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Abstract—With the vast adoption of FPGAs in the cloud, it
becomes necessary to investigate architectures and mechanisms
for the efficient deployment of CNN into multi-FPGAs cloud
Infrastructure. However, neural networks’ growing size and
complexity, coupled with communication and off-chip memory
bottlenecks, make it increasingly difficult for multi-FPGA designs
to achieve high resource utilization. In this work, we introduce a
scalable framework that supports the efficient integration of CNN
applications into a cloud infrastructure that exposes multi-Die
FPGAs to cloud developers. Our framework is equipped is with
two mechanisms to facilitate the deployment of CNN inference
on FPGA. First, we propose a model to find the parameters
that maximize the parallelism within the resource budget while
maintaining a balanced rate between the layers. Then, we propose
an efficient Coarse-Grained graph partitioning algorithm for
high-quality and scalable routability-drive placement of CNN’s
components on the FPGAs. Prototyping results achieve an overall
37% higher frequency, with lower resource usage compared to
a baseline implementation on the same number of FPGAs.

Index Terms—CNN acceleration, FPGAs, Distributed infer-
ence, FINN

I. INTRODUCTION

In recent years, the implementation of Convolutional Neural

Networks (CNN) on Field Programmable Gate Arrays (FP-

GAs) has drawn considerable attention as the need for more

efficiency and accuracy is mitigated by the rapid increase

in computational cost. CNNs achieve a higher quality of

result (QoR) at the cost of significant computing and memory

requirements due to their deep topological structures, com-

plicated neural connections, and massive data to process [1],

[2].

As the performance need of applications and systems

increases and the power budget steadily decreases, the

architecture-level response trends toward hardware special-

ization. Specialized hardware accelerators such as graphics

processing units (GPU) have long been the default solution to

accelerate workloads. However, the performance/watt advan-

tage, flexibility, and reprogrammability of Field-Programmable

Gate Arrays (FPGA) raise the interest of both academia

and industry. While the industry previously focused on en-

abling developer-friendly CAD tools that can generate high-

performance accelerators, using FPGAs within the stack of

applications running in the cloud is emerging as a rising

trend. As a response, FPGA devices have been recently

introduced in cloud infrastructure to provide acceleration for

critical workloads in machine learning. With the continuous

growth of learning models, it becomes critical to distribute

the inference’s workload among multiple devices.

Multiple CNN architectures on FPGA have been proposed

in the literature. They can be reviewed in two categories:

Single Instruction, Multiple Data (SIMD) accelerators and

streaming-based accelerators. This approach is flexible and

is defined as a general-purpose accelerator, as it likely sup-

ports several CNN topologies. However, it is inefficient since

it requires frequent memory transfer between FPGA on-

chip scratchpad memories and external memory (DDR/HBM)

to fetch the weights and activations. Accelerators with the

streaming architecture have a layer-by-layer execution flow

[3]–[5]. The main advantage of this type of architecture is to

minimize the latency caused by communication with off-chip

memory and thereby maximize on-chip memory communica-

tion, ensuring high throughput and avoiding any latency [6].

On the downside, this accelerator architecture cannot scale to

arbitrarily large CNNs.

This work focuses on the design automation of pipelined

CNNs inference on multi-die FPGA cloud platforms. We

propose a framework that integrates a performance exploration

tool on FINN-based accelerators [7] to find the parameters that

maximize the parallelism within the resource budget while

maintaining a balanced rate between the layers. Our frame-

work enables automatic graph partition and design generation

of sub-graphs, with a higher area utilization and improved

productivity, and ensures minimal latency for CNNs. Our

proposed changes can improve the performance of FINN

and provide an efficient streaming implementation for FPGAs

in data centers. Specifically, the contribution of this paper

include:

• We propose an accurate model to find the optimal pa-

rameters for the configuration to assess the resource

consumption and timing for streaming accelerators.

• An end-to-end framework that maps CNN models to

FPGA implementations without tedious HDL program-

ming and verification while improving the Quality of

Result (QoR) compared to the traditional design flow with

Vivado.

• An effective and efficient Coarse-Grained floor planning
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Fig. 1: FINN architecture. SWU interleaves the input by

applying the image-to-column algorithm and feeds MVTU.

algorithm for high-quality and scalable routability-drive

placement of components on FPGA.

II. BACKGROUND

CNN inference consists of the sequential execution of M
input images through L layers. Accelerators with the streaming

architecture always tailor the hardware with respect to the

target network [3], [4] to generate a custom architecture.

The topology of such CNN accelerators is transformed into

a layer-by-layer execution schedule, following the structure of

the inference graph in the form of a DAG1 [8]. The main

drawback of this paradigm is resource limitations due to its

spatial-processing nature. Regarding Could-based platforms,

streaming dataflow architectures are preferred as the target

platform theoretically provides unlimited resources.

A. FINN Architecture

FINN enables the design of heterogeneous custom stream-

ing architecture for a given topology rather than scheduling

operations on a fixed architecture. Separate compute engines

are dedicated to each layer, communicating via on-chip data

streams. Each engine starts to compute as soon as the previous

engine produces output. It currently supports fully connected,

convolutional, and pooling layers. An overview of the FINN

architecture is depicted in Figure 1. It has two main units:

the Sliding Window Unit (SWU) and the matrix-vector unit

(MVU).

The SWU supplies the convolution engine with the image

matrix from the incoming feature map by applying interleaving

and implementing the im2col algorithm. The computational

core of the compute engines is the MVU, as the vast ma-

jority of computing operations in neural networks can be

expressed as matrix-vector operations. An MVU computes

the matrix-matrix product using a different column vector

from the image matrix stream. The MVU consists of an

input and output buffer and an array of Processing Elements

1Data Acyclic Graph

(PEs), each with a number of SIMD lanes. The number of

PEs (P) and SIMD lanes (S) is configurable to regulate the

throughput and controls the folding of matrix-vector products

to achieve a given FPS requirement set by the user. A PE

performs a number of parallel multiplications equal to the

SIMD value. It then reduces them in an adder tree for their

subsequent accumulation towards the computed dot product.

Finally, threshold comparisons derive the output values from

the accumulation results.

B. Multi-Die FPGA Architectures

The multi-die FPGA is only present on devices that use

the stacked Silicon Interconnect Technology (SSIT), also

known as 2.5D packaging, using a silicon interposer. Each

die becomes a super logic region or SLR as multiple dies

are packaged together. SLRs contain a 2D array of FSRs

and are typically identified as each die is fabricated from

the same mask set. For logic to communicate between SLRs,

the UltraScale architecture employs special tiles in the FSRs

neighboring the abutment of two SLRs, which incurs ad-

ditional signal delay. A column of CLBs is removed and

replaced with special tiles called Laguna tiles with dedicated

flip flop sites to aid in crossing the SLR divide. Additionally,

the IPs on-chip consume significant programmable resources

near their fixed locations that may also cause local routing

congestion.
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Fig. 2: Block diagrams of two representative FPGA archi-

tectures: the Xilinx Alveo U250,(based on the Xilinx Ultra-

Scale+), and a Virtex Ultrascale+ architecture

RapidWright [9]: is an open-source Java framework from

Xilinx Research Labs that provides a bridge to Vivado back-

end at different compilation stages (synthesis, optimization,

placement, routing, etc.) using design checkpoint (DCP)

file. Once a DCP is loaded within RapidWright, the logi-

cal/physical netlist data structures and functions provided in

the RapidWright APIs enable custom netlist manipulations

such as cell and net instantiation, edition, and deletion. By

making available logical/physical netlist data structures and

functions, it enables custom netlist manipulation and direct

access to logic and routing resources such as look-up tables

(LUT), flip-flops (FF), and programmable interconnect points

from a Java API.
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C. problem formulation

Several works [6], [10]–[12] in the literature employ FINN

to generate NN accelerators on FPGAs. Nevertheless, FINN-

based accelerators’ area consumption and parallelism param-

eters cannot be arbitrarily deduced. Since the performance of

an accelerator is bounded by the slowest component within the

design, finding the parameters to generate a balanced design

can be a bottleneck. In this work, we propose an accurate

model to find the optimal parameters for the configuration

to assess the resource consumption and timing for FINN

accelerators. We also study the granularity of composing the

final accelerator and the partitioning of the computational

graph in a multi-FPGA platform.

III. PROPOSED FRAMEWORK

This section presents our coarse-grained floorplanning

scheme. We assume that HLS maintains the source code’s

hierarchy, and each function in the HLS source code will

be compiled into an RTL module. Functions communicate

with each other through FIFO channels. Our focus is not on

improving floorplanning algorithms; rather, we intend to use

coarse-grained floorplan information to guide the placement

properly. The proposed framework is depicted in Figure 3.

TABLE I: Notations

Name Description

G = (V,E, ω, φ)

Graph G with a set of Vertices V,
edge set E, vertices weights ω,
edges weight φ. Edges are FIFO channels
between vertices.

i, N Index of a vertice, ‖V ‖
LUTi LUT capacity of the SLRi.
FFi Flip-flop requirement of the SLRi.
BRAMi BRAM capacity of the SLRi.
DSPi DSP capacity of the SLRi.
IFMDIMi Dimension of the Input feature maps.
Ki kernel size
IFMCHi Number of channels of the input layer.
OFMCHi Number of channels of the output layer.

(1) Computational Graph: First, it takes as input the com-

putational graph at the module level of an input program.

The vertices weight represents the computational work-

load of each module, and the edge weight is the local

memory ratio, which is the amount of data (in Kb) that

moves between adjacent nodes.

(2) Platform Description: The FPGA resources are repre-

sented as a directed dataflow graph (DFG) in which

each node represents the resources of each SLR, and

the edges denote the communication latency between the

SLRs regardless of the physical FPGA from which they

are provisioned. When FPGAs are added or removed

from the platform, only the DFG needs to be updated.

Users can also define how many levels of pipelining

to add based on the number of boundary crossings. By

default, we add two levels of pipelining to the connection

for each boundary-crossing. In this work, we only use

a Peripheral Component Interconnect Express (PCIe)

connection between the FPGAs, but the architecture can

also accommodate network interfaces.

(3) Performance Exploration: Given the platform descrip-

tion resources and the inference graph, the framework

explore the parameters that will maximize the throughput

given the resources budget of the FPGAs. Additionally,

developing high-performance hardware accelerators on

FPGA often demands skills in hardware design and long

development cycles. By pre-implementing the modules of

a design, higher performance can be achieved locally and

maintained to a certain extent when assembling the final

circuit. Furthermore, in the case of module replication,

the pre-implemented designs can be reused, improving

the engineering time.

(4) With the implementations and performance details (tim-

ing, floorplanning, workload), we define several con-

straints to guide the coarse-grained floorplanning at the

module level.

A. Performance Exploration

To efficiently implement CNN inference on FPGAs, we

seek by performing a design space exploration to find the

optimal parameters that maximize the performances achievable

by the CNN sub-functions such as Convolution, pooling, and

fully connected layers (FC). It takes into consideration some

design constraints such as the platform description, timing,

and floor planning. If the design space exploration results in

satisfactory performance, the produced netlists are saved as

Design Checkpoint (DCPs).

To highlight the effect of the P and S on latency, let us

consider the results presented in Figure 4. A higher level of

parallelism implies a higher number of resources used. Each

layer has a set of parameters (S, P) that control the degree

of parallelism, which must be chosen such as: a balanced

streaming pipeline, the desired performance, and the total

resource footprint available within the given budget. Finding

the right configuration can greatly impact the final results.

Previous work has demonstrated that extensive automated

search in the design space can identify accelerator configu-

rations better than human designers. Regarding heterogeneous

streaming architecture, the slowest layer will determine the

overall throughput. The guiding principle is to implement rate-

balancing [7] between the layers. So, each layer should use a

roughly equal latency (expressed as clock cycles) to process

one image.

a) Latency Constraints: For an inference model with

N vertices and a platform with M SLRs, we seek maximize

{Si, Pi} such that:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Latencyi � (1 + ε)× Latencyi+1 ∀i = 1, ..., N

with Latencyi = Fn
i × F s

i

with Fn
i =

OFMHi
×OFMWi

Pi
,

and F s
i =

K2

i ×IFMChi

Si

(1)
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Fig. 4: Effect of the folding factor (PE/SIMD) over the performance and the resource utilization for a convolution. For a

SIMD > 32 the BRAM utilization increases from 10 to 18, regardless of the number of PEs. A higher number of SIMD

lanes leads to smaller latency, but with a higher resource utilization

As S and P porting the data packed to be processed by the

MVU,

(K2
i × IFMChi

)mod Si == 0

(OFMHi
×OFMWi

)mod Pi == 0

ε is an imbalance factor, allowing a margin between differ-

ent layers.

b) Variables Constraints: For a layer i, we denote by

PSx, the maximum value of Pi and Si, and σi,p, a binary

decision variable such that σi,p = 1 iff Pi = xi,p, with ∀xp =
1, ..., 64.

Pi =

PSx
∑

p=1

σi,p × xi,p and

PSx
∑

p=1

σi,p = 1

Si =

PSx
∑

p=1

γi,p × yi,p and

PSx
∑

p=1

γi,p = 1

εi =
2×ε∗100
∑

p=1

δi,p × zi,p and
2×ε∗100
∑

p=1

δi, p = 1

With zi,p being the set of relaxing values. For example, if

ε = 0.25 ns, then a maximum difference latency of +/ −
0.25 ns is permitted between the latency of the layers. Hence

zi,p ∈ [−ε, ε]. With a maximum of two decimal numbers per

relaxing factor, the search range is equal to 2× ε ∗ 100.

1) Resources Constraints: The framework has to quickly

estimate an accelerator’s LUT, DSP, and OCM requirements

from a given set of values of the parallelism variables. Design

congestion can negatively impact the achievable frequency

for any FPGA design. Hence, it is recommended to balance

resource utilization between layers. A balance resource uti-

lization should not exceed the maximum utilization of 70 %

LUTs, 50 % FF, and 90% DSPs, Block, and Ultra RAM of

total available resources. We express as Fti(Pi, Si), a linear

function that estimates the the amount of resources of type t
demanded by the ith layer for a given (Pi, Si) configuration.

⎧

⎪

⎨

⎪

⎩

∑N

i=1 Fluti(Pi, Si) ≤ LUTV Rs, ∀i = 1, ...,M
∑N

i=1 Fdspi
(Pi, Si) ≤ DSPV Rs, ∀i = 1, ...,M

∑N

i=1 Fbrami
(Pi, Si) ≤ BRAMV Rs, ∀i = 1, ...,M

The values of the Fti(Pi, Si) are computed using the layer

cost model as in [13].

B. Graph Partitioning

When deploying a single accelerator to a multi-FPGA Cloud

Infrastructure, the role of the partitioner is to segment the

computational graph into sets of modules and assign those
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to the different FPGAs. As the sub-functions have been

configured to fit within the resource budget, we only focus

on having the minimum number of partitions to fit within the

FPGAs’ die. We proceed with a multi-way graph partitioning

problem which consists of finding a k-balanced multi-partition

of a graph G = (V,E, ω, φ) that minimizes objective function

over the cut nets for some value of ε.
a) Multi-level partitioning: we implement a recursive

balanced bi-partitioning to generate the different partitions of

the computational graph. More precisely, whenever a partition

does not violate the constraints: (1) the partitions do not

satisfy the FPGAs requirement in terms of resources, (2) The

number of partitions is smaller than the number of FPGAs.

We recursively bi-partition each sub-graph until one condition

mentioned above does not hold anymore. In that case, we

proceed to the refinement step. The weight of the heaviest

partition is restricted by a fixed upper bound U = ε × ω(V )
k

,

with ε representing the unbalanced factor since all partitions

cannot have exactly the same weight, and k ≤ #FPGAs.

Multi-level partitioning is a well-known problem in the liter-

ature, with several solutions available. Hence, we do not aim

to elaborate further.

b) Refinement step: : For n iteration, a bi-partitioning

will produce 2n partitions, resulting in unbalanced partitions

or too many partitions. The refinement step allows us to merge

smaller partitions or further split heavier partitions (with k ≤
#FPGAs) to accommodate FPGAs resources.

C. Sub-graphs Design Generation

The sub-graphs generation function is to generate acceler-

ators for the different partitions. We start by synthesizing the

CNN sub-functions Out of Context (OCC). The OOC flow

ensures that I/O buffers and global clock resources are not

inserted into the netlists as those pre-built ”modules” are still

to be inserted within the top-level module of the design. The

sub-function granularity are discussed in section IV-C. The

sub-graphs designs are generated by stitching sub-functions

netlists with RapidWright. This is achieved by creating inter-

connected nets between the ports of an adjacent module. In the

next section, we discuss the placement of sub-graphs netlists.

D. Coarse-grained Floor planning

Given an Utrascale FPGA with logic elements, its architec-

ture, and a graph G of modules, we need to map the module’s

netlist to the logic elements of the FPGA and determine their

positions to minimize routed wirelength and congestion. In

summary, (1) each module must be assigned to a valid position

on the FPGA, and (2) the placement legalization rules of each

tile are satisfied. To achieve high QoR in the implementation

of modules, follow the following design considerations:

• Strategic floorplanning: utilizing pblock constraints al-

lows to carefully select the FPGA resources that each

design module will use. It helps improve the module-level

performance and area. Given that Xilinx architectures

generally replicate the resource structures over an entire

column of clock regions, the smaller the area of a pblock

is, the more our custom API will be capable of relocating

the design modules across the chip, which increases the

reusability. The automated definition of the pblock range

is out of the scope of this work.

• Strategic port planning: the placement of the ports when

pre-implementing modules are one of the most important

steps to ensure high performance and productivity im-

provement. Failure to plan the location of the ports of the

pre-implemented modules may result in long compilation

time, poor performance, and high congestion in the design

in which they are inserted.

• Clock routing: to accurately run the timing analysis on

the OOC modules, source clock buffers must be specified

using the constraint HD.CLK SRC. Though the buffers

are not inserted in the OOC modules, clock signals are

partially routed to the interconnect tiles, and the timing

analysis tool can then run timing estimations.

• Logic locking: Once a module attains a desirable perfor-

mance (Fmax, area, power, etc.), we lock the placement

and routing to prevent Vivado from altering the design

later and preserve design performance. The other advan-

tage of locking the design is that the final inter-module

routing with Vivado will only consider non-routed nets.

• Checkpoint file generation: pre-implemented modules

are stored in the form of DCPs and can be reused.

a) Problem Formulation: : We define the problem of

a multi-FPGA coarse-grained floorplanning as follows. Given

a set of M with m rectangular modules, each module has a

width and height denoted by xi, yi, 1 ≤ i ≤ m, respectively.

The aspect ratio of a module ASi is defined by xi

yi
. Given a

set of D FPGAs with k dies D = {d1, d2, ..., dk}, where each

die has the same width and height denoted by (DWi
, DHi

).

b) Solution: : We use a geometry-based floorplanning as

each module can have a position in the 2D-dimensional space

of the FPGA. The benefit of utilizing geometry is that we can

compute distances between modules and use the geometric

notion of distance to perform fast placement. Our problem is

small as the number of vertices within a CNN inference graph

is limited. Hence, we formulate the partitioning process of

each iteration using integer linear programming (ILP). Each

module has a wi, hi: width and height, and (xi, yi) is the

lower-left corner of the module.

The algorithm works as follows: we recursively parse the

temporally ordered sub-graph and place the first module. Since

modules are pre-implemented within pblocks, the number of

resources is reported. We assign a location on the FPGA grid

for each adjacent module with minimal to interconnect wire

length, i.e., the estimated half-perimeter wire length (HPWL)

from the placed cell locations. To fulfill that requirement, we

define timing and congestion cost functions to evaluate the

cost of the assigned location. At each iteration, we want to

assign each v ∈ V in D following the constraints below:

(1) C1: Modules must respect linear localization constraints;

(2) C2: A geometry-based placement in respect to timing and

congestion cost.
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C1: Two adjacent Mi and Mj are non overlapping. They

can only be on below or above one another. We introduce two

binary variables pi,j and qi,j to denote whenever Mi is below

or above to a module.

yi + hi ≤ yj +H(1 + pi,j − qi,j)

yj −H(2− pi,j − qi,j) ≤ yi − hj

C2: For optimal routing, a placement algorithm must con-

sider the number of resources used by each inter-component

net and their interaction. For instance, if all nets are limited

to a relatively small portion of the chip area, the routing

path request will probably be very high. Furthermore, the

number of switch boxes to traverse factor into the total delay

[14]. Furthermore, spreading the design across the device

helps reduce local congestion. The algorithm tries to build

a solution incrementally, one component at a time, removing

those solutions that fail to satisfy the problem’s constraints at

any point in time. A placement is validated if the costs are

lower than a defined threshold (Equation 3).

k
∑

i,j=1,i �=j

hi +HPWL(Wi,j) + cgt cost ≤ Threshold

c) The timing cost: is defined by the wire length between

two components.

timing cost =

n−1
∑

i=1,i<j

HPWL(Wi,j) (2)

Where Wi,j is the wire between component i and j (distance

from physical net’s source pin to sink pin). A fan-out greater

than one will, in most cases, have some branching farther

(reusing a path). In this case, the unit of length is the

dimension size of a tile.

d) The congestion estimation is defined as the following:

cgtcoef =
∑

i

Ci

cgt cost =
∑

Wi,j

ωi,j × cgtcoef k
#SwBox

(3)

Where Ci is the number of components overlapping within

a tilek, ωi,j is a weight proportional to the number of pins

of wire Wi,j , and #SwBox is the number of switch boxes

traversed by the nets.

IV. EXPERIMENTAL RESULTS

A. Evaluation Platform and Setup

For evaluation purposes, designs are implemented on a

Xilinx Kintex UltraScale+ FPGA (xcku5p-ffvd900-2-i). The

hardware is generated using Vivado v2020.2 and RapidWright

v2020.1, and the components are implemented with vivado

HLS. The hardware generation is conducted on a computer

equipped with an Intel Corei7-9700K CPU@3.60GHz×4 pro-

cessor and 32GB of RAM. The performance exploration
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Fig. 5: Different modules granularity

stage is solved with LocalSolver [19] as it has demonstrated

obtaining efficient results (optimality gap < 10%) within

seconds regardless of the size of the problem when compared

to other Mixed-Integer Programming (MIP) solvers on NP-

hard problems such as the quadratic assignment problem [20].

B. Granularity Exploration

The pre-implemented flow aims to generate high-

performance implementations by reusing high-quality and

customized pre-built circuits in multiple contexts and chip

locations. In this section, we present the performance of the

generated circuits with two levels of granularity: single layer

and block structure, as presented in Figure 5. The ResNet

structure propagates inputs through the residual connections

across layers. The Block-based is implemented so that the

residual connection is contained within the block for area

optimization.

Figure 6 Compare the performance of the different granu-

larity when scaling the number of FPGAs. CNNs have large

requirements for both computation and memory. As a result,

the designs generated by the Block-based algorithms may not

satisfy the constraints in both resource and timing. As observed

in Figure 6, from 4 FPGAs, some blocks cannot fit anymore

within an SLR, as the demand in terms of resources is the high-

est. Nevertheless, The block-based implementation achieves

a slightly lower latency with 3 FPGAs but higher resource

usage. We can conclude that fine-grained explicit dataflow is

preferable to embedding the dataflow into a single block. The

design generation time for the Layer-based implementation is

the smallest. Since the design size is relatively small, and the

proportion of replication of layers within the network is also

higher, it drastically reduces the overall implementation time.

C. Performance

Although several singles and multi-FPGA DNN inference

implementations exist, fair performance comparisons are chal-

lenging because of several factors such as: the DNN topology,
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Ma et al. [8] Cloud-DNN [15]
Biookaghazadeh
et al. [16]

Elastic-DF [10] Zhang et al. [17] CNN-on-AWS [18] Our Approach

FPGA/Platform Intel Arria 10 AWS Intel Arria 10 2*U250 3* Virtex Ultrascale 5*AWS F1 3*xcku5p

Platfprm Single FPGA Multiple FPGAs

Model ResNet-50 ResNet-50 ResNet-50 ResNet-50 ResNet-152 ResNet-18 ResNet-50

FMax 200 MHz 125 MHz 212 MHz 217 MHz 150 MHx 246 MHz

Precision (fixed) w16a16 w16a16 w8a8 w1a2 w16a16 w16a16 w1a4

DSP Blocks 1,518 (100%) 80.25% 33% -
(19%, 18.8%,
9.3%, 30.3%)

-
((2.96%, 5.12%
1.05%, 3.82%)

LUTs 218.6K (51%) 64% 34% -
(77.4%, 74.5%,
83.4%, 88.6%)

-
(3.57%, 6.36%
4.69%, 27.3%)

BRAM (M20K) 1,927 (71%) 83% 48% -
(81.4%, 81.3%,
82.1%, 86%)

-
(41.2%, 50.6%,
23.42%, 60.3%)

Latency/Image (ms) 12.51 13.9 20.9 2.3 - 2.1 4.2

Throughput

TABLE II: ResNet Performance Comparison with state-of-art approaches

Layer-based ResNet Block-based ResNet Baseline ResNet
KFF KLUTs BRAM KFF KLUTs BRAM KFF KLUTs BRAM

Resources 741 ((↓ 26%) 421 (↓ 24%) 821.5 (∼=) 801 (↓ 16%) 479 (↓ 10%) 761.6 (↓ 7%) 935 526 822

Latency (ms) 4.8 (↓ 31%) 4.2 (↓ 33 %) 6.3

Frequency (MHz) 276 (↑ 37%) 252 (↑ 25.3%) 201

Avg. Power (W) 208 225 235

Energy Efficiently 29.79 27.98 22.15

TABLE III: Granularity Exploration of the ResNet implementation on 3 FPGAs

the model quantization, the hardware optimization objectives,

RTL vs. HLS design, the evaluation methodology, and which

performance metrics are reported. Table II compares our work

with prior work of CNN inference on FPGA. Works are

grouped into single and multi-FPGA implementations. The

demand in terms of BRAM makes it impossible for ResNet,

even with the smallest parameters, to fit on a single FPGA.

Among the single-FPGA, Ma et al. [8] report the smallest

latency of 12.51 ms by integrating optimized RTL components

within an automated CNN compiler for various inference

tasks. Elastic-DF is the closest work to ours regarding multi-

FPGA implementations and achieves a latency of 2.1 ms.

However, there is no report of resources for comparison.

Concerning the throughput, Zhang et al. [17] has a 5% higher

throughput. Nonetheless, we report a lower resource usage and

a higher frequency.

D. Productivity

With the continuous growth of CNNs parameters and depth,

improving productivity is an important factor in hardware

design. This section shows how the proposed flow can leverage

component reuse to reduce compile-time and implementation

cycles. Table IV presents the time in hours to generate the

design checkpoint with both rapidwright and vivado. ResNet

topology reuse 69% of its layers. The proposed framework

takes advantage of that properties and can achieve up to 3.3×
productivity improvement. Nevertheless, with a higher number

of blocks, the complexity of the problem also increases, result-

ing in a longer implementation time for the layer granularity.

V. CONCLUSION

This paper proposes a framework to accelerate model infer-

ence on a multi-FPGA Cloud Platform. The framework takes

as input the computational graph of the CNN model inference.

It performs an intensive search in the form of a quadratic

Layer Granularity ResNet

Custom API
Inter-node
Routing

Synthesis P&R

Time (hours) 1.14 4.82 4.16 8.9

Ratio ∼ 17.4% 82.6% 35.6% 64.4%

Total (hours) 5.96 (2.18× ↓) 13.02

Block Ganularity

Custom API Inter-node Routing

Time (hours) 0.32 3.63

Ratio 8.10% 91.8%

Total (hours) 3.95 (3.21× ↓)

TABLE IV: Design Generation Time for implementation of

ResNet with vivado and the proposed framework in hours.

Fig. 6: Performance comparaison of different granularity

when scaling the number of FPGAs.

optimization problem to determine each layer’s highest degree

of parallelism considering the platform constraints. The graph

is then partitioned, and the resulting sub-graphs are allocated

to the FPGAs’ SLR such that the communication latency is

minimized. Experiments and results show that our approach

improves latency and maximum frequency, with little to no
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impact on the number of resources used. Our workflow is

designed in a modular fashion, allowing easy integration for

new layer types. In future works, we intend to expand to a

wider variety of neural networks and report power and energy

consumption.
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