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1. Introduction

On August 16, 1964, Grothendieck wrote to Serre of a conjectured category of motives.
Such a category (called M(k)) would encode schemes up to decomposition (by cutting
out subvarieties), but would itself be an abelian category capturing the cohomological
structures involved.

The sad truth is that for the moment I do not know how to define the abelian category
of motives, even though I am beginning to have a rather precise yoga for this category.
For example, for any prime ¢ # p, there is an exact functor Ty from M(k) into the
category of finite-dimensional vector spaces over Q on which the pro-group Gal(k; /k;);
acts, where k; runs over subextensions of finite type of k and k; is the algebraic
closure of k; in k; this functor is faithful but not, of course, fully faithful...I will not
venture to make any general conjecture on the above homomorphism; I simply hope
to arrive at an actual construction of the category of motives via this kind of heuristic
considerations, and this seems to me to be an essential part of my “long run program.”
[3, p 174-175]

Grothendieck’s letter proposes several other properties of this conjectured category, and
discusses his attempts at the construction. Since then, there have been many other
approximations to construct this category—for an overview see, for example, [9]—but
all fall short of the ideal.

Grothendieck’s approach begins with the construction of a “K-group” of varieties.
These days, this is known as the Grothendieck ring of varieties, denoted Ko(Vary). It
is generated by isomorphism classes of k-varieties, [X], subject to the relations that
[X]=[Z]+[X\ Z] for closed inclusions Z — X. Kontsevich, following Drinfeld [7], calls
this the ring of “poor man’s motives.” He notes that any reasonable abelian category
of motives, My, will have a map Ky(Vary) — Ky(My). For example, in [6, Thm.
4], Gillet and Soulé show that there is a group homomorphism Ko(Vary) — Ko(M..)
where M is the category of (pure) motives associated to the equivalence relation ~.
It is thus useful to understand Ky(Vary) in a deep way in order to learn more about
how motives should work. It is even better to understand how it behaves in relation to
abelian categories.
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We move toward such an understanding in this paper. Before doing so, we rephrase
the question. The Grothendieck group of an abelian category is a shadow of the much
richer structure of Quillen’s higher algebraic K-theory [10]. Thus there should in fact
exist a map on higher algebraic K-theory spectra K(Vary) — K(M}) provided that
one can define the objects in the map. It is currently far beyond the state of the art to
attempt to understand the right-hand side. However, the authors separately have come
up with models for the left [2,16]. Under these constructions the category of varieties
behaves very similarly to an abelian category, and one may be tempted to conjecture
that from some novel perspective the category of varieties would “become” abelian.

Our goal in this paper is to construct such a perspective. This has the added benefit of
putting all objects of interest on the same footing. Our perspective begins with thinking
of sequences Z — X + X \ Z as our “exact sequences.” It turns out that with this
perspective one can execute nearly all constructions that one enjoys in abelian categories:
kernels, cokernels, localizations, etc. The main insight is that we should not think of
these constructions algebraically, but in a kind of diagrammatic calculus, where one of
the arrows points the opposite way that one would expect. Such diagrammatic calculi
are, of course, the foundation of Grothendieck’s seminal Tohoku paper [5].

While we do not develop the general theory of homological algebra of these types of

categories, !

one can ask which K-theoretic theorems hold. Pondering the fundamental
theorems of Quillen’s algebraic K-theory, we come to the following desiderata for the

construction of K-theories of geometric and algebraic objects:

(1) The categorical machinery should somehow encompass both the category of varieties
with its “exact sequences” defined above, and Quillen’s exact categories [10, p. 92].

(2) Dévissage should hold: Given an inclusion of categories A C B such that everything
in B can be “broken up” into objects in A, there should be an equivalence K(A) ~
K(B).

(3) Localization should hold: given two such categories A C B, one should be able to
produce a localized category /A as one can with abelian categories. One would also
like a localization sequence

K(A) K(B) K(B/A)

as in [10, Thm. 5].

In this paper we show that there is such a categorical structure, and we are able to
satisfy the requirements listed above. Moreover, it has the correct “yoga”: we are able
to not only make the theorems work, but also Quillen’s original proofs. Although this
does not get us much closer to understanding the conjectural category of motives, it does

1 We hope to develop this in future work; it appears to be that homological algebra ends up working
almost identically to the classical theory.
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provide us with a new perspective and concrete technical tools. The perspective could
be summarized as follows: varieties, together with the exact sequences above, behave
almost like abelian categories and one should work with this structure for as long as
possible before passing to abelian categories. As will be shown below, this perspective
is extremely fruitful when discussing algebraic K-theory, and we expect it to be more
useful generally.

The fundamental notion introduced in this paper is that of a CGW-category. It is
essentially a category equipped with two subclasses of maps, M and £ (to be thought
of as analogous to admissible monomorphisms and admissible epimorphisms in exact
categories), together with distinguished squares that tell us how objects are built. In
all examples we know, the horizontal and vertical morphisms need not compose in the
category, and therefore we situate the classes M and £ in a double category. With
this minimal amount of data we define K-theory following the classical constructions
due to Quillen (Sect. 4) or Waldhausen (Sect. 7). We show that the resulting K-theory
spaces have the correct group of components in Theorem 4.3. CGW-categories satisfy
requirement (1) above: they encompass varieties and exact categories.

Of course, as in the case of exact categories, additional structure is required to prove
these theorems. To this end we introduce the definition of an ACGW-category, which
is meant to be a sort of “abelian” version of a CGW-category. The category of reduced
schemes of finite type is such a category, with the category of varieties sitting inside it as
a full subcategory. Roughly, an ACGW-category is a category that formally satisfies all
of the properties that open and closed sets do (the complement of a closed set is open,
you can intersect closed sets and union open sets, etc). Using this definition we prove
the first main theorem of the paper:

Theorem 1.1 (Dévissage). Let A, B be ACGW-categories with A C B salisfying certain
technical conditions. Suppose every B € B has a finite filtration B; such that the differ-
ence between B; and B;_1 lies in A. Then K(A) ~ K(B).

Here “difference between” could mean a quotient or a complement; for the precise
statement see Theorem 6.2. The definition of ACGW-category has a number of require-
ments, but these requirements are satisfied by the motivating examples of the category
of reduced schemes of finite type, polytopes [16], finite sets, and abelian categories.

The formal similarities between ACGW-categories and abelian categories suggest that
other theorems in algebraic K-theory can be extended to the CGW case. Quillen’s other
major tool in algebraic K-theory is the localization theorem, which relates the K-theories
of two abelian categories A, B with the K-theory of their quotient category B/A. A very
similar theorem holds for ACGW-categories:

Theorem 1.2 (Localization). Let C be an ACGW category and A a sub-ACGW-category
of C satisfying certain technical conditions. Then there is a localization ACGW-category
C\A such that
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K(A) —— K(C) —— K(C\A)

is a homotopy fiber sequence.

For a more precise statement of this theorem, see Theorem 8.6.

An interesting observation about the proofs of these theorems is how closely they fol-
low Quillen’s original proofs. The category of varieties really does “behave like” an exact
category, in the sense that many of the motions that are necessary to prove theorems
have direct analogs in the category of varieties. (In fact, the category of varieties lacks
only “pushouts” to behave like an abelian category; this is why switching to reduced
schemes of finite type is necessary. For more detail on this, see Section 5.)

We expect there to be substantial applications of the dévissage and localization theo-
rems. The main application that we discuss in this paper is a comparison of models for
the K-theory of varieties that both authors have constructed. Surprisingly, this theorem
seems to use every bit of K-theoretic machinery the authors have developed: assemblers,
cofiber sequences in K-theory, and the dévissage and localization theorems. All combine
to give the following theorem.

Theorem 1.3 (Comparison). Let K€ (Var™) denote the K-theory of the SW-category
Var” defined in [2], and let KZ(Var™) denote the K-theory of the assembler Var”
defined in [16]. Then there is a zig-zag of weak equivalences

K¢ (Var") —~» . «~ KZ(Var").

For a more detailed statement of this theorem, see Theorem 9.1.

FEach of the models constructed has its own strengths, and this theorem allows us
to pass between models to exploit these. We expect a more general theorem relating
Waldhausen-style K-theory to assembler style K-theory to be true, but we leave that
for future work.

Whether this new perspective leads to a new theory of motives or not is unclear;
however, the striking behavioral similarities between varieties and abelian categories
was too beautiful to leave unexplored.

Acknowledgments. The authors would like to thank Pierre Deligne, André Joyal, An-
drew Blumberg, and Charles Weibel for interesting conversations related to this work.
They also thank Daniel Grayson and Karl Schwede for their patience with our annoying
technical questions. Lastly, the authors would like to thank the anonymous referee whose
comments greatly improved the readability of this paper.

During the writing of this work, Campbell was supported by Vanderbilt University,
Duke University, and is now employed at the Center for Communications Research,
La Jolla. Zakharevich is supported by Cornell University, NSF DMS-1654522 and NSF
CAREER-1846767.
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2. CGW-categories

This section contains the main definition of the paper: the definition of a CGW-
category. Because exact categories all embed into abelian categories, the data of exact
sequences is defined using universal properties in this abelian category: if

X—sY —7

is an exact sequence, X is the kernel of Y —s Z and Z is the cokernel of X — Y.
However, if we instead discard this “ambient” abelian category, and think of the ex-
act sequences as simply data to be manipulated (as per Quillen’s original definition
[10]), a simple observation comes to light: there is no intrinsic reason why admissible
monomorphisms and admissible epimorphisms must compose. It is simply necessary that
we encode their relationships to one another.

An efficient way to encode this kind of structure is using the formalism of double
categories. We thus begin by recalling the definition of a double category, as well as
establishing some notation for working with double categories. The notion of double
categories goes back to [4]. We do not include the complete definition; for the reader
interested in a more in-depth introduction, see for example [8, Section IL.6].

Definition 2.1. A double category C is an internal category in Cat. More concretely, a
double category consists of a pair of categories, denoted & and Mg, which have the
same objects. We denote morphisms in M¢ by >— and morphisms in & by o— .
This pair is endowed with a collection of squares, called distinguished squares. These are
denoted

f/
>
O
f
>

‘Q\
Q<«—onx
U‘TOUU

In each distinguished square, f, f' € M¢ and ¢,¢9' € E. The squares satisfy composi-
tional axioms, which say in effect that gluing two squares horizontally or vertically gives
another distinguished square. In addition, if f and f’ are both isomorphisms then for
any g, ¢’ either both of the following squares exist, or neither does:

At A
| o > ]!
ot C

f 1
>
=
> >

U‘TOTU
U‘—OU:J
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We sometimes write C = (¢, Mc). When C is clear from context we omit the sub-
scripts from the notation.

Example 2.2. Let A be any category, and £ and M two subcategories containing all
isomorphisms in A. We can define a double category structure (£, M) by letting the
objects be the objects of C, the horizontal morphisms be given by M and the vertical
morphisms by £. We let distinguished squares be any subset of the commutative squares
in A which satisfies appropriate closure conditions.

In most cases of interest, the double categories we work with arise as in Example 2.2,
so it is useful to introduce language for these categories.

Definition 2.3. If a double category (£, M) arises from a situation as in Example 2.2, we
say that A is an ambient category for (£, M). In such a case the identity functor gives
a natural isomorphism of categories iso & — iso M.

CGW-categories will be double categories equipped with extra data. Most of the data
involves the specification of the existence of certain distinguished squares. We define
certain categories that come up repeatedly in these specifications.

Definition 2.4. Let C = (£, M) be a double category. We write Arg € for the category
whose objects are morphisms A o— B in £, and where

Homa, e(A ol B, A' %> B') =

distinguished 4
squares I . Tg

B>— B

We have an analogous category Arg M. Every 2-cell in C appears uniquely as a morphism
in Arg € and Arg M.

Now let D be any ordinary category. We write Ara D for the category whose objects
are morphisms A — B in D, and where

A—>
! tati

Homay, p(A f B, A f B) = commutative fl lf/
squares

We now come to the definition of a CGW-category.

Definition 2.5. A CG W-category (C, ¢, ¢, k) is a double category C = (£, M), an isomor-
phism of categories ¢:iso M — iso & which is the identity on objects, and equivalences
of categories
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k:Arg & —— Ara M and cArgpM —— Arp €

which satisfy:

(Z)
(D

(A)

C contains an object @ which is initial in both £ and M.
If f: A > B is any isomorphism in M then all four of the following squares are
distinguished:

A~ . B A4 A-1 . B A4 4
¢(f)I IlB uI O Iqb(f) 1AI O Ia b ¢(f)I O IlA
B>~——">B A>L>B A>L>A B>L>A

Every morphism in the categories £ and M is monic.
For every g: A o— B in &, the codomains of g and k(g) are equal. We write k(g)

k
as A*/9 L, B. There exists a (unique up to unique isomorphism) distinguished

square
A
B

Dually, for every f: A >— B in M the codomains of f and ¢(f) are equal; we

write ¢(A I, B) = A/ s B. There exists a (unique up to unique isomorphism)

Ak/g

distinguished square

@>—>Ac/f

e

A1 . B

For any objects A and B there exist distinguished squares

%) (%)
I and I
B A

> >

><:<—OD>
o

> >
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As isomorphisms can be considered to be “both e-morphisms and m-morphisms” we will
generally draw them as plain arrows.

When it is clear from context, we write A*/B or A* instead of A*/9 (and analogously
for ¢). When ¢, c and k are clear from context we omit them from the notation. When C
has an ambient category A and ¢ is the identity functor, we omit ¢ from the notation.

The definition of a CGW-category is symmetric with respect to m-morphisms and e-
morphisms. This duality is highly versatile and allows us to get symmetric results about
e-morphisms and m-morphisms with no extra work.

Remark 2.6. Axiom (A) is used only to show that K(C) is an abelian group. Thus if in
some case such a property is not necessary this axiom can be dropped and the rest of
the analysis will still hold.

Functors of CGW-categories must preserve all structure in sight.
Definition 2.7. A CGW-functor of CGW-categories is a double functor F: (£, M) —

(&', M’) which commutes with ¢ and k. More concretely, F' is a CGW-functor if the
following two diagrams commute:

Arp € —F 5 Ara M Arg M —S 5 Arp &
AI"DF'Jv JVArAF ArDFJ lAI‘AF
Arp &~ Ara M Arg M — s Arp &

The fact that ¢ and k take distinguished squares to commutative triangles means that
distinguished squares are equifibered (the vertical arrows have equal “kernels” given by
k) and equicofibered (the horizontal arrows have equal “cokernels” given by ¢). By Axiom
(K), c and k are mutual inverses on objects.

We now prove some technical consequences of the axioms.

Lemma 2.8. For any A, the morphism f: & > A has f¢ = 14. Dually, the morphism
f:9 o— A has f]C =14.

The following lemma is the most important of the technical results. It states that
e-morphisms and m-morphisms can be commuted past one another using distinguished
squares. This is what will allow the Q-construction in Section 4 to work.

Lemma 2.9. For any diagram A >i> B ol C there is a unique (up to unique isomor-
phism) distinguished square
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B
: I
c

The analogous statement holds for any diagram A oL B-L. C.

O«—on
Ix

|

Proof. As the categories M and £ are symmetric in the definition of a CGW-category
it suffices to check the first part. Given a diagram as in the statement of the lemma, we
can apply c to the first morphism to obtain a diagram

Ac/foLBoi»C.

This diagram represents a morphism (A¢// AR B) oL (Ac/f N C)in Arp E. Applying
¢! to this morphism produces a distinguished square

’f

O
(A/FYR/9T" ,

Ny
]g7
C

where we have used that ¢ and k are inverses on objects.

To check that this distinguished square is unique, suppose we are given any other such
square

)
>
O
f/
>

O«—on
Q‘TOUU

Applying ¢ to this square produces a morphism

(At S By ot (D L 0y e Ara €.
Since the square is distinguished, we must have A¢/f = De</T" if we choose D¢/ I = A¢/f

the codomain of the above morphism becomes A¢/f gi» C. Thus any such distinguished

square is mapped by c to the original diagram; since ¢ is an equivalence of categories,
the square must be canonically isomorphic to the square produced above. O

Lemma 2.10. Given any composition

C>—B>—>A
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there is an induced map B4 o— C/* such that the triangle

BC/A CC/A

NS

commutes.

Proof. We begin by applying the equivalence of categories given by k~! from Axiom
(K). Since k! = ¢ on objects, we have the induced diagram

CC/B h CC/A

[ o ]

B> 5> A

We now apply the equivalence given by c to produce the diagram
BC/A _ (CC/B)C/h CC/A A O
We conclude this section with a pair of definitions that will be useful in later sections.

Definition 2.11. Let C = (€, M, ¢, ¢, k) be a CGW-category. A CGW-subcategory is a
sub-double category A C C such that (A, ¢|,c|a,k|4) is also a CGW-category.

Definition 2.12. We say that a CGW-subcategory A of a CGW-category (C, ¢, c, k) is
closed under subobjects if for any morphism B >~» C € M, if C € A then B € A. We
say that A is closed under quotients if for any morphism B o— C € &, if C € A then
B € A. We say that A is closed under extensions if for every distinguished square

Q—on

>
O
>

O«——oWw

if A, B and C are in A then so is D.

3. Examples

In this section we give several motivating examples of CGW-categories.



12 J.A. Campbell, I. Zakharevich / Advances in Mathematics 411 (2022) 108710

Example 3.1. Let A be an exact category. Let (C, ¢, k) be given by
& = {admissible epimorphisms}°P and M = {admissible monomorphisms};

Define ¢ to be the identity on objects and inversion on morphisms. The distinguished
squares are stable squares: those squares that are both pushouts and pullbacks in A.
The equivalence k is given by mapping every admissible epimorphism to its kernel; the
equivalence c is given by taking every admissible monomorphism to its cokernel.

We check the axioms explicitly.

(Z) The zero object is initial in M and terminal in &, so it is initial in both M and &.
(I) This follows directly from the definition.
(M) This holds by definition.
(K) k and ¢ give the correct equivalences, since distinguished squares are both
equifibered (since they are pullbacks) and equicofibered (since they are pushouts).
(A) This holds with X = A® B.

Thus an exact category gives rise to a CGW-category. However, there are examples
of CGW-categories which are not exact.

Example 3.2. Consider the category FinSet, of based finite sets. We define a CGW-
category (C, ¢, k) by setting

M = {injections} and E= {f: A— B ’ flr-1(B\+}) Is @ bijection}op.

The distinguished squares are the pushout squares; these are also all pullback squares.
The equivalence ¢ is defined, as in the previous example, by taking inverses. Define k by
taking f: A —> B to f~!(¥) — A. Define c by taking g: A < B to B —> B/g(A), with
the elements not in the image of ¢ mapping to themselves, and everything else mapping
to the basepoint.

That axioms (Z), (I), (M), and (A) are satisfied is direct from the definition. The
distinguished squares are pullback squares in the underlying category; therefore in a dis-
tinguished square the preimages of the basepoint of the two vertical maps are isomorphic.
This proves half of (K). Dually, the complements of the two injections horizontally are
also isomorphic, since g is injective away from the basepoint.

One of the advantages of CGW-categories is the observation that the contravariance
in the E-direction is not necessary. All of the following examples come equipped with an
ambient category, so we omit mention of ¢.

Example 3.3. Consider the category FinSet. We define a CGW-category (C,c¢, k) by
setting
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& = M = {injections}.

The distinguished squares are the pushout squares; since all morphisms are injections,
they are also pullback squares. The equivalences ¢ and k are given by taking any injection
A — B to the inclusion B\A «— B.

That axioms (Z), (I), (M), and (A) are satisfied is direct from the definition. Since
distinguished squares are pushouts, the complements of the images in the horizontal
maps are isomorphic; the same holds dually for the vertical maps. Thus (K) holds.

We can also improve the intuition from the finite sets example to get a CGW-category
structure on the category of varieties.

Example 3.4. Let C = Var
& = {open immersions} and M = {closed immersions}.

We let both ¢ and k take a morphism to the inclusion of the complement. The distin-
guished squares

A > B
[ o ]
c~.D
are the pullback squares in which im f Uim g = D. Axiom (Z) is satisfied by the empty
variety. Axiom (I) holds by definition. Axiom (M) is verified by noting that open and

closed immersions satisfy base change in the category of varieties. Axiom (A) holds by
setting X = ATl B. To see that Axiom (K) holds, consider a distinguished square

A~ B

[ o]

C>——D

By definition, D . C = B ~\ A, since the image of B in D contains the complement of
the image of C. The dual statement for e-morphisms holds as well.

The CGW-category of varieties includes into the larger category of reduced schemes
of finite type via a CGW-functor:

Example 3.5. Let Sch,¢ be the category of reduced schemes of finite type, with mor-
phisms the compositions of open and closed immersions. We define the £-morphisms
to be the open immersions and the M-morphisms to be the closed immersions. The
distinguished squares are those squares
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Qe—onx

>
|
f
>

o

for which D = im f Uim g and which are pullbacks in the category of schemes.
We can also restrict attention just to smooth varieties.

Example 3.6. The category Varj’,zT of smooth varieties can be given a CGW-structure.
We set the m-morphisms to be closed immersions with smooth complements, and the
e-morphisms to be open immersions with smooth complements. Thus Var%n is a sub-
CGW-category (but not a full sub-CGW-category) of Var .

4. The K-theory of a CGW-category

We are now ready to define the K-theory of a CGW-category. The construction exactly
follows Quillen’s @-construction [10] for exact categories. After the introduction of the
definition, the rest of the section is taken up by noting some useful technical results and
providing the standard presentation for the group Ky(C).

Definition 4.1. For a CGW-category (C, ¢, ¢, k) we define
K(C) = Q|Qc|,
where QC is the category with

objects: the objects of C,
morphisms: morphisms A — B are equivalence classes of diagrams

AOL»X>Q—>B,

where f € £ and g € M. Two diagrams

’

Aot X228 and Aol X'-2.B

are considered equivalent if there exists a diagram
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where the left-hand triangle commutes in £ and the right-hand triangle com-
mutes in M. The functor ¢ is implicitly being used to place the vertical isomor-
phism in both £ and M simultaneously.

composition: defined using Lemma 2.9. More concretely, given two equivalence classes
of diagrams represented by

Aot X228 and Bolov-'.cC

there exists a unique (up to unique isomorphism) distinguished square

X
f//I
7z

The composition of the two diagrams is defined to be the class of diagrams

>

g
£
"

d
g

Ne—oW

>

represented by

Ad L 727,

The basepoint is taken to be @.

Remark 4.2. Although we have defined K-theory for CGW categories, the K-theory of
a double category is defined for any double category satisfying Lemma 2.9.

As with any definition of K-theory, the first step is to check that it gives the desired
group on Kjy.

Theorem 4.3. Ky(C) is the free abelian group generated by objects of C, modulo the rela-
tion that for any distinguished square

A>—s
ID
Df

>——>

QoW
Q

we have [D] + [B] = [A] + [C].

Proof. There are two ways to proceed. One could prove this by showing that K(C) is
equivalent to some variant of the S. construction, and proceeding from there, or one
could mimic Quillen’s original proof that 7 (BQC) = K(C) for exact categories. We opt
for the latter, again to emphasize the analogy with exact categories.
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We follow a more modern version of the proof (see, e.g. [15, Proposition IV.6.2]).

The morphisms & o— & >— A form a maximal tree in BQC. By [15, Lemma IV.3.4],
the fundamental group 71 (BQC) is generated by the morphisms of BQC, modulo the
relations [@ o> @ >> A] = 1 and [f] - [g] = [f o g] for composable morphisms in
QC. We proceed by a series of reductions to get the set of generators and relations in
the theorem. In what follows we let [A o— X >— B] denote the equivalence class of a
morphism A — B in 7 (BQC). The notation [A > B] corresponds to the morphism
[A o= A > B] and similarly [A o— B] corresponds to [4 o— B > B].

From the definition of @ we have [B > C|[A > B] = [A > C]. In particular, since
[@ > X] =1 in m (BQC) for all objects X, [A > B] =1 for all m-morphisms.

We begin by noting that by definition

[A>— B][Do—> Al = [Do—> A>— B].

Now consider [B o— C][A > B]. By Lemmma 2.9 there exists a distinguished square
A>—s
[ o
D

>—>

Qe—oW

which implies the relation

via the composition relation. Each distinguished square produces such a relation. Since
all morphisms in M are equal to the identity, this reduces to the equation

[Bo—> C] =[A o— D]

for all distinguished squares. We have now shown that w1 (BQC) has as generators the
morphisms of £, with relations induced by composition and distinguished squares.
Since

(@ o Ay][A1 o As] = [@ o— Aj]. (4.4)

m1(BQC) is generated by the elements [@ o— A], which we abbreviate to [A]. This
expression also eliminates the composition relation. We can substitute for both sides in
the relations induced by the distinguished squares to get

This gives the desired presentation of Ky(C).
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It remains to check that Ky(C) is abelian; in other words, that [A][B] = [B][A]. The
relations imposed by the squares in Axiom (A) state that

as desired. O

The rest of this section is devoted to some technical lemmas exploring the properties
of this @-construction. The first identifies the isomorphisms in QC via their components.

Lemma 4.5. If a: A — B is an isomorphism inside QC for a CGW-category C repre-
sented by

A OL xX-2.B
then both f and g are isomorphisms in C.

Proof. Suppose that the inverse of « is represented by

I’ g’

Bo—Y >—5 A.
Then the composition is represented by a diagram

Ao—>X>—>

r]

f/

2]
L

Since this is equivalent to 14, f” f is an isomorphism. Since f” is monic and f is its right
inverse, it must be an isomorphism; thus f is an isomorphism. Doing the composition in
reverse, we see that g has a right inverse and thus must also be an isomorphism. O

The next lemma illustrates that we can think of a morphism in QC as a set of “lay-
ki

ers” inside M. This allows us to think about the Q-construction in CGW-categories
analogously to the way that Quillen originally thought about exact categories in [10].

Lemma 4.6. For any CGW-category B and any B € B, the category QB,p is equivalent
to the category LB with

objects: diagrams By > By >> B in B,
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morphisms: commutative diagrams

B1>—>BQ>—>B

|

In particular, QB,p is a preorder for any B.

Proof. It suffices to prove the first part of the lemma; the second follows from the
definition of LB and axiom (M).

We define a functor x: QB,p — LpB. An object of QB,p is a diagram By oL By

k
>— B. We send this to the diagram B 2, By > B. Seeing that this extends to a
functor is a bit more complicated. Suppose that

BiolsBy>'>B and Blo'-B,-'.B

are two objects of QB g, and suppose that we are given a morphism between them. This
morphism consists of an object C' € B and a diagram

Biol s B

ND

B2>—>Bé

NI

B
Applying ¢! to the upper-left triangle, this diagram corresponds to a unique diagram

B¥C . . c- B

7T

B¥P:. . By~ B

NI

B

Applying k, this time to the two distinguished squares on the top, gives us a unique
diagram
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Bik/Bé _ (Bf/&)k/h” B, /B2

>—>B2>—>Bé

This can be rearranged into a diagram

Bic/Bz f

]

ML p ! B

as desired.
The inverse equivalence is given by sending a diagram B; >—> By >—> B to

Bf/ B2 o, By > B. By Axiom (K) these two functors give inverse equivalences. O

We now give several examples of K-theories of CGW-categories.

Example 4.7. We consider the examples from Section 3.

Example 3.1: When (C, ¢, k) arises from an exact category A, BQC = BQA, so K(C) =
K(A).

Example 3.2: The simplicial set BQC is an edgewise subdivision of the S.-construction
for the Waldhausen category FinSet, with injections as the cofibrations (for a
more in-depth discussion, see Theorem 7.8). Thus

K(C): = QBQFinSet, ~ KV (FinSet ) ~ Q>°x>5°

where the last equivalence is by Barrat-Priddy-Quillen [1].

Example 3.3: In this case we also have K(C) ~ Q2°X°°S5°. Indeed, there is an equiv-
alence of CGW-categories between (FinSet, ¢, k) and (FinSet,, ¢, k) from Ex-
ample 3.2 given as follows. An injection [i] — [j] considered as an element of
& C FinSet corresponds to an injection [i];+ < [j]+ in FinSet,. An injec-
tion w:[i] < [j] considered as an element of M C FinSet corresponds to a
surjection [j]4 — [i]+ by taking m € [j] to u=!(m) and the rest of [j] to the
distinguished basepoint.

Example 3.4: K (Var) is equivalent to the K-theory of varieties defined in [2]; for a more
detailed discussion, see Section 7.
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5. ACGW-categories

A CGW-category behaves like an exact category. In order to create categories that
are analogous to abelian categories (with the goal of proving Quillen’s dévissage and
localization) we need to assume some extra conditions. The extra conditions amount to
the requirement that certain “pushout-like” objects exist and are compatible with ¢ and
k; in geometric settings this corresponds to certain gluings of objects.

Definition 5.1. An enhanced double category is a double category C with two notions
of 2-cell, called the distinguished and pseudo-commutative squares. These are required
to satisfy the property that forgetting either of the sets of squares produces a double
category, and all distinguished squares are pseudo-commutative. We denote distinguished
squares with [J and pseudo-commutative squares with O.

We write Are M for the category whose objects are morphisms in M and whose
morphisms are pseudo-commutative squares in C. We write Ary M for the category
whose objects are morphisms in M and whose morphisms are pullback squares in M.
The category Arg M is a subcategory of Ary M and Ara M is a subcategory of Ar, M
(since all morphisms in M are monic).

Remark 5.2. The term “pseudo-commutative” is inspired by the role that commutative
squares play in the case when we are discussing abelian categories. Consider an abelian
category A, and the associated CGW-category C. The distinguished squares in C are
the stable squares. However, the commutative squares in A4 also play a role in the fol-
lowing sense. In an abelian category, every morphism f: A — B can be factored as
A —> im f «— B, an epic followed by a monic. This means that in C, any diagram of
the form

X o— Z «—<Y,

which represents a monic followed by an epic, can be completed to a square in an es-
sentially unique way. This square will not necessarily be distinguished, but it is still
important. This completion is the “mixed pullback” that we define in the next defini-
tion.

Before we define a pre-ACGW-category we need one extra helper-definition; this is
necessary because, although monomorphisms always behave well with respect to pull-
backs, they do not always behave well with respect to pushouts.

Definition 5.3. Let C be a category in which all morphisms are monic, and let
C«—A—B

be a diagram in C. The restricted pushout of this diagram is the initial object (if it exists)
in the category of commutative squares
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A B
C X

which are also pullback squares; in other words, it is cones X under the diagram such

E—

e

that A =2 B xx C. As usual, a morphism between diagrams is a natural transformation
in which all components are equal to the identity except at X. We denote restricted
pushouts by B x4 C.

The important intuition behind this definition lies in the following example:

Example 5.4. Let C be the category of sets and injections. Then C does not contain all
pushouts, as for example the diagram

A—0— A

does not have a pushout for any nonempty set A; this is because the map AITA — A
is not a monomorphism. However, the restricted pushout of this diagram exists and, as
expected, will be isomorphic to A 1T A.

We are now ready to define pre-ACGW-categories:

Definition 5.5. A pre-ACG W-category (C, ¢, ¢, k) is an enhanced double category C which
is a CGW-category when the pseudo-commutative squares are forgotten, and in which
the following extra axioms are satisfied:

(P) M and & are closed under pullbacks.
(U) The functors ¢ and k extend to equivalences of categories

cAro M —— Ar, € and k:Ary & —— Ary M.

These are compatible in the sense that for any diagram A > C' <o B there exists
a unique isomorphism

©: (A xo BR)/4 5 (A° x ¢ B)F/B
such that the square

(A xe B4 2, (4¢ xo B)F/B o

T

A
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is a pseudo-commutative square.
We write A 0c B & (A° xc B)F/B = (A xc B¥)¥/4, so that we have a “mixed
pullback square”

AQc B> B

[ o]

A C

(S) Suppose that we are given a pullback square

AXcB>—>

e

B

. f . . .
in M. Then X % A« AxoB B exists. The induced commuting square

XC/C Bc/C

I !

AC/C o (A X B)C/C

(constructed using Lemma 2.10) is a restricted pushout.
The dual of this statement also holds.

Given a pre-ACGW-category (C, ¢, ¢, k), a pre-ACGW-subcategory D is a sub-double
category D of C (under both double category structures in C) such that (D, ¢|p, c|p, k|p)
is also a pre-ACGW-category. We say that D is full if the vertical (resp. horizontal)
category of D is a full subcategory of the vertical (resp. horizontal) category of C.

Definition 5.6. An ACGW-category is a pre-ACGW-category (C, ¢, c, k) such that the

following condition holds:

(PP) Restricted pushouts exist in M. These are compatible with cokernels, in the sense

that a restricted pushout square
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A
|, b
C f

>~ 5> By C

induces an isomorphism A¢/B —, C¢/(B*xaC)_1n addition, restricted pushouts are

compatible with distinguished squares in the sense that given a diagram

Ce——A>~—>2B

[ o] o]

C'——< A > B

there is an induced map B x4 C —> B’ x4 C’ such that the two induced squares
are distinguished. These maps are compatible with compositions of distinguished
squares.

The dual statement for e-morphisms holds as well.

The definition of x implies that it behaves functorially like a pushout, in the sense
that given a diagram

fi f2

it follows that (faf1)' = f3f1.

Example 5.7. Let A be an abelian category. Then A defines an ACGW-category for
which M is the category of monomorphisms, £ is the opposite category of the epimor-
phisms, distinguished squares are stable squares and pseudo-commutative squares are
commutative squares. Here, the “mixed pullback” of a diagram

A> > B«—o(C

is the factorizarion of the morphism A — C' into an epic followed by a monic.

Axiom (S) translates to the following observation. Assuming that we are working in
Modg, let C' be an R-module, and A and B be submodules of C'. Then A xs B is ANB.
Then X = A + B, and the square
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C/(AnB) — C/B

L

C/A C/X

is a pullback square.
(PP) corresponds to the fact that an abelian category has all pushouts of monics, and
such pushouts preserve cokernels.

Example 5.8. The category Var is a pre-ACGW-category. Here we define the pseudo-
commutative squares to be the pullback squares.

We check the axioms in turn. Axiom (P) holds because varieties are closed under
pullbacks. In order to check Axiom (U) it suffices to check that given a variety X and
an open subvariety U and a closed subvariety Z, we have

Z\(Z N (X\U)) = UN((X\Z)NU).

This is true because it is true in the underlying topological spaces, where each one is
simply Z x x U. Axiom (S) holds because it holds in the underlying topological spaces.

Counterexample 5.9. The CGW-category Varj;" is not a pre-ACGW-category, since it
is possible that the intersection of smooth subvarieties is not smooth. This means that
the m-morphisms are not closed under pullbacks.

Example 5.10. The category Sch,; is an ACGW-category, with the pseudo-commutative
squares being pullback squares. With this definition we can consider Var a pre-ACGW-
subcategory of the ACGW-category Sch, ;. That Axioms (P), (U), and (S) hold follows
identically as for the case of varieties.

Thus it remains to check Axiom (PP), in particular that x-products exist. The pushout
of schemes along open immersions produces a square of open immersions by the definition
of a scheme; the pushout of schemes along closed immersion produces a square of closed
immersions of schemes by [11, Corollary 3.9]. These are not pushouts in the categories
of closed/open immersions; these are pushouts in the entire category of schemes. That
this satisfies the conditions of (PP) follows from the universal property of pushouts.

We now consider an example that will be used in Section 9.
Example 5.11. Let G be a discrete group, and consider the category FinSet ! G, with

objects: finite sets, and
morphisms: S — T is a pair of functions (f: S — T, f": S — G).
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A composition of morphisms (f, f'): S — T and (g,¢'):T — U is given by the pair
consisting of g o f and the composition

S—T;CcsxT=2Txs 2% gxa-taa,

where p is the composition in G.

More informally, we think of a morphism S — T in FinSet! G as a map of finite sets
S — T together with a decoration by elements of G on each element of S. When we
compose two such morphisms, we decorate each element by the multiplication of the two
elements that it was decorated with in the composition: the decoration of the original
element in the first morphism, and the decoration of its image in the second morphism.
The swap in the definition is necessary because composition of morphisms acts on the
left, rather than the right.

This can be demonstrated with the following picture:

Here, A, B,C € FinSetG are sets, illustrated by the elements in the circles. The dashed
lines above morphisms f and g illustrate where elements map under f and g, together
with decorations. The labeled dotted lines are the data of gf.

When G is trivial FinSet!G = FinSet. By forgetting the decoration we get a functor
FinSet ! G — FinSet.

We define an ACGW-structure on FinSet ! G by declaring the e-morphisms and m-
morphisms to both be all maps which are injective on the underlying sets, and declare a
square to be distinguished if it commutes in the ambient category and if it is distinguished
when mapped down to FinSet. This makes FinSet { G an ACGW-category.

We finish this section with a couple of technical lemmas which will be useful later.
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Lemma 5.12. Let C be a pre-ACGW category. Given a diagram

Co——>B>—— A

1

C'o—5 B >~ 5 A
where C = C' x g B there exists a cube

C

B j A
C/ N D/
B’ A

where the top and bottom squares are distinguished, the left and right squares are pull-
backs, and the front and back face are pseudo-commutative.
The statement with the roles of e-morphisms and m-morphisms swapped also holds.

Proof. Let
D= (Ck/B)c/A and D = ((Cl)k/B’)c/A’
Applying ¢! to the left-hand square in (5.13) produces a diagram

Cck/B B A

[ o ] ]

(Cl)k/B/ B/ A/

which corresponds, under ¢, to the pullback square on the right of the cube. Lemma 2.9
shows that the squares on the top and bottom of the cube must be distinguished. To
finish the proof of the lemma it remains to check that the back face of the cube is
distinguished. To prove this it suffices to check that, after applying ¢ to the m-morphisms
in the diagram, it corresponds to a pullback square. This is a straightforward diagram
chase using the fact that all morphisms are monic. O
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Lemma 5.14. Let C be a pre-ACGW category. In any pseudo-commutative square

!
> >

A B
[ 2]
¢t p

if f' is an isomorphism, so is f.

Proof. Apply k vertically. This produces a pullback square

a4k U g

|, ]

C>~——->D

Since f’ is an isomorphism, (f’)*

must be, as well. Thus the pseudo-commutative square
is mapped to an isomorphism inside Ar, M; in particular, both horizontal morphisms
in the pseudo-commutative square must be isomorphisms. Thus f is an isomorphism, as

desired. O
6. Dévissage

We can now prove a direct analog to Quillen’s dévissage [10, Theorem 5.4]. Analo-
gously to the case of exact and abelian categories, the K-theory of an ACGW-category
is defined to be the K-theory of the underlying CGW-category.

As the definition of “creation of colimits” appears to differ from context to context
we include the definition needed for the next theorem here:
Definition 6.1. A functor F':C — D creates restricted pushouts if for every diagram

B——A—C
in C, if
F(B) «— F(A) — F(C)

has a restricted pushout in D, then there exists a D € C such that D is the pushout of
the original diagram, and F(D) is the pushout of its image under F.

Theorem 6.2. Let A be a full pre-ACGW-subcategory of the pre-ACGW-category
(B, d,c, k), closed under subobjects and quotients (see Definition 2.12), such that the
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inclusion ANE — & creates restricted pushouts. Suppose that for all objects B € B
there is a sequence

0 = B, B B, =B

such that Bfﬁgb isin A for alli=1,...n. Then the inclusion functor A — B induces
an equivalence K(A) — K (B).

Proof. The proof proceeds exactly as in [10]. Let ¢: A — B be the inclusion of A into
B. We would like ¢ to give a homotopy equivalence

BOA 2% BOB.

By Quillen’s Theorem A it is enough to show that Qt,p is contractible for any B € B.
Since A is closed under subobjects, Q¢ is the full subcategory of @B, p of those objects

A10—>BQ>—>B

where A; € A. By Lemma 4.6, QB,p is a preorder, and thus Q:,p is also a preorder.
By the hypothesis of the theorem, there exists a sequence

0 = By B B, =B

with Bfﬁ?i € Aforalli=1,...,n. We prove that Q¢,p, is contractible by induction on

n.

We have By € A; in this case Qu/p, is contractible, since it has the terminal object
By o— By > B;.

To prove the inductive step it suffices to show that for any h: B> B’ with B¢ € A
the map Qu/p — Qt/p induced by postcomposition is a homotopy equivalence. Let
LéB be the full subcategory of LgB containing those objects By > By > B where
Bf/ P2 ¢ A. By Lemma 4.6 it suffices to check that the functor ¢: LAB — L4, B induced
by postcomposition with h is a homotopy equivalence.

Let By >—> By > B’ be any object of Lé,B. We have the diagram

’

By xp B>2— By xp B> B

| ]

By By B’

where both squares are pullback squares. We define functors

r LB —— LAB  r(By>> By>> B') =By x B> By xp B> B.
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SZL“E}/B—»LQ,B S(Bl >—>BQ>—>BI) ZBl X B’ B>—>BQ>—>BI.

If s is well-defined (so (By xp B)/P2 € A) then so is 7, because (B; xp B)*/9 is a
subobject of (By x g B)*/B2. Thus we just need to check that s is well-defined.

First, by Axiom (U) there exists a map (By x g B)*/B2 = B/B’; since B/P' € A,
it follows that (Bs x g B)*/ B2 must be, as well. Now by Axiom (S), (B; xp B)*/ B2 =
B xye/my (Ba X B)/ B2 where Y = By *p, « .,  (Ba x B'B), which exists by Axiom
(S); since the inclusion A N E — & creates restricted pushouts, if each component of
this pushout is in A, then so is (B xp B)*/B>. By assumption Bf/Bz € A and by the
above (By x5 B)*/B2 € A, s0 Y*/B2 is also in A (as A is closed under subobjects). Thus
(By xp B)*/B2 € A, and s is well-defined, as desired.

Redrawing the above diagram, we have the following diagram:

B1 B2 B/ ]‘Lé,lg
B1 XB/B Bg B/ S
BIXB/B>—>BQ><B/B>—>B, Lr

The upper row of squares gives a natural transformation 1 L4, B = s; the lower row gives
a natural transformation tr = s. Since natural transformations realize to homotopies,
we see that ¢r is homotopic to the identity on L“E‘},B. On the other hand, ¢ is equal to
the identity on L“E‘;‘B, so these produce a homotopy equivalence of spaces, as desired. O

We can now apply this theorem to compare the K-theory of varieties to the K-theory
of reduced schemes of finite type.

Example 6.3. We use the dual of Theorem 6.2 to prove that K(Var) ~ K (Sch, ).

Var is a subcategory of Sch, s closed under subobjects and quotients; the inclusion
Var N M — M creates pushouts since the pushout of varieties along closed immersions
is a variety [11, Cor. 3.9]. To apply the theorem we must show that for every reduced
scheme of finite type X there exists a filtration

XOO—>X10—> o—»Xn:X

such that X; ~\ X;_1 is a variety for all 7. Since X is of finite type there exists a finite
cover of X by affine opens Uy, ..., U,; each of these is reduced since X is and separated
because each is affine. We then define
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This gives a finite open filtration of X; it remains to show that X; ~ X;_; is a variety
for all 7. Note that X; ~ X;_1 = U; ~ U;;ll(U] N U;). This is reduced, separated and of

finite type, and is thus a variety, as desired.
7. Relationship with the So-construction

In this section we relate our (Q-construction to a variation of the S.-construction of
Waldhausen [14]. We will show that the Q-construction is equivalent to the construction
defined for Var,; in [2]. As the S.-construction applied to an abelian category is not
abelian, it is unreasonable to expect that in all cases it will be possible to iterate the
construction. However, as the S.-construction for ACGW-categories produces a CGW-
category, it is possible to iterate it twice. It turns out that this is sufficient to prove a
cofiber sequence and the relationship to the @)-construction.

Remark 7.1. In the interest of keeping this section short and readable, we do not state
definitions or results in the full generality that would be analogous to Waldhausen’s
exposition. Instead, we restrict attention to the special cases of interest to us.

We begin by presenting the definition of the S. construction for CGW-categories.

Definition 7.2. Let C be a CGW-category. Define S.C to be the simplicial set with n
simplices S,,C given by diagrams in the double category C

Coo Co1 Co2 e Con—1) > Con
] ]

Cn C12 e Cin—1) > Cin
[¢]
O

Cnn

such that

(1) Ci; = @ for all i, and
(2) Every subdiagram



J.A. Campbell, 1. Zakharevich / Advances in Mathematics 411 (2022) 108710 31

Cri > Ciy

ey
Cji —— Cj
for k < j and 7 < [ is distinguished.

The face and degeneracies are defined as in the usual S.-construction: the ith face map
is deleting the ith row and ith column, and the degeneracies are given by repetition.
(For more on the traditional S.-construction, see [14, Section 1.3]; for a more explicit
description of how this works in the case of varieties, see the S.-construction in 2,
Definition 3.31].)

Remark 7.3. The arrow directions in the diagram are chosen to agree with existing
examples.

Example 7.4. When C = Var, then S.C is exactly the S. construction of [2, Def. 3.31].
Definition 7.5. Given a CGW category (C, M, £) define

K5(C):=Q|S.C

Remark 7.6. When C is, for example, an exact category this agrees with Waldhausen’s
S.-construction by Corollary 2 following [14, Lem. 1.4.1].

Remark 7.7. In [2], the author introduced the S. construction, which is a version of
the Waldhausen construction that works on SW-categories [2, Defn 3.23]. These cat-
egories are meant to encode cutting and pasting, just as CGW categories do. In fact,
in that paper there are three notions of such categories that appear: 1. pre-subtractive
category, 2. subtractive categories and 3. SW-categories. Pre-subtractive are closely re-
lated to CGW-categories; they are categories where one can define a higher geometric
object that encodes cutting and pasting. Subtractive categories correspond to ACGW-
categories: certain pushouts and pullbacks are required to exist. Finally, SW-categories,
like Waldhausen categories, are allowed to have weak equivalences other than isomor-
phisms. Subtractive categories satisfy the axioms for ACGW-categories, and in this case
the corresponding S. constructions are equivalent and, in fact, equal; in such situations
we will say that the ACGW-category arises from a subtractive category. An ACGW-
category where the distinguished squares are cartesian in the underlying category A, is
an SW-category, and we may use the full machinery of SW-categories. This is true, for
example, for Sch,.; /;, and FinSet,.

As expected, this new definition of K-theory is equivalent to the original one.
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Theorem 7.8. Let (C, M,E) be a CGW category. Then there is a weak equivalence of
topological spaces

K*(C) = K(C)
induced by a map of simplicial sets S.C — QC.

The equivalence above is one of topological spaces, not of infinite loop spaces or
spectra. While in many cases the equivalences are equivalences of infinite loop spaces,
that statement is not true in this generality (for example, smooth varieties cannot be
delooped in the way described in [2, Sec. 5] since it relies on the existence of pushouts).
We hope to address deloopings in future work.

In order to make the proof of Theorem 7.8 as formally similar to the classical “S. = @Q”
theorem due to Waldhausen ([14, Sect 1.9]) we introduce the following definition.

Definition 7.9. Let (C, M, &) be a CGW-category. We define iS5,,C to be a category with

objects: Elements of S,,C
morphisms: A collection of isomorphisms f;;: Cj; —> C{j in M such that the diagrams

Cir, > Ci, Cij o—— Cig,
fikI Iflk ¢(fij)I I(ﬁ(fik)
Cz(k Cl/k Cz{j o— z{k

commute in M and &, respectively.

Remark 7.10. We could have also used the isomorphisms in £ in the above definition.
The isomorphism ¢ guarantees the resulting definition is categorically equivalent to the
one above.

Proof of Theorem 7.8. The definitions are designed to make this statement work exactly
as in Waldhausen [14, Sect 1.9]. Let ¢QC be the double category where vertical morphisms
are isomorphisms in QC and horizontal morphisms are morphisms in QC. Taking the
nerve in the horizontal direction, we obtain a simplicial category iQ.C. There is an
equivalence |QC| = |iQ.C| given by Waldhausen’s Swallowing Lemma [14, Lem. 1.6.5].

Similarly, let sd iS.C be the simplicial category we obtain from edgewise subdividing
the S.-construction (for an introduction and proof of the properties of edgewise subdi-
vision see [12, App. 1]). There is now a functor

sd ©5.C — iQ.C
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defined as in [14, Sect. 1.9]. It is a level-wise categorical equivalence, and thus induces
a weak equivalence of bisimplicial sets, by the usual realization lemma (see, e.g. [13,
Lem. 5.1]).

Altogether we have

iS.C) «—— |sd iS.C| —= [iQ.C| <=— |QC]|

where the first map, a homeomorphism, is given by [12, Prop. A.1].
Finally, we have the commutative diagram

15.C] «—— |sdS.C| — |QC]

S S

i5.C| <= |sdiS.C| —— iQC|

where we know that all of the indicated arrows are weak equivalences, and so the remain-
ing arrow is a weak equivalence. The composite across the top |S.C| — |QC| is thus a
weak equivalence. Upon taking loop spaces this gives the statement of the theorem. O

As a corollary we can now show that Dévissage works for SW-categories that are the
ambient categories of pre-ACGW-categories.

Corollary 7.11. Let A and C be pre-ACGW-categories satisfying the conditions of Theo-
rem 6.2. Then the map

K*(A) — K5(C)

is an equivalence. In particular, if A and C are constructed from SW-categories [2] then
the induced maps on K -theories of the SW-categories are also an equivalence.

We now use Waldhausen’s approach to define relative K-theory (Definition 7.14) and
prove a homotopy fiber sequence between the relative K-theory and ordinary K-theories
(Proposition 7.15, analogous to [14, Prop. 1.5.5]). These will be needed in Section 9 to
prove that the previous constructions of the K-theory of varieties are equivalent.

Definition 7.12. Let A4 be an ACGW-category. We define a CGW-structure on S, A. We
give S, A distinguished families of M and £ morphisms as follows.

M-morphisms: A collection of maps f;;: C;; >> D;; in M such that
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Cij > Dy Cix > Dy,
Cig >— Dy, Ci, > Dy,

are in Ary M and Ars M, respectively. We visualize these as cubes

Cij C;
D; T Dy
Cyj Cm\
Dy, Dy,

E-morphisms: A collection of maps g;;: Cj; —> D;; in € such that

Cij o—— Dy Cik o—— Dig
Cij, o—— Dy, Ci, o0—— Dy

are in Ar € and Ary &, respectively. We visualize these as cubes

Cij C;

D;; T Dy
Cyj Cii;

Dy, Dy,
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Distinguished squares: Let C.,D.,FE. F. denote objects in S,A. A distinguished
square consists of M-morphisms C.. >~ D.., E.. >» F.. and £-morphisms
C o— E, D o— FE such that each

ij ~ >

B0

ij > Fij

is distinguished

The functors ¢, ¢, k: The isomorphism ¢ is induced from the isomorphisms on A. The
functors ¢, k are defined pointwise. The fact that the resulting squares are as
described is guaranteed by Definition 5.5, Axiom (U).

We now describe the enhanced double category structure on S, A.
Enhanced Structure: The enhanced double category structure on S,A, we define
pseudo-commutative squares pointwise. That is, let C.., D.., E.., F.. denote ob-

jects in S, A. An element of Ary S,A is given by C.. > D.. and E.. o— F.. and
C..o— E.. and D.. > F.. such that each

i > Dij

|

ij = Fij

«— o 2

=

is in Ary M. The 2-cells Ary Mg, 4, AryEg, 4 and Ary Eg, 4 are defined simi-
larly.

With the definitions above, the following is tedious, but straightforward. Indeed, the

definitions were chosen to make this lemma true.

Lemma 7.13. S,, A, with the structure from Definition 7.12, satisfies all of the axioms of

a CGW-category except for Aziom (A). In particular, the S.-construction can be applied
to S.A.

Using this we can define the relative S.-construction.
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Definition 7.14. A pair (B, A) of an ACGW-category B and a sub-ACGW-category A is

good if A is full and if for every isomorphism B =, B'in B, B is in A if and only if B’
is. For a good pair (B, A), define S,,(B,.A) via the pullback

Sp(B, A) —— S, 1B

-

SpA —— S, B.

In other words, S, (B, .A) is the full subcategory of those objects C.. in S,18B in which
Cij € Aforalli > 0.

The category S, (B,.A) inherits the structure of a CGW-category. The relative K-
theory of (B,.A) is defined to be

K(B,A):=Q

S.(B, A)|

To conclude the section we prove an analog of additivity for the Q-construction and
use it to construct a homotopy fiber sequence relating relative K-theory to the K-theory
of the component categories.

Proposition 7.15 (Additivity and Cofiber sequence). Let (B, A) be a good pair which
arises from a subtractive category and a full subtractive subcategory. Then there exists a
weak equivalence

QS0 (B, A) —=> QB x QS,A.

Moreover, the following is a homotopy fiber sequence after geometric realization:

QB — QS.(B,A) —— QS.A.

Proof. For any object C.. in S, B, write C._;,_; for the object in S,,_1 B containing all
elements with positive indices. When C.. € S,,(B,.4), C._1,._1 can be considered to lie
in S, A.

There are functors

F P

Sn(B,.A) B and Sn(B, A) SpA

0.7. b 0070 0.7. P C._17._1

which induce a map f:QS, (B, A) — QB x QS,.A. This map is a coretraction, where
the reverse map is constructed using the subtractive structure of B. These fit into a
commutative diagram
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|

QB —— QB x QS, A —— @S, A

in which the bottom row is a homotopy fiber sequence (in fact a trivial fiber sequence),
QB — @S, A is constant, and @S, A is connected. Thus, by [13, Prop. 5.2], to prove
that the geometric realization of

QB —— QS(B,A) —— @S, A

is a homotopy fiber sequence it suffices to check that f is a weak equivalence; thus the
second part of the proposition follows from the first.
Consider the following commutative diagram:

QS, (B, A) —— 0B x 98, A

2 2

/

S.5,(B, A) —— S.B x 8.5, A

The vertical arrows are weak equivalences by Theorem 7.8 and [13, Lemma. 5.1]. Thus
f is a weak equivalence if and only if f’ is. By assumption, A and B arise from SW-
categories, and as S.-constructions for ACGW-categories that arise from SW-categories
agree by definition, f’ is a weak equivalence by [2, Proposition 5.3]. Thus f’ must also
be a weak equivalence, and the proposition follows. O

Remark 7.16. In fact, the assumption that A and B arise from SW-categories can be
significantly weakened; the only assumption necessary is that axioms (A) and (PP)
hold sufficiently functorially. In order to check this it is necessary to check that all
steps in the proofs of [2, Theorem 4.5, Proposition 5.3] work analogously in ACGW-
categories. However, as this would significantly disrupt the flow of this paper (and not
add significantly to understanding) we omit this more general result here; instead, we
restrict solely to the case in which it is needed later in the paper.

8. Localization of ACGW-categories

In this section we state the new definition necessary to state the localization the-
orem. The goal of a localization theorem is to identify the homotopy cofiber of the
map K(A) — K(C) induced by the inclusion of a sub-CGW-category. In order to
prove the cleanest version of the theorem it is necessary to make extra assumptions
about the structure of A and C, and thus passage to ACGW-categories is necessary.
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In addition, in order to ensure that objects in A can be worked with easily, we as-
sume some nice closure properties on A (similar to the closure properties assumed by
Quillen).

Let C = (£, M) be an ACGW-category, and let A be a full ACGW-subcategory closed
under subobjects, quotients and extensions, as defined in Definition 2.12. The first step
towards stating localization is identifying the CGW-category whose K-theory we hope
to be the cofiber.

The idea of the localized category is to define morphisms A — B to be morphisms
defined from a “dense subset” to a “dense subset,” where “dense” is defined to be subob-
jects/quotients whose cokernel/kernel are in the subcategory A. This is motivated by the
definition of monomorphism/epimorphism in an abelian quotient category C/A, where
(for example), a monomorphism A — B in the quotient category is a diagram

A > Al B’ B

where the cokernel of A’ — A and the kernel of B’ —> B are both in .A. We can commute
the monomorphism and epimorphism past one another (in an epic-monic factorization)
to instead write this as a diagram

A > A B’ B

where the cokernel of A’ «— A and the kernel of A’ —> B’ must be in A. Two such
diagrams are equivalent when they have a “common refinement” on which they are
identical. This is exactly the definition of an m-morphism in the localized category,
except that we are allowed to “reduce the size of A” by both an m-morphism and an
e-morphism.

Definition 8.1. Let A >> B be a morphism in M. We write >e> if A° € A. We define
oe> analogously.
Let C\A be the double category with

objects: the objects of C,
m-morphisms: A morphism A > B is an equivalence class of diagrams in C

A«—O—OAI<—0—<XO—0—>B,>—>B

If there exists a diagram in C
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XO—Q—»B/

/
\

PO
R
S
NP
7

X o—e—-> B

then the two formal compositions around the outside are considered equivalent.
The right-most square with the isomorphism in the middle is the same square
that determines when two morphisms in QC are equivalent.
Composition is defined via a similar type of diagram, commuting the different
types of morphisms past one another.
e-morphisms: A morphism A o— B is an equivalence class of diagrams in C

A<—0—<A/<—0—OX>—0—>B/O—>B

The equivalence relation between these is defined to be the dual condition to
the condition on m-morphisms.

distinguished squares: The distinguished squares are generated by the distinguished
squares in C and axiom (I). For a more detailed description, see Appendix A.

In this section we will often be working with morphisms in C\\A as represented by
diagrams in C. As these categories have the same objects this can get confusing. To help
with this, we denote morphisms in C by arrows with straight shafts, and morphisms in
C\A by morphisms with wavy shafts. We can thus say that an m-morphism A >-» B in
C\A is represented by a diagram

A«—O—OA/<—Q—<XO—0—>B,>—>B

in C.
We define ¢: Arp M — Ara € on objects by ¢(A >»> B) = c¢(B’" > B), and
k:AI‘Dg —> AI"AM by k(A S B) = kC(B/ o—> B).

There is a functor of double categories s:C — C\.A which takes each object to itself
and takes every morphism to itself.
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Remark 8.2. As currently defined, C\.A does not have the structure of a CGW-category,
as we cannot prove that the definitions of ¢ and k give equivalences of categories. Proving
that such a structure exists appears to require a development of a theory of a left calculus
of fractions for a double category. As this is far beyond the scope of this paper, we state
as a condition of the localization theorem that C\.A extends to a CGW-category in a
fashion compatible with the CGW-structure on C and the functor s:C — C\.A and show
that this works for our relevant examples. In Proposition A.1 we show that as long as
¢ and k give equivalences of categories, C\A is a well-defined CGW-category. In future
work we hope to simplify this condition.
If C\ A is a CGW-category then by definition the functor s is a CGW-functor.

Before turning to the main theorem we revisit the example of the localization of an
abelian category in detail, as the above definition is by no means easy to understand.

Example 8.3. Let C be an abelian category and A a Serre subcategory, considered as
ACGW-categories. Then we claim that C\A is exactly the abelian category C/A, con-

sidered as an ACGW-category. First, consider the monics. A morphism in C is monic in
C/A exactly when it can be represented by a zigzag

x z .y
where the kernel and cokernel of s are in A, and when the kernel of f is in A. Writing both
s and f in an epic-monic factorization and switching to the notation of CGW-categories,
such a monic can be represented by a zigzag

X<«eoe<X 0oe>Z<eoY >>Y.

As C is abelian, e-morphisms are closed under pullbacks (i.e., epimorphisms are closed
under pushouts in C), and thus this representation is equivalent to the representation

X<—o—<X/<—0—oX/><ZY/O—0—>YI>—>Y.

Using Lemma 2.10 we can swap the order of the two arrows on the left half, to produce
a representation

X<eoX ' «co< X' XzY 0esY' >~ Y,
as desired. Given that we can also reverse this construction, we see that the monics (and,
analogously, the epics) are as represented.

Since C/A is abelian it immediately follows that C\.A must be a CGW-category.

Before we state the main theorem, we need some auxillary definitions.
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Definition 8.4. Let V' be an object in C\\A. The category Z{ has as its objects pairs (N, ¢),
where N € C and ¢: sN > V is an isomorphism in C\.A. A morphism (N, ¢) — (N', ¢")

is an equivalence class of diagrams g: N Zoy 28 N (where diagrams are allowed to
differ by an isomorphic choice of Y) such that ¢'s(g) = ¢. Here, s(g) is considered as an
isomorphism in C\.A. Composition is defined using mixed pullbacks.

The category Zj, is defined analogously with the roles of m-morphisms and e-
morphisms swapped.

If Z7? is filtered for all V' we say that A is m-well-represented in C. Dually, if Z, is
filtered for all V' we say that A is e-well-represented in C.

We think of Z{7 as the category of representatives inside C of an isomorphism class
of objects in C\.A. When this category is filtered it means that representatives of V' can
always be chosen compatibly, at least in the m-morphism direction.

Definition 8.5. Suppose that for every diagram
in C there exists a pseudo-commutative square

A'>e> B

° |

A >esC

such that A’ >e> B factors through A >e> B. Then we say that A is m-negligible in C.
If the same statement holds with the m-morphisms and e-morphisms swapped, we say
that A is e-negligible in C.

Negligibility is a “dual” notion to well-representability. Whereas well-representability
states that representatives can always be compatibly combined, negligibility says that
certain representatives can be ignored. If A is m-negligible in C this means that we never
have to think about e-components of morphisms inside QC; all such morphisms can be
represented (up to pseudo-commutative square) purely as an m-morphism.

We are now ready to state the CGW version of localization.

Theorem 8.6. Suppose that C is an ACGW-category and A is a sub-ACGW-category
satisfying the following conditions:

(W) A is m-well-represented or m-negligible in C and A is e-well-represented or e-
negligible in C.
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(CGW) C\A is a CGW-category.
(E) For two diagrams A <eo X >e> B and A <eo X' >e> B which represent the same
morphism in C\A there exists an e-morphism C oe> B and an isomorphism
a:X o C — X' @p C such that the induced diagram

A—eo—o0X0p(C

P

X' opC C

commutes. The same statement holds with e-morphisms and m-morphisms
swapped.

Then the sequence

K(A) — K(C) — K(C\A)

is a homotopy fiber sequence.

‘We postpone the proof of Theorem 8.6 until Section 10. As mentioned in Remark 8.2,
in order for condition (CGW) to hold it suffices to check that ¢ and k (as defined on
objects) extend to equivalences of categories. In this section we focus on two applications
of the theorem.

The first application is a sanity check, showing that in the case of an abelian category
the theorem is the same as Quillen’s localization [10, Theorem 5.5].

Example 8.7. Continuing Example 8.3, we show that Theorem 8.6 applies in this example;
thus Theorem 8.6 is truly a generalization of Quillen’s localization theorem.

Consider condition (W); we will show that A is both m- and e-well-represented in C.
By symmetry it suffices to check that Z{ is filtered. An object (N, ¢) € Z{ is an object
N € C together with a mod-A-isomorphism N — V; a morphism (N, ¢) — (N',¢’)
is a morphism ¢g: N — N’ in C such that ¢’s(g) = ¢. Suppose that we are given
two morphisms g,¢": (N, ¢) — (N',¢'). Then the morphism N’ — N’/im(g — ¢') is
a mod-.A-isomorphism which equalizes ¢ and ¢’; thus Z{7 has coequalizers. Now sup-
pose that we are given two objects (NN, ¢) and (N', ¢’) in Z{?. Choosing representatives
appropriately, these give a diagram in C
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(Noz V) ey (N ey V')

where the bulleted arrows represented mod-.A-isomorphisms. The object (N ©z V') @y
(N" @z, V'),1) then represents an object under both (N, ¢) and (N’,¢’). Thus Z7} is
filtered, as desired.

It remains to check (E). This is simply the fact that for any two morphisms A — B
in C which map to the same isomorphism in C/.A there is a quotient of B (by an object
in A) on which they are equal—in other words, this is the observation that if g and ¢’
represent the same isomorphism in C/A then im (g — ¢’) is in A.

The second example is the case of reduced schemes of finite type of bounded dimension;
we will be using this example in Section 9 to compare different models of the K-theory
of varieties.

Example 8.8. Let Schff be the category of reduced schemes of finite type over k which
are at most d-dimensional. As mentioned in Example 5.10, Sch, ¢ is an ACGW-category;
since morphisms can only increase the dimension of a scheme it follows directly that
Schff is also an ACGW-category.

We claim that Theorem 8.6 applies for Sch;f;1 C Schff. We check the conditions in
turn.

First, consider condition (W). We claim that Schf}l is m-well-represented and e-
negligible in Sch?,. Here, an isomorphism in Schff\Schf]?1 is (the germ of) an isomor-
phism between open subsets whose complements are at most d — 1-dimensional. Thus
when considering an isomorphism we can discard all irreducible components of dimen-
sion less than d. In addition, we can assume that all d-dimensional components are
smooth and consider isomorphisms to be birational isomorphisms. To check that Schff
is m-well-represented it suffices to check that for any two representatives of a birational
isomorphism there exists a common dense open subset on which they are defined. This
is clearly true.

To check that Schf;1 is e-negligible in Schff we note that for any diagram
A oe> B >e> (' if we take the nonsingular locus of the d-dimensional irreducible compo-
nents of C' and intersect it with the image of A we get exactly the desired subset, as all
that the inclusion B >e> C' can add is either (a) disjoint components of dimension less
than d or (b) components of dimension less than d that intersect d-dimensional com-
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ponents. In case (b) the intersections are singular in C, so when we remove them we
produce exactly the desired morphism.

We now check condition (CGW). Proposition A.1 states that for C\\A to be a CGW-
category we are only required to show that ¢ and k are well-defined equivalences of
categories; the other axioms follow directly from the definitions. In Sch‘ff\Schffl all
objects are canonically isomorphic to the disjoint union of their d-dimensional connected
components, so it suffices to consider these examples. By definition, both the e-morphisms
and m-morphisms in Schff\Schf]?1 are birational isomorphisms of the domain with a
subset of the components of the codomain. Both ¢ and k simply take the components
not hit by the morphism. Consider taking each object to its set of connected compo-
nents; from the definition of the distinguished squares (see Appendix A) a square in
Schfﬂlf\ScthT1 is distinguished if and only if the produced square in the category of
finite sets is distinguished. The fact that ¢ and k are equivalences of categories thus
follows from the fact that they are induced from ¢ and k on the category FinSet.

It remains to check condition (E). Since @ in Schf ¢ is simply intersection of schemes
the condition as stated follows by the same argument as the negligibility condition above.
To check the condition with m-morphisms and e-morphisms reversed, let A4 be the d-
dimensional irreducible components of A. Then A, >e> X x 4 X' exists, and the maps
Ay >e> X oe> B and A,y >e> X' oe> B are equal inside the (ordinary) category of
schemes (since they must be equal on a dense open subset, as they are equivalent in
Schff\Schffl). Factoring this morphism as A; o> C' >e> B gives the desired object C.

We now observe that, by the equivariant Barratt—Priddy—Quillen theorem,

K(Schi;\Sch! ;") ~ P Q5™ BAut(a).
aEeB,

Here, B,, is the set of birational isomorphism classes of schemes of dimension d, and
Aut(a) is the group of birational automorphisms of a representative of the class.

9. A comparison of models

In this section we compare both authors’ models for K (Var ;). Write K¢ (Var ;) for
the K-theory of varieties defined as in [2], and let K#(Var ;) denote the model in [16].
We then have the following comparison theorem.
Theorem 9.1. K¢ (Var ;) is weakly equivalent to KZ(Var ;).

The rest of this section focuses on the proof of the theorem. For conciseness we fix

the base field k and omit it from the notation. To prove the theorem we construct an
auxilliary SW-category Sch, ., and show that there are weak equivalences

K¢ (Var) —~» K%(Sch, ;) —~» K9(Sch,f,,) «~— KZ(Var).
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Recall that Sch,; is the ACGW-category of reduced schemes of finite type (Exam-
ple 5.10). By an abuse of notation, we also write Sch, ¢ for the SW-category of reduced
schemes of finite type (see Remark 7.7). The left-hand map is an equivalence by Corol-
lary 7.11, so we focus on the zig-zag on the right.

Remark 9.2. Constructing the weak equivalence on the right (and checking that it is,
in fact, a weak equivalence) is a relatively straightforward exercise in simplicial objects
(see Proposition 9.13), and has been known to the authors for several years. The most
difficult part of this proof is actually checking that the middle map (which is induced
by an inclusion of SW-categories) is a weak equivalence on K-theory. In Waldhausen
categories, this is analogous to the following question: suppose that C is a Waldhausen
category in which the weak equivalences do not satisfy the Extension axiom [14, p. 327].
Let C’' be the Waldhausen category with the same underlying category and cofibrations as
C together with the minimal set of weak equivalences that includes all weak equivalences
in C and satisfies Extension. Does the natural functor C — C’ induce a weak equivalence
on K-theory? The authors could not find an answer to this question, but the current
example on schemes produces an interesting example where the answer is “yes.”

Definition 9.3. We define a new SW-category Sch,t,,. Its underlying category is Sch,.f,
the category of reduced schemes of finite type. We define the structure maps by setting

cofibrations: the open immersions, and

complement maps: the closed immersions, and
weak equivalences: those morphisms f: X — Y such that there exists a stratification

@:YO(CZ Yl(Cl ...(Cl Yn:Y

of Y by closed immersions such that for all 4, the induced map f;: X xy (¥; \
Y,—1) — Y;\ Y;_; is an isomorphism.

Remark 9.4. This is equivalent to the statement that there is a corresponding filtration
X; on X such that f;: X;\ X;_1 — Y;\ Y;_; is an isomorphism. We sometimes use the
condition in this form.

We state the relevant definitions on the assembler-side of the equivalence.

Definition 9.5. The assembler Var (resp. Sch,f) has as objects the varieties (resp.
reduced schemes of finite type), with morphisms the locally closed immersions. The topol-
ogy on Var (resp. Sch,f) is generated by the coverage consisting of pairs {Y < X, X \
Y <« X}, where Y < X is a closed immersion.

The inclusion of assemblers Var — Sch,.; includes an equivalence of K-theories by
[16, Theorem BJ, as every reduced scheme of finite type has a finite disjoint cover by
varieties.
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As the proof of Theorem 9.1 has many parts, we begin by presenting the basic outline.
This will reduce the proof to showing that certain morphisms are equivalences on K-
theory, and the rest of the section will focus on each of those maps in turn.

Outline of proof for Theorem 9.1. The category of reduced schemes of finite type comes
equipped with a filtration by dimension. This filtration is inherited by Sch,.; and Sch, .,
and the inclusion Sch,; — Sch,.y,, is compatible with this filtration. Note that

K€ (Sch,y) = hocolim K“(Sch};),

and similarly for K#(Sch, ;) and K (Sch, ). Thus to show the theorem it suffices to
show that there exist equivalences KC(Schff) — K%(Sch”,,) and K%(Sch™) —

TJw

K(Schy;,,) for all n which are compatible with the inclusiong on the filtrations.

Proposition 9.13 constructs a map K#(Sch};) — K¢(Sch};,,) which is an equiva-
lence for all n. The map K C(Schff) — K C(Sch?fw) is induced by the identity map
on the underlying categories (as both Sch,; and Sch,f,, have the same underlying SW-
category; they differ only in their choice of weak equivalences).

Our proof proceeds by induction on n. When n = 0, Schgf = Schgfw, so the K-
theories of these are equal. We now assume that the natural inclusion K C(Schff_ b —

K C(Schfﬁi) is an equivalence. Consider the following diagram:

K9Sch; ') ———=—— K“(Sch}},)) «+——— K”(Sch;")

} ! b

K%Sch?;) ——2—— K(Schl;,) +——— KZ(Schl,) (9.6)

rfw

| | |

KC(Schl;, Sch?; ') —— KC(Schl;,,Sch™) «— KZ((Schl/i).)

The columns in this diagram are homotopy fiber sequences. The column on the right
is produced by [16, Theorem C], the other two columns are produced by [2, Prop. 5.5].
The maps between the columns are given below. Since the columns are homotopy fiber
sequences of loop spaces, f must be a weak equivalence by the five lemma. The map
g is a weak equivalence if and only if ¢’ is, so we focus on proving that ¢’ is a weak
equivalence.

In Definitions 9.12, 9.14, 9.16, and 9.18 we show that there exists a category D and
morphisms

At K9(Schyl, Sch; ') — K(D), (9.7)
B: K°(Schy;,,,Sch;,)) — K(D), and (9.8)

p: K?((Sch};/i).) — K(D) (9.9)
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making the following diagram commute:

K“(Schy';,Sch!; ) —4 ., K%Sch”;,,Sch’; ) A K?((Schy;/i).)

rfw>? rfw
\ ﬁl /
K°(D)

Here, the top row is the bottom row of (9.6). The map 8 is a weak equivalence by
Proposition 9.17. Thus we see that ¢’ is an equivalence if and only if A is; that \ is an
equivalence is exactly the conclusion of Proposition 9.19. Thus ¢’ is an equivalence, and
the inductive step is complete. O

We now turn our attention to filling in the details of the proof above. We begin by
checking that Sch, y,, is well-defined.

Lemma 9.10. Let X,Y, 7 € Sch,.t,, and suppose X — Y and Y — Z are weak equiva-
lences. Then X — Z is a weak equivalence.

Proof. Recall that X — Y being a weak equivalence is the statement that there is a
stratification

@:YO Y, Yn

such that X xy (Y;\Y;_1) =, Y\ Yi—;1. Similarly for Y — Z. We must produce a new
stratification of Z, call it Z!, such that X xz (Z!\ Z._;) EN (ZI\ Z!_,). We do this
by stratifying each (Z; \ Z;_1) in turn, using the stratification of Y, and gluing these
together.

The problem thus reduces to the following. Given Y; > Y5 and Z; > Z5 with an
isomorphism ¢: Y5\ Y7 > Z3\ Z1, and a further stratification Y1 g > -+ >> Y3, = Y5,
produce a corresponding stratification for Z; > Z. To do this, define Z7 ; = Zo\ p(¥2\
Y1.;). One checks that

Z1i\ Z1i—1 = (Z2\ (Yo \ Y1) \ (Z2 \ (Y1,i-1))
=p(Yo \Y1,-1) \o(Y2 \ Y1) 2 o(Yi\Yie1) O

Lemma 9.11. Sch, ¢, is an SW-category.

Proof. For this we only need to check the axioms of SW-categories that apply to weak
equivalences [2, Defn. 3.24], which are wholly analogous to [14, p. 326]. First, the isomor-
phisms are certainly contained in w. Second, we must check that subtraction respects
weak equivalences. That is, if we have a commutative square with sides as indicated:
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then there is a weak equivalence X'\ X — Y’ \ Y making the induced square commute.
Thus, we need a stratification on Y\ Y. Since we are subtracting off Y, the stratification
of Y will not come into play. Define the stratification to be

@:(Y’\Y) XY/Y0/(—>(Y/\Y) XY’Y{(—’ (_>Y/\Y

Finally, we must check that in a diagram as below, where all the horizontal maps are
cofibrations and the squares are pullbacks, the induced map between pushouts is a weak
equivalence:

X”<—JX<—>X/

B

VeV sy

Since X' — Y is a weak equivalence, X — Y is trivially so: a stratification Y/ >— Y’
pulls back to one on Y, Y xy/ Y/ — Y. A similar statement also holds for X" — Y.

It suffices to consider the case where both X’ — Y’ and X" — Y are given
by two step stratifications. Let these be Y/ >— Y’ and Y}’ > Y. Denote the two
induced stratifications on Y by Yl(l) > Y and Yl(z) > Y so that Yl(l) =Y Xy, Y] and
Y1(2) =Y xy» Y{". We now consider the three-step stratification

" !/ " ! " /
Y My, oy V] V' o) Y] s V' 1Ty ¥

One verifies that

Y'Y\ (' 1 ) V) = (YY)

vt

(V" Iy Y)\ (Y I V) = (YY) O

Y@y

We now define our second helper-category, D.
Definition 9.12. Let D be the category with

objects: finite disjoint unions of smooth n-dimensional varieties, written [[..; X;, where

iel
each X; is irreducible,
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morphisms: [] ¢ X; — [[,c, Y: are maps of sets f:.S — T together with birational
isomorphisms X, — Y(y).”
composition: induced by composition of set maps together with the composition of bi-
rational isomorphisms.
The category D has a forgetful functor to FinSet induced by mapping [],. g X, to S.
We put an ACGW-structure on D by declaring all morphisms with injective underlying
maps of sets to be both e-morphisms and m-morphisms, and by setting the distinguished
(resp. commutative) squares to be the squares that become distinguished (resp. commu-
tative) in the ACGW-structure on FinSet; the forgetful functor then becomes a functor
of ACGW-categories.
The SW-structure on D is given by

cofibrations: morphisms whose underlying set map is injective,
complement maps: the same as the cofibrations, and
weak equivalences: isomorphisms.

With these definitions, the S.-construction gives equal structures for the K-theory of
D considered as a CGW- or an SW-category.

The ACGW-category D is equivalent to a disjoint union of categories of the form
FinSet ! G, for G a group of birational automorphisms (see Example 5.11).

The main work of this section goes into proving Propositions 9.13 and 9.19 which
together immediately imply Theorem 9.1.

Proposition 9.13. For n < oo,

K?(Schl';) ~ K°(Schl;,),

rfw
induced by taking each tuple of varieties in Schff to their disjoint union.

Proof. For conciseness of notation, we give the proof for the case n = co and omit the
n from the notation. The proof works identically for all finite n. Throughout this proof
we freely use the notation and definitions of [16].

We construct a functor of simplicial categories F.: W(Sch,’ 7) — wS.Sch,f,, which
has a levelwise right adjoint. Thus the functor is levelwise a homotopy equivalence, and
we get an equivalence on the geometric realizations of the simplicial categories. This
equivalence produces an equivalence KZ(Sch,;); — K%(Sch,f,)1, and (since these
are both Q-spectra above level 1) an equivalence of K-theories.

2 Here, by “birational isomorphism” we mean an equivalence class of maps, rather than a specific map
which is a birational isomorphism.



50 J.A. Campbell, I. Zakharevich / Advances in Mathematics 411 (2022) 108710

The functor is defined in the following manner. WW(Sch,’ ") is the full subcategory of
W(Sch, ;)™ consisting of those objects with disjoint indexing sets. We will thus refer to
objects of W(Sch,i") as tuples ({Ayi}ier,, - - - {Amitier,) in W(Sch,f)™ and simply
ensure that at all stages the indexing sets are disjoint. Let F,,,(A41, ..., Ay,) be the functor
X:Ar[m] — Sch, s, given by

J

Xij = H H Apge,

k=i+1¢ey,

with morphisms given by the natural inclusions into the coproduct. A morphism of tuples
gives a natural transformation of functors, each component of which is a weak equivalence
in Sch, ¢4, so Fy, is well-defined. The simplicial maps in W(Sch,v.}) are induced by maps
on the indexing sets, so these commute with the simplicial structure maps in wS.Sch, f,.
Thus F. is a simplicial functor.

It remains to check that F;, has a right adjoint. Given a diagram X: IAX}[m} — Sch, ¢,
we define G, (X) to have as its i-th component {Xo;\ Xo(i—1)}i}-

We define the unit of the adjunction by taking each {Aj;}icr, to {Hz‘elj Aji}yjy; this
is a valid morphism in W(Sch, ), so gives a valid morphism in W(Sch,¢)™, with the
indexing sets disjoint by definition.

Now consider F;, o G,,. This takes a functor X: ;‘:}[m] —> Sch, s to the functor
X" Ar[m] — Sch, s, where

i
X =TI Xi\Xig-)-
k=i+1

There is a natural weak equivalence X’ — X by simply mapping each component to
itself. This gives the counit of the adjunction and completes the proof of the proposi-
tion. 0O

We can now define the map £ (9.8).

Definition 9.14. To define a map K¢ (Sch” Sch:f*u}) —> KY(D) it suffices to define

rfw>s
for all 7, a map \wS.(T)S.(Schffw, Schff_um — \iS.(T)D|. In order to construct such a
map it suffices to construct a partial functor b.: S.(Schyy,, Schff*u}) —> D defined on

the subcategories of closed immersions, open immersions, and weak equivalences, as long

as this functor is compatible with the simplicial structure maps and takes objects in the

n

S.-construction to objects in the S.-construction. An object of S,,(Sch;},,, Sch:ff_uf) is a

diagram
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Xmm

5
~

o o o
Xl,l [d X172 c L. C Xl,m
o o o o
Yb ¢ Yl C 1/'2 C NG Ym

in which each X; ; € Schff_u} . We define b, to take this diagram to the tuple containing
the irreducible n-dimensional components of the nonsingular points of Y,,, (indexed over
the set of irreducible n-dimensional components of Y,,,).

Lemma 9.15. The partial functor b. is well-defined and induces a map on K -theory.

Proof. First, suppose that X and Y are irreducible and n-dimensional. Then a weak

equivalence X -~ Y is, by definition, a birational isomorphism. In particular, this means

that under b., all weak equivalences in S.(Schyy,,, Sch:ff*u}) are taken to isomorphisms

in D. An open embedding X <> Y is also a birational isomorphism; a closed embedding
is an honest isomorphism, unless we allow X to have dimension less than n; in that
case, X is taken to the empty tuple in D. Thus a diagram in the S.-construction of
S.(Schffw, Schfffu}) is taken to a diagram with injective underlying maps of sets both
vertically and horizontally (decorated with birational isomorphisms); the pushout con-
dition translates to the analogous pushout condition on the underlying diagram of sets.
The weak equivalence direction is mapped to morphisms which are isomorphisms of the
underlying maps of sets, decorated with birational isomorphisms. This is exactly the
S.-construction applied to D, and thus each b,, is well-defined. The simplicial structure
maps never fully get rid of one of the Y’s in the bottom row of the diagram; since all
of the horizontal maps in the diagram above are birational isomorphisms (as the com-
plements have dimension strictly less than n) the partial functor is well-defined, and

induces a map on K-theory. O

The map induced by b. is 5.
We now consider the map p.
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Definition 9.16. The map p: K#((Schy;/i).) — K(D) is defined by a composition of
two maps. The first map is the map K#((Sch;';/i).) — K#(D), defined by taking each
irreducible scheme of dimension n to its birational isomorphism type. The second map
K?(D) — K9(D) is induced by the map K% (D) — K (SC(D)) — K¢ (D), where the
first map is the natural transformation taking K#(D) to the Waldhausen K-theory of
the Waldhausen category SC(D) (defined in [17, Theorem 2.1, Proposition 2.6]), and the
second map is induced by an equivalence of K-theories taking an object in SC(D) (which
is a tuple of tuples of birational isomorphism classes) to the “flattened” tuple (indexed
by the disjoint union of the indexing sets of the tuples). In this map, the key observation
is that cofibrations in SC(D) are cofibrations in the SW-category D, while cofiber maps
in SC(D) are opposites of complement maps in D: a cofiber map in SC(D) is induced
by a map selecting a subset of the indexing set, and this is exactly a description of the
opposite of a map in D.

Proposition 9.17. The map p is a weak equivalence, and the diagram

K%((Sch?, /i).) —— K€(Sch?;,,Sch"71)

rfw>s rfw

commutes. The map [ is therefore also a weak equivalence.

Proof. The map f is a weak equivalence because it is a map induced on homotopy cofibers
by a pair of weak equivalences. The map p is a weak equivalence by [16, Proposition 7.1]
(where it is the map p).

We now check the commutativity of the diagram. The map f is defined analogously
to the natural transformation in [17, Proposition 2.6], designed to make this triangle
commute. The map f is defined analogously to p in [16, Proposition 7.1], again designed
to make this diagram commute. In particular, both of these compositions take all objects
in simplicial levels higher than 0 (in the original categories) to the empty set, and take
the objects in simplicial level 0 to a tuple of birational isomorphism classes of varieties
(with morphisms given by permutations of these decorated by birational isomorphisms).
The indexing set of each tuple is the set of irreducible components of the varieties, so
this diagram does, indeed, commute.

Thus, by 2-of-3, 5 is also a weak equivalence. O

Since f is a weak equivalence, g is a weak equivalence if and only if A is. Thus it
remains to consider the map .

Definition 9.18. The map A: KC(Sch:’f7 Sch:"f_l) — KY(D) is defined to be the com-
position
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K€ (Schl;, Sch’y ) —— K€ (Sch,, Seh; ) — KC(D).

rfw? rfw

Proposition 9.19. The map A is a weak equivalence.

Proof. Let A":Sch;’;\Sch}'; ! — D be the CGW-functor taking each variety of dimen-
sion n to the set of birational isomorphism classes of its irreducible components. This is
actually an equivalence of categories (on the level of CGW-categories) with the inverse
equivalence given by choosing a representative in each birational isomorphism class and
taking an object in D to the disjoint union of its representatives. Thus )\ is a weak
equivalence.

Consider the following diagram:

Q[iS.S.(Schy;, Schl’ )| — Q|QS.(Sch};, Sch!'; ) —=— Q|Q(Sch};\Sch}'/ )|

Q)iS.D| = Q|QD|

The leftmost two horizontal maps are given by the natural transformation described in
the proof of Theorem 7.8 for the comparison between the QQ-construction and the S.-
construction. The right-hand map in the top row is a weak equivalence by Theorem 8.6.
Thus, by 2-of-3, A is a weak equivalence. O

10. Proof of Theorem 8.6

The goal of this section is to prove Theorem 8.6. The idea of the proof is to use
Quillen’s Theorem B [10, Theorem B] applied to the functor @s. There are therefore two
steps to the proof: proving that the theorem applies to @s, and proving that the fiber
agrees with K (A).

Let i: A — C be the inclusion functor. Then Qi factors as

Mw— (M,1g) (N,u) — N

Qse/

QA QC

If Theorem B applies to Qs then its fiber is Qsg,. In this case, to show that the fiber
agrees with K (A) it suffices to check that the left-hand map in this factorization is a
weak equivalence. We see that the theorem is thus a direct consequence of the following
two propositions:

Proposition 10.1. The inclusion QA — Qsg, is a homotopy equivalence.
Proposition 10.2. Quillen’s Theorem B applies to the functor Qs. More concretely, for

any w:V — V' in Q(C\A), the induced functor u*:Qsy,, — Qsy, is a homotopy
equivalence.
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The rest of this section is taken up with the proof of these two propositions. We write
C=(,M)and A= (E4, M4). We begin by analyzing how morphisms in C\.A and
Q(C\A) work.

Lemma 10.3. M 4 and E 4 satisfies 1-0f-3, in the sense that M 4 and €4 are subcategories
of M and &, respectively, and given any composable morphisms f,g € M (resp. £), if
gf € My (resp. E4) then so are f and g.

Proof. We prove this for M 4; the result for €4 follows by duality.
Suppose that we are given f: A >» B and ¢g: B >» C in C. This corresponds to a
diagram

®>—,BC/9

[ o]

> Aclf Ac/9f
[ o] o]
A B C

The lower-left square exists by the definition of A%/f; the lower-right square exists by
applying k! to the bottom row; the upper square exists because (Ac/f)C/Ac/gf ~ RBe/9
by the definition of c¢. Consider the upper square; since A is closed under subobjects,
quotients and extensions, A¢/9/ is in A if and only if A%/ and B/9 are. Thus, if f and
g are in M4 so is gf (showing that M 4 is a subcategory) and if gf is in M 4 then f
and g must be, as well. O

Lemma 10.4. The categories E4 and M 4 satisfy the following properties:

(a) The subcategories E4 and M 4 are preserved under pullbacks and mized pullbacks
along morphisms in € and M.

(b) Pullback squares and mized pullback satisfy 3-of-4: if three of the morphisms in a
square are in M4 or €4, the fourth must be as well.

Proof. We first prove (a). Suppose that we have a square

fl
> >
O
!
>

Q«—on
O—oWw

We want to show that if f is in M4, so is f’. Applying ¢ to this diagram produces a
pullback square
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Al o B

]

Cc/f o D

By definition, ce/t e A: thus, since A is closed under quotients, A/ € A, as desired.
The other proofs of closure under pullbacks follow analogously.

We turn our attention to (b). To check 3-of-4, consider a square as above where we
know that A >» Bisin M 4 and B o— D isin £4. Because £ 4 is closed under pullbacks,
it follows that A/f o— C¢/f" is also in & 'A- Thus we have a distinguished square

%) Ac/f
[ o]
(Ac/f)k/c C

in which we know everything but C' is in A. Since A is closed under extensions, C' € A
as well. The other forms of 3-of-4 follow analogously. O

This proposition implies that we can identify the isomorphisms in C\ A in the following
manner:

Lemma 10.5. An m-morphism in C\A represented by a diagram
A «~e—O A, ——=< X Oo—o—> B/ > B

is an isomorphism if and only if B’ >~> B is in M_4; the dual statement holds for
e-morphisms.
Any morphism u: A — B in Q(C\A) can be represented by a diagram

A<«ce<A'«eo0Xo—>B > >B

in C. Such a diagram represents an isomorphism if and only if X o— B’ is in £4 and
B'>> B isin MA.

Proof. If B’ >> B is in M4 then the given diagram represents an isomorphism by
definition (by reversing the composition for the inverse). Conversely, if an m-morphism
has an inverse then tracing through the definition of composition and using Lemmas 10.3
and 10.4 gives that B’ >-> B must be in M 4.

A morphism A — B in Q(C\A) is represented by a composition of an e-morphism
A <> C and an m-morphism C >-> B. We can represent these by the top and right side
of the following diagram:
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Ace <A o o0X>e>C'o—>C

et ol

o— C"

x4 e ]

A e 67> o> o—Y

ANAN

o B

>\

BN>—>B

The rest of the diagram shows that the composition around the bottom is an equivalent
representation of this morphism; its construction liberally uses the previous lemmas and
results about CGW-categories in Section 2.

Since morphisms in Q(C\.A) are isomorphisms exactly when both components are
isomorphisms (by Lemma 4.5), the composition is an isomorphism if and only if the
morphisms C o— €’ and B’ > B are isomorphisms, meaning that they are in £4 and
M 4, Tespectively. If this is the case then Z o— B” and B” > B are in £4 and M4,
respectively, and this represents an isomorphism. Conversely, if this is an isomorphism
then we must have Z o— B” and B” > B in £4 and M y4; tracing through and using
that £4 and M 4 satisfy 1-o0f-3 we obtain the converse. 0O

We turn our attention to proving Proposition 10.1.

Definition 10.6. Let V' € Q(C\.A), and let Fy be the full subcategory of Qsy, of those
objects (M, u:V — sM) in which w is an isomorphism.

Proposition 10.1 is the V' = & case of the following:

Proposition 10.7. The inclusion vy: Fy — Qsy, is a homotopy equivalence for all V €

Q(C\A).

Proof. By [10, Theorem A], it suffices to check that for all (M, u) € Qsy/, the category
vv /(M,u) is contractible for all (M, u). By the dual of [10, Proposition 3, Corollary 2]
it suffices to check that it is a cofiltered category. By Lemma 10.5, u can be represented
by a diagram

UmD UeD u u
Vo<V «o0Xo—>Y >"5 sM.
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An object of vy /(M,u) is a triple (v, M’, f) of an isomorphism «:V — sM’ in
Fv together with a morphism f: M’ — M in QC such that s(f)u’ = u. A morphism
(W, M',f) — (W', M", f') is a morphism g: M’ — M" in QC such that f'g = f. In
particular, there is a faithful forgetful functor to QC,ys; since by Lemma 4.6 this is a

preorder, so is ¢y /(M,u). All it remains to check is that it is nonempty and that any
two objects have a common object above them

To see that ¢y /(M,u) is nonempty, consider the following diagram in C

A

unlD
V V' o
Um D
I
I
u’ Vl
\\
U euen P
\ _-
NO - ue
Xo— Y

This represents an object of vy /(M,u) as desired

Now suppose that we are given two different objects of ¢y /(M,u); we want to show
that there is an object mapping to both of them. Suppose that the two objects are given
by (v:V — sM', f: M' — M) and (u":V — sM", f': M" — M). Writing these in
terms of their representations we get the outside of the following diagram; it is possible
to complete the outside to the diagram on the inside because s(f)u’ = s(f')u

"

sM’

}E
\; |
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Consider the object represented by

This is a well-defined morphism of ¢y /(M,w). This comes with a morphism to (v, f)
given by the formal composition

AO—0—>T>—0—>XIO—0—>Y/>—0—>M/
and an analogous morphism to (u”, f). Thus vy /(M, u) is cofiltered, as desired. O

We now turn our attention to Proposition 10.2; this proof is quite complicated and
will take the rest of this section. In order to prove that v* is a homotopy equivalence for
all u it suffices to show that it is true for the morphisms @ o— V and @ > V. Since
all of the conditions of the theorem are symmetric in m-morphisms and e-morphisms, it
suffices to prove this for @ > V; we focus on this case for the rest of this proof. The
key idea of the proof is to construct a category Hy and functors Py 4): Hxy — Fy and
kn:Hy — QA such that the diagram

P(n,g)
Hn L Fu Qsyy

kNl lu (10.8)
QA Fo ¢ ng/

IR

commutes up to homotopy. We will then show that ky and Py g4) are both homotopy
equivalence. From this Proposition 10.2 follows by 2-o0f-3 and Proposition 10.7.
We thus turn our attention to constructing Hy, kn and Py g)-

Definition 10.9. The category H has as objects equivalence classes of diagrams

he B
M <O X >—o—> N,
where two diagrams are allowed to differ by an isomorphic choice of X. A morphism

he B he o,
(M«—o—oX>—o—>N)—>(M’<—o—oX’>—o—>N)

is a diagram M ols My > M’ such that there exists a map hp: X > X’ such that
the triangle on the left commutes and the square on the right
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X sl x!

X>—>X/
\ / Jhe O Ih;
h/

M, —— M’

is a pseudo-commutative square. Composition works via composition in QC; using the
following diagram we see that it is well-defined:

~ i

Xy, X

jhej O Ih;

M, 2> M © R
] O Ij’
! M, i’ M

he N
The functor ky: Hy —> QA takes M <eo X >e> N to X¥/"e. A morphism is taken
to the representation

X/ oy xR/ihe T

where the first map is obtained by applying ¢~ 1.
Definition 10.10. Let (N, ¢) be an object of Zy? (Definition 8.4). We define Py 4): Hn
— Fy by letting it take every object M <eo0 X >e> N to the composition

—1

14 ¢ > SN << 35X o> sM

in Fy C Qsy;. As both Hy and Fy have as morphisms the morphisms of QC, the
functor is defined to take a morphism to the morphism represented by the same data.

Lemma 10.11. Py 4) is a well-defined functor.

Proof. Checking that Py 4) is well-defined on objects is straightforward from the defi-
nition. Suppose that we are given a morphism in Hy as defined in Definition 10.9. We
must show that this produces a well-defined morphism in Fy ; from the definition the
produced morphism in @)sy, is an isomorphism, so it suffices to show that a morphism
in Hy gives a well-defined morphism in @sy,. For this to be true it suffices to check
that the morphisms represented by

N «e<X o> M o> M; >~e—> M’
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and
N<—0—<X’O—0—>M’

are equivalent in Q(C\.A). This is true because the are equivalent isomorphisms inside
the m-morphisms of C\A via the following diagram:

N <—eo<X o> M o> M

Nt

X/O—0—>M/

where the marked square is pseudo-commutative from the definition of a morphism in
Hy. That Py 4) respects composition follows directly from the definition, since compo-
sition in both @sy, and Hy is defined using composition in QC. O

We begin our analysis by showing that (10.8) commutes up to homotopy.

Lemma 10.12. In (10.8) the composition around the top and the composition around the
bottom are homotopic.

he . s
Proof. Consider an object M <eo X >e> N in Hy. Under the composition around the
top it is mapped to

—1
>~V ¢ > SN «e—< sX o> sM;

this is equivalent to the representation

& > sM.
Around the bottom this is mapped to @ >—> XF¥". There is a natural map
hE: X*/he ~» M which induces a morphism between these in Qsgz/, so we just need
to check that this gives a natural transformation. To see that this transformation is

natural, suppose that we are given a morphism

h’ h!
(M L6o X 280 NY o (M <éo X' 545 N)

represented by M ol M 1 ~"» M'. Consider the following diagram in C:
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Xk/he Xk/jhe ()(/)k:/h/e

h’:I 0 I(a‘he)’“ Ih’i

M o M, M

The left-hand square exists and is distinguished by the definition of k. The right-hand
square exists and commutes by the condition on morphisms in Hy; this is exactly k
applied to the pseudo-commutative square. After applying s to the diagram and consid-
ering the outer corners as objects under &, we see that this diagram exactly corresponds
to a naturality square for functors Hy — Qsg/, as desired. O

It remains to show that ky and Py 4) are homotopy equivalences. We begin with ky;
however, before we can prove that ky is a homotopy equivalence we must develop some
theory.

Definition 10.13. Let Jn be a skeleton of the full subcategory of M,y containing those
morphisms A > N such that A¢ € A. The category Jy has a terminal object: 1.

Definition 10.14. Let H'y be the full subcategory of Hy containing those objects where
hm, is an isomorphism; in particular, each object in H’y;, can be uniquely represented
by an e-morphism N o— X. For any m-morphism i: M > N we define the functor

piiHly — fH’M by sending the e-morphism N oL X to the e-morphism M o— X,
where M o— X is determined by the following distinguished square:

M>—"03N
[ o |
X>— 5 X

Given a morphism represented by X o> X3 > X' in H/y, this is mapped to the
morphism represented by X o> X 1> X where X 1 is defined by the distinguished
square

X —— X

Lemma 10.15. Let i: (J >e> N) —> (I >e> N) be a morphism in Jn. Then the diagram
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commutes up to natural isomorphism.

Proof. Consider the object I oe> M in H’. Tts image under &k} is I¥/". For the other
composition, we consider the distinguished square

%

J>—s T
T
M s M

h is mapped to I/, and then to JR/Since I*/P and J¥/h are the kernels in a natural

distinguished square, they are naturally isomorphic, as desired. O

Consider the functor F: Hy — Jy defined by sending each class [M <eo X >e> N|
to X >e> N, assuming that this representative is chosen so that this morphism is in Jy.
Note that for each class this representative is unique.

Lemma 10.16. H is fibered over Jy.

Proof. For any i:] >> N € Jy, F~!(i), the fiber over i, is isomorphic to H}. The
category Fj, has as its objects the solid part of the diagram

M ool "3 N

N

!
i
M «——o X

The functor taking such a diagram to I o— M’ is the right adjoint to the inclusion
J‘C/I = Fﬁl(i) — L.

Thus Hy is preferred over Jy. To check that it is fibered it suffices to check
that this right adjoint is compatible with composition in the following sense. For any
g (I > N) — (I SN N) in Jn we get an induced functor j*: F=1(i') — F~1(i)
defined by the composition
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Me-ols>'s N

(M<—o]’>L>N>H bl /] %’<M’<_OIF’QN>~

M oI

We must show that for any composable j and k, (kj)* is naturally isomorphic to j*k*.
This is true because completing a formal composition to a distinguished square is unique
up to unique isomorphism. As both j*k* and (kj)* are obtained by completing a formal

composition

Meol"

1
to a distinguished square, they are naturally isomorphic. 0O

We are now ready to prove that ky is a homotopy equivalence.
Lemma 10.17. ky is a homotopy equivalence.

Proof. We begin by checking that k7 dof kn|gc, is a homotopy equivalence. Let T be
an object in QA; it suffices to check that ki /T is contractible for all T. An object
of ki /T is a triple (M, he: N o— M,u: N¥ — T) with u € QA. Let C' be the full
subcategory of k7 /T consisting of those morphisms w which can be represented purely
by an e-morphism.

Represent v as X* S5y ol T, and consider the following diagram:

hk
NE ‘ M he  ON
/ O
! REY I E—L((hF))
L R gy ST

/
/
\
\
\
\
N

Ii
Y
]Z
T
Here, the upper-left square is produced by condition (PP). We claim that the map taking
(M, he,w) to (M *nk Y, R, j) is a functor which produces a retraction from k% /T to C'.

To check that this is functorial, consider a morphism in k% /7. This is represented by a
diagram
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TéoY«—i<Nk/he>—>M

N el [N

YI<—<Nk/jhe > M; «——o N

Nl e ]

NFhe o M <o N

where the morphism is considered to go from the object represented by the diagram
around the top to the object represented by the diagram around the bottom. This
diagram produces a map M xyi/ne Y o— My *nisine Y >— M xyn, Y’ by the func-
toriality conditions in (PP). This is compatible with composition by Lemma 5.12 and
the definition of morphism composition in Q4. This functor also comes with a natural
transformation from the identity produced by the map M >— M xy« Y. Thus kl /T
is homotopy equivalent to C’. The category C’ has an initial object (N,1y,@ o— T),
so it is contractible. Thus ki /T is contractible for all T, and so kf is a homotopy
equivalence.

We have now shown that k7 is a homotopy equivalence. By 2-0f-3, in order to show
that ky is a homotopy equivalence it suffices to check that the inclusion H% — Hy is
a homotopy equivalence.

Since k], is a homotopy equivalence, by Lemma 10.15 we see that p; is a homotopy
equivalence for all i € Jy. Thus, since Hy is fibered over Jn, by [10, Theorem B,
Cor], for all I > N, H/ is homotopy equivalent to the homotopy fiber of F'. However,
since Jn is contractible it follows that the inclusion H} — Hy is a homotopy equiv-
alence. In particular, taking the m-morphism to be the identity on NV gives the desired
result. O

We now turn our attention to Py 4)-
We will need two different proofs for this functor, depending on whether A is m-
negligible or m-well-represented in C.

Lemma 10.18. If A is m-negligible in C then P(y 4y is a homotopy equivalence.

Proof. We prove this using Theorem A. An object of Fy is an isomorphism V' ‘s sA.
We will show that (P 4)).4, is contractible. We can fix representatives for ¢ and ¢ such
that an object of (P(y,)) 4 is represented by a diagram
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N
WA X

¢
A<—OM/ - M

65

(10.19)

where the dashed arrows commute inside Q(C\A). V', Z, N, A" are all fixed by our
choice of representatives; the only part of the diagram that is allowed to change are the

bottom and rightmost rows. A representative of an object is well-defined up to unique

isomorphism, since both the right-hand column (an object in Hy) and the bottom row

are well-defined up to unique isomorphism. The maps M > M’ and M’ o— A must also
be in M 4 and &£ 4, respectively, since M 4 and €4 are closed under 2-of-3 by Lemma 10.3.
(This follows by computing a representative of the composition and noting that since its

components are in M 4 (resp. £4) the two maps across the bottom are.)
A morphism (M/A) — (M'/A) of (P(n,4))/a is a diagram

V<—0—OV/<—0—<Z>—0—>N/O—0—>N

where the morphism M—Ain QC is given by the composition across the bottom.

Let D be the full subcategory of (P(x,4)),4 of those objects which can be represented

by a diagram where the morphism X oe> M is the identity. Given any object represented

by (10.19) there is a well-defined morphism given by

V<—0—OV/<—0—<Z>—0—>N/O—0—>N:N
X

A X
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which is natural in our object (since the choice of X is unique up to unique isomorphism).
This shows that D is a retractive subcategory of (P(y,4)) 4, and is thus homotopy
equivalent to it.

A morphism inside D is represented by a diagram

VeeoeoV coe<Z>e>N oe>N=——N

/ b

A/O—0—>A<—0—OM/<—0—<M<—0—<M\

The only important information here is the lower-right-hand side. Thus we will think of
morphisms in D as represented by diagrams

N(—.—<M>—>M/O—>A

which are equivalent inside C\\A. Since all morphisms in M are monic, such a morphism
(if it exists) is unique; thus D is a preorder. To show that D is contractible we will show
that it is nonempty and cofiltered.

Given two objects

Nee<M>>Mo-A and N<eoe<M>>Mo-—sA

we know that they are equivalent inside C\A if there exists a diagram X oe> Y >e> N
such that precomposition by this diagram sends these to diagrams which are equivalent
in C. However, since A is m-negligible in C we see that such a diagram exists if and
only if such a diagram exists with the e-component equal to the identity. Picking such a
morphism Y >e> N we see that the object represented by

N<«e<YXyM>—>Mo—A

maps to both of these objects. Thus D is cofiltered.
To see that D is nonempty, consider the diagram

Z >e>N oe> N

given by the chosen representative for ¢. Since A is m-negligible in C there exists an m-
morphism M >e> N such that M @y N’ = M and M >e> N’ factors through Z >e> N'.
Then the diagram

N<—o—<M>—o—>A/O—0—>A

gives a well-defined object of D. Thus D is nonempty and cofiltered, and therefore con-
tractible. O



J.A. Campbell, 1. Zakharevich / Advances in Mathematics 411 (2022) 108710 67

If A is m-negligible in C we are now done. Thus we can now assume that A is m-well-

represented in C.

gm

Consider a diagram N %o X & N’ which we denote g. We define the functor

g*:f}{N —»ﬂ'fN/ by

gm oy

Y on X >e> X e N
M <ooY ses N — P ﬁge
N

M<—0—OY

" M <«eoY Oy X >e> N' -
This is functorial because pseudo-commutative squares compose.
Lemma 10.20. There is a natural transformation kny —> kn'gx.
Proof. We have
kn (M 460 Y 5o N) = YH/M

On the other hand,

kN/g*(M eheeoYmN) = (Y ON X)k/M

The map Y @ X o— M factors through Y o— M, so (by Lemma 2.10) there is a functo-
rially induced map Y*/M >— (Y @ X)*/M_ This map gives the natural transformation.
To check that this is actually natural, consider a map (M <s0Y >e> N) — (M’ «<e0 Y’
>e> N) represented by M oe> M7 >e> M'. We must show that the square

Yk/M Yk/Ml

(Y/)k:/M’

|

(Y ON X)k/k[ o—> (Y ON X)k/Ml >—> (Y/ ON X)kﬂw,

commutes in QA. To show this it suffices to show that there exists a map Y*/M ~ (Yon
X)*/M1 such that the left-hand square is distinguished and the right-hand square com-
mutes. The map exists and makes the right-hand square commute by Lemma 2.10. To
check that the left-hand square is distinguished it suffices to check that given any diagram

Ao——>Bo—»Co—D

the square
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Bk/IC Ak/C

]

RBk/D AR/D

is distinguished. This follows directly from the definition of ¢ and k. O
Since ky and kys are both homotopy equivalences, we get the following corollary:
Corollary 10.21. g, is a homotopy equivalence.

Consider the functor H:Z{} — Cat sending (N, ¢) to Hy and g: (N, ¢) — (N, ¢)
to gx.

Lemma 10.22. There is an isomorphism of categories

H:colimH — Fv
e

induced by Py ¢y Hn — Fy.

Proof. We first check that H is well-defined. To prove this it suffices to check that for
g: (Na ¢) - (N/, ¢/),

Pintgn g« = P(n,g)-

Since morphisms in Hy are defined to be morphisms in QC satisfying extra conditions,
and since both Py 4y and g. do not change any of the representation data in the mor-
phism, if the two sides agree on objects they must also agree on morphisms. Py, 4) maps
an object (M <eo X >e> N) to the composition

—1

Vs SN o< 5X o sM,
while P/ 4/)g« maps it to the composition

r—1
Vv > SN/ «e<5Y o> SN «<e< sX o—e> sM.

However, since ¢'s(g) = ¢, these two compositions represent equivalent diagrams (since
after being considered inside C\A, all g, does is compose with g) and thus the left and
right sides agree on objects. Therefore the functors P 4) produce a valid cone under H
and H is well-defined.
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It now remains to show that it is, in fact, an isomorphism of categories.

First we show that H is surjective on objects; in other words, that for every
(M,u:V = sM) in Fy there exists an (N,¢) and an object (M’ , h) in Hy such
that Py (M’',h) = (M,u). To do this, let (N,¢) = (M,u"') and let (M’ h) =
(MM = M = M). Thus H is surjective on objects.

Now consider injectivity. Since Z7 is filtered, it suffices to check that each individual
P(y,4) is injective on objects. Suppose that

P(n,g)(M,h) = Py g (M',1).

We must show that there exists g:(N,¢) — (N',¢’) in Z{? such that g,(M,h) =
g«(M',h"). Note, that by definition in order for this to hold we must have M = M’
and s(h) = s(h’). The fact that such a g exists is implied by condition (E); in fact, this
g will be represented by a morphism where the m-component is the identity. Thus His
injective on objects.

We now consider morphisms. As before, we consider surjectivity first. Consider a
morphism g: (M, u) — (M',u) in Fy . This is given by a morphism g: M — M’ in QC
such that s(g)u = v’ in Q(C\.A). Since both u and v’ are isomorphisms, s(g) must be as
well; thus it is represented by a diagram M oce> X >e> M’. Consider the distinguished
square

/

X
:
g7n

~o—> M

h'm
M >——>
O

X

where the composition around the bottom is given by the components of g. Since all
distinguished squares are pseudo-commutative, this defines a morphism

(M, M 5> X" L (v, M Lo X7y

in Hx/. Note that s(ge)u = s(hz')u'. Thus Px s(g.)u)(f) = g, as desired.
Now consider injectivity. As before, it suffices to consider a single Py 4y and show
that it is faithful. Suppose that Py 4)(9) = P(n,¢)(¢’). By definition,
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g7g/Z(M<—QOX>0—>N)*> (MIHOX/>0—>N)

are given by morphisms g, ¢": M — M’ in QC satisfying the diagram in Definition 10.9.
For Pn,4)(9) = Piv,e)(9) we must have g = ¢'; however, in this case we must have g
and ¢’ equal as well. Thus H is injective on morphisms, and we are done. O

We are now ready to finish:
Proposition 10.23. If A is m-well-represented in C then Py 4 is a homotopy equivalence.

Proof. [10, Proposition 3, Corollary 1] states the following: given any filtered category
C and a functor F:C —> Cat such that for all f: A — B € C, F(f) is a homotopy
equivalence. Then the induced map F(A) — colim¢ F' is a homotopy equivalence for
all A eC.

Applying this to the functor H, we get that the map H(N,¢) — colimzy H =
Fy is a homotopy equivalence for all (N,¢) € Z{’. By definition this is exactly
Png)y: Hy — Fv, and we are done. 0O

Appendix A. Checking that C\.A is a CGW-category

In this appendix we check as much as possible that the definition of C\ A gives a well-
defined CGW-category. More concretely, it is necessary to check that the m-morphisms
and e-morphisms give well-defined categories, that the distinguished squares compose
correctly, that ¢ exists, that ¢ and k are equivalences of categories, and that axioms (Z),
(M), (M), (K), and (A) hold.

Proposition A.1. Let C be an ACGW-category, A a full ACGW-subcategory closed under
subobjects, quotients, and extensions. Then C\A is a well-defined CGW-category assum-
ing that the following condition holds:

(Ex) The definitions of ¢ and k in Definition 8.1 give equivalences of categories, in
the sense that there exist equivalences of categories k: Arg& — Arp M and
c: Arg M — Ara € which agree with the given definitions on objects.

The rest of this appendix is a proof of this proposition.
As the definition of C\A is symmetric with respect to e-morphisms and m-morphisms
it suffices to focus on proving only half of each statement; the other half will follow by

symimetry.



J.A. Campbell, 1. Zakharevich / Advances in Mathematics 411 (2022) 108710 71

We first begin with a somewhat more explicit definition of the distinguished squares
in C\\A. These are generated by the following types of squares:

A>-> B A <«e< B A>e> B A<eo B Aoes> B
el Tel Tel T 1T T 1
C>—D C «e<D C >e>D C <eo D C oes>D
A>—- B A <«e< B A>e> B A <«eoB Aoces B
ot fed toep b b 1
C>—D C «e<D C >e>D C «eo0D C oe> D
A>— B A<«e<B

fof fod

C>—-D C «e<D

A>—-> B A <«e< B A<eo B Aoes> B
totot bot ot
C>—->D C «e<D C <«eo0o D Coes>D
A>—> B A <e< B A <eo B Aoes> B
S S S bot fod
C>—D C «e<D C «eo0 D C oe> D

We now prove a series of lemmas about how different types of squares in C interact. The
common consequence of all of these lemmas is that the given squares fit into a cube with
opposite sides of the same “type” (be that pseudo-commutative squares, distinguished
squares, or simply squares that commute inside £ or M). We do not worry about which
arrows have ¢ or k in A; the properties of A ensure that whenever such an arrow is
“pulled back”, the pullback also has ¢ or k in A.

Lemma A.2. Given two diagrams in C

1

—<
G
—<
G
<
Q<«—o

g<«—o0

|

we can assemble these into a cube
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X' X

NN

i l
%J*) C
B
in which all faces with mixed morphisms are pseudo-commutative. If ABC'D was origi-
nally distinguished, then X' A’ XC" will be, as well.

An analogous statement with the roles of e-morphisms and m-morphisms swapped also

holds.

C

!

D

Proof. Apply c to the left-hand diagram. This turns both of the squares into pullback
squares in £ (by definition). We can then form the following diagram:

Axg X o5 X

NN

SN

B o———— D

To prove the main statement of the lemma it suffices to show that a morphism A€ x ¢
X — (A')° exists and makes the back face into a pullback. To show the last statement
it suffices to show that if A° — B¢ is an isomorphism then this morphism is also an
isomorphism. This is a straightforward diagram chase using the fact that all solid faces
in the above diagram are pullbacks and all morphisms in £ are monic. 0O

As a corollary we can see that assembling distinguished squares and pullbacks com-
mute:

Corollary A.3. Suppose that we are given a diagram

A>—> Bo—(C<«—oD.
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The two diagrams

A>—> B<«—oBxcD Aop (Bx¢D)>> BXxgDo— D
[o] [ o R
X>—»C<«——oD A B o C

fit into a cube

™~

X

l C
Aop (B x¢c D) >— BxecD

. N

w

in which the top and bottom face are distinguished squares, the front and the back face
are pseudo-commutative squares, and the right and left face are commutative in € with
the right-hand face a pullback.

We now prove a “complement” to Lemma 5.12: instead of assuming that a commu-
tative square in & is attached to the back of a pseudo-commutative square, we assume
that it is attached to the front:

Lemma A.4. Suppose that we are given a diagram

I\

Qe—on
O«—o

>
O
>

O—ow

I\

Then this diagram assembles into a cube
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where the front, back, and top faces are pseudo-commutative and the bottom face is distin-
guished. If the right-hand square is a pullback then the top face will also be distinguished.
The dual statement also holds.

Proof. Define C’ so that the bottom face of the cube is a distinguished square. Define
A’ = C' @p: B'. By definition this produces a diagram where the front face is pseudo-
commutative and the bottom face is distinguished. It therefore suffices to check that
there exists a morphism A o— A’ such that the left face commutes in £ and the top face
is pseudo-commutative. To prove this it suffices to check that there exists a morphism
A/B o B’ xp/ (C")¢ such that in the diagram

C/P e G AYBHe B

I ]

(C/)c -0 (Cl)c X pr B/ o—> B/
the left-hand square commutes and the right-hand square is a pullback. This follows

directly from the definitions. O

We are now ready to turn our attention to proving that C\.A is a CGW-category.
The m-morphisms form a well-defined category
The m-morphisms in C\A are defined to be equivalence classes of diagrams

A«—O—OA/<—0—<XO—0—>B/>—>B

The equivalence relation is generated by the following types of diagrams (up to isomor-
phism), where the red diagram is declared to be equivalent to the blue diagram:
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B
. / ]
i o
A x'

I
2

75

(A.5)

(For interpretation of the colors in the figures, the reader is referred to the web version

of this article.) The relation defined between m-morphisms is a formal composition of

two such relations, one inverse to another. Thus to show that the relation is well-defined

we must check that if we are given two such relations built on top of one another, then

either they compose to a single one, or that we can “pull back” two such relations.

Let us consider the first such case. Suppose that we are given two such diagrams, one

relating A <e0 A’ <e< X ce> B’ >> B to A <e0 A” <e< X' 0e> B” >~ B, and one
relating A <e0 A" <e< X' 0ce> B” >> B to A <e0 A" <e< X" ce> B >~ B. We can

rearrange this data into the following diagram, where the first formal composition is in

red, the second is in blue, and the third is in green:

B

|

B//I . B// . BI

X X
£ O i\ O i\
\ \
\ \
\

\
A/N X” ——=< B// @B/// 9(” =< B/ @B/// XU
\

poe b e e

.
A// e X/// @ A A// X/ B/ Opn X/

i e

Ao oA = X" opm A —eo—< X' @uan A

By regrouping the pseudo-commutative squares, we see that the red composition is equiv-

alent to the green composition, as desired.
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To show the second case, consider the following diagram, which shows that red and

blue are both equivalent to green:

T

A/ «—e—< X/I QA

X
A o
/ E O \\ /
A A X" o . B" B

N T

"

A" KA ) " opm X" B"
X

Then the composition

)

A <O AI X A A// —=< ((Bl X g BH) @B/// X//) ®X” (XN ®A”’ (A/ X A AN))
o—e—> B/ X g BN ~ > B

is equivalent to both the red and the blue, completing the desired picture. Putting these
together shows that the relation defined on m-morphisms is an equivalence relation, as
desired.

Now we can work with the definition of the m-morphisms directly. Given two mor-
phisms A >-» B and B >-»> C their composition is defined to be represented by the
diagonal in the following square:

A<«eo A o o . B’ B

IR e

A" o< X % (BI OB B”) o—e— B 0o B”

S
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Here, Z = (X x (B’ @ B")) @pozp (B’ @5 B”) xY) and A” and C” are uniquely
determined by the distinguished squares they are in.

To check that this is well-defined, it suffices to check that given a diagram as in (A.5)
and a morphism represented as one of <eo, <e<, oe> or >— the composition (resp.
precomposition) with the red morphism and the composition (resp. precomposition) with
the blue morphism are equivalent. We check the case of composing with a morphism
represented by <«eo ; all of the other cases are analogous. This is a straightforward
diagram chase, using Lemma A.2 to push the diagram showing the equivalence of the two
representations along the composition; the only nontrivial part is ensured by Lemma 5.12.

We need to check that composition is associative. As a morphism is a formal composi-
tion of four arrows, it suffices to check that compositions of those component arrows are
associative. It is not necessary to worry about which morphisms have kernel/cokernel in
A, since that is preserved by the definition of composition; all we are checking is associa-
tivity. Thus our definition of morphism is symmetric in e-morphism and m-morphism. In
addition, since both £ and M are closed under pullbacks, by standard arguments about
span categories we know that when all three morphisms are e-morphisms or all three
morphisms are m-morphisms composition is associative. Thus it remains to consider
the case of 2 m-morphisms and 1 e-morphism or 1 m-morphism and 2 e-morphisms.
By symmetry again it suffices to consider this second case, and, in fact, it suffices
to consider the case when the m-morphism is directed covariantly with the composi-
tion.

Now there are 12 cases left (three positions for the m-morphism and four directions
in which the e-morphisms can point). Most of these have only a single composition, so
associativity holds automatically for these. The remaining three cases are >—» o— o—
>> <o <o and >-> o— <o . The first and second of these give associative
compositions because distinguished and pseudo-commutative squares work correctly with
respect to composition. Thus the last case is the only one of interest, which directly
follows from Corollary A.3. The fact that the two different compositions assemble into
a cube implies that they are equivalent in C\A.

Distinguished squares compose correctly This is true by definition.

There exists a ¢ We must show that the subcategory of m-isomorphisms is isomorphic
to the category of e-isomorphisms by a functor which takes objects to themselves. To
construct this functor, use Lemma 2.9 to change a representation of an m-isomorphism
as

A«—O—OA/H—<XO—0—>B/>—0—>B
to
A/4<—0—<14/,<—0—OAXV>—0—>BI/O—Q—>B7

which gives a representation of an e-isomorphism. Since distinguished squares are unique
up to unique isomorphism, this is an isomorphism of categories.
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Axiom (Z) We must check that & is initial in M.
There exists a morphism @& >-» B for any B by simply taking the representation where
all but the last morphism are the identity. We must now check that this morphism is

unique. Suppose that we are given any diagram

O <«eo0 <«e<Toe>B >~ B.

We must have B’ € A for this diagram to be valid. The diagram

®

BR

©)

|
|
|

R o—e— N o—e—>

i

a

shows that the two are equivalent. Thus @ is horizontally initial.

<
O
—e<

1%

Axiom (I) The m-morphisms which are isomorphisms are exactly those morphisms of
the form

Using this description and the listing of different kinds of distinguished squares we can
construct each of the required squares by hand.
Axiom (M) It suffices to check this for the m-morphisms of C\A; the statement for
the e-moprhisms will follow by symmetry. Thus we want to check that if we are given
two morphisms f,g: A >-> B and a morphism h: B >-> C in C\A then if hf = hg
then f = g. All morphisms in M are equal, up to isomorphism, to ones represented
by diagrams « >— .. Thus it suffices to assume that h is of this form. This means that
the compositions hf and hg are computed simply by composing the last m-moprhism
components.

The fact that hf = hg implies that for any choice of representatives for f and g, the
following diagram exists:
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To show that f = g it suffices to check that there exist maps C/ >~» B and C” >~ B
such that the triangle
C/

g

~ B

C//

commutes. Setting these maps to be the evident ones generated by the above diagram,

we see that the given triangle must commute, as it commutes after postcomposition with

h and h is monic.

Axiom (K) As before, we prove this only for ¢; the result for k follows by symmetry.
Let f: A>-> B be a morphism. Given a representative

A<«eocA' «e<Xoe>B' >~ B

of f, we can conclude that ¢(f) = (B’)¢ o— B. Thus if we can show that a distinguished
square as desired exists for this representative, we will be done. The following diagram
shows that this is the case

®<—0—0®<—0—<®O—0—>®>—>(B/)c

[ Lol L]

A<«ce oA «e<Xoe>B > B
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as it is a composition of squares which are distinguished in C\ A.
Axiom (A) This holds because it holds inside C and all distinguished squares in C are
also distinguished in C\\A. O
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