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a b s t r a c t

We present a three-dimensional (3-D) visualization of jet geometry using numerical methods based
on a Markov Chain Monte Carlo (MCMC) and limited memory Broyden–Fletcher–Goldfarb–Shanno
(BFGS) optimized algorithm. Our aim is to visualize the 3-D geometry of an active galactic nucleus
(AGN) jet using observations, which are inherently two-dimensional (2-D) images. Many AGN jets
display complex structures that include hotspots and bends. The structure of these bends in the jet’s
frame may appear quite different than what we see in the sky frame, where it is transformed by our
particular viewing geometry. The knowledge of the intrinsic structure will be helpful in understanding
the appearance of the magnetic field and hence emission and particle acceleration processes over the
length of the jet. We present the JetCurry algorithm to visualize the jet’s 3-D geometry from its 2-D
image. We discuss the underlying geometrical framework and outline the method used to decompose
the 2-D image. We report the results of our 3-D visualization of the jet of M87, using the test case of the
knot D region. Our 3-D visualization is broadly consistent with the expected double helical magnetic
field structure of knot D region of the jet. We also discuss the next steps in the development of the
JetCurry algorithm.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Relativistic jets transport mass and energy from sub-parsec
entral regions to Mpc-scale lobes, with a kinetic power com-
arable to that of their host galaxies and active galactic nuclei
AGNs). This profoundly influences the evolution of the hosts,
earby galaxies, and the surrounding interstellar and intracluster
edium (Silk et al., 2012; Fabian, 2012). The generation of such

flows is tied to the process of accretion onto (likely) rotating
black holes, where the magneto-rotational instability can couple
the black hole’s spin and magnetic field to the disk or flow
to produce high-latitude outflows at speeds close to the speed
of light (Meier et al., 2001). While these jets have a dominant
direction of motion (i.e., outward from the black hole), they often
have bends and features (both stationary and moving) that are
either perpendicular or aligned relative to the jet at some angle.
Deciphering the true nature of these features and their geometry,
relation, and dynamical meaning within the flow is a difficult
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problem, as any astronomical images we acquire are of necessity
two-dimensional (2-D) views of three-dimensional (3-D) objects.

The problem of reconstructing 3-D information from 2-D im-
ages is common to many fields, but it is particularly critical in
astronomy. In most other cases, e.g., medical imaging, one may
take images of a source from multiple viewpoints to aid recon-
struction. However, this is not possible in astronomy, so we must
rely on other methods. For instance, Steffen et al. (2011), Wenger
et al. (2012), Wenger et al. (2013), Cormier (2013), Sabatini et al.
(2018), and Lagattuta et al. (2019) used symmetries inherent in,
respectively, planetary nebulae and galaxies, plus 2-D images, to
infer and reconstruct 3-D visualizations of these objects. This field
is, in fact, rapidly growing in astronomy, as can be seen by the
vast number of subjects explored on the 3DAstrophysics blog2.

In astrophysical jets, the problem is rather different. Unlike in
galaxies or planetary nebulae, we cannot make assumptions such
as spherical, elliptical or disk symmetry, or rotation. However, we
can assume a dominant direction of propagation. As an example
of the typical knotted structure of AGN jets, we show in Fig. 1,
a broad view of the M87 jet, one of the nearest of the class at

2 https://3dastrophysics.wordpress.com/
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Superluminal motion of the sub-components in several of the knot
regions (I, A, B, and C) of the M87 jet, spanning over 13.25 years of monitoring
between 1995–2008, with the Hubble Space Telescope. The westward direction
lies 20.5◦ below the horizontal. The bottom panel depicts the velocities as
vectors from their positions in the jet. The length of the vectors is proportional
to the apparent speed. Reproduction of Figure 3 from Meyer et al. (2013).
Courtesy—Eileen Meyer.

16.7 Mpc distance, taken from Meyer et al. (2013). In every single
image, the M87 jet shows an amazing complexity of features,
including knots, helical undulations, shocks, and a variety of other
morphological structures, many of which are oriented at some
odd angles with respect to the overall jet direction. As shown
by Meyer et al. (2013), some of the features in the M87 jet seem
to move with apparent velocities up to about 6c within the inner
12.′′0 of the jet, with a general decline in apparent speed with
increasing distance from the nucleus. However, there are some
nearly stationary components that are largely located near the
upstream ends of knots. Additionally, the polarimetric imaging
of Avachat et al. (2016) shows apparent helical winding structures
to the inferred magnetic field vectors in several knots. These
features are clues to complex jet dynamics, but are difficult to
interpret properly.

In this paper, we describe a geometrically based code that
attempts to reconstruct the 3-D structure of jets, starting from
2-D images. This is an evolving project that in later stages will
attempt to use kinematic information as well as incorporate
special relativistic corrections so that foreshortening, Doppler
boosting, and superluminal motion can be included. Our goal is to
provide a firmer geometrical grounding to these modeling efforts
by allowing reconstruction of a jet’s structure in 3-D.

2. Geometrical framework

To visualize the geometry of the jet in 3-D, the key parameters
to consider are the distance between any two features and the
apparent angle between them with respect to the direction of
the jet’s axis. The distance between the core of the jet and the
location of interest on the jet is defined as s, and the angle of the
location to the core is η. Another parameter is the line of sight
(LOS).

We assumed that the 2-D projection of the jet’s axis lies along
the x-axis and measured the angles with respect to the positive
x direction. We considered s and η as our known parameters,
2

which can be directly measured from the images, i.e., in the sky
frame. A third parameter, assumed to be known (albeit from
other information such as a β vs. θ plot based on the observed
superluminal motion, where β is the space velocity and θ is
the viewing angle with respect to the LOS) is the angle the jet’s
propagation axis makes with respect to the LOS.

Following Conway and Murphy (1993), Fig. A.1 shows the
relevant geometry for a single bend within a jet, and specifically
how the 2-D sky frame can be related to the jet’s frame, which
is inherently 3-D. All primed points represent the observed, sky-
frame projection we see, with the components lying at A′ and B′
in that frame but at points A and B in the jet’s frame. The point D′

is the projection of B′ on the+x axis, and the point D is projection
of B on (x, z) plane. Angle η is the angle between segment A′B′
and the +x axis. From point B draw a line BC perpendicular to
the jet axis (OC) and set the ̸ CAB as ξ . Point C is then where
line BC crosses line OC perpendicularly, so ̸ BCA is 90◦. Segment
BC makes an angle φ with the (x, z) plane (i.e., ̸ BCD = φ). This
way, ∆ABC is raised off the (x, z) plane through angle φ, while
the segment AC still lies in the (x, z) plane. Segment AC makes
an angle θ with the LOS, which is assumed to be along the +z
axis. The distance between points A and B in the jet’s frame is d,
while s is the projection of d on the (x, y) plane, i.e., the distance
between A′ and B′. Angle α is the apex angle of ∆BAD, and β is
the angle between triangles BAD and FAE. Finally, ∆AGH is the
projection of ∆ABD on the (y, z) plane.

To simplify the algorithm both computationally and physi-
cally, for now we assume that the jet is non-relativistic. The
LOS effects in addition to various relativistic effects can en-
hance the intensity and shift the frequency observed, as well as
change the comparison between geometry in the jet and observer
frames (Böttcher, 2012). These effects will be included in the next
version of JetCurry.

2.1. Non-linear parametrized equations

We used a set of non-linear parametrized equations containing
the angles and distances described above. Assuming the non-
relativistic jet flow and using the geometry in Fig. A.1, we derived
the following non-linear equations including three known pa-
rameters (s, η, θ ), and five unknown parameters (α, β , ξ , φ,
d).

If a local jet structure has a smaller bend; i.e., ξ < ( π
2 −θ ), the

transformation is:

tanη =
sinξ sinφ

cos ξ sin θ + sin ξ cosφ cos θ
(1)

s
d
= cosβ (2)( tanβ

tanα

)2
= cos2 η (3)

d cos ξ cos θ = s cos η tanα + d sin ξ cosφ sin θ (4)

d2 = s2
[ sin η

sinφ

]2
+ s2

[ cos η

cosα

]2
sin2(θ + α) (5)

If a local jet structure has a larger bend; i.e., ξ ≥ ( π
2 − θ ), the

qs. (4) and (5) modify as:

cos ξ cosβ + s cos η tanα = d sin ξ cosφ sin θ (6)

2
= s2

[ sin η

sinφ

]2
+ s2

[ cos η

cosα

]2
sin2(θ − α) (7)

Our aim is to solve for the angles ξ , φ, α, β , and the dis-
tance between the knots d. The system is under-determined, and
so cannot be solved exactly. However, as we shall describe, by
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Fig. 2. The knot D region of the M87 jet. The annotated circular markers correspond to the centroid locations of the identified components, which are acquired from
the WISE algorithm at a wavelet scale of 50 mas. The dark red and blue markers belong to the northern and southern streams, respectively. The purple markers are
included in both streams. The scale on the image is 0.′′025/pixel. The M87 jet’s core lies at (x = −84.23, y = 20.69) in pixel coordinates, which correspond to R.A.
= 12h30m49.42s and decl. = +12◦23′28.04′′ , respectively. A square root filter is applied to the color scale. The westward direction lies 20.5◦ below the horizontal.
not D-east lies between ≈15-40 pixels, D-middle lies between ≈40-60 pixels, and D-west lies between ≈60-80 pixels.
aking use of the angle η, distance s and angle of LOS θ as
nown parameters, we can derive the solution space as well as
he relative probability of various bend parameters.

Please note that Conway and Murphy (1993) did not give
ither these equations or a derivation of them, nor did they try
o derive more detailed 3-D information about any individual jets.
heir aim was to attempt to understand, in a geometrical sense,
he misalignment of arcsecond-scale features in blazar jets with
he features seen on milliarcsecond scales by VLBI arrays.

. JetCurry

JetCurry is a Python-based code to visualize the 3-D jet geom-
try of an AGN jet from its 2-D image. It incorporates the results
f the Wavelet-based Image Segmentation and Evaluation (WISE,
ertens and Lobanov, 2014) method as a set of input param-
ters. These input parameters consist of the centroid locations
f the identified components in the 2-D images. The code uses
nonlinear solving algorithm (emcee) to solve the non-linear
arametrized equations for five unknown parameters: α, β , ξ , φ,

and d (Eqs. (1)–(7)). Then, it performs principal component anal-
ysis (PCA) and acquires the dominant direction of propagation of
the knot D region from the M87’s core with respect to our LOS.
These tasks are discussed in detail in the following subsections.
Our code is available for free as an interactive Jupyter Notebook
on Github.3

We ran JetCurry on a radio image of knot D in the M87 jet,
chosen as an example of a small region of a relatively complex
jet. This is done because the knots have varying and complex
flux structures that are separated by considerable distances (see
Fig. 2). Hence, the jet stream is better visualized by focusing on
individual knot regions at a time instead of the entire jet. This
restricts the projected jet track from wandering in regions in
between knot complexes.

3.1. Image decomposition and component identification

JetCurry employs the WISE method for multiscale structural
decomposition and morphological identification in astronomi-
cal images (Mertens and Lobanov, 2014). The WISE algorithm

3 https://github.com/esperlman/JetCurry
3

implements segmented wavelet decomposition (SWD) to statisti-
cally extract significant structural patterns (SSP) at user-specified
wavelet scales. It decomposes the image into a set of sub-bands
(wavelet scales) and performs a wavelet transform to acquire
significant wavelet coefficients against a noise threshold. Then,
it uses these coefficients to extract the local maxima coordi-
nates and applies watershed segmentation to retrieve the 2-D
boundaries around the corresponding SSP features.

This methodology successfully identifies complex morphologi-
cal components, including optically thin and partially overlapping
structural features, that are otherwise undetected with standard
object-recognition methods (e.g., Belongie et al., 2002; Lobanov
et al., 2003; Bach et al., 2008). Fig. 2 illustrates the centroid
locations of the identified SSP features in the knot D region of
the M87 jet at a wavelet scale of 50 milliarcseconds (mas).

The WISE method uses multiscale cross-correlation to detect,
classify, and track different SSP features across a series of multi-
epoch images. The results of different tests conducted by Mertens
and Lobanov (2014, 2016) demonstrate the robustness and relia-
bility of the WISE method in identifying and tracking components
of the M87 jet that undergo rotation, deformation, and seg-
regation. For the next generation version of JetCurry, we will
incorporate this capability to analyze the 3-D morphological and
kinematic evolution of relativistic jets.

3.2. Assumptions, constraints, and non-linear solvers

From an observed image in 2-D, we can only measure dis-
tances s and angles η, as shown in Fig. A.1. We assumed that the
LOS viewing angle θ for the M87 jet is 14◦ with respect to the
observer (Biretta et al., 1999; Perlman et al., 2011). It is important
to that the results acquired from a parsec-scale jet kinematics
study of AGNs as part of the 2 cm Very Long Baseline Array (VLBA)
survey and Monitoring Of Jets in Active galactic nuclei with VLBA
Experiments (MOJAVE) programs suggest that the values of θ

between 70◦ and 90◦ are very unlikely (Lister et al., 2019). The
best-fit Monte Carlo simulations of the 1.5 JyQC quasar sample
indicate that the most jets are viewed at less than ∼10◦. This is
also in agreement with the analysis carried out by Vermeulen and
Cohen (1994), Lister and Marscher (1997), and Cohen et al. (2007).

https://github.com/esperlman/JetCurry
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The algorithm uses Eqs. (1)–(7) to solve for the most proba-
le values of the unknown parameters, α, β , φ, ξ , and d using
non-linear solver, emcee, to explore the solution space. Em-

ee (Foreman-Mackey et al., 2013) is a highly efficient, open-
ource Python package that uses a Goodman & Weare affine-
nvarient MCMC Ensemble Sampler, aiming to find a global mini-
um solution. We used MCMC methods because of the underde-

ermined nature of the solution space, particularly because of the
omplex nature of our non-linear trigonometric equations. The
umber of times emcee is run depends on the user-preference
we are choosing three iterations). The initialization parameters
or emcee are 5 dimensions, 1024 walkers, and 50 steps. For our
urrent version of JetCurry, we are assuming that the observed jet
tructures have smaller bends. Therefore, the angles α, β , and φ

re set to be explored from 0 to 1.57 radians, with a step size
f 0.5 radians. Consequently, the angle ξ to restricted to [20◦,
/2−θ ]. The distance d is set to be floor(s) to floor(s)+ 81 parsec
pc). After this, the previous results are set as the initial guess for
he next trial until a more defined range of possible solutions is
ound.

Once emcee has located the global minima/maxima regions,
e used a nonlinear solver. To ensure the solutions of the vari-
bles are real, we took the logarithm of the equations. We found
hat the limited memory BFGS algorithm (Broyden, 1970; Fletcher,
970; Goldfarb, 1970; Shanno, 1970) converges to the real solu-
ion faster and more accurately in our test cases compared to
ther nonlinear solvers. The algorithm is in the same class as
uasi-Newton methods and hill climbing with bounds on the
olutions. It can be applied to a general non convex function that
as continuous second derivatives. In JetCurry, the bounds in the
onlinear solver are set to be within 10 steps of the nonlinear
olver by default. We present further details of our case study of
not D in Section 5.

.3. Principal component analysis (PCA)

JetCurry applies PCA (see Ivezic et al., 2014, pg. 289-297, for
erivation and algorithm) and extracts the underlying preferred
irection of the knot D region with respect to the LOS. The PCA
ncorporates the M87 jet’s core as the origin and finds a dominant
irection of propagation in 3-D. This direction is mathematically
quivalent to a regression line that minimizes the square of the
erpendicular distances from the corresponding Cartesian coor-
inates (Ivezic et al., 2014, pg. 292). The solid red line in Fig. 5
epresents the preferred direction of propagation of the knot D
egion from the M87 jet’s core with respect to the LOS (θ = 14◦).

. Testing JetCurry

To test the accuracy of JetCurry, we simulated 100 bends using
ifferent combinations of α, β , φ, ξ , and d. For our simulated test
ases, we assumed that bends greater than 90◦ were most prob-
bly unrealistic. We chose d = 50 pc and θ = 14◦. Additionally,
e restricted the values of φ and ξ to the range [0, π/2] and [20◦,
/2− θ ], respectively. We then calculated a range of values of (s,
), which are measurable variables in our algorithm. These values
f (s, η) were plugged back into our algorithm to test how well
e could reproduce the given values of (φ, ξ ).
The resulting values of φ, ξ , and d are represented as ab-

olute error distribution plots, which are shown in Fig. 3. The
orresponding absolute errors are given by the color bars. The
nnotated circular markers are the acquired values of (φ, ξ ) for
he identified components in the knot D region (see Fig. 2). For
he cases where the solutions for (s, η) converged successfully,
etCurry reproduced the expected bend parameters with the mean

◦ ◦
bsolute errors of 18.16 , 13.41 , and 0.49 pc in φ, ξ , and d, n

4

Fig. 3. Absolute error distribution of estimated values of φ (top), ξ (middle)
nd d (bottom) on (φ0 , ξ0) parameter space. The annotated circular markers
epresent the acquired values of (φ, ξ ) for the identified components in the
not D region of the M87 jet.

espectively. However, it produced relatively large discrepancies
or 0◦ < φ < 20◦ and 0◦ < ξ < 20◦. This is due to the
ature of the equations, and particularly where the expressions
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Fig. 4. Example of a corner plot showing the marginalized total probability
distribution of α, β , φ, ξ , and d for a simulated bend with s = 44.5 pc,
η = 54.98◦ , and θ = 14◦ . The expected values for (α, β , φ, ξ , d) are (40◦ ,
30◦ , 60◦ , 60◦ , 50 pc), respectively. The solution vector at MAP for (α, β , φ, ξ ,
d) is (41.22◦ , 26.49◦ , 61.98◦ , 56.06◦ , 48.86 pc), respectively. The corresponding
absolute errors are (1.22◦ , 3.52◦ , 1.98◦ , 3.93◦ , 0.17 pc).

in the denominators have singularities. This makes the probability
distribution in these regions complex. As a result, MCMC methods
do efficiently work backward to find the global minima.

Fig. 4 shows a corner plot of the marginalized total probability
distribution of α, β , φ, ξ , and d for a simulated bend with s =

44.5 pc, η = 54.98◦, and θ = 14◦. The expected values
for (α, β , φ, ξ , d) are (40◦, 30◦, 60◦, 60◦, 50 pc), respectively.
The solution vector at the location of the maximum a posteriori
probability (MAP) for (α, β , φ, ξ , d) is (41.22◦, 26.49◦, 61.98◦,
56.06◦, 48.86 pc), respectively. The corresponding absolute errors
are (1.22◦, 3.52◦, 1.98◦, 3.93◦, 0.17 pc).

5. Results

We now present a case study of a small region of the M87 jet
(i.e., knot D, shown in Fig. 2), which displays a complex morphol-
ogy. For this case study, we used the radio image from Avachat
et al. (2016). It has a scale of 0.′′025/pixel that translates to
2.02 pc/pixel at a distance of 16.7 Mpc. The knot has 3 sub-
components, namely, D-east, D-middle and D-west, as well as
multiple apparent bends. Knot D-east appears to be at an angle
from the northern edge of the jet cross-section to the south-
ern edge over a distance of about 25 pixels (∼0.′′625). Near its
downstream end, it appears to split into northern and southern
branches, out of which the southern branch is brighter and has
been identified as knot D-middle.

JetCurry uses the centroid coordinates of the identified com-
ponents (see Fig. 2) to calculate the values of s and η with
respect to the jet’s core (xcore, ycore) and the LOS angle θ (which
we assume is 14◦). It solves the non-linear Eqs. (1) through (7)
and outputs the range of values for each unknown parameters,
i.e., angles α, β , φ, ξ and the distance d. To plot the posterior
probability distribution of the values of unknown parameters, we
make corner plots for each bend in the knot (similar to Fig. 4).
5

Each corner plot is a multi-dimensional representation of pro-
jections of the posterior probability distribution of the parameter
space (Foreman-Mackey, 2016). We interpreted the MAP values
as the actual solutions for angles and distances, although this
can be subject to irregularities near places where the function is
discontinuous or nonlinear (see e.g., Section 5.2). The gray scale
represents the output probability in parameter space, with higher
probabilities corresponding to darker colors.

5.1. Solutions in 3-D cartesian space

We converted the data obtained from our main algorithm to 3-
D Cartesian coordinates (i.e., x, y, and z). These coordinates make
use of the most probable values taken from the corner plots
obtained for each bend. We used the following transformation
equations to calculate the required (x, y, z) coordinates for our
3-D visualizations:

x = d cos η cosβ (8)
y = d sin η cosβ (9)
z = d cos η cosβ tanα (10)

where α, β , η, and d are the acquired angular bend parameters
from JetCurry.

5.2. Visualizations

Fig. 5 shows 3-D visualizations for the knot D region of the
M87 jet. These are snapshots of Plotly’s interactive version from
three different perspectives. Fig. 6 illustrates the projection of
these 3-D visualizations onto the (x, z) plane.

Each circular marker (dark red, blue, and purple) is a com-
bination of the most probable values of φ, ξ and d for each
bend. The dark red and blue markers belong to the northern
and southern streams, respectively. However, based on the visual
appearance of the knot D region (see Fig. 2) and polarimetry data
presented in Avachat et al. (2016), we chose a set of points to
be in both streams, which are indicated as purple markers. All
circular markers are annotated with their corresponding 1σ , 2σ ,
and 3σ standard deviational ellipsoids. These ellipsoids signify
the spatial dispersion of the acquired bend parameters in the 3-D
Cartesian space.

The dark red and blue dashed curves are the spline fits to
the northern and southern streams, respectively. We followed
the regression analysis in Gilat and Subramaniam (2007, pg. 193-
250); we found out that these curves are the best fits to the data
since they yield the smallest total errors. The solid orange line
represents the LOS with respect to the z axis at an viewing angle
of 14◦. The solid red line shows the visualized dominant direction
of propagation of the knot D region from the M87 jet’s core.

Based on the milliarcsecond-arcsecond structure of the M87
jet described in Asada and Nakamura (2012), we overlaid our
visualizations with conical streamlines. Since the knot D region
lies downstream of the HST-1 complex, we adopted a 3-D conical
structure (shown in gray) with a power-law index of 0.96 ±

0.1 (Asada and Nakamura, 2012). This helped us further validate
the 3-D bend parameters and their corresponding curve fits.

We also made a projection of the acquired 3-D Cartesian
coordinates of the bend parameters onto the (x, y) plane. To
acquire this projection, we used the same equations for x and y
as in Eq. (8), and assumed z = 0. The dark red, blue, and purple
dotted lines act as a guide to follow the corresponding projections
from 2-D to 3-D. This 3-D interactive plot is available online.
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Fig. 5. Snapshots of the 3-D visualizations for the knot D region of the M87
jet from three different perspectives. The circular markers represent the most
probable solutions of the non-linear parametrized equations. The dark red and
blue markers belong to the northern and southern streams, respectively. The
purple markers belong to both streams. All circular markers are annotated with
1σ , 2σ , and 3σ standard deviational ellipsoids, respectively. The dark red and
blue dashed curves represent spline fits to the trajectories of the helical paths.
The dark red, blue, and purple dotted lines act as a guide to the eye to follow
the corresponding projections from 2-D to 3-D. The solid red line represents
the preferred direction of knot D from the core (x = −84.23 pixels, y = 20.69
pixels) of the M87 jet. The solid orange line corresponds to the LOS with respect
to the z axis (θ = 14◦). The 3-D conical structure with a power-law index
of 0.96 ± 0.1 illustrates the observed shape of the jet in this region (Asada
and Nakamura, 2012). The scale on the 2-D radio image corresponds to 1 pixel
= 0.′′025. An interactive version of these 3-D visualizations is available online
as an HTML file (see supplementary material). For the interactive version, the
legend is displayed on the top-right side. To show or hide individual legend
entries, click or double-click on them. Different tools (top-right corner) are also
available to analyze the 3-D visualization. A brief description is displayed when
the mouse cursor is over the icons. The ‘Camera’ icon helps to download the
visualization as a PNG file. The ‘Zoom’ icon enables zoom-in and -out using the
mouse. The ‘Pan’ button moves the visualization in any direction. The ‘Orbital
rotation’ icon rotates the visualization around its center point in the projected
3-D space. The ‘Turntable rotation’ icon constrains the rotation about one axis.
The ‘Reset camera to default’ option displays the visualization at 45◦ from all
axes. The ‘Reset camera to last save’ mode displays the last saved orientation
set by the JetCurry 3-D visualization script. The ‘Toggle show closest data on
hover’ icon helps to view the data point coordinates under the cursor.
6

Fig. 6. Projection of 3-D visualizations onto the (x, z) plane. The annotated
circular markers show the identified components in the knot D region of the
M87 jet.

6. Discussion

Based on the most probable values of our bend parameters,
JetCurry has produced a very interesting 3-D visualization of the
knot D region of the M87 jet. It is worth noting that our 3-
D visualization is based purely on geometrical considerations.
Thus it is different from physical modeling efforts, which while
they start from well known physical principles, have the pos-
sible issue that they sometimes do not exactly represent the
observed morphologies. A purely geometric visualization can be
complementary to such modeling efforts, particularly once the
appropriate effects produced by special relativity are included.

While not unique, this 3-D visualization allows us to make
several comments regarding the nature of this knot complex. First
of all, the acquired 3-D bend parameters are broadly consistent
with the observed conical structure of the M87 jet downstream
of the HST-1 complex (Asada and Nakamura, 2012). In fact, it
appears likely that the bright regions of knot D lie on at least
two filaments (i.e., the northern and southern streams) that are
either wrapped around the jet or threading the jet cone, as
the two streamlines (Figures 5 and 6) broadly trace the outer
edges of the cone. This supports the idea that the knot regions
represented helical filaments was first proposed by Owen et al.
1989). Additionally, the radio and optical polarimetry images
resented in Avachat et al. (2016) clearly show the apparent
elical structure throughout the jet, particularly in the projected
agnetic field vectors seen in knots HST-1, D, A and B. Although

t is not the only possible way to visualize the jet, it has stood
he test of time remarkably well, as discussed by Avachat et al.
2016).

The natural next step in improving JetCurry is to incorporate
pecial relativity. If indeed the knot regions are helical filaments
rapped around or threading the jet, a number of special rela-
ivistic effects could be observed, such as brightening and appar-
nt acceleration when components’ direction of motion crosses
he LOS, and dimming and apparent deceleration when com-
onents move away from us. This has the ability to break the
imitations noted above, as different trajectories would make rad-
cally different predictions for the jet’s brightness and apparent
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otion as a function of time. This could add context to the models
hat have been proposed (e.g., Hardee and Eilek, 2011) for certain
features within knot D as structures downstream of the shock at
the eastern end.

We also plan to use JetCurry to visualize the other regions
f the M87 jet, especially knots A and B, where our polarimet-
ic images point toward the presence of an intertwined double
elix (Avachat et al., 2016). This kind of structure is also sug-
ested by previous works. By adding the proper motion con-
traints (e.g., Meyer et al., 2013), the observed streamline struc-
tures (e.g., Asada and Nakamura, 2012), and the special relativistic
onsiderations (e.g., LOS, Doppler boosting, flux variability, ob-
erved superluminal motions, and foreshortening), we can further
estrict the ranges of our unknown parameters. These constraints
ill also help understand the differences in the morphology and
ence the emission mechanisms in the inner and outer regions of
he M87 jet.
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ppendix A. Derivation of non-linear parametrized equations

We consider a single bend in the jet at a viewing angle θ as
hown in Fig. A.1. A and B are neighboring knots in the jet’s frame,
hile A′ and B′ are the projections of knots A and B in the sky

rame with the origin at O. The distance between A and B in the
et’s frame is d, and the apparent distance between A′ and B′ is
s. The projected bend angle relative to the x-axis in sky frame is
represented as η. ̸ BAC is set as ξ .

When ξ < ( π
2 − θ ), the equations describing the bend geom-

try is derived below:

4 Florida Institute of Technology, 150 W. University Blvd., Melbourne, 32901,
L, USA.
7

Starting with the equation of Conway and Murphy (1993) and
sing the geometry shown in the top plot of Fig. A.1, in △A′B′D′,

an η =
sin ξ sinφ

cos ξ sin θ + sin ξ cosφ cos θ
(11)

where ξ , φ and η are labeled in Fig. A.1, while θ is the angle of
LOS to the observer. △AEF (same as △A′B′D′) is the projection
of △ABD onto the (x, y) plane (i.e., sky frame), and △ADE is the
projection of △ABF onto the (x, z) plane. In the right △AEF:

AF = s = d cosβ (12)

Because △AGH is the projection of△ABD onto the (y, z) plane,
and △AHD is the projection of △ABG onto the (x, z) plane. In the
right △ABG:

BG = HD = A′D′
= s cos η (13)

s cos η = d sin γ (14)

γ = ̸ BAG (15)

n the right △AGH:

G2
= AH2

+ GH2 (16)

AH = DE = s cos η tanα (17)

GH = BD = B′D′
= s sin η (18)

d2 cos2 γ = s2 sin2 η + s2 cos2 η tan2 α (19)

Eq. (14) can be simplified by using Eq. (12):

cos2 γ = cos2 β sin2 η + cos2 β cos2 η tan2 α (20)

Eqs. (13) and (15) can be combined into:( tanβ

tanα

)2
= cos2 η (21)

In right triangle CID:

CI = DC sin θ = d sin ξ cosφ sin θ (22)

and

AC cos θ = AH+ CI

therefore;

d cos ξ cos θ = s cos η tanα + d sin ξ cosφ sin θ (23)

Also, in right △ABC,

AB2
= AC2

+ BC2

therefore;

d2 = s2
[ sin η

sinφ

]2
+ s2

[ cos η

cosα

]2
sin2(θ + α) (24)

From these, we get the following set of five equations, Eqs. (25)
hrough (29), in five unknowns (α, β , φ, ξ , and d) along with the
measurable parameters (s and η), and the assumed angle of LOS
(θ = 14◦).

d2 = s2
[ sin η

sinφ

]2
+ s2

[ cos η

cosα

]2
sin2(θ + α) (25)

cos ξ cos θ = s cos η tanα + d sin ξ cosφ sin θ (26)

tanβ )2
= cos2 η (27)
tanα
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ξ

s

b

d

Fig. A.1. Visualizing the jet geometry in 3-D from its 2-D projection in the sky frame. Reconstruction of the jet geometry in 3-D for (top) ξ < ( π
2 − θ ) and (bottom)

≥ ( π
2 − θ ). The jet lies at an angle θ from the LOS which is assumed along z axis. The projection of the jet in sky frame lies in the (x, y) plane. The points A, B

and A′ , B′ represent any two knots in the jet’s frame and sky frame, respectively. Point O is an origin and represent the starting point of each iteration of the code.
The right angles (♮), equal angles (∡), and parallel lines (≫) are labeled in the figures as appropriate.
tan η =
sin ξ sinφ

cos ξ sin θ + sin ξ cosφ cos θ
(28)

= d cosβ (29)

When the local jet structure has large ξ , that is when ξ ≥

( π
2 − θ ) (the geometry for this scenario is shown in the bottom

plot of Fig. A.1), Eqs. (25) and (26) need to be modified, which
ecome:

2
= s2

[ sin η

sinφ

]2
+ s2

[ cos η

cosα

]2
sin2(θ − α) (30)

d cos ξ cos θ + s cos η tanα = d sin ξ cosφ sin θ (31)
8

The remaining three Eqs. (27)–(29), stay the same for both the
cases.

Appendix B. Supplementary data

Supplementary material related to this article can be found
online at doi:10.1016/j.ascom.2022.100653.
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