25 min

Cool on wire rack

This recipe is divided into two parts, the first part specifying
amounts of each ingredient, the variables of which are measurable,
continuous real numbers as required by Eq. (6). Tolerances would
typically be placed on these variables. The second part specifies
the processing steps. Some of these steps are amenable to toleran-
cing, such as the baking temperature and time. But others defy tol-
erancing or even a clear definition. Indeed, we become rather
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philosophical at this point, invoking Godel’s theorem. Godel’s
theorem deals with the limits of rationality in reflexive systems.’
Language is a reflexive system, that is, we define words with
words. Hence, all definitions rely on knowing the definitions of
other words, which are only known by knowing the definitions of
other words, and so on. Thus, words describing the aforementioned
process steps such as “toss,” “combine,” “beat,” “roll,” and “sprin-
kle” can never be defined with clear and precise precision. What this
means is that the process steps of a typical recipe can never be trans-
ferred assuring no loss of clarity and, as a result, there will always
be some element of art in the manufacture of any product that
involves process steps.

Nonetheless, we assume that these ingredient amounts and process
variables have been duly optimized (JE {uMoxo=0", Eq. (3)) and
will now examine tolerances on the baking time and temperature.
Note that these variables are measurable, continuous real numbers.
To begin, we construct an elliptical penalty function, taking into
account the correlation between these variables. Obviously, if the
oven temperature is a bit low, a longer cooking time will compensate
at least partly for this deviation. Figure 3 shows an elliptical loss
function with zero loss occurring at a baking temperature of 375 °F
and a baking time of 50 min.® The figure indicates that an increase
in baking time of approximately 6 min will compensate optimally
for a decrease in baking temperature of 10 deg. The dashed-line
box in Fig. 3 denotes example tolerance limits of +5 deg on temper-
ature and +5 min on baking time. If these tolerances were held, pies
baked in conditions that exceed these tolerances would be discarded
as a loss. However, we see that pies baked in conditions just outside
the upper left and lower right corners of this box are classified as
waste, while they are considerably more acceptable than those
being sold that are baked in conditions corresponding to the
lower left and upper right corners. Intuitively, a multiparameter
tolerance criteria could enable the tolerances to be relaxed while
reducing waste and maintaining or even improving quality. Multito-
lerance criteria can be easily implemented in the context of this

7A reflexive statement that illustrates the limit of rationality in language is, This
statement is a lie. If the statement is a true, it must be a lie. And, if it is a lie, it
must be true.

8The derivatives that determine the loss function (Eq. (6)) may be obtained by mea-
suring demand as a function of the allowed variability of the product. For the example
presented, we chose an illustrative loss function.
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Fig. 4 A burnt apple pie. It did not taste very good.

tolerance-evaluation framework; however, our example problem
sets tolerances on the variables independently.

Figure 4 shows a commercially manufactured apple pie that was
baked with time and temperature parameters that exceeded appropri-
ate tolerance limits. The crust is rather burnt and bears the taste of
burnt pastry. Clearly, were this the norm, demand for this producer’s
pie would be significantly reduced. One might be inclined to think
that we have been a bit facetious in choosing to go to so much
detail to analyze production tolerances on an apple pie. Be assured,
however, that this is taken quite seriously in the apple pie baking
industry [32-35]. Indeed, detailed studies have been conducted to
identify the attributes of importance to apple pie customers and to
estimate how variations in these attributes might affect demand for
the product. However, we did not choose variables for our
example from the literature. Rather we chose them, while not entirely
unreasonable, to emphasize aspects of tolerance optimization that
one might encounter in typical manufacturing situations.

For our example, we assumed that the producer expected to be able
to sell 10,000 pies per production period, with a demand elasticity of
e=2.0, a fixed investment cost (amortization of manufacturing
equipment, rent, insurance, etc.) of $5,000 per production period,
and a marginal cost of production per pie of $2.50 at a production
rate of 10,000 pies per production period and increasing at a rate of
$0.001 per 1,000 pies. Tolerances around the target values of
baking time and temperature were considered from near zero to
+7.8 min and +29 deg, respectively. The distributions of times and
temperatures were modeled as symmetrical beta distributions with
parameters a=4 and f=4, and with minimum and maximum
limits of 25% below and above the tolerance limits. This leads to a
rejection rate or wastage of about 12 pies per 1000. These pies are dis-
carded, incurring production costs but producing no revenue. Given
this description of the tolerances and with time and temperature dis-
tributions dependent on the tolerance limits, it seemed reasonable to
model a fixed, per-period cost of maintaining the specified tolerance
as a hyperbolic function of the tolerance.

Cr=(T¢ (14)
where T is the tolerance (+minutes or +degrees), and { and £ are con-
stants. The functions used are shown in Figs. 5 and 6. As time is an
easier tolerance to maintain than temperature, we modeled its cost as
significantly lower than that for temperature, as the latter would
likely demand more expensive ovens.

Finally, we took producer utility to be the log of the net revenue
per production period. A simulation was coded that has the ability to
take into account uncertainties in all major variables associated with
the determination of performance (profit) as a function of toler-
ances. However, simulations of enough cases to map out expected
utilities for even two tolerances, including all uncertainties, can be
quite time consuming, as much as days of run time or longer.
Thus, for the example provided here, we chose to assume that the
demand, demand elasticity, and production costs are known
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deterministically. With these assumptions, Fig. 7 is produced by
computing results for combinations of every combination of
baking time and temperature corresponding to the tick marks of
this plot. This comprised a total of 600 time—temperature tolerance
cases, with 1 million simulations per case. The run time for this was
about 4 h.

Clearly, computer run times for cases that seek to optimize mul-
tiple tolerances with full consideration of uncertainties can be an
impediment to application of this approach. Nonetheless, the
approach can be used in a “deterministic” mode to locate the

Journal of Mechanical Design

regions of optimal solutions, and these can be verified with
limited computations in the vicinity of the optimal solutions
taking uncertainties into account. The key factor driving high com-
puting time is the need for the solution of a nested Monte Carlo
simulation, which could require a total of a billion or more simula-
tions to achieve adequate accuracy.

6 Conclusions

The objective of this research is to cast the problem of tolerancing
in the framework of decision theory. It was found that Hazelrigg’s
design framework [20] could provide a mathematically rigorous
basis for a theory of tolerancing with modification to enable the
analysis of the so-called quality attributes emerging from
product-to-product variability. The resulting analysis provides
insights into the validity of the Taguchi loss function.

Taguchi defines a loss function that can be derived from a Taylor
series around “target values” of design variables, with arguments
that the first-order term of the series is zero because the loss is min-
imized at the target value. But this argument holds only if the design
target values themselves are optimized with respect to an overall
system or product value function, and only in the case where all
derivatives of this value function with respect to the design vari-
ables x and T exist and are finite in the vicinity of these optima,
thus validating the Taylor series. Otherwise, the first-order terms
do not vanish and, in fact, diminish the concept of a tolerance by
allowing larger tolerances to have the potential to improve certain
samples of the product. Although Taguchi recognizes the need for
an optimization criterion, it does not appear that this requirement
is clearly recognized in applications of the loss function for toler-
ance optimization.

Second, the Taguchi method is most commonly applied assum-
ing that the tolerances themselves are independent of each other.
The decision theoretic formulation makes clear that this is not the
case. Namely, the total value loss resulting from nonzero tolerances
is not the sum of the Taguchi losses for each tolerance as determined
independently.

Third, while the Taguchi loss function treats the cost of toleran-
cing to the manufacturer and the loss of value to the customers, the
decision theoretic formulation makes clear that the important factor
is profit or net benefit to the designer/manufacturer. It is this entity
that decides what the tolerances should be, reaps the benefits of pro-
duction, and owns the loss. This entity would likely prefer to main-
tain a profitable level of demand for the product, whereas nonzero
tolerances reduce demand. Through consideration of demand, the
decision theoretic approach takes consumer preferences into
account, without the need to assess a group preference [21].

Fourth, the loss attributed to diminished demand resulting from
nonzero tolerances can be mitigated by re-optimization of the
price at which the product is sold. Although this is required for
the optimization of tolerances, we see no evidence that it has
been considered in applications of the Taguchi loss function.

Fifth, the determination of tolerances in a decision theoretic
framework enables consideration of uncertainties affecting the
optimal design of the entire product or system, and it accounts for
the risk preference of the design decision maker. In this regard, it
should be noted that, although the variation in the product resulting
from nonzero tolerances may be small, it still has the potential to
result in large losses in product value, thus invalidating the approx-
imation of risk neutrality.

Lastly, we believe that the decision theoretic formulation of the
tolerancing problem provides significant new insight into the math-
ematics of tolerancing and appears to encompass a range of toleran-
cing problems that span geometric dimensional tolerancing through
process tolerancing.
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Nomenclature

= demand for a product

discount rate

time

utility

a set of attributes that determine the demand for a product
eigenvectors of the Hessian matrix

a set of statements such as dimensions describing the
measurable and continuous real variables that determine a
basic design

® 4 DR o5
I

y = a set of statements that describe uncertainties on other
variables

H = Hessian matrix

M = a set of statements describing a particular design
configuration

C = costs associated with the production of a product

L = loss incurred because variables x do not achieve their
target values

P = price at which a product is sold

R = revenue generated by the sale of a product

V = net present value of profit

T = asetof real numbers describing tolerances on the variables x

T = superscript denotes transpose

E{u} = expected utility
7 = aset of attributes related to tolerances that affect demand
for a product
v = eigenvalues of the Hessian matrix
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