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Abstract—With the vast adoption of FPGAs in the cloud, it
becomes necessary to investigate architectures and mechanisms
for the efficient deployment of CNN into multi-FPGAs cloud
Infrastructure. However, neural networks’ growing size and
complexity, coupled with communication and off-chip memory
bottlenecks, make it increasingly difficult for multi-FPGA designs
to achieve high resource utilization. In this work, we introduce a
scalable framework that supports the efficient integration of CNN
applications into a cloud infrastructure that exposes multi-Die
FPGAs to cloud developers. Our framework is equipped is with
two mechanisms to facilitate the deployment of CNN inference
on FPGA. First, we propose a model to find the parameters
that maximize the parallelism within the resource budget while
maintaining a balanced rate between the layers. Then, we propose
an efficient Coarse-Grained graph partitioning algorithm for
high-quality and scalable routability-drive placement of CNN’s
components on the FPGAs. Prototyping results achieve an overall
37% higher frequency, with lower resource usage compared to
a baseline implementation on the same number of FPGAs.

Index Terms—CNN acceleration, FPGAs, Distributed infer-
ence, FINN

I. INTRODUCTION

In recent years, the implementation of Convolutional Neural
Networks (CNN) on Field Programmable Gate Arrays (FP-
GAs) has drawn considerable attention as the need for more
efficiency and accuracy is mitigated by the rapid increase
in computational cost. CNNs achieve a higher quality of
result (QoR) at the cost of significant computing and memory
requirements due to their deep topological structures, com-
plicated neural connections, and massive data to process [1],
[2].

As the performance need of applications and systems
increases and the power budget steadily decreases, the
architecture-level response trends toward hardware special-
ization. Specialized hardware accelerators such as graphics
processing units (GPU) have long been the default solution to
accelerate workloads. However, the performance/watt advan-
tage, flexibility, and reprogrammability of Field-Programmable
Gate Arrays (FPGA) raise the interest of both academia
and industry. While the industry previously focused on en-
abling developer-friendly CAD tools that can generate high-
performance accelerators, using FPGAs within the stack of
applications running in the cloud is emerging as a rising
trend. As a response, FPGA devices have been recently
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introduced in cloud infrastructure to provide acceleration for
critical workloads in machine learning. With the continuous
growth of learning models, it becomes critical to distribute
the inference’s workload among multiple devices.

Multiple CNN architectures on FPGA have been proposed
in the literature. They can be reviewed in two categories:
Single Instruction, Multiple Data (SIMD) accelerators and
streaming-based accelerators. This approach is flexible and
is defined as a general-purpose accelerator, as it likely sup-
ports several CNN topologies. However, it is inefficient since
it requires frequent memory transfer between FPGA on-
chip scratchpad memories and external memory (DDR/HBM)
to fetch the weights and activations. Accelerators with the
streaming architecture have a layer-by-layer execution flow
[3]-[5]. The main advantage of this type of architecture is to
minimize the latency caused by communication with off-chip
memory and thereby maximize on-chip memory communica-
tion, ensuring high throughput and avoiding any latency [6].
On the downside, this accelerator architecture cannot scale to
arbitrarily large CNNs.

This work focuses on the design automation of pipelined
CNNs inference on multi-die FPGA cloud platforms. We
propose a framework that integrates a performance exploration
tool on FINN-based accelerators [7] to find the parameters that
maximize the parallelism within the resource budget while
maintaining a balanced rate between the layers. Our frame-
work enables automatic graph partition and design generation
of sub-graphs, with a higher area utilization and improved
productivity, and ensures minimal latency for CNNs. Our
proposed changes can improve the performance of FINN
and provide an efficient streaming implementation for FPGAs
in data centers. Specifically, the contribution of this paper
include:

« We propose an accurate model to find the optimal pa-
rameters for the configuration to assess the resource
consumption and timing for streaming accelerators.

e An end-to-end framework that maps CNN models to
FPGA implementations without tedious HDL program-
ming and verification while improving the Quality of
Result (QoR) compared to the traditional design flow with
Vivado.

« An effective and efficient Coarse-Grained floor planning
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Fig. 1: FINN architecture. SWU interleaves the input by
applying the image-to-column algorithm and feeds MVTU.

algorithm for high-quality and scalable routability-drive
placement of components on FPGA.

II. BACKGROUND

CNN inference consists of the sequential execution of M
input images through L layers. Accelerators with the streaming
architecture always tailor the hardware with respect to the
target network [3], [4] to generate a custom architecture.
The topology of such CNN accelerators is transformed into
a layer-by-layer execution schedule, following the structure of
the inference graph in the form of a DAG! [8]. The main
drawback of this paradigm is resource limitations due to its
spatial-processing nature. Regarding Could-based platforms,
streaming dataflow architectures are preferred as the target
platform theoretically provides unlimited resources.

A. FINN Architecture

FINN enables the design of heterogeneous custom stream-
ing architecture for a given topology rather than scheduling
operations on a fixed architecture. Separate compute engines
are dedicated to each layer, communicating via on-chip data
streams. Each engine starts to compute as soon as the previous
engine produces output. It currently supports fully connected,
convolutional, and pooling layers. An overview of the FINN
architecture is depicted in Figure 1. It has two main units:
the Sliding Window Unit (SWU) and the matrix-vector unit
(MVU).

The SWU supplies the convolution engine with the image
matrix from the incoming feature map by applying interleaving
and implementing the im2col algorithm. The computational
core of the compute engines is the MVU, as the vast ma-
jority of computing operations in neural networks can be
expressed as matrix-vector operations. An MVU computes
the matrix-matrix product using a different column vector
from the image matrix stream. The MVU consists of an
input and output buffer and an array of Processing Elements

'Data Acyclic Graph
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(PEs), each with a number of SIMD lanes. The number of
PEs (P) and SIMD lanes (S) is configurable to regulate the
throughput and controls the folding of matrix-vector products
to achieve a given FPS requirement set by the user. A PE
performs a number of parallel multiplications equal to the
SIMD value. It then reduces them in an adder tree for their
subsequent accumulation towards the computed dot product.
Finally, threshold comparisons derive the output values from
the accumulation results.

B. Multi-Die FPGA Architectures

The multi-die FPGA is only present on devices that use
the stacked Silicon Interconnect Technology (SSIT), also
known as 2.5D packaging, using a silicon interposer. Each
die becomes a super logic region or SLR as multiple dies
are packaged together. SLRs contain a 2D array of FSRs
and are typically identified as each die is fabricated from
the same mask set. For logic to communicate between SLRs,
the UltraScale architecture employs special tiles in the FSRs
neighboring the abutment of two SLRs, which incurs ad-
ditional signal delay. A column of CLBs is removed and
replaced with special tiles called Laguna tiles with dedicated
flip flop sites to aid in crossing the SLR divide. Additionally,
the IPs on-chip consume significant programmable resources
near their fixed locations that may also cause local routing
congestion.
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Fig. 2: Block diagrams of two representative FPGA archi-
tectures: the Xilinx Alveo U250,(based on the Xilinx Ultra-
Scale+), and a Virtex Ultrascale+ architecture

RapidWright [9]: is an open-source Java framework from
Xilinx Research Labs that provides a bridge to Vivado back-
end at different compilation stages (synthesis, optimization,
placement, routing, etc.) using design checkpoint (DCP)
file. Once a DCP is loaded within RapidWright, the logi-
cal/physical netlist data structures and functions provided in
the RapidWright APIs enable custom netlist manipulations
such as cell and net instantiation, edition, and deletion. By
making available logical/physical netlist data structures and
functions, it enables custom netlist manipulation and direct
access to logic and routing resources such as look-up tables
(LUT), flip-flops (FF), and programmable interconnect points
from a Java APL
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C. problem formulation

Several works [6], [10]-[12] in the literature employ FINN
to generate NN accelerators on FPGAs. Nevertheless, FINN-
based accelerators’ area consumption and parallelism param-
eters cannot be arbitrarily deduced. Since the performance of
an accelerator is bounded by the slowest component within the
design, finding the parameters to generate a balanced design
can be a bottleneck. In this work, we propose an accurate
model to find the optimal parameters for the configuration
to assess the resource consumption and timing for FINN
accelerators. We also study the granularity of composing the
final accelerator and the partitioning of the computational
graph in a multi-FPGA platform.

III. PROPOSED FRAMEWORK

This section presents our coarse-grained floorplanning
scheme. We assume that HLS maintains the source code’s
hierarchy, and each function in the HLS source code will
be compiled into an RTL module. Functions communicate
with each other through FIFO channels. Our focus is not on
improving floorplanning algorithms; rather, we intend to use
coarse-grained floorplan information to guide the placement
properly. The proposed framework is depicted in Figure 3.

TABLE I: Notations

Name Description
Graph G with a set of Vertices V,
- edge set E, vertices weights w,
G=(V,Ew) edges weight ¢. Edges are FIFO channels
between vertices.
i, N Index of a vertice, ||V||
LUT; LUT capacity of the SLR;.
FF; Flip-flop requirement of the SLR;.
BRAM; BRAM capacity of the SLR;.
DSP; DSP capacity of the SLR;.
IFMpr; Dimension of the Input feature maps.
K; kernel size
IFMcm, Number of channels of the input layer.
OF Mcw, Number of channels of the output layer.

(1) Computational Graph: First, it takes as input the com-
putational graph at the module level of an input program.
The vertices weight represents the computational work-
load of each module, and the edge weight is the local
memory ratio, which is the amount of data (in Kb) that
moves between adjacent nodes.

Platform Description: The FPGA resources are repre-
sented as a directed dataflow graph (DFG) in which
each node represents the resources of each SLR, and
the edges denote the communication latency between the
SLRs regardless of the physical FPGA from which they
are provisioned. When FPGAs are added or removed
from the platform, only the DFG needs to be updated.
Users can also define how many levels of pipelining
to add based on the number of boundary crossings. By
default, we add two levels of pipelining to the connection
for each boundary-crossing. In this work, we only use

(@)

35

a Peripheral Component Interconnect Express (PCle)
connection between the FPGAs, but the architecture can
also accommodate network interfaces.

Performance Exploration: Given the platform descrip-
tion resources and the inference graph, the framework
explore the parameters that will maximize the throughput
given the resources budget of the FPGAs. Additionally,
developing high-performance hardware accelerators on
FPGA often demands skills in hardware design and long
development cycles. By pre-implementing the modules of
a design, higher performance can be achieved locally and
maintained to a certain extent when assembling the final
circuit. Furthermore, in the case of module replication,
the pre-implemented designs can be reused, improving
the engineering time.

With the implementations and performance details (tim-
ing, floorplanning, workload), we define several con-
straints to guide the coarse-grained floorplanning at the
module level.

3)

“)

A. Performance Exploration

To efficiently implement CNN inference on FPGAs, we
seek by performing a design space exploration to find the
optimal parameters that maximize the performances achievable
by the CNN sub-functions such as Convolution, pooling, and
fully connected layers (FC). It takes into consideration some
design constraints such as the platform description, timing,
and floor planning. If the design space exploration results in
satisfactory performance, the produced netlists are saved as
Design Checkpoint (DCPs).

To highlight the effect of the P and S on latency, let us
consider the results presented in Figure 4. A higher level of
parallelism implies a higher number of resources used. Each
layer has a set of parameters (S, P) that control the degree
of parallelism, which must be chosen such as: a balanced
streaming pipeline, the desired performance, and the total
resource footprint available within the given budget. Finding
the right configuration can greatly impact the final results.
Previous work has demonstrated that extensive automated
search in the design space can identify accelerator configu-
rations better than human designers. Regarding heterogeneous
streaming architecture, the slowest layer will determine the
overall throughput. The guiding principle is to implement rate-
balancing [7] between the layers. So, each layer should use a
roughly equal latency (expressed as clock cycles) to process
one image.

a) Latency Constraints: For an inference model with
N vertices and a platform with M SLRs, we seek maximize
{S;, P;} such that:

~

Latency; ~ (1 + €) x Latency;+1 Vi=1,..,N

with Latency; = F' x Ff

. OF My, xOF My, (D
n
with F' = S P B, “
K2XIFMeon,
S __ i 7
and F = ——g——+
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As S and P porting the data packed to be processed by the
MVU,

(K? x IFMcy,,) mod S; == 0
(OF My, x OF My;,) mod P; == 0

€ is an imbalance factor, allowing a margin between differ-
ent layers.
b) Variables Constraints: For a layer ¢, we denote by
PS,, the maximum value of P; and S;, and 05 ,, a binary
decision variable such that o; , = 1 iff P; = x; ,, with Vz,, =

1,...,64.
PS, PS,
Pi = E Oip X Tip and E Oip = 1
p=1 p=1
PS, PS,
Si = E Yip X Yip and E Yip =1
p=1 p=1
2xex100 2x€ex100
E Oip X zip and E di,p=1
p=1 p=1

With z; ,, being the set of relaxing values. For example, if
= 0.25 ns, then a maximum difference latency of +/ —
0.25 ns is permitted between the latency of the layers. Hence
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Zip € [—€,€]. With a maximum of two decimal numbers per
relaxing factor, the search range is equal to 2 x € x 100.

1) Resources Constraints: The framework has to quickly
estimate an accelerator’s LUT, DSP, and OCM requirements
from a given set of values of the parallelism variables. Design
congestion can negatively impact the achievable frequency
for any FPGA design. Hence, it is recommended to balance
resource utilization between layers. A balance resource uti-
lization should not exceed the maximum utilization of 70 %
LUTs, 50 % FF, and 90% DSPs, Block, and Ultra RAM of
total available resources. We express as Fi, (F;,.S;), a linear
function that estimates the the amount of resources of type ¢
demanded by the ith layer for a given (P;, S;) configuration.

SN Fi (P Si) < LUTy Ry, Yi=1,..,M
SN Fuap. (P, Si)) < DSPyps, Vi=1,..,M
SN Foam, (Pi, Si) < BRAMy s, Yi=1,..,M

The values of the Fy,(P;, S;) are computed using the layer
cost model as in [13].

B. Graph Partitioning

When deploying a single accelerator to a multi-FPGA Cloud
Infrastructure, the role of the partitioner is to segment the
computational graph into sets of modules and assign those
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to the different FPGAs. As the sub-functions have been
configured to fit within the resource budget, we only focus
on having the minimum number of partitions to fit within the
FPGAs’ die. We proceed with a multi-way graph partitioning
problem which consists of finding a k-balanced multi-partition
of a graph G = (V, E,w, ¢) that minimizes objective function
over the cut nets for some value of e.

a) Multi-level partitioning: we implement a recursive
balanced bi-partitioning to generate the different partitions of
the computational graph. More precisely, whenever a partition
does not violate the constraints: (1) the partitions do not
satisfy the FPGAs requirement in terms of resources, (2) The
number of partitions is smaller than the number of FPGAs.
We recursively bi-partition each sub-graph until one condition
mentioned above does not hold anymore. In that case, we
proceed to the refinement step. The weight of the heaviest
partition is restricted by a fixed upper bound U = € X #,
with e representing the unbalanced factor since all partitions
cannot have exactly the same weight, and k < #FPGAs.
Multi-level partitioning is a well-known problem in the liter-
ature, with several solutions available. Hence, we do not aim
to elaborate further.

b) Refinement step: : For n iteration, a bi-partitioning
will produce 2™ partitions, resulting in unbalanced partitions
or too many partitions. The refinement step allows us to merge
smaller partitions or further split heavier partitions (with £ <
#FPGAs) to accommodate FPGAs resources.

C. Sub-graphs Design Generation

The sub-graphs generation function is to generate acceler-
ators for the different partitions. We start by synthesizing the
CNN sub-functions Out of Context (OCC). The OOC flow
ensures that I/O buffers and global clock resources are not
inserted into the netlists as those pre-built “modules” are still
to be inserted within the top-level module of the design. The
sub-function granularity are discussed in section IV-C. The
sub-graphs designs are generated by stitching sub-functions
netlists with RapidWright. This is achieved by creating inter-
connected nets between the ports of an adjacent module. In the
next section, we discuss the placement of sub-graphs netlists.

D. Coarse-grained Floor planning

Given an Utrascale FPGA with logic elements, its architec-
ture, and a graph G of modules, we need to map the module’s
netlist to the logic elements of the FPGA and determine their
positions to minimize routed wirelength and congestion. In
summary, (1) each module must be assigned to a valid position
on the FPGA, and (2) the placement legalization rules of each
tile are satisfied. To achieve high QoR in the implementation
of modules, follow the following design considerations:

« Strategic floorplanning: utilizing pblock constraints al-
lows to carefully select the FPGA resources that each
design module will use. It helps improve the module-level
performance and area. Given that Xilinx architectures
generally replicate the resource structures over an entire
column of clock regions, the smaller the area of a pblock
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is, the more our custom API will be capable of relocating
the design modules across the chip, which increases the
reusability. The automated definition of the pblock range
is out of the scope of this work.

« Strategic port planning: the placement of the ports when
pre-implementing modules are one of the most important
steps to ensure high performance and productivity im-
provement. Failure to plan the location of the ports of the
pre-implemented modules may result in long compilation
time, poor performance, and high congestion in the design
in which they are inserted.

o Clock routing: to accurately run the timing analysis on
the OOC modules, source clock buffers must be specified
using the constraint HD.CLK_SRC. Though the buffers
are not inserted in the OOC modules, clock signals are
partially routed to the interconnect tiles, and the timing
analysis tool can then run timing estimations.

o Logic locking: Once a module attains a desirable perfor-
mance (F),.., area, power, etc.), we lock the placement
and routing to prevent Vivado from altering the design
later and preserve design performance. The other advan-
tage of locking the design is that the final inter-module
routing with Vivado will only consider non-routed nets.

o Checkpoint file generation: pre-implemented modules
are stored in the form of DCPs and can be reused.

a) Problem Formulation: : We define the problem of
a multi-FPGA coarse-grained floorplanning as follows. Given
a set of M with m rectangular modules, each module has a
width and height denoted by x;,y;, 1 <7 < m, respectively.
The aspect ratio of a module AS; is defined by % Given a
set of D FPGAs with k dies D = {d;, d, ..., d},}, where each
die has the same width and height denoted by (Dy,, Dy, ).

b) Solution: : We use a geometry-based floorplanning as
each module can have a position in the 2D-dimensional space
of the FPGA. The benefit of utilizing geometry is that we can
compute distances between modules and use the geometric
notion of distance to perform fast placement. Our problem is
small as the number of vertices within a CNN inference graph
is limited. Hence, we formulate the partitioning process of
each iteration using integer linear programming (ILP). Each
module has a w;, h;: width and height, and (z;,y;) is the
lower-left corner of the module.

The algorithm works as follows: we recursively parse the
temporally ordered sub-graph and place the first module. Since
modules are pre-implemented within pblocks, the number of
resources is reported. We assign a location on the FPGA grid
for each adjacent module with minimal to interconnect wire
length, i.e., the estimated half-perimeter wire length (HPWL)
from the placed cell locations. To fulfill that requirement, we
define timing and congestion cost functions to evaluate the
cost of the assigned location. At each iteration, we want to
assign each v € V in D following the constraints below:

(1) C1: Modules must respect linear localization constraints;
(2) Cy: A geometry-based placement in respect to timing and
congestion cost.

Authorized licensed use limited to: University of Florida. Downloaded on May 30,2023 at 17:49:35 UTC from IEEE Xplore. Restrictions apply.



Cy: Two adjacent M; and M; are non overlapping. They
can only be on below or above one another. We introduce two
binary variables p; ; and ¢; ; to denote whenever M; is below
or above to a module.

yi+h <y; +H(1+p;;
y; — H(2—pij

~ i)
—Gij) Syi—hy

Cs: For optimal routing, a placement algorithm must con-
sider the number of resources used by each inter-component
net and their interaction. For instance, if all nets are limited
to a relatively small portion of the chip area, the routing
path request will probably be very high. Furthermore, the
number of switch boxes to traverse factor into the total delay
[14]. Furthermore, spreading the design across the device
helps reduce local congestion. The algorithm tries to build
a solution incrementally, one component at a time, removing
those solutions that fail to satisfy the problem’s constraints at
any point in time. A placement is validated if the costs are
lower than a defined threshold (Equation 3).

k
Z hi + HPW L(W; ;) + cgt_cost < Threshold
i,j=1,i%j
c¢) The timing cost: is defined by the wire length between
two components.

n—1
timing_cost = Z HPWL(W; )

i=1,i<j

2

Where W; ; is the wire between component ¢ and j (distance
from physical net’s source pin to sink pin). A fan-out greater
than one will, in most cases, have some branching farther
(reusing a path). In this case, the unit of length is the
dimension size of a tile.

d) The congestion estimation is defined as the following:

Cgtcoef = Z Cz

Z Wi,j X Cgtcoefk

#SwBox
Where C; is the number of components overlapping within
a tileg, w; ; is a weight proportional to the number of pins
of wire W; ;, and #SwDBox is the number of switch boxes
traversed by the nets.

3)

cgt_cost =

IV. EXPERIMENTAL RESULTS
A. Evaluation Platform and Setup

For evaluation purposes, designs are implemented on a
Xilinx Kintex UltraScale+ FPGA (xckuSp-ffvd900-2-i). The
hardware is generated using Vivado v2020.2 and RapidWright
v2020.1, and the components are implemented with vivado
HLS. The hardware generation is conducted on a computer
equipped with an Intel Corei7-9700K CPU@3.60GHz x4 pro-
cessor and 32GB of RAM. The performance exploration
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stage is solved with LocalSolver [19] as it has demonstrated
obtaining efficient results (optimality gap < 10%) within
seconds regardless of the size of the problem when compared
to other Mixed-Integer Programming (MIP) solvers on NP-
hard problems such as the quadratic assignment problem [20].

B. Granularity Exploration

The pre-implemented flow aims to generate high-
performance implementations by reusing high-quality and
customized pre-built circuits in multiple contexts and chip
locations. In this section, we present the performance of the
generated circuits with two levels of granularity: single layer
and block structure, as presented in Figure 5. The ResNet
structure propagates inputs through the residual connections
across layers. The Block-based is implemented so that the
residual connection is contained within the block for area
optimization.

Figure 6 Compare the performance of the different granu-
larity when scaling the number of FPGAs. CNNs have large
requirements for both computation and memory. As a result,
the designs generated by the Block-based algorithms may not
satisfy the constraints in both resource and timing. As observed
in Figure 6, from 4 FPGAs, some blocks cannot fit anymore
within an SLR, as the demand in terms of resources is the high-
est. Nevertheless, The block-based implementation achieves
a slightly lower latency with 3 FPGAs but higher resource
usage. We can conclude that fine-grained explicit dataflow is
preferable to embedding the dataflow into a single block. The
design generation time for the Layer-based implementation is
the smallest. Since the design size is relatively small, and the
proportion of replication of layers within the network is also
higher, it drastically reduces the overall implementation time.

C. Performance

Although several singles and multi-FPGA DNN inference
implementations exist, fair performance comparisons are chal-
lenging because of several factors such as: the DNN topology,
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Ma et al. [8] | Cloud-DNN [15] f:‘;‘l’k;‘fg]azadeh Elastic-DF [10] | Zhang et al. [17] CNN-on-AWS [18] | Our Approach
FPGA/Platform Intel Arria 10 | AWS Intel Arria 10 2*U250 3* Virtex Ultrascale | 5*AWS FI 3*xckuSp
Platfprm Single FPGA Multiple FPGAs
Model ResNet-50 ResNet-50 ResNet-50 ResNet-50 ResNet-152 ResNet-18 ResNet-50
FMax 200 MHz 125 MHz 212 MHz 217 MHz 150 MHx 246 MHz
Precision (fixed) wl6al6 wl6al6 w8a8 wla2 wl6al6 wl6al6 wla4
(19%, 18.8%, (2.96%, 5.12%
DSP Blocks 1,518 (100%) | 80.25% 33% - 9.3%. 30.3%) - 1.05%, 3.82%)
(77.4%, 74.5%, (3.57%, 6.36%
LUTs 218.6K (51%) | 64% 34% - 83.4%, 88.6%) - 4.69%, 27.3%)
(81.4%, 813%, (@12%, 50.6%,
BRAM (M20K) 1,927 (71%) | 83% 48% - 82.1%. 86%) - 23.42%. 603%)
Latency/Image (ms) | 12.51 13.9 20.9 2.3 - 2.1 4.2
Throughput
TABLE II: ResNet Performance Comparison with state-of-art approaches
Layer-based ResNet Block-based ResNet Baseline ResNet
KFF [ KLUTs [ BRAM KEF [ KLUTs [ BRAM KFF | KLUTs | BRAM
Resources 741 ((] 26%) { 421 (| 24%) { 821.5 (=) | 801 (| 16%) { 479 (1 10%) { 761.6 (| 7%) | 935 { 526 { 822
Latency (ms) 48 (] 31%) 42 (] 33 %) 6.3
Frequency (MHz) 276 (T 37%) 252 (1 25.3%) 201
Avg. Power (W) 208 225 235
Energy Efficiently 29.79 27.98 22.15
TABLE II: Granularity Exploration of the ResNet implementation on 3 FPGAs
the model quantization, the hardware optimization objectives, Layer Gra"“la;'tty . ResNet
. . . nter-node .
RTL vs. HLS design, the evaluation methodology, and which Custom API Routing Synthesis | P&R
performance metrics are reported. Table II compares our work Time (hours) 114 18 116 39
with prior work of CNN inference on FPGA. Works are Ratio ~ 17.4% 82.6% 35.6% 64.4%
grouped into single and multi-FPGA implementations. The Total (hours) 5.96 (2.18x |) 13.02

demand in terms of BRAM makes it impossible for ResNet,
even with the smallest parameters, to fit on a single FPGA.
Among the single-FPGA, Ma et al. [8] report the smallest
latency of 12.51 ms by integrating optimized RTL components
within an automated CNN compiler for various inference
tasks. Elastic-DF is the closest work to ours regarding multi-
FPGA implementations and achieves a latency of 2.1 ms.
However, there is no report of resources for comparison.
Concerning the throughput, Zhang et al. [17] has a 5% higher
throughput. Nonetheless, we report a lower resource usage and
a higher frequency.

D. Productivity

With the continuous growth of CNNs parameters and depth,
improving productivity is an important factor in hardware
design. This section shows how the proposed flow can leverage
component reuse to reduce compile-time and implementation
cycles. Table IV presents the time in hours to generate the
design checkpoint with both rapidwright and vivado. ResNet
topology reuse 69% of its layers. The proposed framework
takes advantage of that properties and can achieve up to 3.3x
productivity improvement. Nevertheless, with a higher number
of blocks, the complexity of the problem also increases, result-
ing in a longer implementation time for the layer granularity.

V. CONCLUSION

This paper proposes a framework to accelerate model infer-
ence on a multi-FPGA Cloud Platform. The framework takes
as input the computational graph of the CNN model inference.
It performs an intensive search in the form of a quadratic

39

Block Ganularity

Custom API | Inter-node Routing
Time (hours) 0.32 3.63
Ratio 8.10% 91.8%

Total (hours) 395 3.21x )

TABLE IV: Design Generation Time for implementation of
ResNet with vivado and the proposed framework in hours.

[JFF (KFF) [=ZBRAM (18K) EmLUT (KLUT) -e—Latency(ms) =—s—Time

1200

1000

800
600
400 %

200 % |

2 FPGAs l 3 FPGAs I 4 FPGAs

2 FPGAs I 3 FPGAs I 4 FPGAs
Block-based

Layer-based

Fig. 6: Performance comparaison of different granularity
when scaling the number of FPGAs.

optimization problem to determine each layer’s highest degree
of parallelism considering the platform constraints. The graph
is then partitioned, and the resulting sub-graphs are allocated
to the FPGAs’ SLR such that the communication latency is
minimized. Experiments and results show that our approach
improves latency and maximum frequency, with little to no
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impact on the number of resources used. Our workflow is
designed in a modular fashion, allowing easy integration for
new layer types. In future works, we intend to expand to a
wider variety of neural networks and report power and energy
consumption.
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