A Framework for Neural Network Inference on
FPGA-Centric SmartNICs

Angi Guo*!, Tong Geng'*, Yongan Zhang'$, Pouya Haghi*, Chunshu Wu*, Cheng Tan¥, Yingyan Lin?,
Ang Lit,and Martin Herbordt*
*ECE Department, Boston University, Boston, MA
TECE Department, University of Rochester, Rochester, NY
tPacific Northwest National Laboratory, Richland, WA
§Rice University, Houston, TX
ﬂMicrosoft, Redmond, WA
Email: *{anqiguo,haghi,happycwu,herbordt} @bu.edu T{tong.geng} @rochester.edu
t{anqi.guo,tong.geng,yongan.zhang,ang li} @pnnl.gov ${yz87,yingyan.lin} @rice.edu Y{chengtan}@microsoft.com

Abstract—FPGA-based SmartNICs offer great potential to
significantly improve the performance of high-performance com-
puting and warehouse data processing by tightly coupling support
for reconfigurable data-intensive computation with cross-node
communication, thereby mitigating the von Neumann bottleneck.
Existing work, however, has generally been limited in that it
assumes an accelerator model where kernels are offloaded to
SmartNICs with most control tasks left to the CPUs. This leads
to frequent waiting, reduced performance, and scaling challenges.

In this work, we propose a new distributive data-centric com-
puting framework, named FCsN, for reconfigurable SmartNIC-
based systems. Through a lightweight task circulation execution
model and its implementation architecture, FCsN allows the
complete detaching of NN kernel execution, control logic, system
scheduling, and network communication to the SmartNICs.
This boosts performance by: (i) avoiding control dependency
with CPUs and (ii) supporting streaming NN Kkernel execution
and network communication at line rate and in a very fine-
grained manner. We demonstrate the efficiency and flexibility
of FCsN using various types of neural network Kkernels and
applications including deep neural networks (DNN) and graph
neural networks (GNN); as these last are both irregular and
data intensive they offer an especially robust demonstration.
Evaluations using commonly-used neural network models and
graph datasets show that a system with FCsN can achieve 10x
speedups over the MPI-based standard CPU baselines.

I. INTRODUCTION

Network communication is increasingly becoming the per-
formance bottleneck for scaled-out HPC and warehouse ap-
plications, as enormous amounts of CPU cycles are devoted
to packet processing, contributing to long per-packet latency
(Figure 1(a)). To reduce this latency, advanced network in-
terface cards known as SmartNICs have been introduced to
handle networking functions such as TCP Segmentation [1]
and Generic Receive [2]. In cloud computing, SmartNICs
support SR-IOV that forwards packets directly to the Virtual
Machine bypassing the hypervisor (Figure 1(b)) [3] [4].

Lately it has been found that if an FPGA can be integrated
into the NIC, not only more complex network protocols, but
also some data-intensive computation can be efficiently real-
ized when processing network packets, often at line-rate, and
without introducing significant overhead (Figure 1(c)) [5]-[7].
With high-bandwidth and low-latency access to network data

through Multi-Gigabit Transceivers (MGTs), and program-
ming logic with embedded hard-cores, FPGA-based Smart-
NICs can be viewed as network-focused streaming-processing
accelerators, in addition to network support devices. This
is particularly useful for domain-specific computations, such
as in machine learning and streaming data analytics, as the
FPGAs can be reconfigured as customized accelerators.

Nevertheless, existing FPGA-based SmartNICs are con-
strained by three limitations. (i) Host-control: Although the
offloading of some simple compute kernels has been demon-
strated, this work generally assumes a host-device program-
ming model, leaving the majority of control, scheduling,
and management tasks to the host CPUs. This not only
incurs an extra burden on the host CPUs, but also leads to
poor utilization of the SmartNICs for handling the control-
dependencies with the host through PCle and software stacks.
(ii) Limited scalability. Existing SmartNIC applications rarely
involve offload of non-local tasks, missing opportunities for
system-level designs that can span a distributed cluster, elim-
inate unnecessary data-movement, and support more efficient
scheduling and workload balance. (iii) Programmability. As
the control is performed by the host, most existing SmartNICs
only handle relatively simple kernels. Little support is offered
to either system or application developers for designing flexi-
ble domain-specific acceleration solutions.

In this work, we address these problems by presenting
a user-friendly framework for neural network inference on
FPGA-Centric smartNIC (FCsN) that can perform computa-
tion, communication, and control altogether at the same time,
allowing flexible and fine-grained task creation, distribution,
execution, and finalization across multiple SmartNIC devices.
This results in maximally hiding the computation latency with
network communication for streaming applications at line-rate,
and achieving high FPGA utilization and high performance
at system level by avoiding CPU intervention (Figure 1(d)).
Figure 2 illustrates the design stack of FCsN. On the software
side, FCsN uses a data-centric programming model (Section
3 A) and is equipped with Python-based programming APIs
(Section 3 B); on the hardware side, FCsN is equipped with
a hardware-based SmartNIC runtime (Section 4 C) to achieve

CPU Overhead for
I I INetwork&Contro/

-
CPU
- ={cpu —=
Computation — -—
- -
App Control Ll Computation [l
- - = |
i - App Control -
- Scheduling - - pp L
mm | Network Func [g - Scheduling -
3 3
PCle
Software Stack f
smartNIC
n Network Func
Pkt Forwarding

App Control

Scheduling

11

FPGA-NIC|

App Control

Scheduling

Network Func
In-Network
Compute

Communication

(a) Cluster with
Regular NIC

(b) Cluster
with SmartNIC

IR

A @2 1
NN G I CEN
Moo NETWORK, . NETWORK >
VORKNS o NETWORK .

(d) FPGA Centric
SmartNIC System

_______ bt

(c) FPGA-based SmartNIC
with Accelerator

Fig. 1. (a) CPU handles computation and network functions; the NIC is under-utilized and the network traffic is heavy resulting in communication bottlenecks.
(b) SmartNIC handles network functions and performs simple in-network computing. The CPU is in charge of kernel execution. (¢) FPGA-based SmartNIC
acts as a SmartNIC and an accelerator with partially offloaded CPU computations. However, extra overhead between CPU and FPGA-NIC is introduced by
CPU’s intervention in application control and scheduling. (d) FPGA-Centric SmartNIC (FCsN) handles network functions and also application computations,
application control, kernel scheduling, and task initiation. CPU cycles are saved, overhead between the NIC and the CPU is reduced, and FPGA-NIC resources

are fully utilized.

Application FCsN Goal

Pytorch based
NN Application

Programming

Detached
Control

Streaming
Kernel at

Model From CPU Line Rate
Section 3A
Software User-friendly
Section 3 B Framework API Tightly Fused
___________ | —————— | Computation and
Communication
Distributed
Hardware Runtime @
Hardwar:
a d are i High Performance and
Section 4 Streaming NN Kernel |:> Efficiency Distributed
Functions at FREGEET
Network Line Rate

Fig. 2. Overview of FPGA-centric SmartNIC design

CPU-detached scheduling and support high-performance exe-
cution of NN kernels at line-rate (Section 4 D). The current
FCsN framework focuses on Neural Network applications,
but it has the potential of extending to a general framework
as many scientific applications share similar basic kernel
functions as NN applications. Contributions of this paper are
as follows:

e FCsN, a user-friendly and high-performance FPGA-
centric SmartNIC framework, which supports domain-
specific computation, low-latency communication, and
host-detached scheduling;

e A hardware-based FPGA-centric SmartNIC runtime that
enables asynchronous and fine-grained task scheduling
and so avoids the control dependency with CPUs;

o A series of streaming NN kernels that provide accelera-
tion at line rate and maximally overlap computation la-
tency with network communication for NN applications;

« Evaluations using neural network applications including
general DNNs and GNNs with commonly-used models
and datasets on systems with FCsN support and real-
ized on Alveo U280 FPGAs. These show that FCsN

can achieve 10x speedups over the standard MPI-based
system baseline.

II. BACKGROUND AND RELATED WORK

There has been much work utilizing SmartNICs to en-
hance communication and networking. Dozens of commercial
FPGA-based SmartNICs have been released, including from
AMD and Intel, e.g., [8]-[10]; surveys include [11], [12].
Other work has focused on near-network processing [13]-
[16]. Other FPGA-based network solutions, such as Catapult
[17], offload network applications. There has been much work
in FPGA-based scalable network stacks supporting TCP/IP,
RoCEv2, and UDP/IP [1], [18]-[22]. Work by [23] proposed a
configurable network protocol on intelligent NICs. NetFPGA
[24] has been invaluable in providing FPGA-based network
hardware development environments.

There is also prior art that uses SmartNICs as compute
resources [25], [26]. COPA [27] provides a software/hardware
framework that makes the underlying FPGA hardware (Smart-
NIC device) agnostic to middleware. INCA [28] provides
general-purpose compute capabilities for SmartNICs that can
be utilized when the network is inactive. SPIN [29] provides a
portable programming model to offload simple packet process-
ing. NICA [7] provides a framework for inline acceleration
of the application data plane on FPGA-based SmartNICs
in multi-tenant systems. Other work [2], [30]-[32] supports
collectives in FPGA-based hardware.

III. PROGRAMMING MODEL & SOFTWARE SUPPORT
In this section, we discuss programming models and intro-
duce FCsN’s Python-based programming interface.
A. Programming Models

We investigate two programming models: compute-centric
and data-centric. In the compute-centric programming model,

Task Queue T ———
[T “ane schedute
Task Spawner
Task Recv Queue [Task Handler I :
Ly [TTITTT—{TeskSpit i) | Computing Unit
& Send Queue Remote [l

Wait Queue

Runtime Workflow
Fig. 3. Data-Centric Workflow

a process is assigned to a processor or an entire node and
communication happens through message passing. Compu-
tations follow a series of steps: parallel computation (each
node participates in a portion of assigned tasks) and barrier
synchronization to align execution of nodes. This model works
well for BSP applications with easily partitionable data and
regular computation. However, many workloads have irregular
behavior with skewed data distribution, high synchronization
intensity, and irregular communication patterns [33].

The data-centric model [34] is an alternative. It brings com-
putation to the data, rather than the reverse, and so minimizes
data movement and reduces unnecessary communication. This
model follows a logical ring topology, i.e., the application
is partitioned into tasks that circulate around a logical ring
system and thereby exploit data locality. Each node can verify
whether a task should be executed locally based on the local
data range. The data-centric model suits applications with less
structured data and irregular behaviors, e.g., involving sparse
matrices, that introduce unpredictable data access. For exam-
ple, modern NN applications, which are ever more optimized
to reduce computation, are becoming correspondingly more
irregular and communication-bound, especially in large-scale
processing [35]. As these are our initial application targets for
FCsN, we consider using the data-centric model.

Figure 3 shows the data-centric workflow. Using the data-
centric programming model, applications can be split into two
parts, data and task. Data is distributed on each node in the
system initialization phase; localgstqr+ and locale,q indicate
the local data range. The RDMA handler fetches data when
the task demands remote data. Tasks are pre-registered and
dynamically spawned among the nodes. At runtime, tasks
circulate among nodes. A task confirms its required data
using the starting and ending addresses (T'ASKiq¢ and
TASKpq). Tasks can be replicated for remote nodes if the
required data range is wider than the local data range. In this
way, the data-centric approach can bring tasks to each node
asynchronously rather than sending possibly massive amounts
of data through the network.

B. FPGA programming interface

To support a user-friendly interface, a middle layer API
coordinates activity between the host CPU and underlying
hardware, including system and kernel initialization, hardware
status checking, data syncing, and hardware control. A list
of API functions with system initialization and finalization is
shown in Table 1.

FCsN supports most of the major kernels used in Neural
Network processing, including 2D convolution, dense and

TABLE I
SOFTWARE PROGRAMMING API AND NEURAL NETWORK KERNELS

Function [Description

Software Programming API

Overlay_handler =
System_init (
Node_num)
Board_init(
Overlay_handler,
Bit_file)
Check_Kernel()
Data_handler =
Host_data_preprocess (data)
Mem_handler =
Board_MEM_init (
Overlay_handler,
Data_handler)
Spawn_MEM =
Board_MEM_init (
Overlay_handler,
Task_carrying_data)
Kernel_Start (
Overlay_handler,
Task_id,
Argv)
Sync_to_Host(
Overlay_handler,
Data_handler)
System_Finalize(
Overlay_handler)

FCsN multi-node environment
initialization setup

Configure network function, check
board status and program the board
with binary file

Check kernel status

Host preprocess data

Allocate on-chip Memory, sync and
distribute data from host to chip.

Allocate Task Spawner Memory
with task required data.

Start the kernel with Task_id and
control argument

Sync on-chip Memory data back to
host Memory

Free overlay

sparse matrix multiplication, graph aggregation, norm, and
non-linear element-wise activation functions. The APIs can
be easily and seamlessly integrated into PyTorch-based NN
applications. Based on the NN application’s need, corre-
sponding kernel function tasks can be configured. Before
an application’s execution, data that needs to be carried by
tasks are synced to on-chip ‘Spawn_MEM’. ‘Kernel_start’
starts the task spawner module based on task data from
‘Spawn_MEM’ and dynamically generates kernel tasks during
runtime based on ‘Task_id’. ‘argv’ indicates the task spawner
control arguments such as destination or data range required by
the task. After starting the kernel, the application is detached
from the CPU’s control and the hardware runtime handles the
control logic. ‘Sync_to_Host’ syncs the result back to the host
when the application finishes and with ‘System_Finalize’ frees
the board resources.

To associate the middle layer API with hardware, we use
Xilinx Pynq [36] as an API to program and interact with Xilinx
XRT [37] and Vitis platform FPGAs. Pynq is an open-source
Python-based library for programming both the embedded
processors and overlays. We use Vitis HLS to implement basic
hardware NN kernel functions. The Vitis compiler compiles
HLS kernel into an xo file, creating an overlay by linking
with other kernels, e.g. network function and DMA engine.

IV. FPGA-BASED SMARTNIC ARCHITECTURE
We describe the hardware architecture and supported basic
NN kernel functions with streaming execution capability.

A. Architecture Overview

The FCsN architecture is shown in Figure 4. The dynamic
user logic consists of network function, hardware runtime,
and NN kernel compute engines. The network function uses
TCP as the Layer 4 transport protocol [1]. Neural network

Static Shell

- — — = - T rmn.a — — — 1]
| Dynamic User Logic |
1 |Computing Engines Hardware Network ||
| @@@ Runtime Funt:tinnsI
e —

[DDR Memary] Clocking and Reset

PCle Peripherals| Transceiver

Host Network

Fig. 4. FPGA-based SmartNIC Overlay

Hardware Runtime
oo
HEOD

Task Responder

Task Splitter

Lagic Task Packager

Freeze ueue
for ROMA
ROMA Task Packager
RD '—ﬂ]]]l]]]'— ROMA Task Splitter
Data Rd Queue
ROMA Task Responder

MEM ROMA

L
) E e
K=]

DATA DATA Recv queue

Task Spawner

Task

111N

Task Recy queue

M= e]

Task Send queue

Task
Classifier

Programmable

RDMA Detector

Fig. 5. Hardware Runtime Architecture

kernel functions are configured according to the application’s
requirement during the initialization phase.

B. Hardware Runtime Support

The hardware runtime is split into two stages, runtime
initialization and runtime execution. Runtime initialization
enables the host to program the dynamic application chip
region with the user’s application binary and syncs data from
host memory to FPGA’s memory. Runtime execution handles
application task spawning, scheduling, application control
logic, and manages RDMA data.

1) Runtime Initialization: Runtime initialization loads the
binary, allocates resources, and prepares for runtime execution.
Distributed application kernel tasks are assigned to each node
and distributed data is preloaded onto the chip. Runtime execu-
tion invokes the corresponding task spawner and dynamically
generates tasks with preloaded information.

2) Hardware Runtime: After initialization, the runtime
task spawner dynamically generates tasks based on the
‘Spawn_MEM’ task info. In this design, each task is packaged
as a 512-bit packet with a 32-bit application header and 480-
bit payload. The header contains information on task type, task
ID, task destination, and task data range. After the hardware
runtime has parsed the packet, the task handler consumes the
task if current node is within the demanded data range (Figure
3). Packets have three types: Task, RDMA, and Data. Figure
5 shows the three types of runtime handlers.

Task Handler: The Task Classifier pops the first valid
packet and appends it to the corresponding handler. Within
each handler, the Task Responder checks the integrity of

the packet and whether the packet can be fully or partially
executed in the current node (Figure 3). (1) Partially executed
means the current node does not have all the data it needs. In
this case, the Task Splitter splits the packet, consumes the local
task and generates a remote packet with the rest of the data
range. The Task Packager wraps the remote task and pushes
it into the send queue. (2) The consuming task is sent to an
RDMA Detector to check if the task needs remote data. (i)
If no remote data is needed, it is appended to the pending
task queue and assigned to the compute unit. (ii) If the task
requests remote data, it is temporarily pushed to a freeze queue
and waits for the requested data to be available locally. The
RDMA Handler generates a corresponding RDMA task.

RDMA Handler: An RDMA task requests remote data.
It is analyzed in the RDMA Task Responder to determine
whether the requesting data are available on the local node.
After consuming the RDMA task, the task is pushed into a
data read queue and waits for the memory controller to issue
its requested data. When the data have been retrieved, they
are wrapped by the Data Packager and sent to the requesting
source node.

Data Handler: handles data packets when the requested
data from the current node’s RDMA task has been successfully
retrieved and informs the RDMA Detector whether there are
tasks ready to be compute.

C. Neural Network Kernel Support

In FCsN, non-conflict streaming kernel execution at net-
work line rate leverages the SmartNIC capabilities. Software-
hardware co-design of conflict-free kernel functions on the
FPGA-based SmartNIC guarantees that kernel execution is not
stalled and can be tightly combined with the network pipeline.
We provide kernel functions for Neural Network applications
including 2D Convolution, Matrix Multiplication, Function
Norms, Non-linear element-wise Activation, and Aggregation.

With the aim of achieving stream execution at line rate,
the compute pipeline is required to have the capability of
consuming one task packet each cycle. Within the pipeline,
sub-tasks in each packet should not have memory conflicts
or other hazards that stall the pipeline or cause packets to
be dropped. Also, the latency of each task needs to be fixed
with predetermined pipeline stages. Details of supported NN
function kernels are as follows:

1) 2D Convolution: In 2D convolution, a small matrix of
kernel weights slides over the 2D input data, performing an
element-wise multiplication with the part of the input it is
currently over, and then sums the results into a single output
pixel. The weight kernel and 2D input data are preloaded into
BRAM. The 2D input data is streamed into the kernel pipeline.
In FCsN, halo exchange happens between the edges of the
partitioned 2D input data and tasks carry corresponding data
to be exchanged.

2) Dense and Normal Sparse Matrix Multiplication: With
distributed matrix multiply between matrices A and B, in data-
centric programming model matrix B can be treated as ’‘data”
distributed in the system and matrix A decomposed into tasks.
We recommend generating tasks with the sparse matrix if there

is one. The task carries operation information and the non-zero
elements in the sparse matrix or a slot of dense matrix data.

3) Function Norms: Norms, such as layernorm and batch-
norm [38], are realized through vector dot product (to cal-
culate statistics such as sum and mean) and element-wise
multiplication and addition (to scale and add biases). Their
implementation can be modified from 2D Convolution and
Matrix Multiplication kernels to achieve line rate.

4) Non-linear element-wise activation functions: Activa-
tion functions add non-linearity to the neural network models
for improved prediction accuracy [39]. The activation function
can be inserted in the computation pipeline acting on the
output of the neuron.

D. Aggregation Function

Within GNN workloads, aggregation is an extreme case
of Sparse Matrix Multiply with irregular data accesses for
which it is hard to achieve streaming execution [40], [41].
Details of achieving streaming kernel execution at line rate
with aggregation are described in this section.

1) Aggregation Function Operation: Aggregation is a ma-
trix multiplication between an extremely sparse adjacency
matrix (>= 99%) and dense weight matrix. To facilitate
streaming compute kernels with the data-centric model, the
sparse adjacency matrix is decomposed into tasks carrying
non-zero elements traversing in the network acting on the
distributed weight matrix in the system. The equation Output
= AX illustrates the operation of aggregation with the sparse
matrix A and the dense matrix X. For each non-zero element
in the task packet, one row of dense matrix X using col_id
and one row of the output matrix using row_id is fetched.

2) Non-conflict Streaming Execution: Line-rate kernel ex-
ecution requires a non-conflict, non-stall pipeline with several
issues needing to be addressed. (1) Reading matrix X or
output matrix may have conflicts between non-zero elements
in each packet task. Each non-zero element needs to fetch
data in one cycle to avoid pipeline stalls. However, there
is no latency guarantee for memory accesses of multiple
elements. (2) Writing back to the output matrix may result in
conflicts between non-zero elements if more than one element
is updating the same row. (3) Read after write (RAW) hazards
may happen between reading and writing operation on the
output matrix among different task packets within the pipeline.

To overcome these issues, the task spawner in the hardware
runtime and BRAM optimizations in computing units coop-
erate. On-chip DDR access is slow and unpredictable, so the
dense matrix data is loaded to BRAM. However, since each
packet contains several non-zero elements, simply loading B
and the output matrix to BRAM can not guarantee that several
rows are fetched in one cycle. BRAM is therefore partitioned
into interleaved blocks and the task spawner dynamically
selects the corresponding element. Before generating tasks,
the adjacency matrix is tiled into blocks as the storage format
for sparse tensors where the data locality is improved. We are
tiling the sparse matrix column-wise and with a block size
of 20. This tiling helps the task spawner generate tasks with
simple logic and BRAM access without conflicts (Figure 6).

20

Tensor Block __---~" ©]

Fig. 6. Runtime Task Spawner

Accessing X Matrix: With a tensor block size of 20x20
(red block in Fig 6), the non-zero element in each column
block only accesses the first 20 rows of the matrix X. We
partition the BRAM cyclically so that every 20 rows of matrix
X can be fetched in parallel. The task spawner generate tasks
selecting non-zero elements within each block tile column-
wise as indicated by the orange arrow in Fig 6.

Accessing and Updating Output Matrix: The non-zero se-
lection needs to ensure non-conflicting Output access. The
row id of the non-zero element determines which row of
the output matrix will be read out and written to. As an
example let each packet have 4 elements. We then partition
the output matrix with a cyclic factor of 4 so every 4 rows of
the output matrix can be independently read and written. The
task spawner selects non-zero elements cyclic as factor of 4
to ensure interleaved data access on the output matrix BRAM.
In Fig 6 the same color circle indicates non-zero elements in
the same packet.

RAW hazard: To avoid RAW hazards, a RAW detector
temporarily holds the last cycle’s row id and vector value. If
the non-zero element demands the row that is written back, it
uses the stored vector in the RAW detector instead of fetching
it from the Output BRAM.

V. EVALUATION
A. Experiment setup

We evaluated the FCsN framework with NN kernel func-
tions and NN applications using an Alveo U280 cluster with
2-4 nodes; systems with 8 and 16 nodes are evaluate with
our cycle-accurate simulator with verified results collected in
real systems. The FCsN hardware runtime and NN kernels
are implemented in Vitis HLS. The baseline CPU results
are evaluated with a 16-core 32-thread Intel® Xeon® Gold
6226R CPU. Current state-of-the-art distributed Pytorch-based
NN applications use MPI as the backend. To eliminate the
communication overhead and variance of different NIC or
SmartNIC configurations, we implemented hand-tuned MPI
code mapped to the cores of the same CPU. We also added
a multi-node GPU with MPI using Nvidia Tesla V100s. The
evaluations are with respect to four models: compute-centric
(C-C) with MPI on CPU, GPU with MPI, computer-centric
(C-C) with FCsN, and data-centric (D-C) with FCsN.

B. Performance and Resource Utilization

The baseline CPU MPI results evaluate the distributed
Pytroch-based NN approach with the compute-centric model.

TABLE 11
RESOURCE UTILIZATION, FREQUENCY: 294MHZ
BRAM_18K | DSP FF LUT
NN Function 2,754 2,724 11,182,054 834,876
Kernels (66%) (30%)| (42%) | (60%)
Hardware 717 0 87,813 | 64,089
Runtime (15%) (0%) (3%) (3%)

We simplified and optimized the MPI code with the same
computation and communication pattern as Pytorch. The multi
GPU result is achieved by using MPI as the message passing
interface. Compute-centric FCsN model follows the same
computation and communication methods as the CPU baseline.
However, the computation, control logic, and communica-
tion are offloaded onto the SmartNIC, with no CPU control
involved. This result shows the improvement of the FCsN
framework with detached host control. Lastly, FCsN with
data-centric model indicates the performance of the data-
centric model of streaming kernel execution with tightly fused
computation and network pipeline detached from host control.

20

215
i 4l ad
Q.
T T = =

GEMM (?FMV SPGEMM
a

Mobilenet MLP

S|

2D Convolution

%
>
°
b
& II-
2
o =
VGG

Aggregration

RestNet (b)

o
210
(7]
o e el ol | e |

Cora CoraFull Pubmed CoauthorPhysics Reddit
C

M CPU-2node MPI C-C
B GPU-2node MPI

W FCsN-2node C-C

FCsN-2node D-C

B CPU-4node MPI C-C

B GPU-4node MPI

m FCsN-4node C-C
FCsN-4node D-C

CPU-8node MPI C-C
B GPU-8node MPI
W FCsN-8node C-C
FCsN-8node D-C

CPU-16node MPI C-C
B GPU-16node MPI
m FCsN-16node C-C
FCsN-16node D-C

Fig. 7. NN Kernel and Application Model Evaluation Speedup

Figure 7 shows the normalized speedups for these eval-
vation models with NN kernels and NN applications. CPU
with MPI and GPU with MPI have lower performance and
scalability because of the communication and software over-
head. The data-centric model gains more speedup than the
compute-centric model as the system size scales up since data-
movement and communication overhead increase. The FCsN
data-centric model shows better speedups and scalability due
to the streaming execution of task tokens that minimize data
movement, and the avoidance of PCle, software stack, host
control, and synchronization.

1) Kernel Performance: Figure 7(a) shows the speedups
of NN kernel functions with matrix size of 2048x2048. Since
2D convolution has less communication in 2D convolution and
GEMM has regular data access and computation, FCsN with
the data-centric model has limited speedup. However, in irreg-
ular kernels like SPMV, SPGEMM, aggregation, FCsN gains
more speedup due to the offloaded control, asynchronous tasks,
and streaming computation. In the 2D convolution function
kernel, the speedup with FCsN in data-centric model is 2.3 x
compared with the CPU version, 1.27x compared with GPU
and 1.1x compared with FCsN in compute-centric mode. The

distributed GEMM kernel requires data movement between
nodes. FCsN has less overhead handling communication than
the CPU and GPU approaches. Compute-centric FCsN has
a speedup of 2x compared to the CPU baseline. Data-centric
FCsN provides higher performance than CPU, GPU, and FCsN
in compute-centric with streaming computation with a speedup
of 2.3x over the CPU baseline and 1.7x over the GPU.
Sparse matrix-vector multiplication (SPMV), sparse matrix
multiplication (SPGEMM) and aggregation have similar data
distribution and execution. Computations are decomposed into
tasks and vector or dense matrix are distributed as data in data-
centric model. These kernels follow similar speedup trends
over the baseline. The average speedup over CPU is 3.8 x for
compute-centric FCsN and 6.7 for data-centric FCsN.

2) Application Performance: Figure 7(b) shows the per-
formance of neural network applications (VGG, RestNet,
Mobilenet, MLP [42]-[45]) using FCsN provided function
kernels. The speedups of VGG (2D-convolution), RestNet
(2D-convolution), MobileNet (GEMM) and MLP (GEMM)
are 3.36x, 3.55x%, 4.3x, and 2.9x, respectively, for FCsN
compute-centric over the CPU baseline. The speedup of FCsN
data-centric over CPU baseline is 4x, 3.6, 4.6x and 3.3x.
We evaluated GNN models using the aggregation kernels
with five datasets in Figure 7(c), Cora, CoraFull, Pubmed,
CoautherPhysics, and Reddit [46], [47]. The size of datasets
increases in order. The speedups of FCsN compute-centric
over CPU are 1.52x, 1.86x, 4.82x, 5.08x and 8.5x. The
speedup of FCsN data-centric over baseline are 5.38x, 5.08x,
6.04x, 6.64x and 10.13x.

3) Resource Utilization: Table II shows resource utilization
of NN function kernels and the FCsN hardware runtime. The
BRAMs and LUT resources are used largely to avoid memory
access conflicts.

VI. CONCLUSION

We provide a user-friendly FPGA-Centric SmartNIC frame-
work (FCsN) for Neural Networks, with a light-weight
distributed hardware runtime and data-centric programming
model that is completely detached from the CPUs. With
the task circulation execution model, communication and
computation are tightly fused and distribute kernel execution
in a streaming manner at network line rate. A hardware-
based FPGA-centric SmartNIC runtime enables asynchronous
and fine-grained task scheduling which allows FCsN to be
detached from host. FCsN leverages these characteristics to
achieve high performance and efficiency for irregular and data-
intensive neural network applications.

ACKNOWLEDGMENT

This work was supported by the Compute-Flow-
Architecture (CFA) project under PNNL’s Data-Model-
Convergence (DMC) LDRD Initiative. The Pacific Northwest
National Laboratory is operated by Battelle for the U.S.
Department of Energy under Contract DE-AC05-76RL01830.
This work was also supported, in part, by the NSF through
award CCF-1919130.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

REFERENCES

D. Sidler, G. Alonso, M. Blott, K. Karras, K. Vissers, and R. Carley,
“Scalable 10Gbps TCP/IP Stack Architecture for Reconfigurable Hard-
ware,” in 2015 IEEE 23rd Annual International Symposium on Field-
Programmable Custom Computing Machines, 2015, pp. 36-43.

P. Haghi, A. Guo, T. Geng, J. Broaddus, D. Schafer, A. Skjellum,
and M. Herbordt, “A Reconfigurable Compute-in-the-Network FPGA
Assistant for High-Level Collective Support with Distributed Matrix
Multiply Case Study,” in 2020 International Conference on Field-
Programmable Technology (ICFPT), 2020, pp. 159-164.

ConnectX®-5 EN Card. [Online]. Available:
https://support.mellanox.com/s/productdetails/a2v5000000052eSAAQ/
connectx5-en-card

D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh, M. An-
drewartha, H. Angepat, V. Bhanu, A. Caulfield, E. Chung, H. K.
Chandrappa, S. Chaturmohta, M. Humphrey, J. Lavier, N. Lam, F. Liu,
K. Ovtcharov, J. Padhye, G. Popuri, S. Raindel, T. Sapre, M. Shaw,
G. Silva, M. Sivakumar, N. Srivastava, A. Verma, Q. Zuhair, D. Bansal,
D. Burger, K. Vaid, D. A. Maltz, and A. Greenberg, “Azure Accelerated
Networking: SmartNICs in the Public Cloud,” in Proceedings of the 15th
USENIX Conference on Networked Systems Design and Implementation,
ser. NSDI'18. USA: USENIX Association, 2018, p. 51-64.

Y. Zhu, Z. He, W. Jiang, K. Zeng, J. Zhou, and G. Alonso, “Distributed
Recommendation Inference on FPGA Clusters,” in 2021 31st Inter-
national Conference on Field-Programmable Logic and Applications
(FPL), 2021, pp. 279-285.

A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constan-
tinides, J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray,
M. Haselman, S. Hauck, S. Heil, A. Hormati, J.-Y. Kim, S. Lanka,
J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong, P. Y. Xiao, and
D. Burger, “A Reconfigurable Fabric for Accelerating Large-Scale
Datacenter Services,” IEEE Micro, vol. 35, no. 3, pp. 10-22, 2015.

H. Eran, L. Zeno, M. Tork, G. Malka, and M. Silberstein, “NICA: An
Infrastructure for Inline Acceleration of Network Applications,” in Pro-
ceedings of the 2019 USENIX Conference on Usenix Annual Technical
Conference, ser. USENIX ATC *19. USA: USENIX Association, 2019,

p. 345-361.

“Alveo U225 SmartNIC Accelerator Card,”
https://www.xilinx.com/products/boards-and-kits/alveo/u25.html.
“Xilinx Alveo SN1000 SmartNIC,”

https://www.xilinx.com/applications/data-center/network-
acceleration/alveo-sn1000.html.

“Intel® Infrastructure Processing Unit (Intel® IPU) and SmartNICs,”
https://www.intel.com/content/www/us/en/products/network-
io/smartnic.html.

H. Shahzad, A. Sanaullah, and M. Herbordt, “Survey and Future
Trends for FPGA Cloud Architectures,” in 2021 IEEE High Perfor-
mance Extreme Computing Conference (HPEC), 2021, doi: 10.1109/H-
PEC49654.2021.9622807.

C. Bobda, J. Mandebi, P. Chow, M. Ewais, N. Tarafdar, J. Vega,
K. Eguro, D. Koch, S. Handagala, M. Leeser, M. Herbordt, H. Shahzad,
P. Hofstee, B. Ringlein, J. Szefer, A. Sanaullah, and R. Tessier, “The
Future of FPGA Acceleration in Datacenters and the Cloud,” ACM
Transactions on Reconfigurable Technologies and Systems, vol. 15, no. 3,
pp. 1-42, 2022, doi: 10.1145/3506713.

NVIDIA Mellanox BlueField SmartNIC for Ethernet. [Online].
Available: https://www.mellanox.com/files/doc-2020/pb-bluefield-smart-
nic.pdf

Marvell® LiquidIO™ III. [Online].
https://www.marvell.com/content/dam/marvell/en/public-
collateral/embedded-processors/marvell-liquidio-III-solutions-brief.pdf
Mellanox Innova-2 Flex Open Programmable SmartNIC. [On-
line]. Available: https://www.mellanox.com/files/doc-2020/pb-innova-
2-flex.pdf

Netronome® Agilio® SmartNICs. [Online].
https://www.netronome.com/products/smartnic/overview/
A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers,
M. Haselman, S. Heil, M. Humphrey, P. Kaur, J.-Y. Kim, D. Lo,
T. Massengill, K. Ovtcharov, M. Papamichael, L. Woods, S. Lanka,
D. Chiou, and D. Burger, “A cloud-scale acceleration architecture,” in
2016 49th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), 2016, pp. 1-13.

Available:

Available:

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

D. Sidler, Z. Istvan, and G. Alonso, “Low-latency TCP/IP stack for data
center applications,” in 2016 26th International Conference on Field
Programmable Logic and Applications (FPL), 2016, pp. 1-4.

D. Sidler, “In-Network Data Processing using FPGAs,” PhD dissertation,
Computer Science Department, ETH Zurich, 2019-09.

D. Sidler, Z. Wang, M. Chiosa, A. Kulkarni, and G. Alonso, “StRoM:
Smart Remote Memory,” in Proceedings of the Fifteenth European
Conference on Computer Systems, ser. EuroSys '20. New York, NY,
USA: Association for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3342195.3387519

G. Sutter, M. Ruiz, S. Lépez-Buedo, and G. Alonso, “FPGA-based
TCP/IP Checksum Offloading Engine for 100 Gbps Networks,” in 2018
International Conference on ReConFigurable Computing and FPGAs
(ReConFig). 1EEE, Dec 2018.

M. Ruiz, D. Sidler, G. Sutter, G. Alonso, and S. Lépez-Buedo, “Limago:
an FPGA-based Open-source 100 GbE TCP/IP Stack,” in 2019 29th In-
ternational Conference on Field Programmable Logic and Applications
(FPL). IEEE, Sep 2019, pp. 286-292.

R. Jaganathan, K. Underwood, and R. Sass, “A configurable network
protocol for cluster based communications using modular hardware
primitives on an intelligent NIC,” in /Ith Annual IEEE Symposium on
Field-Programmable Custom Computing Machines, 2003. FCCM 2003.,
2003, pp. 286-287.

N. Zilberman, Y. Audzevich, G. Covington, and A. W. Moore, “NetF-
PGA SUME: Toward 100 Gbps as Research Commodity,” IEEE Micro,
vol. 34, no. 05, pp. 32-41, sep 2014.

A. Caulfield, P. Costa, and M. Ghobadi, “Beyond SmartNICs: Towards
a Fully Programmable Cloud: Invited Paper,” in 2018 IEEE 19th
International Conference on High Performance Switching and Routing
(HPSR), 2018, pp. 1-6.

K. D. Underwood, R. Sass, and W. B. Ligon, “Cost Effectiveness of
an Adaptable Computing Cluster,” ACM/IEEE SC 2001 Conference
(SC°01), pp. 30-30, 2001.

V. Krishnan, O. Serres, and M. Blocksome, “COnfigurable Network
Protocol Accelerator (COPA): An Integrated Networking/Accelerator
Hardware/Software Framework,” in 2020 IEEE Symposium on High-
Performance Interconnects (HOTI), 2020, pp. 17-24.

W. Schonbein, R. E. Grant, M. G. F. Dosanjh, and D. Arnold,
“INCA: In-Network Compute Assistance,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’19. New York, NY, USA:
Association for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3295500.3356153

T. Hoefler, S. Di Girolamo, K. Taranov, R. E. Grant, and R. Brightwell,
“SPIN: High-Performance Streaming Processing In the Network,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’17. New
York, NY, USA: Association for Computing Machinery, 2017. [Online].
Available: https://doi.org/10.1145/3126908.3126970

P. Haghi, T. Geng, A. Guo, T. Wang, and M. Herbordt, “FP-AMG:
FPGA-Based Acceleration Framework for Algebraic Multigrid Solvers,”
in 28th IEEE International Symposium on Field-Programmable Custom
Computing Machines, 2020, doi: 10.1109/ FCCM48280.2020.00028.
Z. He, D. Parravicini, L. Petrica, K. O’Brien, G. Alonso, and M. Blott,
“ACCL: FPGA-Accelerated Collectives over 100 Gbps TCP-IP,” in
2021 IEEE/ACM International Workshop on Heterogeneous High-
performance Reconfigurable Computing (H2RC), 2021, pp. 33-43.

P. Haghi, A. Guo, Q. Xiong, C. Yang, T. Geng, J. Broaddus, R. Marshall,
D. Schafer, A. Skjellum, and M. Herbordt, “Reconfigurable switches
for high performance and flexible MPI collectives,” Concurrency and
Computation: Practice and Experience, vol. 34, no. 2, 2022, doi:
10.1002/cpe.6769.

P. Haghi, A. Guo, T. Geng, A. Skjellum, and M. C. Herbordt, “Workload
Imbalance in HPC Applications: Effect on Performance of In-Network
Processing,” in 2021 IEEE High Performance Extreme Computing
Conference (HPEC), 2021, pp. 1-8.

C. Tan, C. Xie, T. Geng, A. Marquez, A. Tumeo, K. Barker, and A. Li,
“ARENA: Asynchronous Reconfigurable Accelerator Ring to Enable
Data-Centric Parallel Computing,” IEEE Transactions on Parallel Dis-
tributed Systems, vol. 32, no. 12, pp. 2880-2892, dec 2021.

T. Geng, C. Wu, C. Tan, C. Xie, A. Guo, P. Haghi, S. Y. He, J. Li,
M. Herbordt, and A. Li, “A Survey: Handling Irregularities in Neural
Network Acceleration with FPGAs,” in 2021 IEEE High Performance
Extreme Computing Conference (HPEC), 2021, pp. 1-8.

Pynq. [Online]. Available: http://www.pynq.io/

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Xilinx Runtime Library (XRT). [Online]. Available:
https://www.xilinx.com/products/design-tools/vitis/xrt.html

A. Rannen-Triki, M. Berman, V. Kolmogorov, and M. B. Blaschko,
“Function Norms for Neural Networks,” in 2019 IEEE/CVF Interna-
tional Conference on Computer Vision Workshop (ICCVW), 2019, pp.
748-752.

C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation
Functions: Comparison of trends in Practice and Research for Deep
Learning,” 2018. [Online]. Available: https://arxiv.org/abs/1811.03378
T. Geng, A. Li, R. Shi, C. Wu, T. Wang, Y. Li, P. Haghi, A. Tumeo,
S. Che, S. Reinhardt, and M. C. Herbordt, “AWB-GCN: A Graph
Convolutional Network Accelerator with Runtime Workload Rebalanc-
ing,” in 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2020, pp. 922-936.

T. Geng, C. Wu, Y. Zhang, C. Tan, C. Xie, H. You, M. Herbordt, Y. Lin,
and A. Li, “I-GCN: A Graph Convolutional Network Accelerator
with Runtime Locality Enhancement through Islandization,” in
MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO °21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 1051-1063. [Online]. Available:
https://doi.org/10.1145/3466752.3480113

K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” CoRR, vol. abs/1409.1556, 2015.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” in 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016, pp. 770-778.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient Convo-
lutional Neural Networks for Mobile Vision Applications,” CoRR, vol.
abs/1704.04861, 2017.

M.-C. Popescu, V. E. Balas, L. Perescu-Popescu, and N. Mastorakis,
“Multilayer Perceptron and Neural Networks,” vol. 8, no. 7, p. 579-588,
jul 2009.

P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and
T. Eliassi-Rad, “Collective Classification in Network Data,” Al
Magazine, vol. 29, no. 3, p. 93, Sep. 2008. [Online]. Available:
https://ojs.aaai.org/index.php/aimagazine/article/view/2157

V. P. Dwivedi, C. K. Joshi, T. Laurent, Y. Bengio, and X. Bresson,
“Benchmarking graph neural networks,” CoRR, vol. abs/2003.00982,
2020. [Online]. Available: https://arxiv.org/abs/2003.00982

