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Abstract

Additive manufacturing has been recognized as an industrial technological revolution for manufacturing, which allows fabri-
cation of materials with complex three-dimensional (3D) structures directly from computer-aided design models. Using two
or more constituent materials with different physical and mechanical properties, it becomes possible to construct interpen-
etrating phase composites (IPCs) with 3D interconnected structures to provide superior mechanical properties as compared
to the conventional reinforced composites with discrete particles or fibers. The mechanical properties of IPCs, especially
response to dynamic loading, highly depend on their 3D structures. In general, for each specified structural design, it could
take hours or days to perform either finite element analysis (FEA) or experiments to test the mechanical response of IPCs
to a given dynamic load. To accelerate the physics-based prediction of mechanical properties of IPCs for various structural
designs, we employ a deep neural operator (DNO) to learn the transient response of IPCs under dynamic loading as surrogate
of physics-based FEA models. We consider a 3D IPC beam formed by two metals with a ratio of Young’s modulus of 2.7,
wherein random blocks of constituent materials are used to demonstrate the generality and robustness of the DNO model.
To obtain FEA results of IPC properties, 5000 random time-dependent strain loads generated by a Gaussian process kennel
are applied to the 3D IPC beam, and the reaction forces and stress fields inside the IPC beam under various loading are
collected. Subsequently, the DNO model is trained using an incremental learning method with sequence-to-sequence training
implemented in JAX, leading to a 100X speedup compared to widely used vanilla deep operator network models. After an
offline training, the DNO model can act as surrogate of physics-based FEA to predict the transient mechanical response in
terms of reaction force and stress distribution of the IPCs to various strain loads in one second at an accuracy of 98%. Also, the
learned operator is able to provide extended prediction of the IPC beam subject to longer random strain loads at a reasonably
well accuracy. Such superfast and accurate prediction of mechanical properties of IPCs could significantly accelerate the IPC
structural design and related composite designs for desired mechanical properties.
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1 Introduction

There are numerous examples of composite materials in
nature, including human bone and teeth, wood, pearls, and
shell structures [1]. A composite material is made by combin-
ing two or more constituent materials with notably different
physical and mechanical properties to have physio-thermo-
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mechanical properties distinct from those of its individual
components [2]. Though composites are made of single-
phase materials, the physical and mechanical properties of
composites are not simple linear combinations of those prop-
erties of each component. With appropriate arrangement
of the single-component elements, composite materials can
have superior functions such as high strength-to-weight ratio,
high fracture resistance, and resistance to corrosion and
fatigue exceeding the simple combinations of materials prop-
erties [3, 4]. Because composite materials can be easily found
in nature and biology, such as pearl shells with a lamellar
structure of hard layers for fracture resistance and soft layers
for energy absorption [5], and natural wood with hierarchical
structures of long cellulose fibres held together by lignin [6],
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great efforts have been made to create composite materials by
mimicking natural composites and bio-materials [7] for prac-
tical uses in airplanes and vehicles [8], which have actively
promoted the development of novel composite materials with
expected nonlinear physical and mechanical properties.

The mechanical properties of composites, especially the
response to dynamic loading, highly depend on their inter-
nal structures that determine how distinctive single-phase
elements are arranged. In general, optimizing the topol-
ogy of composite materials to design optimal microstruc-
ture of material phases can lead to better multi-functional
composites [9]. However, complex geometries and three-
dimensional (3D) microstructures of composites are very
difficult to fabricate using traditional manufacturing meth-
ods. Therefore, most widely used composite materials have
discrete particles or fibers as the enforcing phase embedded
in the matrix phase [10]. Enabled by the development of
revolutionary additive manufacturing (AM) or 3D printing
technique [11], it becomes possible to construct interpen-
etrating phase composites (IPCs) with 3D interconnected
structures to provide superior mechanical properties as com-
pared to the conventional reinforced composites with discrete
particles or fibers.

AM provides great freedom to design complex 3D geom-
etry, material combination, and multi-functional properties
[12], making it an important methodology in modern manu-
facturing. Taking the advantages of its flexibility and ability
to process a wide range of materials such as metals, polymers,
and ceramic materials [13, 14], AM provides the means for
computer-aided design and manufacturing to construct com-
plex 3D structures. Most existing composite materials consist
of discrete fibres or particles which are dispersed in a bind-
ing matrix phase [15]. In contrast, [PC contains no isolated
phases, which means that if any one of the constituent phases
were removed, the remaining phases would still form a self-
supporting, open-celled foam [16]. Compared to traditional
discontinuously reinforced composite materials, such inde-
pendently self-supporting and load-bearing features of IPC
have been investigated [17]. Recent advancements in AM
have made it possible to fabricate IPCs with controlled and
complex topologies [18-20]. As a result, a large number of
IPCs with different structures and materials were created,
making the investigation of IPC properties an indispensable
study [21-24]. Many efforts on experiments [25-28] and
numerical computations [29, 30] have been made to quantify
the mechanical properties of IPCs in different applications.
As one of the important aspects to evaluate, the transient
response can reflect many mechanical properties of compos-
ites under dynamic loading. In general, IPCs are prone to
fracture and failure along the loading axis under high-strain
loading [31, 32]. Therefore, it is of great importance to study
the transient response of IPCs to dynamic loading.
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Given an IPC object with complex 3D structures, numer-
ical methods can be used to study the transient response
of the IPC object, where finite element analysis (FEA) can
discretize large IPC systems into small elements and solve
corresponding partial differential equations (PDEs) on these
elements. FEA is a well-established computational method
to solve PDEs and has been widely used to study the behavior
of different kinds of composites [33—36]. However, identify-
ing and formulating fundamental PDEs suitable for modeling
a particular problem requires extensive prior domain knowl-
edge of the corresponding field. In some cases, it can be tough
and time-consuming to perform numerical simulations, espe-
cially for time-dependent problems. Furthermore, even if a
particular composite material is well studied, it still requires
experimental or numerical work to obtain nonlinear mechan-
ical responses in terms of stress and displacement fields
when it is subjected to different dynamic loads. It means
that any new design of composite materials needs to wait
hours or days to know the material properties, which could
significantly slow down the material design and optimiza-
tion process. With the continuous improvement of computing
power, machine learning is gradually more widely integrated
into complex analysis and prediction in various research
fields. Introducing machine learning models as surrogate of
physics-based FEA models or experiments to learn the tran-
sient mechanical response of composites to dynamic loading
and predict material properties at no time could be an efficient
way to accelerate the design process of composites.

Different deep learning approaches have been developed
and successfully applied to diverse physical problems in
recent years [37-41], wherein deep neural operator (DNO)
is a deep learning framework to learn effective nonlinear
operators mapping between infinite dimensional function
spaces [42]. Deep Operator Network (DeepONet), as one
type of DNO, brings a new solution for finding such nonlin-
ear operators [43]. DeepONet can learn continuous nonlinear
operators between input and output [44], so that it can be used
to approximate various explicit and implicit mapping func-
tions like Laplace transform and PDEs, which are the most
common but difficult mathematical relationships to investi-
gate in various dynamic systems. To find effective nonlinear
operators mapping between two time-dependent functions,
the traditional DeepONet is trained on data of time sequence
point-by-point. When it encounters long time sequences,
the training process could be extremely time-consuming. To
this end, we will develop and implement an sequence-to-
sequence training method for the DNO models to improve
the DNO training efficiency in long time-dependent prob-
lems.

In this paper, we consider training a DNO model to act as
surrogate of physics-based models of an IPC beam to pro-
vide fast and accurate predictions of the transient mechanical
responses of this IPC beam to dynamic loading. Figure 1
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Fig.1 Schematic of composites analysis with deep neural operator. At
the top layer, the composites to be studied is selected. At the middle
layer, FEA is applied to analyze the composites and collect the data. At
the bottom layer, the proposed model can be trained by the collected
data. And then, the trained model can predict the results corresponding
to arbitrary inputs

illustrates the learning framework, where the physical sys-
tem of an IPC beam will be created and simulated using FEA,
providing mechanical responses of the IPC beam to differ-
ent dynamic loads as training data for the DNO model. An
improved DNO model will be developed based on the Deep-
ONet framework to enable sequence-to-sequence training.
We shall demonstrate the effectiveness of the DNO model
and investigate its prediction accuracy, training efficiency,
generalizability to different inputs, and robustness to noise.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the problem setup, an improved deep opera-
tor learning framework with sequence-to-sequence learning,
and an incremental training algorithm to further improve
the training efficiency. Section 3 presents the computational
results showing the performance of the proposed DNO model
for predicting transient responses of an IPC beam subject
to dynamic loading. Also, we investigate the effectiveness,
extensibility, and robustness of the proposed DNO model.
Finally, Sect.4 concludes the main findings of this work with
a brief summary and discussion.

2 Methods

We consider a 3D IPC beam subject to an arbitrary dynamic
loading as an example system to show the effectiveness of the
proposed DNO model and its implementation, where the IPC
beam is made of random blocks of constituent materials to
demonstrate the generality and robustness of the DNO model.
It is worth emphasizing that the DNO model and improved
training algorithms are not limited to this IPC beam system,

Fig. 2 Computational domain and boundary conditions. The cuboid
composite beam of size 500 mm x 100 mm x 100 mm is divided into
40 identical cubic subdomains assigned with either stainless steel or
aluminum alloy, with a light color (white) repenting 27 stainless steel
elements and dark color (green) being 13 aluminum alloy elements.
One end of the beam is fixed, and the other end is free and is imposed
an arbitrarily dynamic strain loading

and are readily applied to related composites for superfast
and accurate prediction of nonlinear mechanical properties.
In this section, we will first introduce the problems setup,
and then the details of the DNO model and an incremental
training algorithm.

2.1 Problem setup

An IPC beam with a cuboid structure composed of stain-
less steel and aluminum alloy is created, with one fixed end
and one free end, where an arbitrarily dynamic strain load-
ing is applied to the free end, as shown in Fig. 2. The IPC
beam is set to 500 mm in length with a cross section of
100 mm x 100 mm. The structure is divided into 40 iden-
tical cubic subdomains, each with a side length of 50 mm.
Stainless steel and aluminum alloy are randomly assigned to
these cubes to form a composite beam, with details of mate-
rial properties listed in Table 1. Taking into account both the
elastic and plastic properties of the stainless steel and the alu-
minum alloy with significantly different elastic moduli and
tensile strengths, the composite beam becomes highly non-
linear under dynamic loading. The elasticity of the material is
determined by Young’s modulus and Poisson’s ratio, while
the plasticity of the material is described by a multilinear
isotropic hardening model based on available stress—strain
curves, i.e., a bilinear curve is used to describe the elasticity
and plasticity of the aluminum with an elastic limit of og 2
and a triple-linear curve for the steel with an elastic limit of
00.01- The properties of the stainless steel are adopted from
papers of Talja and Salmi [45] and Rasmussen [46], and the
elastic—plastic properties of aluminum are adopted from the
papers of Zha and Moan [47] and Yun et al. [48].
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Table 1 Elasticity and plasticity properties of the stainless steel and
aluminum alloy

Properties Stainless steel Aluminum
Density (kg/m?) 7750 2770
Young’s modulus (GPa) 193 71
Poisson’s ratio 0.31 0.33
002 (MPa) 286 300
oy (MPa) 627 330
Eu 0.65 0.08
0.06F —85— PSRD 71600
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Fig. 3 Convergence vs solving time. It shows the PSRD and solving
time changes with number of elements of 320, 2560, 5000, 40,000 and
320,000. With the increase of elements in mesh, the PSRD decreases
and the solving time increases

The system is discretized using the finite element method.
The mechanical equations are numerically solved by a com-
mercial finite element software ABAQUS to analyze the
time-evolution of the reaction force at the fixed end and the
stress distribution in the [PC beam under different dynamic
strain loadings. Results from the mesh convergence study
are presented in Fig. 3. Given a dynamic strain loading,
we monitor the transient stress distributions in the IPC
beam for different numbers of elements. Figure 3 shows the
dependence of peak stress relative difference (PSRD) and
computational cost on the number of elements, where we take
the result obtained by the finest mesh of 320,000 as the refer-
ence solution. When the system is discretized by more than
40,000 elements, the computational cost is greatly increased
with little decrease in PSRD. We note that the result of 5000
elements can achieve an accuracy of 99.9% at a much lower
computational cost compared to 320,000 elements. There-
fore, we use 5000 8-node quadrilateral elements to perform
all simulations of this IPC beam under various dynamic load-
ings to generate datasets for DNO training.

To ensure a good representation of an arbitrarily dynamic
strain loading that is imposed on the free end of the IPC beam,
the time function of strain is created by drawing from a ran-
dom Gaussian process. By performing FEA simulations for
different inputs of dynamic loading, we can obtain the tran-
sient mechanical responses of the IPC beam in terms of the
reaction force at the fixed end F(¢) and the stress distribu-

@ Springer

( N
Branch Net
Y . =0
Yi(tj) N . A’O
i=1,2..,m -0
j=12,..,n n . n
mxn —( )
\ W )
( ~ Fp(t) - Fr(t)
Trunk Net ——
t
t |
j=12.,n
n
nx1

W_/
\_ Hidden layer J

Fig.4 Schematic of fast DNO. The input of data, time series ¢ and time-
dependent sequence Y, go through two neural networks, trunk net and
branch net, respectively. The matrix product of the two neural networks
outputs becomes the final output of this deep learning framework

tion o (X, t) with x being any location in the IPC beam. These
transient outputs of mechanical response to dynamic loading
are then combined with the corresponding Gaussian process
inputs to form the training data for the DNO model.

2.2 DNN and DNO

A simple neural network like a feedforward neural network
(FNN) represents the final output by using the nonlinear and
linear transform of its original neural inputs. A FNN with L
layers can be expressed as,

F) =G (0GP0 G6P 06V ), M
where G™ (x) W®x + b™ and o is the activation
function. There are three widely used activation functions
including rectified linear activation (ReLU), logistic (Sig-
moid), and hyperbolic tangent (Tanh), where Tanh is adopted
as the activation function in the DNO model for IPCs.

DNO aims to find the mapping relationship between two
continuous functions. The schematic of the DNO framework
is shown in Fig. 4 as a variant of DeepONet with a trunk net
and a branch net in terms of DNNs. To speed up the training
process, in our model, the input of trunk net is the unchanged
time sequence, vector t = (t1, 12, 13, . .., tn), where n stands
for discrete time points. The inputs of branch net are the cor-
responding sequences Y related to this time sequence ¢. It
canbe expressedas ¥; = (Y; (1), Yi(2), Yi(13), ..., Yi(tn)),
where i € [1,m] means the ith training dataset and m
represents the total number of training datasets. The entire
sequence Y; is fed to the model at a time. In this way, instead
of one-by-one training, the training process is sequence by
sequence, so that it can shorten the training time effectively.
And the setting of the trunk net ensures the continuity of the
data and makes it easier to display the time and space depen-
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dent features, and makes the mapping relationship more
accurate.

The trunk net and the branch net of the framework are
both L-layer FNN. The trunk net has one neuron in the input
layer and n neurons in the output layer. The output of trunk
net is a nx 1 matrix which can be expressed as,

Fr(t) = F(1). (2)

The branch net has n neurons in the input layer and n neurons
in the output layer. The output of branch netis am x n matrix
and can be expressed as,

Fp(t) = F(Y;i(t)), fori=1,2,...,m. 3)

The final output of the DeepONet is U(t) = Fp(t) - Fr(t)
with dimension of m x n.

2.3 DNO with incremental learning

Incremental learning is a method of dealing with large-scale
data or the gradual accumulation of data. By extracting use-
ful information from newly added data [49], it can update the
model by modifying the hyperparameters without storing his-
torical data. Incremental learning can be divided into three
categories according to its learning tasks: sample incremental
learning, feature incremental learning, and category incre-
mental learning. The sample incremental learning method is
used in this paper to study the stress distribution of arbitrary
cross-sections of the composites.

To improve the accuracy of prediction, especially in the
case of limited data, incremental learning shows great advan-
tages. Although the training data in this paper comes from
FEA, increasing the training set also requires more com-
putational cost. Since the stress distribution on the same
cross-section has a certain continuity and follows the same
physical laws, the data of different nodes can be used as
incremental data for model training.

The flowchart of incremental learning is shown in Fig. 5.
At the beginning of training, m datasets are collected by the
FEA computation for each element within a cross-section of
the composites. After the DNO for the first element is trained
by the M datasets. The second element can be trained based
on the previous hyperparameters of the first element. And
the hyperparameters are kept updated until the DeepONet
model for the last (nth) element is trained. If the accuracy
reaches the requirement, the system goes back to the first
element model to renew all hyperparameters until the (n —
1)th element. By incremental learning, The entire DeepONet
model is equivalent to being trained with n - m datasets. If the
final loss still fails to meet the requirement, then extra data
needs to be generated by the FEA model.

[ FEA model j

Arbitrary cross section

— Element

E, E, E; - E,
¥

Dataset of

En: (Y, UM

Incremental DeepONet
Hyperparameter
E, E, E;

Wy, by} | §7
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E3:{Y, UM,

Training

update
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Fig. 5 Float of incremental learning in DeepONet. For any certain
cross-section of the structure, it is described by n elements in the FEA
model. n can be different due to different directions of different cross-
sections. At the beginning, m sets of data for each element were obtained
from FEA. The training starts at element 1 with m sets of data, the
element 2 is trained based on the hyperparameters for element 1. So on
and so forth, nth element is trained based on the hyperparameters for
(n — 1)th element, approximately the same as it is trained with n - m
data

3 Results

The arbitrarily dynamic strain loading imposed at the free
end of the IPC beam is set to be a randomly time-varying
function drawn from a Gaussian random process. We define
the dynamic strain loading as €(t) ~ GP(u, o - k(t, 1)),
where the mean of the strain 4 = 0 and the standard deviation
o = 3 x 1073, An exponential kernel function in the form
of k(t,1") = exp(=20||t — t'||?) - sin(xrt) is used to ensure
a smooth strain loading process, in which the term sin(r¢)
sets that the stain loading always starts from a zero strain at
t = Osandends withazerostrainat? = 1 s. Figure 6 displays
the typical dynamic strain loading created by the Gaussian
random process. The mechanical responses of our interest
are the time evolution of the total force F'(¢) generated at the
fixed end and the normal stress along the x-direction oy, (X, )
inside the IPC beam, where x denotes an arbitrary location
in the IPC beam.

We perform 5000 FEA simulations for the IPC beam
subject to 5000 different dynamic strain loadings to col-
lect enough data to train the DNO model. Each simulation

runs from ¢+ = 0 stor = 1 s with a sampling interval
At = 0.01 s, which generates one data set consisting a
time sequence {¢;} with j =1, 2, ..., 101, a time-dependent

input {Y;(z;)} = €(¢;), and a corresponding time-dependent
output {U(#;)} = {F(t;),0(x,t;)} with x being an arbi-
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x107

Fig.6 Typical dynamic strainloading. Arbitrary dynamic strainloading
is created by drawing a smooth time-dependent function between 0 to
1s from a Gaussian random process

trary location inside the IPC beam. Both the branch net
and the trunk net of DNO have one input layer, five hid-
den layers, and one output layer, with an architecture of
[101]-[200]-[200]-[300]-[200]-[200]-[101], in which the
integers represent the number of neurons in those layers. The
loss function is defined as the mean squared error between
the true value in the FEA data set and the network prediction.
Adam optimizer with a small learning rate 0.001 is applied
to train the DNO model using 4900 data sets until the desired
accuracy is achieved or a predefined maximum iteration of
2,500,000 is reached.

3.1 Prediction of force response

We first investigate the performance of the DNO model on
predicting the time evolution of reaction force F(t) at the
fixed end of the IPC beam under different dynamic strain
loading. We use 4900 FEA data sets to train the DNO model
and use the rest 100 data sets to test the accuracy of the trained
DNO model. The accuracy is defined based on a relative error
using L, norm,

=1

where F represents the prediction and Fief the reference val-
ues. Figure 7 shows a comparison of F(¢) between FEA
results and DNO prediction, where we compute the relative
mean square error to quantify the prediction accuracy. The
result shows that the average prediction accuracy of the DNO
model on the 100 output sequences is x = 98.04%, and the
best prediction accuracy can reach x = 99.58% in the test
data.

Because the IPC beam may have nonlinear plastic defor-
mation under large strains, the prediction error is not a
uniform distribution over time when a dynamic strain load-
ing is imposed. In general, given a dynamic strain loading,
the composites structure experiences both elastic and plas-

_ ”F - Fref||2

) « 100%. @)
||Fref||2
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Fig. 7 Prediction of transient force response. The time-evolution of
reaction force F(¢) in five typical time-dependent sequences from 0 to
1's are plotted. Test data are FEA results, while prediction is made by
the trained DNO model
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Fig.8 Distribution of prediction errors. a Comparison of transient force
response to a dynamic strain loading between DNO prediction and FEA
simulation. b Zoom-in view for elastic deformation stage. ¢ Zoom-in
view for plastic deformation stage

tic deformation. We select one specific case to show where
the DNO model may have large prediction errors. Figure 8a
plots the predicted F(¢#) compared with the corresponding
FEA result, with a zoom-in view in Fig. 8b for the stage of
linear elastic deformation and Fig. 8c for the stage of nonlin-
ear plastic deformation. We observe small prediction errors
in Fig. 8b and large prediction errors in Fig. 8c. The reason
could be that some subdomains of the composite beam are
in a plastic tension or compression stage while other subdo-
mains are in an elastic tension or compression stage, which
creates a very complicated nonlinear mechanical response
that is harder to learn in the training data.
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Stress

180

Fig. 9 Cross-section stress distribution of the composites. The figure
shows the stress distribution on a random transverse section and three
longitudinal sections of the composites structure at + = 0.86 s under a
dynamic strain loading. Stress shown here refers to the normal stress
along the x-direction o,

3.2 Prediction of cross-section stress distribution

The relationship between stress and strain is an impor-
tant characteristic of a material. For traditional materials,
it reveals many properties such as Young’s modulus, yield
strength, and ultimate tensile strength. It can also reflect
the mechanical properties of composite materials. Using
the same method, the stress distribution of different cross-
sections can be predicted by the trained DNO model. By
training the DNO model based on stress distribution data on
selected cross-sections, the DNO model can be used to pre-
dict the time-evolution of stress distribution at any selected
cross-sections as shown in Fig. 9.

The DNO model is trained using the incremental learn-
ing algorithm as described in Sect. 2.3. On a certain selected
cross-section of the composite beam, although the two con-
stituent materials differ in elasticity and plasticity, they both
obey the same solid mechanical equations. In this case, the
data of one element within this cross-section can be treated as
supplementary data from another element. Therefore, incre-
mental learning can be introduced in the training process of
stress distribution. It means that after training the first ele-
ment, the model does not need to restart from a randomly
initialized network to train the next element. Instead, the
DNO model can keep the previous hyper-parameters of each
neuron, and train the next element with the data accompany-
ing it.

Figure 10a presents a cross-section selected for analysis,
comprising 100 elements in the FEA model. The cross-
section is composed of four areas that are labeled as A1, A2,
A3 and A4, where A1 with green color represents aluminum

alloy and A2, A3, and A4 with white color are made of stain-
less steel. To facilitate identification, a naming table for each
element is provided in Fig. 10b1. The training process for this
cross-section is performed in two ways: (1) a regular train-
ing algorithm where each element is trained independently,
and (2) an incremental learning where the network of next
element uses the network variables of previous elements as
initial condition. Figure 10b2 shows the training loss for the
regular training algorithm as a function the number of itera-
tions, where each element is trained over 500,000 iterations
to reach a training loss of 5 x 10~*. Thus, the entire training
process requires 50,000,000 iterations in total, which takes
approximately 84 h using a PC with an Intel i19-10900K CPU.
However, the incremental learning algorithm can optimize
the training process by updating the hyperparameters of ele-
ment based on the results of the previously trained element.

Each element in the FEA model is identified by a sequence
number, and the elements in the selected cross-section are
arranged in a specific order as depicted in Fig. 10c1. The route
starts from z95, the first element in A1, and moves sequentially
to y5, x5, w5, and v5. Subsequently, it moves back to z4 and
follows the same pattern until it reaches the last element in
A1, which is v9. The route then proceeds to the A2 area,
starting from e5 and finishing at a9. The route for A3 starts
at a4 and ends at €0, and the route for A4 follows a different
path, starting from z4 and moving to z3, z2, z1 and z0. It then
moves back to y4, y3, y2, y1, y0, and finally ends at v0. This
route is called the default route. Figure 10c2 illustrates the
training loss for each element when following the default
route.

With an incremental learning process, the DNO model
begins training by taking 500,000 iterations to reach a train-
ing loss of 5 x 10~ for the first element. The second element
requires fewer iterations, reaching a smaller training loss with
only 50,000 iterations. To demonstrate the process of imple-
menting the incremental learning, all elements (except the
first) are trained for 50,000 iterations, based on the result of
the previously trained element. In Fig. 10c2, a small gap in
training loss is observed between each set of five elements in
Al, while a larger gap is observed between the last element
in the A1 area (v9) and the first element in the A2 area (e5).
These observations confirm that the chosen cross-section fol-
lows the same physical laws and that the DNO model with
an incremental learning can successfully learn these laws.
However, different areas (A1, A2, A3 and A4) have dif-
ferent material properties, resulting in different mechanical
states within them. The similarity between elements is better
for neighboring elements in the same area, leading to gaps
between every five elements in the loss curve when following
the default route. If the element can be trained based on the
result of an element with a better similarity, the process can
be faster and the results can be more accurate. The loss curve
in Fig. 10d1 shows more continuity and smoother training
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Fig. 10 Comparison of the
training loss with the number of
iterations without incremental

learning and with different
incremental learning methods. a

The selected cross-section and

its material arrangement. b1 The
selected cross-section and its
elements naming table. b2 The
training loss with the number of
iterations without incremental
learning. ¢1 Incremental
learning with the default
element order. ¢2 The training
loss with the number of
iterations with incremental
learning under default training
order. d1 Incremental learning
with the rearranged element
order. d2 The training loss with
the number of iterations with
incremental learning under
rearranged training order
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loss changes than Fig. 10c1 due to the rearranged route for
incremental learning. Removing the iteration limit and train-
ing until each element has a loss less than 2 x 10™* shows
that the rearranged route is 7% faster than the default route
while maintaining the same accuracy.

Figure 11al, a2 show the stress distribution at the center
cross-section (perpendicular to the x-axis) of the IPC beam
att = 0.5 s for the test data and the DNO predicted result,
respectively. The average predicted accuracy of the DNO
model is x = 98.18%. Figure 11a3 shows the predicted
error distribution within the cross-section, which is relatively
smaller in the central region and increases towards the edge
of the structure. As the structure has greater uniformity in the
central area and more heterogeneity near the edge, the high-
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est prediction error occurs in the top-right corner as shown
in Fig. 11a4. Additionally, the presence of a fixed end as the
only boundary constrain gives enough freedom to the rest
of the structure, resulting in the structure bending and twist-
ing under compression, adding complexity to the structure
dynamics and leading to unique error distributions on the
right part of the beam.

The dynamic strain loading curve, as shown in Fig. 7, is
designed to have zero strain imposed on the free end of the
beam at the end of loading + = 1 s. Although the entire
structure has returned to its original length, residual stresses
remain in the structure because of plastic hardening. This
is evident from Fig. 11b1, which shows the distribution of
residual stress in the composite structure at + = 1 s. Dur-
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Fig. 11 Prediction of cross-section stress distribution and error dis-
tribution. al, b1 The stress distribution of selected cross-section from
FEA model at 0.5 s and 1.0 s respectively. a2, b2 The prediction of stress
distribution of selected cross-section from DNO model at 0.5s and 1.0s

ing dynamic loading tests, the imposed strain may cross the
zero point multiple times, leading to different stresses in
the structure after each return to its original length due to
plastic deformation. The time and space dependence of the
loading process and corresponding mechanical response of
heterogeneous materials make it challenging to predict mate-
rial behavior using traditional neural networks. However, the
trained DNO model provided accurate predictions of stress
distributions on various cross-sections, with accuracy rang-
ing from ¥ = 95% to x = 99% compared to FEA results.
This highlights the ability of the DNO model to serve as a
surrogate of FEA models in predicting the behavior of com-
posites subjected to dynamic loading.

3.3 Training speed

The traditional DeepONet models available in a widely used
DeepXDE library [50] are implemented in TensorFlow and
concentrate on training the data by points. The current DNO
model is implemented in JAX and uses sequence-to-sequence
training to improve the DNO training efficiency. JAX is a
language for expressing and composing transformations of
numerical programs [51] and brings high-performance com-
puting capabilities. By fixing the time sequence in the trunk
net and improving the input form of the corresponding data
in the branch net, the DNO model is trained by sequence-to-
sequence rather than by points used in traditional DeepONet
models. Together with an incremental learning algorithm, it
has an extremely fast training speed.

MSE
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-50
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25 50 75 100
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respectively. a3, b3 The 2D prediction error distribution within cross-
section at 0.5s and 1.0s respectively. a4, b4 The 3D prediction error
distribution within cross-section at 0.5s and 1.0s respectively

Table 2 Comparison of computational efficiency for different archi-
tectures and training methods, where M % N indicates a DNN with N
layers and M neurons for each layer

No. Wall time (min)
Arch DeepONet DNO (basic) DNO (incre.)

1 200%*3 2094.9 284.9 7.7

2 200%4 2418.3 310.3 8.0

3 200%*5 2378.9 324.8 9.5

4 200%6 2085.0 328.8 9.2

5 200%7 2204.4 358.3 10.3

6 200*8 2710.2 530.1 12.2

On the prediction of the total reaction force of the IPC
beam, it takes 205 s for training the DNO model, which is
nearly 10 times faster than the original DeepONet model
at the same average prediction accuracy of 98.17%. The
DNO model shows higher training efficiency in predicting
the stress distribution of the IPC beam. Here, a higher train-
ing loss threshold is used to compare the training wall time of
different methods. Table 2 compares the wall time for train-
ing a traditional DeepONet model, a DNO model without
incremental learning (DNO basic), and a DNO model with
incremental learning (DNO incre.). All training processes are
performed on the same PC with an Intel i9-10900K CPU, and
training is set to stop when the training loss is below 5 x 1073.

When neural networks have more neurons and layers,
longer training times are required, as demonstrated by
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Table 2. Specifically, the DNO model’s training wall-time
decreases as the number of hidden layers increases, indicat-
ing that the neural networks with more layers require fewer
iterations to achieve the same training loss. Furthermore, the
ratio of training wall-time for the DeepONet model built with
TensorFlow to that of the DNO model built with JAX (i.e.,
r = TpeepoNet/TDNO) increases as the number of hidden
layers increases. In case No. 1, r is 2094.9/284.9 = 7.35,
while in case No. 6, r is 2710.2/530.1 = 5.11. Com-
pared to TensorFlow implementations, JAX-based models
are trained much faster, particularly for complex deep neural
networks.

Table 2 also demonstrates that the DNO model with incre-
mental learning achieves a speed-up of approximately 40
times compared to the DNO model without incremental
learning, using the same deep learning framework. Consid-
ering that the JAX-based DNO model without incremental
learning still has an approximately 5 times speed-up com-
pared to the traditional DeepONet model implemented in
TensorFlow, the proposed DNO model with incremental
learning, implemented in JAX, could achieve a training
speed-up of 200 times.

3.4 Model analysis

The efficiency and prediction accuracy of the DNO model
can be affected by the different architectures of the branch
and trunk networks, the size of the training dataset, and the
number of training iterations. These factors are analyzed in
this section to achieve better performance of the DNO model.
Also, the robustness and the generalizability of the DNO
model will be investigated.

3.4.1 Architecture of DNO

The architecture of the deep learning model has a crucial
impact on the prediction ability. It is in general difficult to
find the best architecture. However, we can still test the effect
of the different numbers of layers and the different numbers
of neurons in each layer on the model to get a better solu-
tion. A group of DNO models with different architectures
are tested with the same optimizer and 500,000 training iter-
ations as shown in Table 3. For vanilla neural networks,
only the cases with less than 10 hidden layers are tested
here.

Table 3 shows that too many or too few hidden layers
result in less accurate predictions at fixed training iterations.
With 3 hidden layers (architecture No. 4), the model performs
better than other architectures. The difference in batch size
has an impact on the prediction accuracy but has no obvious
relationship. However, with a relatively large batch size, the
training loss of the model is more stable.

@ Springer

Table 3 Influence of architecture and batch size

No. Architecture Batch size Accuracy (%)
1 200 64 66.05
2 200%2 64 97.90
3 200-300-200 64 97.38
4 200%*3 64 98.17
5 200%4 32 97.18
6 200%4 64 98.12
7 200%2-300-200%2 32 97.94
8 200%2-300-200%2 64 97.68
9 200*8 64 97.31
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Fig. 12 Box plot of relative error with different numbers of training
data. On each box, the center mark represents the median of relative
error of all test data and predictions, and the bottom and top edges of
the box represent the 25th and 75th percentiles of the relative error. The
maximum whisker length is specified as 4 times the interquartile range.
The ‘+’ marks stand for the extreme results

3.4.2 Size of training dataset

We evaluate the relationship between the size of the training
data set and the accuracy of the DNO model. We note that
the improvement of the accuracy by increasing the size of
the training data set is not unlimited. Figure 12 shows how
the relative error of the trained DNO model changes with the
number of training data.

We observe from Fig. 12 that the mean relative error
changes from 9.26% to 2.48% when the number of training
data is increased from 500 to 4900. The prediction accuracy
of the trained DNO model on testing data sets is not stable
when only 500 training data sets are used. Although the mean
relative error is 9.26%, and the upper bound reaches 33.11%
associated with the worst error of 54.73%. As the number
of training data set exceeds 3000, the training error remains
around 2.4% to 2.6%, which suggests that two to three thou-
sand training data sets could be sufficient enough to obtain
an accurate DNO model in this problem.
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Fig. 13 Time-extended prediction. a Inputs of dynamic strain loading
and b transient reaction force at the fixed end, where al, bl are the
results of a sequence of random Gaussian process, a2, b2 are the results
of a sinusoidal strain loading, and a3, b3 are the results of a sequence
of piecewise linear strain loading

3.4.3 Time-extended prediction

As mentioned in Sect. 3.3, the output of the nonlinear com-
posite system is highly time and space dependent, making it
hard to predict the time-extended output. However, the DNO
model aims to approximate the hidden mapping operator.
If the DNO model is well-trained, it should show a certain
time-extended ability.

The proposed DNO model is trained based on a 1 s interval
using random Gaussian process inputs and corresponding
outputs. To test the DNO model on time-extended prediction,
three cases of 2s dynamic strain loading are tested. Case
1 is a sequence of random Gaussian processes, case 2 is a
sinusoidal strain loading with a peak amplitude of 3 x 1073,
and case 3 is a sequence of piecewise linear strain loading,
as displayed in Fig. 13.

The sequence of case 1 is drawn from a similar random
Gaussian process of 2s as shown in Fig. 13al, which shares
the same kernel function as the inputs of training data. Fig-
ure 13bl shows the prediction of the corresponding force
response with an accuracy of x = 89.56%, indicating that
the DNO model can be used to predict time-extended data
at a reasonable well accuracy. Case 2 and case 3 are cre-
ated to verify the prediction ability of the DNO model for an
arbitrary input that is not included in the training data set. Fig-
ure 13a2 shows the two-period sinusoidal input with a peak
strain of 3 x 1073, In this case, the structure undergoes elas-
tic and plastic deformation successively. It can be observed

from Fig. 13b2 that the force response of the second period
is different from that of the first period, which is due to the
residual stress in the composite beam after plastic deforma-
tions. The DNO model captures the key details and provides
the prediction of F(¢) with an accuracy of x = 92.81%.
Figure 13a3 displays an example of piecewise linear strain
loading, with corresponding force response F'(#) shown in
Fig. 13b3.

The test results of the three different types of time-
extended dynamic loading suggest that the DNO model can
predict the transient mechanical responses of the IPC beam
subject to different types of dynamic loading. By training the
DNO model with one second of data, the trained DNO model
can be used to predict longer-time mechanical responses at a
reasonable good accuracy. However, this time-extended abil-
ity has its limitation. Since the length of the training sequence
is fixed and finite, if the input time-extended sequence is
much longer than the training sequence, then at the same
length, the input can no longer be well described, especially
when faced with an input that has a relatively higher fre-
quency of amplitude changes.

3.4.4 Robustness of DNO

The robustness of the neural network model could be critical
if the training data is obtained from experimental data with
ineliminable noise. To test the robustness of the DNO model,
we add Gaussian white noise to the output data by

o =o(l+ Bg), &)

where & is a Gaussian random variable with zero mean and
unit variance, and 8 € [0.05, 0.2] is an adjustable parame-
ter setting the noise level. Subsequently, we train the DNO
model based on the contaminated data. Figure 14a, b present
the results of B = 0.05 and § = 0.2, respectively, where
we compare the predicted output, the test output, and the test
output with noise. It is observed from Fig. 14 that the pre-
diction results are smoother and more similar to the original
noise-free test data compared with the test data with noise,
which indicates that the trained DNO model is not overfitted.

Based on the testing of DNO trained on data with noise,
the average predicted accuracy is y = 96.25% for 8 = 0.05,
x = 91.70% for B = 0.1, x = 89.97% for B = 0.15,
and x = 86.48% for § = 0.2. It means that when facing
contaminated data, the DNO model can still provide good
prediction accuracy better than 90% as long as the noise level
B <0.15.
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Fig. 14 Prediction of output data with noise. a The prediction of output
with 5% noise. b The prediction of output with 20% noise

4 Conclusion

We have developed a DNO model to act as a surrogate of
physical models of an IPC beam to provide a fast and accu-
rate prediction of transient mechanical responses of the IPC
beam subject to dynamic loading. The challenge of learning
the time-dependent relationship between sequences can be
solved by training a DNO model. Unlike FEA-based meth-
ods that require duplicated calculation when facing different
dynamic loadings, the trained DNO model can process arbi-
trary inputs of dynamic loading and make predictions of the
mechanical response of the nonlinear beam system instantly.

Since all the discretized elements within the IPC beam
obey the same physical laws, this allows the DNO model to
directly train one element on top of another. In the case of
the same training data, by introducing an incremental learn-
ing algorithm to the DNO training, the prediction accuracy
can be improved and the training process can be significantly
accelerated. When the DNO model is trained using the incre-
mental learning algorithm, the order of training also has a
certain impact on the performance of the model. We noticed
that adjacent elements have better similarity, and if training
is performed sequentially according to the similarity of ele-
ments, better training results can be obtained.

We have compared the wall time for training a DNO model
and training a traditional DeepONet model and found that the
DNO model implemented in JAX supported by sequence-to-
sequence training and incremental learning can be trained
two orders of magnitude faster than the original DeepONet
model implemented in TensorFlow. The generality and exten-
sibility of the DNO model have been tested. Given the DNO
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model is trained based on the Gaussian random process
inputs, three different types of inputs, i.e., similar random
Gaussian process input with longer time, sinusoidal, and
piecewise linear sequences, are utilized as test cases to study
the prediction accuracy of the DNO model. Results suggested
that the DNO model still has good prediction accuracy for
different types of inputs. Moreover, the DNO model also
has good extensibility. Though the DNO model was trained
on one second of data, it provided good prediction results
when the test cases are with an extended time of 2 s dynamic
strain loadings. In general, after offline training, the DNO
model can act as a surrogate of physics-based FEA to pre-
dict the transient mechanical response instantly in terms of
reaction force and stress distribution of the IPCs to various
strain loads. Such fast and accurate prediction of the mechan-
ical properties of IPCs could significantly accelerate the IPC
structural design and related composite designs for desired
mechanical properties.

The DNO model also shows good robustness. We have
added Gaussian white noise at different noise levels into
the original output data to form new training data sets. As
the noise level increases, the prediction accuracy gradually
decreases. In the case of 8 = 0.2, the average prediction
accuracy of the DNO model can still reach x = 86.48%,
indicating great robustness. However, with a further increase
in noise level, the structure of the data will also be polluted.
To seek more reliable prediction results for noise data, other
recent methods such as Bayesian neural network models [52,
53], would be interesting research directions to explore in the
future.
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