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Abstract
Motor proteins, also known as biological molecular motors, play important
roles in various intracellular processes. Experimental investigations suggest that
molecular motors interact with each other during the cellular transport, but the
nature of such interactions remains not well understood. Stimulated by these
observations, we present a theoretical study aimed to understand the effect of
the range of interactions on dynamics of interacting molecular motors. For this
purpose, we develop a new version of the totally asymmetric simple exclu-
sion processes in which nearest-neighbor as well as the next nearest-neighbor
interactions are taken into account in a thermodynamically consistent way. A
theoretical framework based on a cluster mean-field approximation, which par-
tially takes correlations into account, is developed to evaluate the stationary
properties of the system. It is found that fundamental current–density relations
in the system strongly depend on the strength and the sign of interactions, as
well as on the range of interactions. For repulsive interactions stronger than
some critical value, a mean-field theoretical approach predicts that increasing
the range of interactions might lead to a change from unimodal to trimodal
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dependence in the flux-density fundamental diagram. However, it is not fully
supported by extensive Monte Carlo computer simulations that test theoreti-
cal predictions. Although in most ranges of parameters a reasonable agreement
between theoretical calculations and computer simulations is observed, there
are situations when the cluster mean-field approach fails to describe properly
the dynamics in the system. Theoretical arguments to explain these observa-
tions are presented. Our theoretical analysis clarifies the microscopic picture of
how the range of interactions influences the dynamics of interacting molecular
motors.

Keywords: asymmetric exclusion processes, molecular motors, long-range
interactions

(Some figures may appear in colour only in the online journal)

1. Introduction

It is known that multiple intracellular processes are supported by special classes of active
molecules known as motor proteins or biological molecular motors [1, 4, 7, 15]. Such pro-
cesses include transport along cytoskeleton filaments, cell division, DNA replication and
error correction, RNA transcription, synthesis of new protein molecules and many others
[1, 4, 7, 14–16]. Molecular motors are frequently viewed as nanomachines that efficiently
transform the chemical energy into mechanical work needed for their functioning. In recent
years, a significant progress in understanding the microscopic mechanisms of individual
motor proteins has been achieved from both experimental and theoretical points of view
[7, 14–16, 31]. However, in cells the biological molecular motors typically work in groups,
achieving high efficiency by coordinating their activities [15, 29]. At the same time, the
molecular mechanisms of such cooperativity still remain not well understood [14, 23, 29, 30].

There are several experimental studies suggesting that some motor proteins might interact
with each other during the transportation along the protein filaments [21, 26, 28, 32]. The con-
clusions from these investigations, however, are rather controversial. Some of them claimed
that the interactions for kinesin motor proteins that move along microtubule filaments are
weakly attractive [32], while others concluded that these interactions are stronger and more
repulsive [28]. But the nature of such interactions and their ranges remain not well explained.
There are also recent experimental measurements that clearly identified longer ranges of inter-
actions and long-range cooperativity effects in kinesin motor proteins [21, 22]. All these obser-
vations support the importance of long-range interactions for transport of biological molecular
motors.

Because most of the motor proteins typically move in a linear fashion, to understand their
collective dynamics a powerful method of one-dimensional non-equilibrium multi-particle
models, which are known as asymmetric simple exclusion processes, has been widely explored
in theoretical studies [6, 11, 13, 17, 23, 24]. This approach has been extended to interacting
molecular motors that lead to the development of the totally asymmetric exclusion process
(TASEP) in which interactions are taken into account in a thermodynamically consistent fash-
ion [5, 27]. It was later generalized to more realistic situations of biological transport [18–20].
Several other theoretical ideas to analyze the dynamics of interacting particles have been also
proposed [2, 8–10, 12, 13, 24, 25, 33]. These developments allowed researchers to obtain
several new unexpected results concerning the collective dynamics of interacting molecular
motors. For example, it was argued that the particle flux through the system might increase for
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weak repulsive forces in comparison with no interaction case. However, most current theoret-
ical studies consider only short range interactions between the molecular motors, despite the
fact that because of electrostatics and polar interactions (charged and polar groups on motor
proteins) such interactionsmight have longer ranges. But one should also notice the theoretical
treatment of longer interactions in reference [21].

In this paper, we present a theoretical investigation on the role of the range of interactions
on dynamics of interacting molecular motors. More specifically, we considered a new TASEP
model where not only nearest neighbors but also next-nearest-neighbors interactions are con-
sidered. Analysis of this model using a cluster mean-field approach that partially accounts
for correlations in the system allows us to obtain a comprehensive theoretical predictions for
the dynamic properties of the system. Theoretical analysis shows that extending the range of
interactions brings a new physics into the system. It is predicted theoretically that a complex
trimodal behavior is observed for fundamental current–density diagrams for strong repulsive
interactions, while for attractions and weak repulsions a unimodal current–density relation is
observed. This is a consequence of the longer range of interactions. We also estimated that
the correlations between next-nearest neighbors are weaker and more short-range for repulsive
interactions while for attractions they are stronger and more long-range. Theoretical predic-
tions are probed with extensive Monte Carlo computer simulations, and it is found that the
theoretical approach correctly describes the dynamics of the system for most ranges of param-
eters, however, the predictions of trimodality are not fully realized. The observed deviations
are explained by larger local fluctuations in the particles densities that effectively decrease the
correlations in the system for some sets of parameters. Thus, our analysis suggests that extend-
ing the range of interactions introduces qualitatively new phenomena in the complex process
of the driven dynamics of interacting particles.

2. Theoretical analysis

2.1. Model

Let us consider a model in which transport ofmolecularmotors along linear filaments is viewed
as a unidirectional motion of multiple particles on a lattice with L (L� 1) sites, as shown in
figure 1 (left). For simplicity, we consider a periodic boundary condition in which site L+ 1
is the same as the site 1, i.e., the particle dynamics on a ring will be analyzed. Each lattice site
i (1 � i � L) is characterized by an occupation number τ i. If the site i is occupied then τ i = 1,
if it is empty then τ i = 0. Each lattice site can be covered by only one particle.

In addition to exclusion, the molecular motors in our model also interact via a long-range
potential. Stimulated by the important role of electrostatics, we assume that this potential has
the following dependence on the distance r between the particles φ(r) � 1/r. This means that
two motors located m sites away from each will have the interaction energy E/m, where E is
the energy of interaction for two nearest neighbors particles (in units of kBT). It is important
to note that E < 0 describes the repulsive interactions, while E > 0 corresponds to attractions.
Previous theoretical studies considered only short-range interactions with m = 1. To the best
of our knowledge, no interactions beyond the nearest neighbors have been considered so far.
Our goal is to go beyondm = 1, and to clarify the role of the range of interactions on dynamics
of interacting molecular motors. For convenience, we concentrate only on the situations that
involve nearest neighbors (m = 1) and next nearest neighbors (m = 2), neglecting the interac-
tions at longer distances (m � 3), although the analysis can be extended to longer ranges of
interactions.
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Figure 1. Schematic view of the TASEP model for particles with interactions on a ring
of lattice sites (left). Particles move only in the clockwise direction. Filled symbols are
particles and empty symbols are holes. Dependence of the interaction energy on the
proximity of the neighboring motors (right). The interaction energy for nearest neighbor
motors is E (in units of kBT), while the interaction energy for the next-nearest neighbor
configuration is E/2 (in units of kBT). See text for more details on the model.

It is important to note here that interactions between real proteins in living systems are
much more complex than what we assumed in our work. They involve van der Walls forces
as well as electrostatic and polar interactions [3]. However, to understand the physics of
extending the range of interactions, we chose a simplified long-range potential, which we
hope still should help us to clarify some microscopic aspects of complex biological transport
phenomena.

One should also connect parameters used in our theoretical analysis with real parame-
ters that describe biological molecular motors. Since most motor proteins preferentially move
in one direction, it is reasonable to utilize TASEP models. However, the absolute value of
transition rates is not important because it only determines the time scale in our theoretical
calculations and can be easily varied. More important quantity is energy of interactions. Since
the absolute values of the interaction strength are not well known, we explored all possible
ranges of interactions to obtain a full physical picture of the process.

The presence of potential modifies the dynamics of creating and breaking ‘bonds’ between
the particles. We assume that two particles sitting next to each other form a kind of a ’stronger
bond’, while particles that are separated by one site form a kind of a ‘weaker bond’ due to
interactions. The processes of creating and breaking these bonds can be viewed as opposing
chemical transitions, which justifies the application of the detailed balance arguments [27].
More specifically, the ratio of forward and backward transition rates between two arbitrary
states of the system, labeled i and j, can be written as

Rate(i→ j)
Rate( j→ i)

= exp

[
Ej − Ei
kBT

]
, (1)

where Ei and Ej are total energies of interactions between all particles in the configurations
i and j, respectively. This means that the ratio of the forward and the backward transition
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rates between the states i and j is specified by the difference in energies of these states. It is
important to note that in the system of interactingmotor proteins, the detailed balance principle
(equation (1)) can only be applied to characterize the local transitions between two individual
motors that formor break bonds.However, the transitions between the collective configurations
of the motor proteins are irreversible and thus do not follow the detailed balance.

To quantify these rates explicitly, we introduce two additional parameters,

q = exp

(
E

4kBT

)
, r = exp

(
− E
4kBT

)
. (2)

All possible transition rates can be expressed in terms of these two parameters, as we show
explicitly below.

2.2. Cluster mean-field analysis

It has been argued before that because of interactions there are correlations between particles at
neighboring sites in the TASEP model for interacting molecular motors [5, 19, 20, 27]. These
correlations are much stronger in comparison with the system without interactions. Neglecting
such correlations leads to unphysical behavior for strong interactions between the molecular
motors [27]. This indicates that any successful theoretical analysis must take into account these
correlations. This is themain reason for us to utilize a theoreticalmethod that is based on cluster
mean-field calculations.

In this approach, the dynamics inside of the cluster of several lattice sites is considered
exactly, while the correlations between different clusters are neglected. Since in our model the
interactions do not extend beyond the two lattice sites from the given particle, it seems reason-
able to explore a minimal three-site mean-field cluster analysis. To understand the dynamics in
the system, we consider a sequence of six lattice sites, as presented in figure 2, wherewe follow
the transitions of the particle from the 3rd site to the 4th site. Because the lattice ring is homo-
geneous, this procedure will allow us to evaluate the dynamics at any site of the ring. The sta-
tionary probability of a configuration with six sequential sites (τ i−2, τ i−1, τ i, τ i+1, τ i+2, τ i+3)
is given by P(τ i−2, τ i−1, τ i, τ i+1, τ i+2, τ i+3). The cluster mean-field approach postulates that
the probability of such six-site clusters can be presented as a normalized product of three-site
cluster probabilities [19, 20]

P(τi−2, τi−1, τi, τi+1, τi+2, τi+3)

=
P(τi−2, τi−1, τi)P(τi−1, τi, τi+1)P(τi, τi+1, τi+2)P(τi+1, τi+2, τi+3)

P(τi−1, τi)P(τi, τi+1)P(τi+1, τi+2)
. (3)

Note that the denominator accounts for the fact that in the product of three-site cluster prob-
abilities some sites are accounted twice. The physical meaning of this expression is that the
probability to have a given large configuration of sites is equal to the normalized product of
probabilities of shorter clusters of sites.

For the six-site cluster there are 16 different transitions as illustrated in figure 2. This is
because we always start in the configuration with the particle in the 3rd site and empty 4th site.
Other four sites in the cluster can be in one of two states (occupied or empty), giving the total
number of distinguishable configurations to be equal to 24 = 16. Each transition is associated
with the energy change and the corresponding transition rates can be found from the detailed
balance arguments [see equation (1)]. For example, transitions 1, 8, 9, 11, 12 and 16 in figure 2
are not associated with any energy changes, and we define the corresponding transition rates
to be equal to one. Now let us consider transitions 2 and 6 in figure 2. They can be viewed as
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Figure 2. A list of all possible particle transitions, corresponding energy changes and
transition rates for a six-site cluster of the lattice. Only the transition of the particle at
the third site to the empty fourth is considered.

opposing to each other because in the transition 6 the weak bond is created, while the same
weak bond is broken in the transition 2. The energy change associated with this process is just
E/2. Then the transition rate for the process 2 is set to be equal to r, while for the process 6 it
is set to be equal to q. This satisfies the detailed balance arguments because q/r = exp(E/2).
Similar arguments can be applied to all allowed transitions, providing the explicit expressions
for different transition rates as shown in figure 2.

The overall particle flux in the system will have 16 terms to reflect the different transitions
from 16 configurations (see figure 2), and it has the following form,

J = P001000 + qP001001 + qP001010 + q2P001011

+ rP011000 + P011001 + P011010 + qP011011

+ rP101000 + P101001 + P101010 + qP101011

+ r2P111000 + rP111001 + rP111010 + P111011. (4)

Each probability of the six-site cluster can be expressed via three-site probabilities using
equation (3). There are eight such probabilities labeled as P111, P110, P100, P010, P011, P001,
P101 and P000. Due to the conservation of probability, they are related via a normalization
condition,

P111 + P110 + P100 + P010 + P011 + P001 + P101 + P000 = 1. (5)
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Let us also simplify the notations by defining

P111 = a; P110 = b; P101 = c; P100 = d;

P011 = e; P010 = f ; P001 = g; P000 = h. (6)

One could also notice that two-site cluster probabilities can be also expressed via three-site
probabilities,

P11 = a+ b = a+ e; P00 = g+ h = d + h;

P01 = P10 = c+ d = b+ f . (7)

Now, we can obtain an explicit expression for the particle current in the system in terms of
the three-site cluster probabilities,

J =
abc f r

(a+ b)(c+ d)2
+

bc f e
(a+ b)(c+ d)2

+
abdhr2

(a+ b)(c+ d)(g+ h)

+
bdhre

(a+ b)(c+ d)(g+ h)
+

abdgr
(a+ b)(c+ d)(g+ h)

+
bdge

(a+ b)(c+ d)(g+ h)

+
bcqe2

(a+ b)(c+ d)2
+

abce
(a+ b)(c+ d)2

+
c2 f 2

(c+ d)3
+

c2 f qe
(c+ d)3

+
c f 2gq
(c+ d)3

+
d f g2q

(c+ d)2(g+ h)
+

cd f hr
(c+ d)2(g+ h)

+
cd f g

(c+ d)2(g+ h)

+
d f gh

(c+ d)2(g+ h)
+

c f gq2e
(c+ d)3

. (8)

This means that the dynamics in the system of interacting molecular motors can be fully
described if we determine all three-site cluster probabilities.

Thus, we need to explicitly find 8 unknown variables, (a, b, c, d, e, f , g, h). To do so, eight
independent equations are required. To find some of these equations, we notice that the system
presented in figure 1 (left) has a particle–hole symmetry: the clockwise motion of the particles
is identical to the counterclockwisemotion of the holes. Now, using these symmetry arguments
and the normalization, one can easily derive five equations:

g = d; e = b;

f = c+ d − b; c = −a− d − b+ ρ;

h = 1− a− b− c− d − e− f − g. (9)

where ρ is the bulk density (or the probability to find the particle at a given site). Three more
equations are needed, and they can be derived from the corresponding master equations for
probabilities P111, P110, and P000,

dP111

dt
= q2P001011 + qP011011 + qP101011 − r2P111000 − rP111001 − rP111010; (10)

dP110

dt
= −rP011000 − P011001 + qP011010 − qP011011 + P101010 + rP111010; (11)
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dP000

dt
= qP001001 + qP001010 + q2P001011 − rP011000 − rP101000 − r2P111000. (12)

We are interested in the stationary dynamics when the left sides of these equations will be
zero, and combining equations (10)–(12) with equation (9) yields a system of three non-linear
equations for variables a, b and d,

0 =
b3q(−a− b− d + ρ)
(a+ b)(−a− b+ ρ)2

− abd2r
(a+ b)(a+ b− 2ρ+ 1)(−a− b+ ρ)

+
bdq2(−a− 2b+ ρ)(−a− b− d + ρ)

(−a− b+ ρ)3

+
bq(−a− 2b+ ρ)(−a− b− d + ρ)2

(−a− b+ ρ)3

− abdr2(a+ b− d − 2ρ+ 1)
(a+ b)(a+ b− 2ρ+ 1)(−a− b+ ρ)

− abr(−a− 2b+ ρ)(−a− b− d + ρ)
(a+ b)(−a− b+ ρ)2

; (13)

0 = − b2dr(a+ b− d − 2ρ+ 1)
(a+ b)(a+ b− 2ρ+ 1)(−a− b+ ρ)

+
d3q(−a− 2b+ ρ)

(a+ b− 2ρ+ 1)(−a− b+ ρ)2

+
bdq2(−a− 2b+ ρ)(−a− b− d + ρ)

(−a− b+ ρ)3

+
dq(−a− 2b+ ρ)2(−a− b− d + ρ)

(−a− b+ ρ)3

− abdr2(a+ b− d − 2ρ+ 1)
(a+ b)(a+ b− 2ρ+ 1)(−a− b+ ρ)

− dr(−a− 2b+ ρ)(a+ b− d − 2ρ+ 1)(−a− b− d + ρ)
(a+ b− 2ρ+ 1)(−a− b+ ρ)2

; (14)

0 = − b3q(−a− b− d + ρ)
(a+ b)(−a− b+ ρ)2

− b2d2

(a+ b)(a+ b− 2ρ+ 1)(−a− b+ ρ)

+
b2q(−a− 2b+ ρ)(−a− b− d + ρ)

(a+ b)(−a− b+ ρ)2
− b2dr(a+ b− d − 2ρ+ 1)

(a+ b)(a+ b− 2ρ+ 1)(−a− b+ ρ)

+
(−a− 2b+ ρ)2(−a− b− d + ρ)2

(−a− b+ ρ)3
+
abr(−a− 2b+ ρ)(−a− b− d + ρ)

(a+ b)(−a− b+ ρ)2
.

(15)

We note that these equations have only two input parameters: the interaction energy E and
the particle density ρ. For any arbitrary value of E and ρ, equations (9) and (13)–(15) can be
solved numerically exactly, providing the explicit expressions for the three-site cluster proba-
bilities and allowing us to obtain a comprehensive description of the dynamics in the system
of interacting molecular motors with extended range of interactions at all possible interactions

8



J. Phys. A: Math. Theor. 55 (2022) 255601 C Spaulding et al

Figure 3. The particle flux in the system of interacting molecular motors for different
interactions and densities. Lines are theoretical predictions. Symbols are from Monte
Carlo computer simulations. In computer simulations, L = 500 was utilized.

and particle densities. In this process, since multiple solutions of non-linear equations are pos-
sible, we choose physically meaningful solutions with densities lying between zero and one.
The results are presented in figure 3 where they are also compared with Monte Carlo com-
puter simulations. One can see that our theoretical model agrees quite well with simulations
for repulsions, except for few small intervals, and we explain below the reason for these devia-
tions. The agreement is also only qualitative for attractive interactions, but this has been already
observed for the systems with only nearest-neighbor interactions [20]. This is a consequences
of longer correlations for attractive potentials.

For Monte Carlo computer simulations, we chose a lattice size of L = 500. As we checked,
increasing the size of the lattice did not change the results. A random sequential update was
used for all simulations. The particle flux was averaged over 20 000 Monte Carlo steps and the
first 20% of them were removed to ensure that the system reaches the stationary state.

2.3. Analytical results for limiting situations

Although our theoretical approach can evaluate the dynamics in the system of interacting
molecular motors with extended range of interactions numerically exactly, there are several
limiting cases when a full analytical description can be obtained. This allows us to test the
validity of our theoretical method as well as to understand better the microscopic picture of
these complex processes.

2.3.1. Strongly-attractingparticles (E→+∞). In this case, we have q→∞ and r→ 0, which
leads to only two non-zero three-site cluster probabilities,P111 = a = ρ andP000 = h = 1− ρ.
Physically it means that all particles on the ring will be jammed in one large continuous cluster
that will not allow for any particle flux, J = 0. This is an expected behavior because for the
particle to break out from the large cluster will cost an infinite amount of energy, and for this
reason this does not happen.

9
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2.3.2. Non-interactingparticles (E = 0). In this limit, we have q = r = 1, and it can be shown
that three-site cluster probabilities are given by the following expressions:

P111 = ρ3; P110 = P101 = P011 = ρ2(1− ρ);

P100 = P010 = P001 = ρ(1− ρ)2; P000 = (1− ρ)3. (16)

Substituting these results into equation (8), we obtain the particle flux as J = ρ(1− ρ).
These results can be easily interpreted. Without interactions, there is no correlations in the

particle occupancy, and the three-site cluster probabilities can be easily obtained as a prod-
uct of three one-site probabilities with the occupied site probability equal to ρ and the empty
site probability equal to 1− ρ. These are well-known results for the TASEP model without
interactions [6].

2.3.3. Strongly-repulsive particles (E→−∞). In this case, we have q→ 0 and r→∞, which
significantly simplifies the analysis. In addition, it is convenient to perform the calculations for
three different ranges of particle densities.

For the first low-density region, when 0 � ρ � 1/3, one cannot have two particles next to
each other due to strong repulsion. Because the density is not high, this can be accomplished,
and it leads to

P111 = P110 = P101 = P011 = 0;

P100 = P010 = P001 = ρ; P000 = 1− 3ρ; (17)

and the following results for the two-site cluster probabilities,

P10 = ρ; P11 = 0; P00 = 1− 2ρ. (18)

In the limit of strong repulsions, the only contribution to the flux is due to one configuration
001 000 out of 16 possible six-site configurations. Thus, the particle flux is given by,

J = P001000 =
P001P010P100PP000

P01P01P00
=

ρ(1− 3ρ)
1− 2ρ

, (19)

which also corresponds to the flux of non-interacting trimers [18]. Therefore, for 0 � ρ � 1/3,
for strong repulsions the interacting molecular motors with the increased range of interactions
behave like non-interacting timers. This is clearly a result of the increased range that does not
allow other particles to come to the given particle closer than two sites apart, which effectively
mimicks the dynamics of non-interacting trimers.

For intermediate densities, 1/3 � ρ � 2/3, it is not possible to avoid the contact of two par-
ticles, but the situation with three particles together cannot happen due to the strong repulsions.
In this case, we have

P111 = P000 = 0; P110 = P101 = P011 = ρ− 1/3;

P100 = P001 = P010 = 2/3− ρ. (20)

There are four six-site configurations that can produce the particle flux, 101 010, 101 001, 011
010 and 011 001. This leads to the following expression for flux,

J = P101010 + P101001 + P011010 + P011001 = 3ρ(3ρ− 1)(2− 3ρ)(1− ρ). (21)

10
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Figure 4. Predictions of Monte-Carlo computer simulations for the ratio of particle
fluxes for TASEP with next-nearest neighbor interactions J(NNN) (extended rage) and
TASEP with nearest-neighbor interactions J(NN) (short range). In simulations, L = 500
was utilized.

Note that these theoretical arguments predict that the current will disappear for ρ = 1/3 and
ρ = 2/3 in the limit of strong repulsions. Moreover, similar expression for the particle flux
was obtained for only having nearest-neighbors interactions [18]:

J(NN) =
ρ(1− 2ρ)
(1− ρ)

. (22)

One can see that for ρ = 1
2 the flux J

(NN) is approaching zero, and this allows us to understand
better the results in figure 4.

Finally, for the highest density region, 2/3 � ρ � 1, the results can be obtained easily using
a particle–hole symmetry from the first low-density region calculations. For this purpose, we
need to change 0 ↔ 1 and ρ ↔ (1− ρ). Then we obtain for the three-site probabilities,

P100 = P010 = P001 = P000 = 0;

P111 = 3ρ− 2; P110 = P101 = P100 = 1− ρ; (23)

and the following results for the two-site probabilities,

P10 = 1− ρ; P11 = 2ρ− 1; P00 = 0. (24)

In this case, the only surviving term in particle flux is P111011. Thus

J = P111011 =
(1− ρ)(3ρ− 2)

2ρ− 1
. (25)

This corresponds to the flux of non-interacting trimers of holes.
Thus, the combined expressions for the particle flux in the strong repulsion limit for

interacting molecular motors with extended range of interactions is given by,

J �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρ(1− 3ρ)
1− 2ρ

; 0 � ρ � 1/3;

3ρ(3ρ− 1)(2− 3ρ)(1− ρ); 1/3 � ρ � 2/3;
(1− ρ)(3ρ− 2)

2ρ− 1
; 2/3 � ρ � 1.

(26)

One can see that this function is continuous at ρ = 1
3 and ρ = 2

3 , as expected.
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2.4. Fundamental current–density diagrams

Our theoretical method allows us to explicitly evaluate the relations between the particle cur-
rents and densities for all possible inter-molecular interactions, as shown in figure 3. It also
provides an important insights on the role of the extended range of interactions. A unimodal
current–density fundamental diagram is observed for attractions and for weak repulsion with
the largest current to be achieved at ρ = 1/2. Increasing the strength of repulsion from the
no-interactions case E = 0 first leads to the increase in the maximal current (at ρ = 1/2) at
E � −2. But the further increase in the repulsion strength leads to the lowering of the maximal
current. The interesting behavior starts for repulsions stronger that E � −6: the originally uni-
modal curve with one maximum transforms into the trimodal curve that exhibits three maxima
and two minima. The minimum currents are predicted for ρ = 1/3 and ρ = 2/3. As the repul-
sion increases, our theory predicts that the currents at these special locations will eventually
reach zero, in agreement with our arguments that the system of interacting molecular motors
with the extended range of parameters for E→−∞ behaves like a system of non-interacting
trimers.

We tested the predictions of the three-site cluster mean-field theory with Monte Carlo com-
puter simulations. Excellent agreement is found for all densities for attractive and weakly
repulsive interactions: see figure 3. However, there are some deviations from theoretical calcu-
lations for strong repulsions near the regions where the minimal current is predicted (around
ρ = 1/3 and ρ = 2/3). Instead of minimal current at these regions, simulations suggest that the
particle current becomes almost constant and independent of density, connecting the increasing
branches of the current–density curves. This observation will be explained below.

One of the surprising results of the TASEP model with interactions is the observation of
the increase in the maximal particle current for weak repulsions [5, 27]. But it was found for
the system with short-range interactions. Using our theoretical approach, we can probe how
the extended range of interactions will affect this result. In figure 4, we present the ratio of
the particle currents for the system with the extended range (NNN) over the particle current
for the system with the short-range (NN) for different particle densities. For low densities
(ρ = 0.3) and for high densities (ρ = 0.8) there is not much effect on the increasing the flux
by extending the range of interactions. However, the strong effect is observed for the maximal
current for ρ = 1/2. In this case, the flux increases more for the system with extended range of
interactions, and the effect is larger for stronger repulsions. One can explain this by noting that
for low densities particles can be found at the distances where the interactions do not affect
them, while for high densities the particle transitions in most cases are not associated with
energy changes. Only for ρ = 1/2 the effect of interactions is maximal and the extended range
helps to make it even stronger.

3. Correlation functions

To understand better the microscopic mechanisms of the processes that are taking place
during the transport of interacting molecular motors, it is important to analyze the correla-
tions functions that measure the degree of correlations in the system. One could define the
nearest-neighbor correlation function,

C(NN) = 〈ni, ni+1〉 − 〈ni〉 〈ni+1〉 = P11 − ρ2, (27)

which can be easily calculated using our theoretical approach. However, due to the extended
range of interactions in our system, this correlation functionmight not properly capture the rel-
evant processes in the system. Alternatively,we introduce the next-nearest neighbor correlation
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Figure 5. Results of Monte-Carlo simulations for the next-nearest neighbor correlation
function C(NNN) as a function of the interaction energy (E). In simulations, L = 500 was
utilized.

function C(NNN),

C(NNN) = 〈ni, ni+2〉 − 〈ni〉 〈ni+2〉 , (28)

where the corresponding two-point function 〈ni, ni+2〉 is defined as

〈ni, ni+2〉 =
∑
ni

∑
ni+1

∑
ni+2

nini+2 P(ni, ni+1, ni+2) = P101 + P111, (29)

and 〈ni〉 = 〈ni+2〉 = ρ. Thus, C(NNN) is given by

C(NNN) = P101 + P111 − ρ2. (30)

One can see that the main difference between the nearest-neighbor correlation function and
the next-nearest neighbor correlation function is that C(NNN) is expressed in terms of three-site
clusters probabilities while C(NN) includes only the two-site clusters probabilities.

Figure 5 presents the next-nearest neighbor correlation functions, as estimated from the
Monte Carlo simulations, as a function of the interactions for different particle densities. One
can see that for attractive interactions these correlations are positive, while for repulsions they
are negative. These results can be easily explained. ForE > 0 it is more probable to find another
particle at the nearest-neighbor site due to attractive interactions, and this leads to positive
correlations. Similarly, for E < 0 it is less probable to find the particle at the nearest-neighbor
site due to repulsion, and this leads to the negative correlations. It is important to note that
these correlations are due to the extended range of interactions and they are essentially absent
in the system with short-range interactions.

One might illustrate better the effect of the range of interactions by considering several
limiting case where these correlation functions can be estimated fully analytically. For the
case of no interactions (E = 0), it was already shown that P111 = ρ3 and P111 = ρ2(1− ρ).
Substituting these results into equation (30) produces C(NNN) = 0, i.e., there are no next-
nearest neighbor interactions, as expected. Analytical results can be also obtained in the limit
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Figure 6. Predictions of Monte-Carlo computer simulations and cluster mean-field the-
ory for E = −20kBT for interacting molecular motors and for non-interacting trimers.
(a) The particle flux (J) as a function of particle density (ρ); and (b) the next-nearest
neighbor correlation function (C(NNN)) versus particle density.

of strong repulsions, E→−∞. Using equation (17), we derive

C(NNN) �

⎧⎪⎪⎨
⎪⎪⎩

−ρ2; 0 � ρ � 1/3

ρ− 1
3
− ρ2; 1/3 � ρ � 2/3

2ρ− 1− ρ2; 2/3 � ρ � 1.

(31)

Our theoretical three-site cluster mean-field approach is successful in describing the dynam-
ics of interacting molecular motors with the extended range of interactions for attractions and
weak repulsions. Only for strong repulsions, theory agrees with simulations quantitatively
for ρ < 0.2, ρ > 0.8 and semi-quantitatively for 0.4 < ρ < 0.6, while the deviations between
computer simulations and theoretical predictions are found near the regions of ρ � 1/3 and
ρ � 2/3. In these cases, theory predicts a minimal particle current which is not observed
in Monte Carlo simulations at all. Importantly, the trimodal phase diagram predicted by the
mean-field method is not supported by computer simulations. To understand the origin of such
deviations, we plot in figure 6 the particle flux and the next-nearest neighbor correlation func-
tion for very strong repulsion (E = −20). TheMonteCarlo computer simulations are compared
with the calculations of the three-site cluster mean-field approach for interacting particles with
the extended range and for non-interacting trimers [19]. This is because for such strong repul-
sions one could expect that the dynamics of non-interacting trimers might provide a good
description, as we argued above.

Note that our calculations of the ‘trimers’ theory are done in the following way. For small
densities (ρ < 1/3) it is assumed that the trimer corresponds to 111 clusters, for interme-
diate densities (1/3 < ρ < 2/3) the trimer describes 110 clusters, while for high densities
(2/3 < ρ < 1) the trimer corresponds to 100 clusters. We calculate the fluxes of such particles
in all different regimes. Of course, in real system particles follow slightly different dynamics
since the monomer transitions are taking place. However, the trimer approach might be a very
reasonable description for very strong repulsions.

Comparison of figures 6(a) and (b) suggests that the theoretical calculations do not work
well in the region of minimal currents due to overestimating the negative correlation in the sys-
tem. In reality, the negative next-nearest neighbor interactions are not as strong. The possible
reason for such observations is the following. Let us consider for simplicity the case ρ = 1/3.
The particle density in the system constantly fluctuates. This means that there are segments
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Figure 7. Particle fluxes (J1, J2, J3) at three different positions along the lattice versus the
averaging time windowsΔt. The following parameters have been used for calculations:
ρ = 1/3, E = −10 and the size of the system is L = 500.

where the density is larger than 1/3 and there are segments where the density is smaller than
1/3. But for such densities, high currents will be realized (see branches in the fundamental
diagram in figure 6(a)). As the result, the fluctuations will wash out the negative correlations
and larger particle fluxes are observed. This is because the densities slightly larger or slightly
smaller than ρ = 1/3 support larger particle currents. The cluster mean-field theory does not
account for such fluctuations, and this is the reason for differences between theoretical calcula-
tions and computer simulations. Note that when the theory correctly captures the correlations
(e.g., near ρ = 1/2) the agreement between the simulations and theoretical predictions is much
better.

To support our arguments that density fluctuations lead to observed particle currents, in
figure 7 we presented histograms of particle fluxes simultaneously measured at three different
locations of the system (far away from each other) as a function of the averaging timewindows.
One can see that even for very short timewindows zero fluxes, which are predicted by themean-
field theory, are not observed, and for longer times the averaging is taking place, as expected.
These results show that there are significant density fluctuations in the system that are not
captured by the cluster mean-field approach.

Our theoretical calculations show the importance of the range of interactions for understand-
ing the dynamics of molecular motors. Varying the range can strongly effect the molecular
fluxes. This also suggests that together with the strength of interactions and other parameters
it might be used to efficiently regulate the transport of motor proteins.

4. Summary and conclusions

We presented a theoretical study on the role of the extended range of interactions in dynamics
of interacting molecular motors. Our analysis is based on investigating the TASEP model of
particles with nearest and next-nearest interactions that move unidirectionally along the lattice
of sites. To account for correlations in the system that are driven by interactions we devel-
oped a cluster mean-field theory that allowed to evaluate numerically exactly the dynamic
properties in the system in the large range of parameters. Theoretical calculations are also
supplemented by extensive Monte Carlo computer simulations. It is found from theoretical
calculations that a unimodal fundamental current–density diagramswill be observed for attrac-
tive and weak repulsions. For stronger than some critical value of the repulsion, it is predicted
that the flux-density relation will exhibit a trimodal shape. This is the result of the extended
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range of interactions. Computer simulations agree with theoretical predictions for most situa-
tions except for the regions near the minimal current for strong repulsions. It is argued that the
differences between the theoretical predictions and computer simulations are due to fluctua-
tions that lower the amplitude of correlations at these regions. Our theoretical analysis shows
how the extended range of interactions influences the topology of fundamental diagrams, the
correlations and the particle currents, clarifying important microscopic features of complex
non-equilibrium dynamic processes.

While our theoretical approach considered only the situation when interactions affect only
nearest and next-nearest particles, it can be extended for longer ranges of interactions. Based
on our analysis presented in this work, we expect that longer ranges of interactions will affect
the dynamics only at repulsions. It will lead to the increased maximal current, increased cor-
relations and more complex fundamental diagrams that might exhibit multi-modal shapes
that probably will be washed out by fluctuations in the system. It will be interesting to
test these predictions in more quantitative theoretical models and more advanced computer
simulations.
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