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categories via the notion of a CGW-category. CGW-categories 
are a generalization of exact categories that admit a Quillen 
Q-construction, but which also include examples such as 
finite sets and varieties. By analyzing Quillen’s proofs of 
dévissage and localization we define ACGW-categories, an 
analogous generalization of abelian categories for which 
we prove theorems akin to dévissage and localization. In 
particular, although the category of varieties is not quite 
ACGW, the category of reduced schemes of finite type is; 
applying dévissage and localization allows us to calculate a 
filtration on the K-theory of schemes of finite type. As an 
application of this theory we construct a comparison map 
showing that the two authors’ definitions of the Grothendieck 
spectrum of varieties are equivalent.
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1. Introduction

On August 16, 1964, Grothendieck wrote to Serre of a conjectured category of motives. 

Such a category (called M(k)) would encode schemes up to decomposition (by cutting 

out subvarieties), but would itself be an abelian category capturing the cohomological

structures involved.

The sad truth is that for the moment I do not know how to define the abelian category 

of motives, even though I am beginning to have a rather precise yoga for this category. 

For example, for any prime � �= p, there is an exact functor T� from M(k) into the 

category of finite-dimensional vector spaces over Q on which the pro-group Gal(ki/ki)i

acts, where ki runs over subextensions of finite type of k and ki is the algebraic 

closure of ki in k; this functor is faithful but not, of course, fully faithful. . . I will not 

venture to make any general conjecture on the above homomorphism; I simply hope 

to arrive at an actual construction of the category of motives via this kind of heuristic 

considerations, and this seems to me to be an essential part of my “long run program.” 

[3, p 174-175]

Grothendieck’s letter proposes several other properties of this conjectured category, and 

discusses his attempts at the construction. Since then, there have been many other 

approximations to construct this category—for an overview see, for example, [9]—but 

all fall short of the ideal.

Grothendieck’s approach begins with the construction of a “K-group” of varieties. 

These days, this is known as the Grothendieck ring of varieties, denoted K0(Vark). It 

is generated by isomorphism classes of k-varieties, [X], subject to the relations that 

[X] = [Z] + [X \ Z] for closed inclusions Z ↪→ X. Kontsevich, following Drinfeld [7], calls 

this the ring of “poor man’s motives.” He notes that any reasonable abelian category 

of motives, Mk, will have a map K0(Vark) K0(Mk). For example, in [6, Thm. 

4], Gillet and Soulé show that there is a group homomorphism K0(Vark) K0(M∼)

where M is the category of (pure) motives associated to the equivalence relation ∼. 

It is thus useful to understand K0(Vark) in a deep way in order to learn more about 

how motives should work. It is even better to understand how it behaves in relation to 

abelian categories.
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We move toward such an understanding in this paper. Before doing so, we rephrase 

the question. The Grothendieck group of an abelian category is a shadow of the much 

richer structure of Quillen’s higher algebraic K-theory [10]. Thus there should in fact 

exist a map on higher algebraic K-theory spectra K(Vark) K(Mk) provided that 

one can define the objects in the map. It is currently far beyond the state of the art to 

attempt to understand the right-hand side. However, the authors separately have come 

up with models for the left [2,16]. Under these constructions the category of varieties 

behaves very similarly to an abelian category, and one may be tempted to conjecture 

that from some novel perspective the category of varieties would “become” abelian.

Our goal in this paper is to construct such a perspective. This has the added benefit of 

putting all objects of interest on the same footing. Our perspective begins with thinking 

of sequences Z ↪→ X ← X \ Z as our “exact sequences.” It turns out that with this 

perspective one can execute nearly all constructions that one enjoys in abelian categories: 

kernels, cokernels, localizations, etc. The main insight is that we should not think of 

these constructions algebraically, but in a kind of diagrammatic calculus, where one of 

the arrows points the opposite way that one would expect. Such diagrammatic calculi 

are, of course, the foundation of Grothendieck’s seminal Tohoku paper [5].

While we do not develop the general theory of homological algebra of these types of 

categories,1 one can ask which K-theoretic theorems hold. Pondering the fundamental 

theorems of Quillen’s algebraic K-theory, we come to the following desiderata for the 

construction of K-theories of geometric and algebraic objects:

(1) The categorical machinery should somehow encompass both the category of varieties 

with its “exact sequences” defined above, and Quillen’s exact categories [10, p. 92].

(2) Dévissage should hold: Given an inclusion of categories A ⊂ B such that everything 

in B can be “broken up” into objects in A, there should be an equivalence K(A) �

K(B).

(3) Localization should hold: given two such categories A ⊂ B, one should be able to 

produce a localized category B/A as one can with abelian categories. One would also 

like a localization sequence

K(A) K(B) K(B/A)

as in [10, Thm. 5].

In this paper we show that there is such a categorical structure, and we are able to 

satisfy the requirements listed above. Moreover, it has the correct “yoga”: we are able 

to not only make the theorems work, but also Quillen’s original proofs. Although this 

does not get us much closer to understanding the conjectural category of motives, it does 

1 We hope to develop this in future work; it appears to be that homological algebra ends up working 
almost identically to the classical theory.
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provide us with a new perspective and concrete technical tools. The perspective could 

be summarized as follows: varieties, together with the exact sequences above, behave 

almost like abelian categories and one should work with this structure for as long as 

possible before passing to abelian categories. As will be shown below, this perspective 

is extremely fruitful when discussing algebraic K-theory, and we expect it to be more 

useful generally.

The fundamental notion introduced in this paper is that of a CGW-category. It is 

essentially a category equipped with two subclasses of maps, M and E (to be thought 

of as analogous to admissible monomorphisms and admissible epimorphisms in exact 

categories), together with distinguished squares that tell us how objects are built. In 

all examples we know, the horizontal and vertical morphisms need not compose in the 

category, and therefore we situate the classes M and E in a double category. With 

this minimal amount of data we define K-theory following the classical constructions 

due to Quillen (Sect. 4) or Waldhausen (Sect. 7). We show that the resulting K-theory 

spaces have the correct group of components in Theorem 4.3. CGW-categories satisfy 

requirement (1) above: they encompass varieties and exact categories.

Of course, as in the case of exact categories, additional structure is required to prove 

these theorems. To this end we introduce the definition of an ACGW-category, which 

is meant to be a sort of “abelian” version of a CGW-category. The category of reduced 

schemes of finite type is such a category, with the category of varieties sitting inside it as 

a full subcategory. Roughly, an ACGW-category is a category that formally satisfies all 

of the properties that open and closed sets do (the complement of a closed set is open, 

you can intersect closed sets and union open sets, etc). Using this definition we prove 

the first main theorem of the paper:

Theorem 1.1 (Dévissage). Let A, B be ACGW-categories with A ⊂ B satisfying certain 

technical conditions. Suppose every B ∈ B has a finite filtration Bi such that the differ-

ence between Bi and Bi−1 lies in A. Then K(A) � K(B).

Here “difference between” could mean a quotient or a complement; for the precise 

statement see Theorem 6.2. The definition of ACGW-category has a number of require-

ments, but these requirements are satisfied by the motivating examples of the category 

of reduced schemes of finite type, polytopes [16], finite sets, and abelian categories.

The formal similarities between ACGW-categories and abelian categories suggest that 

other theorems in algebraic K-theory can be extended to the CGW case. Quillen’s other 

major tool in algebraic K-theory is the localization theorem, which relates the K-theories 

of two abelian categories A, B with the K-theory of their quotient category B/A. A very 

similar theorem holds for ACGW-categories:

Theorem 1.2 (Localization). Let C be an ACGW category and A a sub-ACGW-category 

of C satisfying certain technical conditions. Then there is a localization ACGW-category 

C\A such that
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K(A) K(C) K(C\A)

is a homotopy fiber sequence.

For a more precise statement of this theorem, see Theorem 8.6.

An interesting observation about the proofs of these theorems is how closely they fol-

low Quillen’s original proofs. The category of varieties really does “behave like” an exact 

category, in the sense that many of the motions that are necessary to prove theorems 

have direct analogs in the category of varieties. (In fact, the category of varieties lacks 

only “pushouts” to behave like an abelian category; this is why switching to reduced 

schemes of finite type is necessary. For more detail on this, see Section 5.)

We expect there to be substantial applications of the dévissage and localization theo-

rems. The main application that we discuss in this paper is a comparison of models for 

the K-theory of varieties that both authors have constructed. Surprisingly, this theorem 

seems to use every bit of K-theoretic machinery the authors have developed: assemblers, 

cofiber sequences in K-theory, and the dévissage and localization theorems. All combine 

to give the following theorem.

Theorem 1.3 (Comparison). Let KC(Var
n) denote the K-theory of the SW-category 

Var
n defined in [2], and let KZ(Var

n) denote the K-theory of the assembler Var
n

defined in [16]. Then there is a zig-zag of weak equivalences

KC(Var
n) • KZ(Var

n).∼ ∼

For a more detailed statement of this theorem, see Theorem 9.1.

Each of the models constructed has its own strengths, and this theorem allows us 

to pass between models to exploit these. We expect a more general theorem relating 

Waldhausen-style K-theory to assembler style K-theory to be true, but we leave that 

for future work.

Whether this new perspective leads to a new theory of motives or not is unclear; 

however, the striking behavioral similarities between varieties and abelian categories 

was too beautiful to leave unexplored.

Acknowledgments. The authors would like to thank Pierre Deligne, André Joyal, An-
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They also thank Daniel Grayson and Karl Schwede for their patience with our annoying 
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2. CGW-categories

This section contains the main definition of the paper: the definition of a CGW-

category. Because exact categories all embed into abelian categories, the data of exact 

sequences is defined using universal properties in this abelian category: if

X Y Z

is an exact sequence, X is the kernel of Y Z and Z is the cokernel of X Y . 

However, if we instead discard this “ambient” abelian category, and think of the ex-

act sequences as simply data to be manipulated (as per Quillen’s original definition 

[10]), a simple observation comes to light: there is no intrinsic reason why admissible 

monomorphisms and admissible epimorphisms must compose. It is simply necessary that 

we encode their relationships to one another.

An efficient way to encode this kind of structure is using the formalism of double 

categories. We thus begin by recalling the definition of a double category, as well as 

establishing some notation for working with double categories. The notion of double 

categories goes back to [4]. We do not include the complete definition; for the reader 

interested in a more in-depth introduction, see for example [8, Section II.6].

Definition 2.1. A double category C is an internal category in Cat. More concretely, a 

double category consists of a pair of categories, denoted EC and MC, which have the 

same objects. We denote morphisms in MC by and morphisms in EC by . 

This pair is endowed with a collection of squares, called distinguished squares. These are 

denoted

A B

C D

�

f ′

f

g′ g .

In each distinguished square, f, f ′ ∈ MC and g, g′ ∈ EC . The squares satisfy composi-

tional axioms, which say in effect that gluing two squares horizontally or vertically gives 

another distinguished square. In addition, if f and f ′ are both isomorphisms then for 

any g, g′ either both of the following squares exist, or neither does:

A B

C D

�

f

f ′

g g′

B A

D C

�

f−1

f ′−1

g′ g
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We sometimes write C = (EC , MC). When C is clear from context we omit the sub-

scripts from the notation.

Example 2.2. Let A be any category, and E and M two subcategories containing all 

isomorphisms in A. We can define a double category structure (E , M) by letting the 

objects be the objects of C, the horizontal morphisms be given by M and the vertical 

morphisms by E . We let distinguished squares be any subset of the commutative squares 

in A which satisfies appropriate closure conditions.

In most cases of interest, the double categories we work with arise as in Example 2.2, 

so it is useful to introduce language for these categories.

Definition 2.3. If a double category (E , M) arises from a situation as in Example 2.2, we 

say that A is an ambient category for (E , M). In such a case the identity functor gives 

a natural isomorphism of categories iso E iso M.

CGW-categories will be double categories equipped with extra data. Most of the data 

involves the specification of the existence of certain distinguished squares. We define 

certain categories that come up repeatedly in these specifications.

Definition 2.4. Let C = (E , M) be a double category. We write Ar� E for the category 

whose objects are morphisms A B in E , and where

HomAr� E(A
g

B, A′ g′

B′) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

distinguished

squares

A A′

B B′

�g g′

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

We have an analogous category Ar� M. Every 2-cell in C appears uniquely as a morphism 

in Ar� E and Ar� M.

Now let D be any ordinary category. We write Ar� D for the category whose objects 

are morphisms A B in D, and where

HomAr� D(A
f

B, A′ f ′

B′) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

commutative

squares

A A′

B B′

∼=

f ′f

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

We now come to the definition of a CGW-category.

Definition 2.5. A CGW-category (C, φ, c, k) is a double category C = (E , M), an isomor-

phism of categories φ: iso M iso E which is the identity on objects, and equivalences 

of categories
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k: Ar� E Ar� M and c: Ar� M Ar� E

which satisfy:

(Z) C contains an object ∅ which is initial in both E and M.

(I) If f : A B is any isomorphism in M then all four of the following squares are 

distinguished:

A B

B B

�

f

1B

φ(f) 1B

A A

A B

�

1A

f

1A φ(f)

A B

A A

�

f

1A

1A φ(f−1)

A A

B A

�

1A

f−1

φ(f) 1A
.

(M) Every morphism in the categories E and M is monic.

(K) For every g: A B in E , the codomains of g and k(g) are equal. We write k(g)

as Ak/g gk

B. There exists a (unique up to unique isomorphism) distinguished 

square

∅ A

Ak/g B

�

gk

g .

Dually, for every f : A B in M the codomains of f and c(f) are equal; we 

write c(A
f

B) = Ac/f fc

B. There exists a (unique up to unique isomorphism) 

distinguished square

∅ Ac/f

A B

�

f

fc .

(A) For any objects A and B there exist distinguished squares

∅ A

B X

� and

∅ B

A X

� .
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As isomorphisms can be considered to be “both e-morphisms and m-morphisms” we will 

generally draw them as plain arrows.

When it is clear from context, we write Ak/B or Ak instead of Ak/g (and analogously 

for c). When φ, c and k are clear from context we omit them from the notation. When C

has an ambient category A and φ is the identity functor, we omit φ from the notation.

The definition of a CGW-category is symmetric with respect to m-morphisms and e-

morphisms. This duality is highly versatile and allows us to get symmetric results about 

e-morphisms and m-morphisms with no extra work.

Remark 2.6. Axiom (A) is used only to show that K0(C) is an abelian group. Thus if in 

some case such a property is not necessary this axiom can be dropped and the rest of 

the analysis will still hold.

Functors of CGW-categories must preserve all structure in sight.

Definition 2.7. A CGW-functor of CGW-categories is a double functor F : (E , M) 

(E ′, M′) which commutes with c and k. More concretely, F is a CGW-functor if the 

following two diagrams commute:

Ar� E Ar� M Ar� M Ar� E

Ar� E ′ Ar� M′ Ar� M′ Ar� E ′

k c

k′ c′

Ar� F Ar� F Ar� F Ar� F

The fact that c and k take distinguished squares to commutative triangles means that 

distinguished squares are equifibered (the vertical arrows have equal “kernels” given by 

k) and equicofibered (the horizontal arrows have equal “cokernels” given by c). By Axiom 

(K), c and k are mutual inverses on objects.

We now prove some technical consequences of the axioms.

Lemma 2.8. For any A, the morphism f : ∅ A has f c = 1A. Dually, the morphism 

f : ∅ A has fk = 1A.

The following lemma is the most important of the technical results. It states that 

e-morphisms and m-morphisms can be commuted past one another using distinguished 

squares. This is what will allow the Q-construction in Section 4 to work.

Lemma 2.9. For any diagram A 
f

B
g

C there is a unique (up to unique isomor-

phism) distinguished square
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A B

D C

�

f

g .

The analogous statement holds for any diagram A 
f

B
g

C.

Proof. As the categories M and E are symmetric in the definition of a CGW-category 

it suffices to check the first part. Given a diagram as in the statement of the lemma, we 

can apply c to the first morphism to obtain a diagram

Ac/f fc

B
g

C.

This diagram represents a morphism (Ac/f fc

B) 
g

(Ac/f gfc

C) in Ar� E . Applying 

c−1 to this morphism produces a distinguished square

A B

(Ac/f )k/gfc

C

�

f

g ,

where we have used that c and k are inverses on objects.

To check that this distinguished square is unique, suppose we are given any other such 

square

A B

D C

�

f

f ′

g .

Applying c to this square produces a morphism

(Ac/f fc

B)
g

(Dc/f ′ f ′c

C) ∈ Ar� E .

Since the square is distinguished, we must have Ac/f ∼= Dc/f ′

; if we choose Dc/f ′

= Ac/f

the codomain of the above morphism becomes Ac/f gfc

C. Thus any such distinguished 

square is mapped by c to the original diagram; since c is an equivalence of categories, 

the square must be canonically isomorphic to the square produced above. �

Lemma 2.10. Given any composition

C B A
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there is an induced map Bc/A Cc/A such that the triangle

Bc/A Cc/A

A

commutes.

Proof. We begin by applying the equivalence of categories given by k−1 from Axiom 

(K). Since k−1 = c on objects, we have the induced diagram

Cc/B Cc/A

B A

h

�

We now apply the equivalence given by c to produce the diagram

Bc/A = (Cc/B)c/h Cc/A A. �

We conclude this section with a pair of definitions that will be useful in later sections.

Definition 2.11. Let C = (E , M, φ, c, k) be a CGW-category. A CGW-subcategory is a 

sub-double category A ⊆ C such that (A, φ|A, c|A, k|A) is also a CGW-category.

Definition 2.12. We say that a CGW-subcategory A of a CGW-category (C, φ, c, k) is 

closed under subobjects if for any morphism B C ∈ M, if C ∈ A then B ∈ A. We 

say that A is closed under quotients if for any morphism B C ∈ E , if C ∈ A then 

B ∈ A. We say that A is closed under extensions if for every distinguished square

A B

C D

�

if A, B and C are in A then so is D.

3. Examples

In this section we give several motivating examples of CGW-categories.
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Example 3.1. Let A be an exact category. Let (C, c, k) be given by

E = {admissible epimorphisms}op and M = {admissible monomorphisms};

Define φ to be the identity on objects and inversion on morphisms. The distinguished 

squares are stable squares: those squares that are both pushouts and pullbacks in A. 

The equivalence k is given by mapping every admissible epimorphism to its kernel; the 

equivalence c is given by taking every admissible monomorphism to its cokernel.

We check the axioms explicitly.

(Z) The zero object is initial in M and terminal in E , so it is initial in both M and E .

(I) This follows directly from the definition.

(M) This holds by definition.

(K) k and c give the correct equivalences, since distinguished squares are both 

equifibered (since they are pullbacks) and equicofibered (since they are pushouts).

(A) This holds with X = A ⊕ B.

Thus an exact category gives rise to a CGW-category. However, there are examples 

of CGW-categories which are not exact.

Example 3.2. Consider the category FinSet∗ of based finite sets. We define a CGW-

category (C, c, k) by setting

M = {injections} and E =
{

f : A B
∣∣∣ f |f−1(B\{∗}) is a bijection

}op

.

The distinguished squares are the pushout squares; these are also all pullback squares. 

The equivalence φ is defined, as in the previous example, by taking inverses. Define k by 

taking f : A B to f−1(∗) A. Define c by taking g: A B to B B/g(A), with 

the elements not in the image of g mapping to themselves, and everything else mapping 

to the basepoint.

That axioms (Z), (I), (M), and (A) are satisfied is direct from the definition. The 

distinguished squares are pullback squares in the underlying category; therefore in a dis-

tinguished square the preimages of the basepoint of the two vertical maps are isomorphic. 

This proves half of (K). Dually, the complements of the two injections horizontally are 

also isomorphic, since g is injective away from the basepoint.

One of the advantages of CGW-categories is the observation that the contravariance 

in the E-direction is not necessary. All of the following examples come equipped with an 

ambient category, so we omit mention of φ.

Example 3.3. Consider the category FinSet. We define a CGW-category (C, c, k) by 

setting



J.A. Campbell, I. Zakharevich / Advances in Mathematics 411 (2022) 108710 13

E = M = {injections}.

The distinguished squares are the pushout squares; since all morphisms are injections, 

they are also pullback squares. The equivalences c and k are given by taking any injection 

A B to the inclusion B\A B.

That axioms (Z), (I), (M), and (A) are satisfied is direct from the definition. Since 

distinguished squares are pushouts, the complements of the images in the horizontal 

maps are isomorphic; the same holds dually for the vertical maps. Thus (K) holds.

We can also improve the intuition from the finite sets example to get a CGW-category 

structure on the category of varieties.

Example 3.4. Let C = Var

E = {open immersions} and M = {closed immersions}.

We let both c and k take a morphism to the inclusion of the complement. The distin-

guished squares

A B

C D

�

g

f

are the pullback squares in which im f ∪ im g = D. Axiom (Z) is satisfied by the empty 

variety. Axiom (I) holds by definition. Axiom (M) is verified by noting that open and 

closed immersions satisfy base change in the category of varieties. Axiom (A) holds by 

setting X = A 
 B. To see that Axiom (K) holds, consider a distinguished square

A B

C D

� .

By definition, D � C ∼= B � A, since the image of B in D contains the complement of 

the image of C. The dual statement for e-morphisms holds as well.

The CGW-category of varieties includes into the larger category of reduced schemes 

of finite type via a CGW-functor:

Example 3.5. Let Schrf be the category of reduced schemes of finite type, with mor-

phisms the compositions of open and closed immersions. We define the E-morphisms 

to be the open immersions and the M-morphisms to be the closed immersions. The 

distinguished squares are those squares
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A B

C D

�

f

g

for which D = im f ∪ im g and which are pullbacks in the category of schemes.

We can also restrict attention just to smooth varieties.

Example 3.6. The category Var
sm
/k of smooth varieties can be given a CGW-structure. 

We set the m-morphisms to be closed immersions with smooth complements, and the 

e-morphisms to be open immersions with smooth complements. Thus Var
sm
/k is a sub-

CGW-category (but not a full sub-CGW-category) of Var/k.

4. The K-theory of a CGW-category

We are now ready to define the K-theory of a CGW-category. The construction exactly 

follows Quillen’s Q-construction [10] for exact categories. After the introduction of the 

definition, the rest of the section is taken up by noting some useful technical results and 

providing the standard presentation for the group K0(C).

Definition 4.1. For a CGW-category (C, φ, c, k) we define

K(C) = Ω|QC|,

where QC is the category with

objects: the objects of C,

morphisms: morphisms A B are equivalence classes of diagrams

A
f

X
g

B,

where f ∈ E and g ∈ M. Two diagrams

A
f

X
g

B and A
f ′

X ′ g′

B

are considered equivalent if there exists a diagram

X

A B

X ′

f

f ′

g

g′

∼=
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where the left-hand triangle commutes in E and the right-hand triangle com-

mutes in M. The functor φ is implicitly being used to place the vertical isomor-

phism in both E and M simultaneously.

composition: defined using Lemma 2.9. More concretely, given two equivalence classes 

of diagrams represented by

A
f

X
g

B and B
f ′

Y
g′

C

there exists a unique (up to unique isomorphism) distinguished square

X B

Z Y

�

g

g′′

f ′′ f ′ .

The composition of the two diagrams is defined to be the class of diagrams 

represented by

A
f ′′f

Z
g′g′′

C.

The basepoint is taken to be ∅.

Remark 4.2. Although we have defined K-theory for CGW categories, the K-theory of 

a double category is defined for any double category satisfying Lemma 2.9.

As with any definition of K-theory, the first step is to check that it gives the desired 

group on K0.

Theorem 4.3. K0(C) is the free abelian group generated by objects of C, modulo the rela-

tion that for any distinguished square

A B

D C

�

f

g

we have [D] + [B] = [A] + [C].

Proof. There are two ways to proceed. One could prove this by showing that K(C) is 

equivalent to some variant of the S• construction, and proceeding from there, or one 

could mimic Quillen’s original proof that π1(BQC) = K0(C) for exact categories. We opt 

for the latter, again to emphasize the analogy with exact categories.
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We follow a more modern version of the proof (see, e.g. [15, Proposition IV.6.2]).

The morphisms ∅ 
=

∅ A form a maximal tree in BQC. By [15, Lemma IV.3.4], 

the fundamental group π1(BQC) is generated by the morphisms of BQC, modulo the 

relations [∅ 
=

∅ A] = 1 and [f ] · [g] = [f ◦ g] for composable morphisms in 

QC. We proceed by a series of reductions to get the set of generators and relations in 

the theorem. In what follows we let [A X B] denote the equivalence class of a 

morphism A B in π1(BQC). The notation [A B] corresponds to the morphism 

[A 
=

A B] and similarly [A B] corresponds to [A B
=

B].

From the definition of Q we have [B C][A B] = [A C]. In particular, since 

[∅ X] = 1 in π1(BQC) for all objects X, [A B] = 1 for all m-morphisms.

We begin by noting that by definition

[A B][D A] = [D A B].

Now consider [B C][A B]. By Lemmma 2.9 there exists a distinguished square

A B

D C

�

which implies the relation

[B C][A B] = [D C][A D]

via the composition relation. Each distinguished square produces such a relation. Since 

all morphisms in M are equal to the identity, this reduces to the equation

[B C] = [A D]

for all distinguished squares. We have now shown that π1(BQC) has as generators the 

morphisms of E , with relations induced by composition and distinguished squares.

Since

[∅ A1][A1 A2] = [∅ A2]. (4.4)

π1(BQC) is generated by the elements [∅ A], which we abbreviate to [A]. This 

expression also eliminates the composition relation. We can substitute for both sides in 

the relations induced by the distinguished squares to get

[B]−1[C] = [A]−1[D].

This gives the desired presentation of K0(C).
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It remains to check that K0(C) is abelian; in other words, that [A][B] = [B][A]. The 

relations imposed by the squares in Axiom (A) state that

[A][B] = [X] = [B][A],

as desired. �

The rest of this section is devoted to some technical lemmas exploring the properties 

of this Q-construction. The first identifies the isomorphisms in QC via their components.

Lemma 4.5. If α: A B is an isomorphism inside QC for a CGW-category C repre-

sented by

A
f

X
g

B

then both f and g are isomorphisms in C.

Proof. Suppose that the inverse of α is represented by

B
f ′

Y
g′

A.

Then the composition is represented by a diagram

A X B

Z Y

A

f g

f ′′ f ′

g′′

g′

�

Since this is equivalent to 1A, f ′′f is an isomorphism. Since f ′′ is monic and f is its right 

inverse, it must be an isomorphism; thus f is an isomorphism. Doing the composition in 

reverse, we see that g has a right inverse and thus must also be an isomorphism. �

The next lemma illustrates that we can think of a morphism in QC as a set of “lay-

ers” inside M. This allows us to think about the Q-construction in CGW-categories 

analogously to the way that Quillen originally thought about exact categories in [10].

Lemma 4.6. For any CGW-category B and any B ∈ B, the category QB/B is equivalent 

to the category LBB with

objects: diagrams B1 B2 B in B,
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morphisms: commutative diagrams

B1 B2 B

B′
1 B′

2 B

In particular, QB/B is a preorder for any B.

Proof. It suffices to prove the first part of the lemma; the second follows from the 

definition of LBB and axiom (M).

We define a functor κ: QB/B LBB. An object of QB/B is a diagram B1
g

B2

B. We send this to the diagram Bk
1

gk

B2 B. Seeing that this extends to a 

functor is a bit more complicated. Suppose that

B1
g

B2
f

B and B′
1

g′

B′
2

f ′

B

are two objects of QB/B, and suppose that we are given a morphism between them. This 

morphism consists of an object C ∈ B and a diagram

B1 C B′
1

B2 B′
2

B

g

h′

h

f

g′

f ′

�

Applying c−1 to the upper-left triangle, this diagram corresponds to a unique diagram

B
k/C
1 C B′

1

B
k/B2

1 B2 B′
2

B

h′′ h

f

g′

f ′

� �

Applying k, this time to the two distinguished squares on the top, gives us a unique 

diagram
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B′
1

k/B′

2 = (B
k/B2

1 )k/h′′

B1
k/B2 B2 B′

2

B

f
f ′

This can be rearranged into a diagram

B
k/B2

1 B2 B

B′
1

k/B′

2 B′
2 B

f

f ′

as desired.

The inverse equivalence is given by sending a diagram B1 B2 B to 

B
c/B2

1 B2 B. By Axiom (K) these two functors give inverse equivalences. �

We now give several examples of K-theories of CGW-categories.

Example 4.7. We consider the examples from Section 3.

Example 3.1: When (C, c, k) arises from an exact category A, BQC = BQA, so K(C) =

K(A).

Example 3.2: The simplicial set BQC is an edgewise subdivision of the S•-construction 

for the Waldhausen category FinSet∗ with injections as the cofibrations (for a 

more in-depth discussion, see Theorem 7.8). Thus

K(C): = ΩBQFinSet∗ � KWald(FinSet+) � Ω∞Σ∞S0

where the last equivalence is by Barrat-Priddy-Quillen [1].

Example 3.3: In this case we also have K(C) � Ω∞Σ∞S0. Indeed, there is an equiv-

alence of CGW-categories between (FinSet, c, k) and (FinSet∗, c, k) from Ex-

ample 3.2 given as follows. An injection [i] [j] considered as an element of 

E ⊂ FinSet corresponds to an injection [i]+ [j]+ in FinSet∗. An injec-

tion u: [i] [j] considered as an element of M ⊂ FinSet corresponds to a 

surjection [j]+ [i]+ by taking m ∈ [j] to u−1(m) and the rest of [j] to the 

distinguished basepoint.

Example 3.4: K(Var) is equivalent to the K-theory of varieties defined in [2]; for a more 

detailed discussion, see Section 7.
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5. ACGW-categories

A CGW-category behaves like an exact category. In order to create categories that 

are analogous to abelian categories (with the goal of proving Quillen’s dévissage and 

localization) we need to assume some extra conditions. The extra conditions amount to 

the requirement that certain “pushout-like” objects exist and are compatible with c and 

k; in geometric settings this corresponds to certain gluings of objects.

Definition 5.1. An enhanced double category is a double category C with two notions 

of 2-cell, called the distinguished and pseudo-commutative squares. These are required 

to satisfy the property that forgetting either of the sets of squares produces a double 

category, and all distinguished squares are pseudo-commutative. We denote distinguished 

squares with � and pseudo-commutative squares with �.

We write Ar� M for the category whose objects are morphisms in M and whose 

morphisms are pseudo-commutative squares in C. We write Ar× M for the category 

whose objects are morphisms in M and whose morphisms are pullback squares in M. 

The category Ar� M is a subcategory of Ar� M and Ar� M is a subcategory of Ar× M

(since all morphisms in M are monic).

Remark 5.2. The term “pseudo-commutative” is inspired by the role that commutative 

squares play in the case when we are discussing abelian categories. Consider an abelian 

category A, and the associated CGW-category C. The distinguished squares in C are 

the stable squares. However, the commutative squares in A also play a role in the fol-

lowing sense. In an abelian category, every morphism f : A B can be factored as 

A im f B, an epic followed by a monic. This means that in C, any diagram of 

the form

X Z Y,

which represents a monic followed by an epic, can be completed to a square in an es-

sentially unique way. This square will not necessarily be distinguished, but it is still 

important. This completion is the “mixed pullback” that we define in the next defini-

tion.

Before we define a pre-ACGW-category we need one extra helper-definition; this is 

necessary because, although monomorphisms always behave well with respect to pull-

backs, they do not always behave well with respect to pushouts.

Definition 5.3. Let C be a category in which all morphisms are monic, and let

C A B

be a diagram in C. The restricted pushout of this diagram is the initial object (if it exists) 

in the category of commutative squares



J.A. Campbell, I. Zakharevich / Advances in Mathematics 411 (2022) 108710 21

A B

C X

which are also pullback squares; in other words, it is cones X under the diagram such 

that A ∼= B ×X C. As usual, a morphism between diagrams is a natural transformation 

in which all components are equal to the identity except at X. We denote restricted 

pushouts by B �A C.

The important intuition behind this definition lies in the following example:

Example 5.4. Let C be the category of sets and injections. Then C does not contain all 

pushouts, as for example the diagram

A ∅ A

does not have a pushout for any nonempty set A; this is because the map A 
 A A

is not a monomorphism. However, the restricted pushout of this diagram exists and, as 

expected, will be isomorphic to A 
 A.

We are now ready to define pre-ACGW-categories:

Definition 5.5. A pre-ACGW-category (C, φ, c, k) is an enhanced double category C which 

is a CGW-category when the pseudo-commutative squares are forgotten, and in which 

the following extra axioms are satisfied:

(P) M and E are closed under pullbacks.

(U) The functors c and k extend to equivalences of categories

c: Ar� M Ar× E and k: Ar� E Ar× M.

These are compatible in the sense that for any diagram A C B there exists 

a unique isomorphism

ϕ: (A ×C Bk)c/A (Ac ×C B)k/B

such that the square

(A ×C Bk)c/A (Ac ×C B)k/B B

A C

ϕ

�



22 J.A. Campbell, I. Zakharevich / Advances in Mathematics 411 (2022) 108710

is a pseudo-commutative square.

We write A �C B
def
= (Ac ×C B)k/B ∼= (A ×C Bk)c/A, so that we have a “mixed 

pullback square”

A �C B B

A C

�

(S) Suppose that we are given a pullback square

A ×C B A

B C

�

in M. Then X
def
= A �A×CB B exists. The induced commuting square

Xc/C Bc/C

Ac/C (A ×C B)c/C

(constructed using Lemma 2.10) is a restricted pushout.

The dual of this statement also holds.

Given a pre-ACGW-category (C, φ, c, k), a pre-ACGW-subcategory D is a sub-double 

category D of C (under both double category structures in C) such that (D, φ|D, c|D, k|D)

is also a pre-ACGW-category. We say that D is full if the vertical (resp. horizontal) 

category of D is a full subcategory of the vertical (resp. horizontal) category of C.

Definition 5.6. An ACGW-category is a pre-ACGW-category (C, φ, c, k) such that the 

following condition holds:

(PP) Restricted pushouts exist in M. These are compatible with cokernels, in the sense 

that a restricted pushout square
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A B

C B �A C

f

g′g

f ′

induces an isomorphism Ac/B
∼=

Cc/(B�AC). In addition, restricted pushouts are 

compatible with distinguished squares in the sense that given a diagram

C A B

C ′ A′ B′

� �

there is an induced map B �A C B′ �A′ C ′ such that the two induced squares 

are distinguished. These maps are compatible with compositions of distinguished 

squares.

The dual statement for e-morphisms holds as well.

The definition of � implies that it behaves functorially like a pushout, in the sense 

that given a diagram

C A
f1

B
f2

B′

it follows that (f2f1)′ = f ′
2f ′

1.

Example 5.7. Let A be an abelian category. Then A defines an ACGW-category for 

which M is the category of monomorphisms, E is the opposite category of the epimor-

phisms, distinguished squares are stable squares and pseudo-commutative squares are 

commutative squares. Here, the “mixed pullback” of a diagram

A B C

is the factorizarion of the morphism A C into an epic followed by a monic.

Axiom (S) translates to the following observation. Assuming that we are working in 

ModR, let C be an R-module, and A and B be submodules of C. Then A ×C B is A ∩B. 

Then X = A + B, and the square
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C/(A ∩ B) C/B

C/A C/X

is a pullback square.

(PP) corresponds to the fact that an abelian category has all pushouts of monics, and 

such pushouts preserve cokernels.

Example 5.8. The category Var is a pre-ACGW-category. Here we define the pseudo-

commutative squares to be the pullback squares.

We check the axioms in turn. Axiom (P) holds because varieties are closed under 

pullbacks. In order to check Axiom (U) it suffices to check that given a variety X and 

an open subvariety U and a closed subvariety Z, we have

Z\(Z ∩ (X\U)) ∼= U ∩ ((X\Z) ∩ U).

This is true because it is true in the underlying topological spaces, where each one is 

simply Z ×X U . Axiom (S) holds because it holds in the underlying topological spaces.

Counterexample 5.9. The CGW-category Var
sm
/k is not a pre-ACGW-category, since it 

is possible that the intersection of smooth subvarieties is not smooth. This means that 

the m-morphisms are not closed under pullbacks.

Example 5.10. The category Schrf is an ACGW-category, with the pseudo-commutative 

squares being pullback squares. With this definition we can consider Var a pre-ACGW-

subcategory of the ACGW-category Schrf . That Axioms (P), (U), and (S) hold follows 

identically as for the case of varieties.

Thus it remains to check Axiom (PP), in particular that �-products exist. The pushout 

of schemes along open immersions produces a square of open immersions by the definition 

of a scheme; the pushout of schemes along closed immersion produces a square of closed 

immersions of schemes by [11, Corollary 3.9]. These are not pushouts in the categories 

of closed/open immersions; these are pushouts in the entire category of schemes. That 

this satisfies the conditions of (PP) follows from the universal property of pushouts.

We now consider an example that will be used in Section 9.

Example 5.11. Let G be a discrete group, and consider the category FinSet � G, with

objects: finite sets, and

morphisms: S T is a pair of functions (f : S T, f ′: S G).
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A composition of morphisms (f, f ′): S T and (g, g′): T U is given by the pair 

consisting of g ◦ f and the composition

S Γf ⊆ S × T ∼= T × S
g′ × f ′

G × G
μ

G,

where μ is the composition in G.

More informally, we think of a morphism S T in FinSet �G as a map of finite sets 

S T together with a decoration by elements of G on each element of S. When we 

compose two such morphisms, we decorate each element by the multiplication of the two 

elements that it was decorated with in the composition: the decoration of the original 

element in the first morphism, and the decoration of its image in the second morphism. 

The swap in the definition is necessary because composition of morphisms acts on the 

left, rather than the right.

This can be demonstrated with the following picture:

1 2

3

A

1 2

3

B

1 2

C
f g

g1

g2

g3

h1

h2

h3

h1g1

h1g2

h2g3

Here, A, B, C ∈ FinSet �G are sets, illustrated by the elements in the circles. The dashed 

lines above morphisms f and g illustrate where elements map under f and g, together 

with decorations. The labeled dotted lines are the data of gf .

When G is trivial FinSet �G ∼= FinSet. By forgetting the decoration we get a functor 

FinSet � G FinSet.

We define an ACGW-structure on FinSet � G by declaring the e-morphisms and m-

morphisms to both be all maps which are injective on the underlying sets, and declare a 

square to be distinguished if it commutes in the ambient category and if it is distinguished 

when mapped down to FinSet. This makes FinSet � G an ACGW-category.

We finish this section with a couple of technical lemmas which will be useful later.
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Lemma 5.12. Let C be a pre-ACGW category. Given a diagram

C B A

C ′ B′ A′

� (5.13)

where C ∼= C ′ ×B′ B there exists a cube

C D

B A

C ′ D′

B′ A′

where the top and bottom squares are distinguished, the left and right squares are pull-

backs, and the front and back face are pseudo-commutative.

The statement with the roles of e-morphisms and m-morphisms swapped also holds.

Proof. Let

D = (Ck/B)c/A and D′ = ((C ′)k/B′

)c/A′

Applying c−1 to the left-hand square in (5.13) produces a diagram

Ck/B B A

(C ′)k/B′

B′ A′

��

which corresponds, under c, to the pullback square on the right of the cube. Lemma 2.9

shows that the squares on the top and bottom of the cube must be distinguished. To 

finish the proof of the lemma it remains to check that the back face of the cube is 

distinguished. To prove this it suffices to check that, after applying c to the m-morphisms 

in the diagram, it corresponds to a pullback square. This is a straightforward diagram 

chase using the fact that all morphisms are monic. �
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Lemma 5.14. Let C be a pre-ACGW category. In any pseudo-commutative square

A B

C D

�

f

f ′

if f ′ is an isomorphism, so is f .

Proof. Apply k vertically. This produces a pullback square

Ak Bk

C D

(f ′)k

f

Since f ′ is an isomorphism, (f ′)k must be, as well. Thus the pseudo-commutative square 

is mapped to an isomorphism inside Ar× M; in particular, both horizontal morphisms 

in the pseudo-commutative square must be isomorphisms. Thus f is an isomorphism, as 

desired. �

6. Dévissage

We can now prove a direct analog to Quillen’s dévissage [10, Theorem 5.4]. Analo-

gously to the case of exact and abelian categories, the K-theory of an ACGW-category 

is defined to be the K-theory of the underlying CGW-category.

As the definition of “creation of colimits” appears to differ from context to context 

we include the definition needed for the next theorem here:

Definition 6.1. A functor F : C D creates restricted pushouts if for every diagram

B A C

in C, if

F (B) F (A) F (C)

has a restricted pushout in D, then there exists a D ∈ C such that D is the pushout of 

the original diagram, and F (D) is the pushout of its image under F .

Theorem 6.2. Let A be a full pre-ACGW-subcategory of the pre-ACGW-category 

(B, φ, c, k), closed under subobjects and quotients (see Definition 2.12), such that the 
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inclusion A ∩ E E creates restricted pushouts. Suppose that for all objects B ∈ B

there is a sequence

∅ = B0 B1 · · · Bn = B

such that B
c/Bi

i−1 is in A for all i = 1, . . . n. Then the inclusion functor A B induces 

an equivalence K(A) K(B).

Proof. The proof proceeds exactly as in [10]. Let ι: A B be the inclusion of A into 

B. We would like ι to give a homotopy equivalence

BQA
BQι

BQB.

By Quillen’s Theorem A it is enough to show that Qι/B is contractible for any B ∈ B. 

Since A is closed under subobjects, Qι/B is the full subcategory of QB/B of those objects

A1 B2 B

where A1 ∈ A. By Lemma 4.6, QB/B is a preorder, and thus Qι/B is also a preorder.

By the hypothesis of the theorem, there exists a sequence

∅ = B0 B1 · · · Bn = B

with B
c/Bi

i−1 ∈ A for all i = 1, . . . , n. We prove that Qι/Bn
is contractible by induction on 

n.

We have B1 ∈ A; in this case Qι/B1
is contractible, since it has the terminal object 

B1
=

B1
=

B1.

To prove the inductive step it suffices to show that for any h: B B′ with Bc ∈ A

the map Qι/B Qι/B′ induced by postcomposition is a homotopy equivalence. Let 

LA
BB be the full subcategory of LBB containing those objects B1 B2 B where 

B
c/B2

1 ∈ A. By Lemma 4.6 it suffices to check that the functor ι: LA
BB LA

B′B induced 

by postcomposition with h is a homotopy equivalence.

Let B1 B2 B′ be any object of LA
B′B. We have the diagram

B1 ×B′ B B2 ×B′ B B

B1 B2 B′

g′

h

where both squares are pullback squares. We define functors

r: LA
B′B LA

BB r(B1 B2 B′) = B1 ×B′ B
g′

B2 ×B′ B B.



J.A. Campbell, I. Zakharevich / Advances in Mathematics 411 (2022) 108710 29

s: LA
B′B LA

B′B s(B1 B2 B′) = B1 ×B′ B B2 B′.

If s is well-defined (so (B1 ×B′ B)c/B2 ∈ A) then so is r, because (B1 ×B′ B)c/g′

is a 

subobject of (B1 ×B′ B)c/B2 . Thus we just need to check that s is well-defined.

First, by Axiom (U) there exists a map (B2 ×B′ B)c/B2 Bc/B′

; since Bc/B′

∈ A, 

it follows that (B2 ×B′ B)c/B2 must be, as well. Now by Axiom (S), (B1 ×B′ B)c/B2 ∼=

B
c/B2

1 �Y c/B2 (B2 ×B′ B)c/B2 , where Y = B1 �B1×B′ B (B2 ×B′B), which exists by Axiom 

(S); since the inclusion A ∩ E E creates restricted pushouts, if each component of 

this pushout is in A, then so is (B1 ×B′ B)c/B2 . By assumption B
c/B2

1 ∈ A and by the 

above (B2 ×B′ B)c/B2 ∈ A, so Y c/B2 is also in A (as A is closed under subobjects). Thus 

(B1 ×B′ B)c/B2 ∈ A, and s is well-defined, as desired.

Redrawing the above diagram, we have the following diagram:

B1 B2 B′ 1LA

B′ B

B1 ×B′ B B2 B′ s

B1 ×B′ B B2 ×B′ B B′ ιr

The upper row of squares gives a natural transformation 1LA

B′
B s; the lower row gives 

a natural transformation ιr s. Since natural transformations realize to homotopies, 

we see that ιr is homotopic to the identity on LA
B′B. On the other hand, rι is equal to 

the identity on LA
BB, so these produce a homotopy equivalence of spaces, as desired. �

We can now apply this theorem to compare the K-theory of varieties to the K-theory 

of reduced schemes of finite type.

Example 6.3. We use the dual of Theorem 6.2 to prove that K(Var) � K(Schrf ).

Var is a subcategory of Schrf closed under subobjects and quotients; the inclusion 

Var∩ M M creates pushouts since the pushout of varieties along closed immersions 

is a variety [11, Cor. 3.9]. To apply the theorem we must show that for every reduced 

scheme of finite type X there exists a filtration

X0 X1 · · · Xn = X

such that Xi � Xi−1 is a variety for all i. Since X is of finite type there exists a finite 

cover of X by affine opens U1, . . . , Un; each of these is reduced since X is and separated 

because each is affine. We then define

Xi =
i⋃

j=1

Ui.
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This gives a finite open filtration of X; it remains to show that Xi � Xi−1 is a variety 

for all i. Note that Xi � Xi−1 = Ui �
⋃i−1

j=1(Uj ∩ Ui). This is reduced, separated and of 

finite type, and is thus a variety, as desired.

7. Relationship with the S•-construction

In this section we relate our Q-construction to a variation of the S•-construction of 

Waldhausen [14]. We will show that the Q-construction is equivalent to the construction 

defined for Var/k in [2]. As the S•-construction applied to an abelian category is not 

abelian, it is unreasonable to expect that in all cases it will be possible to iterate the 

construction. However, as the S•-construction for ACGW-categories produces a CGW-

category, it is possible to iterate it twice. It turns out that this is sufficient to prove a 

cofiber sequence and the relationship to the Q-construction.

Remark 7.1. In the interest of keeping this section short and readable, we do not state 

definitions or results in the full generality that would be analogous to Waldhausen’s 

exposition. Instead, we restrict attention to the special cases of interest to us.

We begin by presenting the definition of the S• construction for CGW-categories.

Definition 7.2. Let C be a CGW-category. Define S•C to be the simplicial set with n

simplices SnC given by diagrams in the double category C

C00 C01 C02 · · · C0(n−1) C0n

C11 C12 · · · C1(n−1) C1n

...

Cnn

such that

(1) Cii = ∅ for all i, and

(2) Every subdiagram
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Cki Ckl

Cji Cjl

�

for k < j and i < l is distinguished.

The face and degeneracies are defined as in the usual S•-construction: the ith face map 

is deleting the ith row and ith column, and the degeneracies are given by repetition. 

(For more on the traditional S•-construction, see [14, Section 1.3]; for a more explicit 

description of how this works in the case of varieties, see the S̃•-construction in [2, 

Definition 3.31].)

Remark 7.3. The arrow directions in the diagram are chosen to agree with existing 

examples.

Example 7.4. When C = Var, then S•C is exactly the S̃• construction of [2, Def. 3.31].

Definition 7.5. Given a CGW category (C, M, E) define

KS(C): = Ω|S•C|

Remark 7.6. When C is, for example, an exact category this agrees with Waldhausen’s 

S•-construction by Corollary 2 following [14, Lem. 1.4.1].

Remark 7.7. In [2], the author introduced the S̃• construction, which is a version of 

the Waldhausen construction that works on SW -categories [2, Defn 3.23]. These cat-

egories are meant to encode cutting and pasting, just as CGW categories do. In fact, 

in that paper there are three notions of such categories that appear: 1. pre-subtractive 

category, 2. subtractive categories and 3. SW-categories. Pre-subtractive are closely re-

lated to CGW-categories; they are categories where one can define a higher geometric 

object that encodes cutting and pasting. Subtractive categories correspond to ACGW-

categories: certain pushouts and pullbacks are required to exist. Finally, SW -categories, 

like Waldhausen categories, are allowed to have weak equivalences other than isomor-

phisms. Subtractive categories satisfy the axioms for ACGW-categories, and in this case 

the corresponding S• constructions are equivalent and, in fact, equal; in such situations 

we will say that the ACGW-category arises from a subtractive category. An ACGW-

category where the distinguished squares are cartesian in the underlying category A, is 

an SW -category, and we may use the full machinery of SW -categories. This is true, for 

example, for Schrf,/k and FinSet∗.

As expected, this new definition of K-theory is equivalent to the original one.
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Theorem 7.8. Let (C, M, E) be a CGW category. Then there is a weak equivalence of 

topological spaces

KS(C) ∼ K(C)

induced by a map of simplicial sets S•C QC.

The equivalence above is one of topological spaces, not of infinite loop spaces or 

spectra. While in many cases the equivalences are equivalences of infinite loop spaces, 

that statement is not true in this generality (for example, smooth varieties cannot be 

delooped in the way described in [2, Sec. 5] since it relies on the existence of pushouts). 

We hope to address deloopings in future work.

In order to make the proof of Theorem 7.8 as formally similar to the classical “S• = Q” 

theorem due to Waldhausen ([14, Sect 1.9]) we introduce the following definition.

Definition 7.9. Let (C, M, E) be a CGW-category. We define iSnC to be a category with

objects: Elements of SnC

morphisms: A collection of isomorphisms fij : Cij C ′
ij in M such that the diagrams

Cik Clk Cij Cik

C ′
ik C ′

lk C ′
ij C ′

ik

fik flk φ(fij) φ(fik)

commute in M and E , respectively.

Remark 7.10. We could have also used the isomorphisms in E in the above definition. 

The isomorphism φ guarantees the resulting definition is categorically equivalent to the 

one above.

Proof of Theorem 7.8. The definitions are designed to make this statement work exactly 

as in Waldhausen [14, Sect 1.9]. Let iQC be the double category where vertical morphisms 

are isomorphisms in QC and horizontal morphisms are morphisms in QC. Taking the 

nerve in the horizontal direction, we obtain a simplicial category iQ•C. There is an 

equivalence |QC| 
�
−→ |iQ•C| given by Waldhausen’s Swallowing Lemma [14, Lem. 1.6.5].

Similarly, let sd iS•C be the simplicial category we obtain from edgewise subdividing 

the S•-construction (for an introduction and proof of the properties of edgewise subdi-

vision see [12, App. 1]). There is now a functor

sd iS•C iQ•C
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defined as in [14, Sect. 1.9]. It is a level-wise categorical equivalence, and thus induces 

a weak equivalence of bisimplicial sets, by the usual realization lemma (see, e.g. [13, 

Lem. 5.1]).

Altogether we have

|iS•C|
∼=

|sd iS•C|
�

|iQ•C|
�

|QC|

where the first map, a homeomorphism, is given by [12, Prop. A.1].

Finally, we have the commutative diagram

|S•C| |sdS•C| |QC|

|iS•C| |sdiS•C| |iQC|

∼=

∼

∼

∼

∼

∼

where we know that all of the indicated arrows are weak equivalences, and so the remain-

ing arrow is a weak equivalence. The composite across the top |S•C| |QC| is thus a 

weak equivalence. Upon taking loop spaces this gives the statement of the theorem. �

As a corollary we can now show that Dévissage works for SW-categories that are the 

ambient categories of pre-ACGW-categories.

Corollary 7.11. Let A and C be pre-ACGW-categories satisfying the conditions of Theo-

rem 6.2. Then the map

KS(A) KS(C)

is an equivalence. In particular, if A and C are constructed from SW-categories [2] then 

the induced maps on K-theories of the SW-categories are also an equivalence.

We now use Waldhausen’s approach to define relative K-theory (Definition 7.14) and 

prove a homotopy fiber sequence between the relative K-theory and ordinary K-theories 

(Proposition 7.15, analogous to [14, Prop. 1.5.5]). These will be needed in Section 9 to 

prove that the previous constructions of the K-theory of varieties are equivalent.

Definition 7.12. Let A be an ACGW-category. We define a CGW-structure on SnA. We 

give SnA distinguished families of M and E morphisms as follows.

M-morphisms: A collection of maps fij : Cij Dij in M such that
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Cij Dij Cik Dik

Cik Dik Clk Dlk

are in Ar× M and Ar� M, respectively. We visualize these as cubes

Cij Cik

Dij Dik

Clj Clk

Dlj Dlk

E-morphisms: A collection of maps gij : Cij Dij in E such that

Cij Dij Cik Dik

Cik Dik Clk Dlk

are in Ar� E and Ar× E , respectively. We visualize these as cubes

Cij Cik

Dij Dik

Clj Clk

Dlj Dlk
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Distinguished squares: Let C··, D··, E··, F·· denote objects in SnA. A distinguished 

square consists of M-morphisms C·· D··, E·· F·· and E-morphisms 

Ċ̇ Ė̇, D˙̇ Ė̇ such that each

Cij Dij

Eij Fij

is distinguished

The functors φ, c, k: The isomorphism φ is induced from the isomorphisms on A. The 

functors c, k are defined pointwise. The fact that the resulting squares are as 

described is guaranteed by Definition 5.5, Axiom (U).

We now describe the enhanced double category structure on SnA.

Enhanced Structure: The enhanced double category structure on SnA, we define 

pseudo-commutative squares pointwise. That is, let C··, D··, E··, F·· denote ob-

jects in SnA. An element of Ar� SnA is given by C·· D·· and E·· F·· and 

C·· E·· and D·· F·· such that each

Cij Dij

Eij Fij

is in Ar� M. The 2-cells Ar× MSnA, Ar� ESnA and Ar× ESnA are defined simi-

larly.

With the definitions above, the following is tedious, but straightforward. Indeed, the 

definitions were chosen to make this lemma true.

Lemma 7.13. SnA, with the structure from Definition 7.12, satisfies all of the axioms of 

a CGW-category except for Axiom (A). In particular, the S•-construction can be applied 

to S•A.

Using this we can define the relative S•-construction.
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Definition 7.14. A pair (B, A) of an ACGW-category B and a sub-ACGW-category A is 

good if A is full and if for every isomorphism B
∼=

B′ in B, B is in A if and only if B′

is. For a good pair (B, A), define Sn(B, A) via the pullback

Sn(B, A) Sn+1B

SnA SnB.

d0

In other words, Sn(B, A) is the full subcategory of those objects C•• in Sn+1B in which 

Cij ∈ A for all i > 0.

The category Sn(B, A) inherits the structure of a CGW-category. The relative K-

theory of (B, A) is defined to be

K(B, A): = Ω|S•(B, A)|

To conclude the section we prove an analog of additivity for the Q-construction and 

use it to construct a homotopy fiber sequence relating relative K-theory to the K-theory 

of the component categories.

Proposition 7.15 (Additivity and Cofiber sequence). Let (B, A) be a good pair which 

arises from a subtractive category and a full subtractive subcategory. Then there exists a 

weak equivalence

QSn(B, A) QB × QSnA.∼

Moreover, the following is a homotopy fiber sequence after geometric realization:

QB QS•(B, A) QS•A.

Proof. For any object C•,• in SnB, write C•−1,−1 for the object in Sn−1B containing all 

elements with positive indices. When C•,• ∈ Sn(B, A), C•−1,•−1 can be considered to lie 

in SnA.

There are functors

Sn(B, A) B and Sn(B, A) SnA

C•,• C0,0 C•,• C•−1,•−1

F ′ F ′′

which induce a map f : QSn(B, A) QB × QSnA. This map is a coretraction, where 

the reverse map is constructed using the subtractive structure of B. These fit into a 

commutative diagram
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QB QSn(B, A) QSnA

QB QB × QSnA QSnA

f

in which the bottom row is a homotopy fiber sequence (in fact a trivial fiber sequence), 

QB QSnA is constant, and QSnA is connected. Thus, by [13, Prop. 5.2], to prove 

that the geometric realization of

QB QSn(B, A) QSnA

is a homotopy fiber sequence it suffices to check that f is a weak equivalence; thus the 

second part of the proposition follows from the first.

Consider the following commutative diagram:

QSn(B, A) QB × QSnA

S•Sn(B, A) S•B × S•SnA

f

∼ ∼

f ′

The vertical arrows are weak equivalences by Theorem 7.8 and [13, Lemma. 5.1]. Thus 

f is a weak equivalence if and only if f ′ is. By assumption, A and B arise from SW -

categories, and as S•-constructions for ACGW-categories that arise from SW -categories 

agree by definition, f ′ is a weak equivalence by [2, Proposition 5.3]. Thus f ′ must also 

be a weak equivalence, and the proposition follows. �

Remark 7.16. In fact, the assumption that A and B arise from SW -categories can be 

significantly weakened; the only assumption necessary is that axioms (A) and (PP) 

hold sufficiently functorially. In order to check this it is necessary to check that all 

steps in the proofs of [2, Theorem 4.5, Proposition 5.3] work analogously in ACGW-

categories. However, as this would significantly disrupt the flow of this paper (and not 

add significantly to understanding) we omit this more general result here; instead, we 

restrict solely to the case in which it is needed later in the paper.

8. Localization of ACGW-categories

In this section we state the new definition necessary to state the localization the-

orem. The goal of a localization theorem is to identify the homotopy cofiber of the 

map K(A) K(C) induced by the inclusion of a sub-CGW-category. In order to 

prove the cleanest version of the theorem it is necessary to make extra assumptions 

about the structure of A and C, and thus passage to ACGW-categories is necessary. 
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In addition, in order to ensure that objects in A can be worked with easily, we as-

sume some nice closure properties on A (similar to the closure properties assumed by 

Quillen).

Let C = (E , M) be an ACGW-category, and let A be a full ACGW-subcategory closed 

under subobjects, quotients and extensions, as defined in Definition 2.12. The first step 

towards stating localization is identifying the CGW-category whose K-theory we hope 

to be the cofiber.

The idea of the localized category is to define morphisms A B to be morphisms 

defined from a “dense subset” to a “dense subset,” where “dense” is defined to be subob-

jects/quotients whose cokernel/kernel are in the subcategory A. This is motivated by the 

definition of monomorphism/epimorphism in an abelian quotient category C/A, where 

(for example), a monomorphism A B in the quotient category is a diagram

A A′ B′ B

where the cokernel of A′ A and the kernel of B′ B are both in A. We can commute 

the monomorphism and epimorphism past one another (in an epic-monic factorization) 

to instead write this as a diagram

A A′ B′′ B

where the cokernel of A′ A and the kernel of A′ B′′ must be in A. Two such 

diagrams are equivalent when they have a “common refinement” on which they are 

identical. This is exactly the definition of an m-morphism in the localized category, 

except that we are allowed to “reduce the size of A” by both an m-morphism and an 

e-morphism.

Definition 8.1. Let A B be a morphism in M. We write if Ac ∈ A. We define 

analogously.

Let C\A be the double category with

objects: the objects of C,

m-morphisms: A morphism A B is an equivalence class of diagrams in C

A A′ X B′ B.

If there exists a diagram in C
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X B′

A′

A B

A′′

X ′ B′′

� �

� �

∼=

then the two formal compositions around the outside are considered equivalent. 

The right-most square with the isomorphism in the middle is the same square 

that determines when two morphisms in QC are equivalent.

Composition is defined via a similar type of diagram, commuting the different 

types of morphisms past one another.

e-morphisms: A morphism A B is an equivalence class of diagrams in C

A A′ X B′ B.

The equivalence relation between these is defined to be the dual condition to 

the condition on m-morphisms.

distinguished squares: The distinguished squares are generated by the distinguished 

squares in C and axiom (I). For a more detailed description, see Appendix A.

In this section we will often be working with morphisms in C\A as represented by 

diagrams in C. As these categories have the same objects this can get confusing. To help 

with this, we denote morphisms in C by arrows with straight shafts, and morphisms in 

C\A by morphisms with wavy shafts. We can thus say that an m-morphism A B in 

C\A is represented by a diagram

A A′ X B′ B

in C.

We define c: Ar� M Ar� E on objects by c(A B) = cC(B′ B), and 

k: Ar� E Ar� M by k(A B) = kC(B′ B).

There is a functor of double categories s: C C\A which takes each object to itself 

and takes every morphism to itself.
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Remark 8.2. As currently defined, C\A does not have the structure of a CGW-category, 

as we cannot prove that the definitions of c and k give equivalences of categories. Proving 

that such a structure exists appears to require a development of a theory of a left calculus 

of fractions for a double category. As this is far beyond the scope of this paper, we state 

as a condition of the localization theorem that C\A extends to a CGW-category in a 

fashion compatible with the CGW-structure on C and the functor s: C C\A and show 

that this works for our relevant examples. In Proposition A.1 we show that as long as 

c and k give equivalences of categories, C\A is a well-defined CGW-category. In future 

work we hope to simplify this condition.

If C\A is a CGW-category then by definition the functor s is a CGW-functor.

Before turning to the main theorem we revisit the example of the localization of an 

abelian category in detail, as the above definition is by no means easy to understand.

Example 8.3. Let C be an abelian category and A a Serre subcategory, considered as 

ACGW-categories. Then we claim that C\A is exactly the abelian category C/A, con-

sidered as an ACGW-category. First, consider the monics. A morphism in C is monic in 

C/A exactly when it can be represented by a zigzag

X
s

Z
f

Y

where the kernel and cokernel of s are in A, and when the kernel of f is in A. Writing both 

s and f in an epic-monic factorization and switching to the notation of CGW-categories, 

such a monic can be represented by a zigzag

X X ′ Z Y ′ Y.

As C is abelian, e-morphisms are closed under pullbacks (i.e., epimorphisms are closed 

under pushouts in C), and thus this representation is equivalent to the representation

X X ′ X ′ ×Z Y ′ Y ′ Y.

Using Lemma 2.10 we can swap the order of the two arrows on the left half, to produce 

a representation

X X ′′ X ′ ×Z Y ′ Y ′ Y,

as desired. Given that we can also reverse this construction, we see that the monics (and, 

analogously, the epics) are as represented.

Since C/A is abelian it immediately follows that C\A must be a CGW-category.

Before we state the main theorem, we need some auxillary definitions.
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Definition 8.4. Let V be an object in C\A. The category Im
V has as its objects pairs (N, φ), 

where N ∈ C and φ: sN V is an isomorphism in C\A. A morphism (N, φ) (N ′, φ′)

is an equivalence class of diagrams g: N
ge

Y
gm

N ′ (where diagrams are allowed to 

differ by an isomorphic choice of Y ) such that φ′s(g) = φ. Here, s(g) is considered as an 

isomorphism in C\A. Composition is defined using mixed pullbacks.

The category Ie
V is defined analogously with the roles of m-morphisms and e-

morphisms swapped.

If Im
V is filtered for all V we say that A is m-well-represented in C. Dually, if Ie

V is 

filtered for all V we say that A is e-well-represented in C.

We think of Im
V as the category of representatives inside C of an isomorphism class 

of objects in C\A. When this category is filtered it means that representatives of V can 

always be chosen compatibly, at least in the m-morphism direction.

Definition 8.5. Suppose that for every diagram

A B C

in C there exists a pseudo-commutative square

A′ B

A′ C

�

such that A′ B factors through A B. Then we say that A is m-negligible in C. 

If the same statement holds with the m-morphisms and e-morphisms swapped, we say 

that A is e-negligible in C.

Negligibility is a “dual” notion to well-representability. Whereas well-representability 

states that representatives can always be compatibly combined, negligibility says that 

certain representatives can be ignored. If A is m-negligible in C this means that we never 

have to think about e-components of morphisms inside QC; all such morphisms can be 

represented (up to pseudo-commutative square) purely as an m-morphism.

We are now ready to state the CGW version of localization.

Theorem 8.6. Suppose that C is an ACGW-category and A is a sub-ACGW-category 

satisfying the following conditions:

(W) A is m-well-represented or m-negligible in C and A is e-well-represented or e-

negligible in C.
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(CGW) C\A is a CGW-category.

(E) For two diagrams A X B and A X ′ B which represent the same 

morphism in C\A there exists an e-morphism C B and an isomorphism 

α: X �B C X ′ �B C such that the induced diagram

A X �B C

X ′ �B C C

α

commutes. The same statement holds with e-morphisms and m-morphisms 

swapped.

Then the sequence

K(A) K(C) K(C\A)

is a homotopy fiber sequence.

We postpone the proof of Theorem 8.6 until Section 10. As mentioned in Remark 8.2, 

in order for condition (CGW) to hold it suffices to check that c and k (as defined on 

objects) extend to equivalences of categories. In this section we focus on two applications 

of the theorem.

The first application is a sanity check, showing that in the case of an abelian category 

the theorem is the same as Quillen’s localization [10, Theorem 5.5].

Example 8.7. Continuing Example 8.3, we show that Theorem 8.6 applies in this example; 

thus Theorem 8.6 is truly a generalization of Quillen’s localization theorem.

Consider condition (W); we will show that A is both m- and e-well-represented in C. 

By symmetry it suffices to check that Im
V is filtered. An object (N, φ) ∈ Im

V is an object 

N ∈ C together with a mod-A-isomorphism N V ; a morphism (N, φ) (N ′, φ′)

is a morphism g: N N ′ in C such that φ′s(g) = φ. Suppose that we are given 

two morphisms g, g′: (N, φ) (N ′, φ′). Then the morphism N ′ N ′/im(g − g′) is 

a mod-A-isomorphism which equalizes g and g′; thus Im
V has coequalizers. Now sup-

pose that we are given two objects (N, φ) and (N ′, φ′) in Im
V . Choosing representatives 

appropriately, these give a diagram in C
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Ñ V ′ Ñ ′

N N ⊕
Ñ

V ′ V N ′ ⊕
Ñ ′ V ′ N ′

(N ⊕
Ñ

V ′) ⊕V ′ (N ′ ⊕
Ñ ′ V ′)

ψ

where the bulleted arrows represented mod-A-isomorphisms. The object ((N ⊕
Ñ

V ′) ⊕V ′

(N ′ ⊕
Ñ ′ V ′), ψ) then represents an object under both (N, φ) and (N ′, φ′). Thus Im

V is 

filtered, as desired.

It remains to check (E). This is simply the fact that for any two morphisms A B

in C which map to the same isomorphism in C/A there is a quotient of B (by an object 

in A) on which they are equal—in other words, this is the observation that if g and g′

represent the same isomorphism in C/A then im (g − g′) is in A.

The second example is the case of reduced schemes of finite type of bounded dimension; 

we will be using this example in Section 9 to compare different models of the K-theory 

of varieties.

Example 8.8. Let Sch
d
rf be the category of reduced schemes of finite type over k which 

are at most d-dimensional. As mentioned in Example 5.10, Schrf is an ACGW-category; 

since morphisms can only increase the dimension of a scheme it follows directly that 

Sch
d
rf is also an ACGW-category.

We claim that Theorem 8.6 applies for Sch
d−1
rf ⊆ Sch

d
rf . We check the conditions in 

turn.

First, consider condition (W). We claim that Sch
d−1
rf is m-well-represented and e-

negligible in Sch
d
rd. Here, an isomorphism in Sch

d
rf \Sch

d−1
rf is (the germ of) an isomor-

phism between open subsets whose complements are at most d − 1-dimensional. Thus 

when considering an isomorphism we can discard all irreducible components of dimen-

sion less than d. In addition, we can assume that all d-dimensional components are 

smooth and consider isomorphisms to be birational isomorphisms. To check that Sch
d
rf

is m-well-represented it suffices to check that for any two representatives of a birational 

isomorphism there exists a common dense open subset on which they are defined. This 

is clearly true.

To check that Sch
d−1
rf is e-negligible in Sch

d
rf we note that for any diagram 

A B C if we take the nonsingular locus of the d-dimensional irreducible compo-

nents of C and intersect it with the image of A we get exactly the desired subset, as all 

that the inclusion B C can add is either (a) disjoint components of dimension less 

than d or (b) components of dimension less than d that intersect d-dimensional com-
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ponents. In case (b) the intersections are singular in C, so when we remove them we 

produce exactly the desired morphism.

We now check condition (CGW). Proposition A.1 states that for C\A to be a CGW-

category we are only required to show that c and k are well-defined equivalences of 

categories; the other axioms follow directly from the definitions. In Sch
d
rf \Sch

d−1
rf all 

objects are canonically isomorphic to the disjoint union of their d-dimensional connected 

components, so it suffices to consider these examples. By definition, both the e-morphisms 

and m-morphisms in Sch
d
rf \Sch

d−1
rf are birational isomorphisms of the domain with a 

subset of the components of the codomain. Both c and k simply take the components 

not hit by the morphism. Consider taking each object to its set of connected compo-

nents; from the definition of the distinguished squares (see Appendix A) a square in 

Sch
d
rf \Sch

d−1
rf is distinguished if and only if the produced square in the category of 

finite sets is distinguished. The fact that c and k are equivalences of categories thus 

follows from the fact that they are induced from c and k on the category FinSet.

It remains to check condition (E). Since � in Sch
d
rf is simply intersection of schemes 

the condition as stated follows by the same argument as the negligibility condition above. 

To check the condition with m-morphisms and e-morphisms reversed, let Ad be the d-

dimensional irreducible components of A. Then Ad X ×A X ′ exists, and the maps 

Ad X B and Ad X ′ B are equal inside the (ordinary) category of 

schemes (since they must be equal on a dense open subset, as they are equivalent in 

Sch
d
rf \Sch

d−1
rf ). Factoring this morphism as Ad C B gives the desired object C.

We now observe that, by the equivariant Barratt–Priddy–Quillen theorem,

K(Sch
d
rf \Sch

d−1
rf ) �

⊕

α∈Bn

Ω∞Σ∞BAut(α).

Here, Bn is the set of birational isomorphism classes of schemes of dimension d, and 

Aut(α) is the group of birational automorphisms of a representative of the class.

9. A comparison of models

In this section we compare both authors’ models for K(Var/k). Write KC(Var/k) for 

the K-theory of varieties defined as in [2], and let KZ(Var/k) denote the model in [16]. 

We then have the following comparison theorem.

Theorem 9.1. KC(Var/k) is weakly equivalent to KZ(Var/k).

The rest of this section focuses on the proof of the theorem. For conciseness we fix 

the base field k and omit it from the notation. To prove the theorem we construct an 

auxilliary SW-category Schrfw and show that there are weak equivalences

KC(Var) ∼ KC(Schrf ) ∼ KC(Schrfw) ∼ KZ(Var).
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Recall that Schrf is the ACGW-category of reduced schemes of finite type (Exam-

ple 5.10). By an abuse of notation, we also write Schrf for the SW-category of reduced 

schemes of finite type (see Remark 7.7). The left-hand map is an equivalence by Corol-

lary 7.11, so we focus on the zig-zag on the right.

Remark 9.2. Constructing the weak equivalence on the right (and checking that it is, 

in fact, a weak equivalence) is a relatively straightforward exercise in simplicial objects 

(see Proposition 9.13), and has been known to the authors for several years. The most 

difficult part of this proof is actually checking that the middle map (which is induced 

by an inclusion of SW-categories) is a weak equivalence on K-theory. In Waldhausen 

categories, this is analogous to the following question: suppose that C is a Waldhausen 

category in which the weak equivalences do not satisfy the Extension axiom [14, p. 327]. 

Let C′ be the Waldhausen category with the same underlying category and cofibrations as 

C together with the minimal set of weak equivalences that includes all weak equivalences 

in C and satisfies Extension. Does the natural functor C C′ induce a weak equivalence 

on K-theory? The authors could not find an answer to this question, but the current 

example on schemes produces an interesting example where the answer is “yes.”

Definition 9.3. We define a new SW-category Schrfw. Its underlying category is Schrf , 

the category of reduced schemes of finite type. We define the structure maps by setting

cofibrations: the open immersions, and

complement maps: the closed immersions, and

weak equivalences: those morphisms f : X Y such that there exists a stratification

∅ = Y0
cl

Y1
cl

· · ·
cl

Yn = Y

of Y by closed immersions such that for all i, the induced map fi: X ×Y (Yi \

Yi−1) Yi \ Yi−1 is an isomorphism.

Remark 9.4. This is equivalent to the statement that there is a corresponding filtration 

Xi on X such that fi : Xi \ Xi−1 Yi \ Yi−1 is an isomorphism. We sometimes use the 

condition in this form.

We state the relevant definitions on the assembler-side of the equivalence.

Definition 9.5. The assembler Var (resp. Schrf ) has as objects the varieties (resp. 

reduced schemes of finite type), with morphisms the locally closed immersions. The topol-

ogy on Var (resp. Schrf ) is generated by the coverage consisting of pairs {Y X, X �

Y X}, where Y X is a closed immersion.

The inclusion of assemblers Var Schrf includes an equivalence of K-theories by 

[16, Theorem B], as every reduced scheme of finite type has a finite disjoint cover by 

varieties.



46 J.A. Campbell, I. Zakharevich / Advances in Mathematics 411 (2022) 108710

As the proof of Theorem 9.1 has many parts, we begin by presenting the basic outline. 

This will reduce the proof to showing that certain morphisms are equivalences on K-

theory, and the rest of the section will focus on each of those maps in turn.

Outline of proof for Theorem 9.1. The category of reduced schemes of finite type comes 

equipped with a filtration by dimension. This filtration is inherited by Schrf and Schrfw, 

and the inclusion Schrf Schrfw is compatible with this filtration. Note that

KC(Schrf ) = hocolim
n

KC(Sch
n
rf ),

and similarly for KZ(Schrf ) and KC(Schrfw). Thus to show the theorem it suffices to 

show that there exist equivalences KC(Sch
n
rf ) KC(Sch

n
rfw) and KZ(Sch

n) 

KC(Sch
n
rfw) for all n which are compatible with the inclusions on the filtrations.

Proposition 9.13 constructs a map KZ(Sch
n
rf ) KC(Sch

n
rfw) which is an equiva-

lence for all n. The map KC(Sch
n
rf ) KC(Sch

n
rfw) is induced by the identity map 

on the underlying categories (as both Schrf and Schrfw have the same underlying SW-

category; they differ only in their choice of weak equivalences).

Our proof proceeds by induction on n. When n = 0, Sch
0
rf = Sch

0
rfw, so the K-

theories of these are equal. We now assume that the natural inclusion KC(Sch
n−1
rf ) 

KC(Sch
n−1
rfw ) is an equivalence. Consider the following diagram:

KC(Sch
n−1
rf ) KC(Sch

n−1
rfw ) KZ(Sch

n−1
rf )

KC(Sch
n
rf ) KC(Sch

n
rfw) KZ(Sch

n
rf )

KC(Sch
n
rf , Sch

n−1
rf ) KC(Sch

n
rfw, Sch

n−1
rfw ) KZ((Sch

n
rf /i)•)

i

∼

i′

∼

i

g ∼

g′ f

(9.6)

The columns in this diagram are homotopy fiber sequences. The column on the right 

is produced by [16, Theorem C], the other two columns are produced by [2, Prop. 5.5]. 

The maps between the columns are given below. Since the columns are homotopy fiber 

sequences of loop spaces, f must be a weak equivalence by the five lemma. The map 

g is a weak equivalence if and only if g′ is, so we focus on proving that g′ is a weak 

equivalence.

In Definitions 9.12, 9.14, 9.16, and 9.18 we show that there exists a category D and 

morphisms

λ: KC(Sch
n
rf , Sch

n−1
rf ) KC(D), (9.7)

β: KC(Sch
n
rfw, Sch

n−1
rfw ) KC(D), and (9.8)

ρ: KZ((Sch
n
rf /i)•) KC(D) (9.9)
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making the following diagram commute:

KC(Sch
n
rf , Sch

n−1
rf ) KC(Sch

n
rfw, Sch

n−1
rfw ) KZ((Sch

n
rf /i)•)

KC(D)

g′ f
∼

ρ
β

λ

Here, the top row is the bottom row of (9.6). The map β is a weak equivalence by 

Proposition 9.17. Thus we see that g′ is an equivalence if and only if λ is; that λ is an 

equivalence is exactly the conclusion of Proposition 9.19. Thus g′ is an equivalence, and 

the inductive step is complete. �

We now turn our attention to filling in the details of the proof above. We begin by 

checking that Schrfw is well-defined.

Lemma 9.10. Let X, Y, Z ∈ Schrfw and suppose X Y and Y Z are weak equiva-

lences. Then X Z is a weak equivalence.

Proof. Recall that X Y being a weak equivalence is the statement that there is a 

stratification

∅ = Y0 Y1 · · · Yn

such that X ×Y (Yi \ Yi−1) 
∼=
−→ Yi \ Yi−1. Similarly for Y Z. We must produce a new 

stratification of Z, call it Z ′
i, such that X ×Z (Z ′

i \ Z ′
i−1) 

∼=
−→ (Z ′

i \ Z ′
i−1). We do this 

by stratifying each (Zi \ Zi−1) in turn, using the stratification of Y , and gluing these 

together.

The problem thus reduces to the following. Given Y1 Y2 and Z1 Z2 with an 

isomorphism ϕ: Y2\Y1 Z2\Z1, and a further stratification Y1,0 · · · Y1,n = Y2, 

produce a corresponding stratification for Z1 Z2. To do this, define Z1,i = Z2 \ϕ(Y2 \

Y1,i). One checks that

Z1,i \ Z1,i−1 = (Z2 \ ϕ(Y2 \ Y1,i)) \ (Z2 \ (Y1,i−1))

= ϕ(Y2 \ Y1,i−1) \ ϕ(Y2 \ Y1,i) ∼= ϕ(Yi \ Yi−1) �

Lemma 9.11. Schrfw is an SW-category.

Proof. For this we only need to check the axioms of SW-categories that apply to weak 

equivalences [2, Defn. 3.24], which are wholly analogous to [14, p. 326]. First, the isomor-

phisms are certainly contained in w. Second, we must check that subtraction respects 

weak equivalences. That is, if we have a commutative square with sides as indicated:
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X X ′

Y Y ′

∼ ∼

then there is a weak equivalence X ′ \ X Y ′ \ Y making the induced square commute. 

Thus, we need a stratification on Y ′ \Y . Since we are subtracting off Y , the stratification 

of Y will not come into play. Define the stratification to be

∅ = (Y ′ \ Y ) ×Y ′ Y ′
0 (Y ′ \ Y ) ×Y ′ Y ′

1 · · · Y ′ \ Y.

Finally, we must check that in a diagram as below, where all the horizontal maps are 

cofibrations and the squares are pullbacks, the induced map between pushouts is a weak 

equivalence:

X ′′ X X ′

Y ′′ Y Y ′

∼ ∼ ∼

Since X ′ Y ′ is a weak equivalence, X Y is trivially so: a stratification Y ′
i Y ′

pulls back to one on Y , Y ×Y ′ Y ′
i Y . A similar statement also holds for X ′′ Y ′′.

It suffices to consider the case where both X ′ Y ′ and X ′′ Y ′′ are given 

by two step stratifications. Let these be Y ′
1 Y ′ and Y ′′

1 Y ′′. Denote the two 

induced stratifications on Y by Y
(1)

1 Y and Y
(2)

1 Y so that Y
(1)

1 = Y ×Y ′ Y ′
1 and 

Y
(2)

1 = Y ×Y ′′ Y ′′
1 . We now consider the three-step stratification

Y ′′
1 


Y
(2)

1 ×Y Y
(1)

1
Y ′

1 Y ′′ 

Y

(1)
1

Y ′
1 Y ′′ 
Y Y ′

One verifies that

(Y ′′ 

Y

(1)
1

Y ′
1) \ (Y ′′

1 

Y

(2)
1 ×Y

(1)
1

Y ′
1) ∼= (Y ′′ \ Y ′′

1 )

(Y ′′ 
Y Y ′) \ (Y ′′ 

Y

(1)
1

Y ′
1) ∼= (Y ′ \ Y ′

1) �

We now define our second helper-category, D.

Definition 9.12. Let D be the category with

objects: finite disjoint unions of smooth n-dimensional varieties, written 
∐

i∈I Xi, where 

each Xi is irreducible,



J.A. Campbell, I. Zakharevich / Advances in Mathematics 411 (2022) 108710 49

morphisms:
∐

s∈S Xs

∐
t∈T Yt are maps of sets f : S T together with birational 

isomorphisms Xs Yf(s).
2

composition: induced by composition of set maps together with the composition of bi-

rational isomorphisms.

The category D has a forgetful functor to FinSet induced by mapping 
∐

s∈S Xs to S.

We put an ACGW-structure on D by declaring all morphisms with injective underlying 

maps of sets to be both e-morphisms and m-morphisms, and by setting the distinguished 

(resp. commutative) squares to be the squares that become distinguished (resp. commu-

tative) in the ACGW-structure on FinSet; the forgetful functor then becomes a functor 

of ACGW-categories.

The SW-structure on D is given by

cofibrations: morphisms whose underlying set map is injective,

complement maps: the same as the cofibrations, and

weak equivalences: isomorphisms.

With these definitions, the S•-construction gives equal structures for the K-theory of 

D considered as a CGW- or an SW-category.

The ACGW-category D is equivalent to a disjoint union of categories of the form 

FinSet � G, for G a group of birational automorphisms (see Example 5.11).

The main work of this section goes into proving Propositions 9.13 and 9.19 which 

together immediately imply Theorem 9.1.

Proposition 9.13. For n ≤ ∞,

KZ(Sch
n
rf ) � KC(Sch

n
rfw),

induced by taking each tuple of varieties in Sch
n
rf to their disjoint union.

Proof. For conciseness of notation, we give the proof for the case n = ∞ and omit the 

n from the notation. The proof works identically for all finite n. Throughout this proof 

we freely use the notation and definitions of [16].

We construct a functor of simplicial categories F•: W(Sch
∨•

rf ) wS•Schrfw which 

has a levelwise right adjoint. Thus the functor is levelwise a homotopy equivalence, and 

we get an equivalence on the geometric realizations of the simplicial categories. This 

equivalence produces an equivalence KZ(Schrf )1 KC(Schrfw)1, and (since these 

are both Ω-spectra above level 1) an equivalence of K-theories.

2 Here, by “birational isomorphism” we mean an equivalence class of maps, rather than a specific map 
which is a birational isomorphism.
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The functor is defined in the following manner. W(Sch
∨m
rf ) is the full subcategory of 

W(Schrf )m consisting of those objects with disjoint indexing sets. We will thus refer to 

objects of W(Sch
∨m
rf ) as tuples ({A1i}i∈I1

, . . . , {Ami}i∈Im
) in W(Schrf )m and simply 

ensure that at all stages the indexing sets are disjoint. Let Fm(A1, . . . , Am) be the functor 

X: Ãr[m] Schrfw given by

Xi,j =

j∐

k=i+1

∐

�∈Ik

Ak�,

with morphisms given by the natural inclusions into the coproduct. A morphism of tuples 

gives a natural transformation of functors, each component of which is a weak equivalence 

in Schrfw, so Fm is well-defined. The simplicial maps in W(Sch
∨•

rf ) are induced by maps 

on the indexing sets, so these commute with the simplicial structure maps in wS•Schrfw. 

Thus F• is a simplicial functor.

It remains to check that Fm has a right adjoint. Given a diagram X: Ãr[m] Schrf , 

we define Gm(X) to have as its i-th component {X0i\X0(i−1)}{i}.

We define the unit of the adjunction by taking each {Aji}i∈Ij
to {

∐
i∈Ij

Aji}{j}; this 

is a valid morphism in W(Schrf ), so gives a valid morphism in W(Schrf )m, with the 

indexing sets disjoint by definition.

Now consider Fm ◦ Gm. This takes a functor X: Ãr[m] Schrf to the functor 

X ′: Ãr[m] Schrf , where

X ′
ij =

j∐

k=i+1

Xij\Xi(j−1).

There is a natural weak equivalence X ′ X by simply mapping each component to 

itself. This gives the counit of the adjunction and completes the proof of the proposi-

tion. �

We can now define the map β (9.8).

Definition 9.14. To define a map KC(Sch
n
rfw, Sch

n−1
rfw ) KC(D) it suffices to define 

for all r, a map |wS
(r)
• S•(Sch

n
rfw, Sch

n−1
rfw )| |iS

(r)
• D|. In order to construct such a 

map it suffices to construct a partial functor b•: S•(Sch
n
rfw, Sch

n−1
rfw ) D defined on 

the subcategories of closed immersions, open immersions, and weak equivalences, as long 

as this functor is compatible with the simplicial structure maps and takes objects in the 

S•-construction to objects in the S•-construction. An object of Sm(Sch
n
rfw, Sch

n−1
rfw ) is a 

diagram
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Xm,m

...

X2,2 · · · X2,m

X1,1 X1,2 · · · X1,m

Y0 Y1 Y2 · · · Ym

o o

o o o

o o o o

in which each Xi,j ∈ Sch
n−1
rfw . We define bm to take this diagram to the tuple containing 

the irreducible n-dimensional components of the nonsingular points of Ym (indexed over 

the set of irreducible n-dimensional components of Ym).

Lemma 9.15. The partial functor b• is well-defined and induces a map on K-theory.

Proof. First, suppose that X and Y are irreducible and n-dimensional. Then a weak 

equivalence X ∼ Y is, by definition, a birational isomorphism. In particular, this means 

that under b•, all weak equivalences in S•(Sch
n
rfw, Sch

n−1
rfw ) are taken to isomorphisms 

in D. An open embedding X
o

Y is also a birational isomorphism; a closed embedding 

is an honest isomorphism, unless we allow X to have dimension less than n; in that 

case, X is taken to the empty tuple in D. Thus a diagram in the S•-construction of 

S•(Sch
n
rfw, Sch

n−1
rfw ) is taken to a diagram with injective underlying maps of sets both 

vertically and horizontally (decorated with birational isomorphisms); the pushout con-

dition translates to the analogous pushout condition on the underlying diagram of sets. 

The weak equivalence direction is mapped to morphisms which are isomorphisms of the 

underlying maps of sets, decorated with birational isomorphisms. This is exactly the 

S•-construction applied to D, and thus each bm is well-defined. The simplicial structure 

maps never fully get rid of one of the Y ’s in the bottom row of the diagram; since all 

of the horizontal maps in the diagram above are birational isomorphisms (as the com-

plements have dimension strictly less than n) the partial functor is well-defined, and 

induces a map on K-theory. �

The map induced by b• is β.

We now consider the map ρ.
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Definition 9.16. The map ρ: KZ((Sch
n
rf /i)•) KC(D) is defined by a composition of 

two maps. The first map is the map KZ((Sch
n
rf /i)•) KZ(D), defined by taking each 

irreducible scheme of dimension n to its birational isomorphism type. The second map 

KZ(D) KC(D) is induced by the map KZ(D) K(SC(D)) KC(D), where the 

first map is the natural transformation taking KZ(D) to the Waldhausen K-theory of 

the Waldhausen category SC(D) (defined in [17, Theorem 2.1, Proposition 2.6]), and the 

second map is induced by an equivalence of K-theories taking an object in SC(D) (which 

is a tuple of tuples of birational isomorphism classes) to the “flattened” tuple (indexed 

by the disjoint union of the indexing sets of the tuples). In this map, the key observation 

is that cofibrations in SC(D) are cofibrations in the SW-category D, while cofiber maps 

in SC(D) are opposites of complement maps in D: a cofiber map in SC(D) is induced 

by a map selecting a subset of the indexing set, and this is exactly a description of the 

opposite of a map in D.

Proposition 9.17. The map ρ is a weak equivalence, and the diagram

KZ((Sch
n
rf /i)•) KC(Sch

n
rfw, Sch

n−1
rfw )

KC(D)

f

β
ρ

commutes. The map β is therefore also a weak equivalence.

Proof. The map f is a weak equivalence because it is a map induced on homotopy cofibers 

by a pair of weak equivalences. The map ρ is a weak equivalence by [16, Proposition 7.1]

(where it is the map p).

We now check the commutativity of the diagram. The map f is defined analogously 

to the natural transformation in [17, Proposition 2.6], designed to make this triangle 

commute. The map β is defined analogously to p in [16, Proposition 7.1], again designed 

to make this diagram commute. In particular, both of these compositions take all objects 

in simplicial levels higher than 0 (in the original categories) to the empty set, and take 

the objects in simplicial level 0 to a tuple of birational isomorphism classes of varieties 

(with morphisms given by permutations of these decorated by birational isomorphisms). 

The indexing set of each tuple is the set of irreducible components of the varieties, so 

this diagram does, indeed, commute.

Thus, by 2-of-3, β is also a weak equivalence. �

Since β is a weak equivalence, g is a weak equivalence if and only if λ is. Thus it 

remains to consider the map λ.

Definition 9.18. The map λ: KC(Sch
n
rf , Sch

n−1
rf ) KC(D) is defined to be the com-

position
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KC(Sch
n
rf , Sch

n−1
rf ) KC(Sch

n
rfw, Sch

n−1
rfw )

β
KC(D).

Proposition 9.19. The map λ is a weak equivalence.

Proof. Let λ′: Sch
n
rf \Sch

n−1
rf D be the CGW-functor taking each variety of dimen-

sion n to the set of birational isomorphism classes of its irreducible components. This is 

actually an equivalence of categories (on the level of CGW-categories) with the inverse 

equivalence given by choosing a representative in each birational isomorphism class and 

taking an object in D to the disjoint union of its representatives. Thus λ′ is a weak 

equivalence.

Consider the following diagram:

Ω|iS•S•(Sch
n
rf , Sch

n−1
rf )| Ω|QS•(Sch

n
rf , Sch

n−1
rf ) Ω|Q(Sch

n
rf \Sch

n−1
rf )|

Ω|iS•D| Ω|QD|

∼ ∼

∼

λ λ′

The leftmost two horizontal maps are given by the natural transformation described in 

the proof of Theorem 7.8 for the comparison between the Q-construction and the S•-

construction. The right-hand map in the top row is a weak equivalence by Theorem 8.6. 

Thus, by 2-of-3, λ is a weak equivalence. �

10. Proof of Theorem 8.6

The goal of this section is to prove Theorem 8.6. The idea of the proof is to use 

Quillen’s Theorem B [10, Theorem B] applied to the functor Qs. There are therefore two 

steps to the proof: proving that the theorem applies to Qs, and proving that the fiber 

agrees with K(A).

Let i: A C be the inclusion functor. Then Qi factors as

QA Qs∅/ QC
M 
→ (M, 1∅) (N, u) 
→ N

If Theorem B applies to Qs then its fiber is Qs∅/. In this case, to show that the fiber 

agrees with K(A) it suffices to check that the left-hand map in this factorization is a 

weak equivalence. We see that the theorem is thus a direct consequence of the following 

two propositions:

Proposition 10.1. The inclusion QA Qs∅/ is a homotopy equivalence.

Proposition 10.2. Quillen’s Theorem B applies to the functor Qs. More concretely, for 

any u: V V ′ in Q(C\A), the induced functor u∗: QsV ′/ QsV/ is a homotopy 

equivalence.
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The rest of this section is taken up with the proof of these two propositions. We write 

C = (E , M) and A = (EA, MA). We begin by analyzing how morphisms in C\A and 

Q(C\A) work.

Lemma 10.3. MA and EA satisfies 1-of-3, in the sense that MA and EA are subcategories 

of M and E, respectively, and given any composable morphisms f, g ∈ M (resp. E), if 

gf ∈ MA (resp. EA) then so are f and g.

Proof. We prove this for MA; the result for EA follows by duality.

Suppose that we are given f : A B and g: B C in C. This corresponds to a 

diagram

∅ Bc/g

∅ Ac/f Ac/gf

A B C

� �

�

The lower-left square exists by the definition of Ac/f ; the lower-right square exists by 

applying k−1 to the bottom row; the upper square exists because (Ac/f )c/Ac/gf ∼= Bc/g

by the definition of c. Consider the upper square; since A is closed under subobjects, 

quotients and extensions, Ac/gf is in A if and only if Ac/f and Bc/g are. Thus, if f and 

g are in MA so is gf (showing that MA is a subcategory) and if gf is in MA then f

and g must be, as well. �

Lemma 10.4. The categories EA and MA satisfy the following properties:

(a) The subcategories EA and MA are preserved under pullbacks and mixed pullbacks 

along morphisms in E and M.

(b) Pullback squares and mixed pullback satisfy 3-of-4: if three of the morphisms in a 

square are in MA or EA, the fourth must be as well.

Proof. We first prove (a). Suppose that we have a square

A B

C D

�

f ′

f

.

We want to show that if f is in MA, so is f ′. Applying c to this diagram produces a 

pullback square
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Ac/f ′

B

Cc/f D

By definition, Cc/f ′

∈ A; thus, since A is closed under quotients, Ac/f ∈ A, as desired. 

The other proofs of closure under pullbacks follow analogously.

We turn our attention to (b). To check 3-of-4, consider a square as above where we 

know that A B is in MA and B D is in EA. Because EA is closed under pullbacks, 

it follows that Ac/f Cc/f ′

is also in EA. Thus we have a distinguished square

∅ Ac/f

(Ac/f )k/c C

�

in which we know everything but C is in A. Since A is closed under extensions, C ∈ A

as well. The other forms of 3-of-4 follow analogously. �

This proposition implies that we can identify the isomorphisms in C\A in the following 

manner:

Lemma 10.5. An m-morphism in C\A represented by a diagram

A A′ X B′ B

is an isomorphism if and only if B′ B is in MA; the dual statement holds for 

e-morphisms.

Any morphism u: A B in Q(C\A) can be represented by a diagram

A A′ X B′ B

in C. Such a diagram represents an isomorphism if and only if X B′ is in EA and 

B′ B is in MA.

Proof. If B′ B is in MA then the given diagram represents an isomorphism by 

definition (by reversing the composition for the inverse). Conversely, if an m-morphism 

has an inverse then tracing through the definition of composition and using Lemmas 10.3

and 10.4 gives that B′ B must be in MA.

A morphism A B in Q(C\A) is represented by a composition of an e-morphism 

A C and an m-morphism C B. We can represent these by the top and right side 

of the following diagram:
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A A′ X C ′ C

C ′′

A′′ Z Y

B′

B′′ B

�

�

�

�

�

�

The rest of the diagram shows that the composition around the bottom is an equivalent 

representation of this morphism; its construction liberally uses the previous lemmas and 

results about CGW-categories in Section 2.

Since morphisms in Q(C\A) are isomorphisms exactly when both components are 

isomorphisms (by Lemma 4.5), the composition is an isomorphism if and only if the 

morphisms C C ′ and B′ B are isomorphisms, meaning that they are in EA and 

MA, respectively. If this is the case then Z B′′ and B′′ B are in EA and MA, 

respectively, and this represents an isomorphism. Conversely, if this is an isomorphism 

then we must have Z B′′ and B′′ B in EA and MA; tracing through and using 

that EA and MA satisfy 1-of-3 we obtain the converse. �

We turn our attention to proving Proposition 10.1.

Definition 10.6. Let V ∈ Q(C\A), and let FV be the full subcategory of QsV/ of those 

objects (M, u: V sM) in which u is an isomorphism.

Proposition 10.1 is the V = ∅ case of the following:

Proposition 10.7. The inclusion ιV : FV QsV/ is a homotopy equivalence for all V ∈

Q(C\A).

Proof. By [10, Theorem A], it suffices to check that for all (M, u) ∈ QsV/, the category 

ιV /(M, u) is contractible for all (M, u). By the dual of [10, Proposition 3, Corollary 2]

it suffices to check that it is a cofiltered category. By Lemma 10.5, u can be represented 

by a diagram

V
umD

V ′ ueD
X

ue
Y

um
sM.
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An object of ιV /(M, u) is a triple (u′, M ′, f) of an isomorphism u′: V sM ′ in 

FV together with a morphism f : M ′ M in QC such that s(f)u′ = u. A morphism 

(u′, M ′, f) (u′′, M ′′, f ′) is a morphism g: M ′ M ′′ in QC such that f ′g = f . In 

particular, there is a faithful forgetful functor to QC/M ; since by Lemma 4.6 this is a 

preorder, so is ιV /(M, u). All it remains to check is that it is nonempty and that any 

two objects have a common object above them.

To see that ιV /(M, u) is nonempty, consider the following diagram in C:

V V ′ X Y sM

V ′

X Y

umD ueD ue um

umD

ueD

ue

um

u

u′ f

This represents an object of ιV /(M, u) as desired.

Now suppose that we are given two different objects of ιV /(M, u); we want to show 

that there is an object mapping to both of them. Suppose that the two objects are given 

by (u′: V sM ′, f : M ′ M) and (u′′: V sM ′′, f ′: M ′′ M). Writing these in 

terms of their representations we get the outside of the following diagram; it is possible 

to complete the outside to the diagram on the inside because s(f)u′ = s(f ′)u′′.

V X ′ Y ′ sM ′

W T sZ

X ′′ T ′ A B

Y ′′

sM ′′ sZ ′ sM

u′

u′′

s(f ′)

s(f)

�

�

�

�

�

�

∼=

∃
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Consider the object represented by

(A W V, A B M).

This is a well-defined morphism of ιV /(M, u). This comes with a morphism to (u′, f)

given by the formal composition

A T X ′ Y ′ M ′

and an analogous morphism to (u′′, f ′). Thus ιV /(M, u) is cofiltered, as desired. �

We now turn our attention to Proposition 10.2; this proof is quite complicated and 

will take the rest of this section. In order to prove that u∗ is a homotopy equivalence for 

all u it suffices to show that it is true for the morphisms ∅ V and ∅ V . Since 

all of the conditions of the theorem are symmetric in m-morphisms and e-morphisms, it 

suffices to prove this for ∅ V ; we focus on this case for the rest of this proof. The 

key idea of the proof is to construct a category HN and functors P(N,φ): HN FV and 

kN : HN QA such that the diagram

HN FV QsV/

QA F∅ Qs∅/

P(N,φ)

∼=

kN u∗ (10.8)

commutes up to homotopy. We will then show that kN and P(N,φ) are both homotopy 

equivalence. From this Proposition 10.2 follows by 2-of-3 and Proposition 10.7.

We thus turn our attention to constructing HN , kN and P(N,φ).

Definition 10.9. The category HN has as objects equivalence classes of diagrams

M
he

X
hm

N,

where two diagrams are allowed to differ by an isomorphic choice of X. A morphism

(M
he

X
hm

N) (M ′
h′

e
X ′

h′

m
N)

is a diagram M
j

M1
i

M ′ such that there exists a map h̃m: X X ′ such that 

the triangle on the left commutes and the square on the right
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X X ′

N

h̃m

hm h′

m

X X ′

M1 M ′

�

h̃m

i

jhe h′

e

is a pseudo-commutative square. Composition works via composition in QC; using the 

following diagram we see that it is well-defined:

X X ′ X ′′

M1 M ′

• M2 M ′′

h̃m h̃′

m

i

i′

jhe h′

e

h′′

e

j′

�

�

�

The functor kN : HN QA takes M
he

X N to Xk/he . A morphism is taken 

to the representation

Xk/he Xk/jhe
h̃m

X ′,

where the first map is obtained by applying c−1.

Definition 10.10. Let (N, φ) be an object of Im
V (Definition 8.4). We define P(N,φ): HN

FV by letting it take every object M X N to the composition

V
φ−1

sN sX sM

in FV ⊆ QsV/. As both HN and FV have as morphisms the morphisms of QC, the 

functor is defined to take a morphism to the morphism represented by the same data.

Lemma 10.11. P(N,φ) is a well-defined functor.

Proof. Checking that P(N,φ) is well-defined on objects is straightforward from the defi-

nition. Suppose that we are given a morphism in HN as defined in Definition 10.9. We 

must show that this produces a well-defined morphism in FV ; from the definition the 

produced morphism in QsV/ is an isomorphism, so it suffices to show that a morphism 

in HN gives a well-defined morphism in QsV/. For this to be true it suffices to check 

that the morphisms represented by

N X M M1 M ′
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and

N X ′ M ′

are equivalent in Q(C\A). This is true because the are equivalent isomorphisms inside 

the m-morphisms of C\A via the following diagram:

N X M1 M ′

X ′ M ′

�

where the marked square is pseudo-commutative from the definition of a morphism in 

HN . That P(N,φ) respects composition follows directly from the definition, since compo-

sition in both QsV/ and HN is defined using composition in QC. �

We begin our analysis by showing that (10.8) commutes up to homotopy.

Lemma 10.12. In (10.8) the composition around the top and the composition around the 

bottom are homotopic.

Proof. Consider an object M
he

X N in HN . Under the composition around the 

top it is mapped to

∅ V
φ−1

sN sX sM ;

this is equivalent to the representation

∅ sM.

Around the bottom this is mapped to ∅ Xk/he . There is a natural map 

hk
e : Xk/he M which induces a morphism between these in Qs∅/, so we just need 

to check that this gives a natural transformation. To see that this transformation is 

natural, suppose that we are given a morphism

(M
he

X
hm

N) (M ′
h′

e
X ′

h′

m
N)

represented by M
j

M1
i

M ′. Consider the following diagram in C:
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Xk/he Xk/jhe (X ′)k/h′

e

M M1 M ′

hk
e (jhe)k

h′k
e�

The left-hand square exists and is distinguished by the definition of k. The right-hand 

square exists and commutes by the condition on morphisms in HN ; this is exactly k

applied to the pseudo-commutative square. After applying s to the diagram and consid-

ering the outer corners as objects under ∅, we see that this diagram exactly corresponds 

to a naturality square for functors HN Qs∅/, as desired. �

It remains to show that kN and P(N,φ) are homotopy equivalences. We begin with kN ; 

however, before we can prove that kN is a homotopy equivalence we must develop some 

theory.

Definition 10.13. Let JN be a skeleton of the full subcategory of M/N containing those 

morphisms A N such that Ac ∈ A. The category JN has a terminal object: 1N .

Definition 10.14. Let H′
N be the full subcategory of HN containing those objects where 

hm is an isomorphism; in particular, each object in H′
N can be uniquely represented 

by an e-morphism N X. For any m-morphism i: M N we define the functor 

ρi: H
′
N H

′
M by sending the e-morphism N

f
X to the e-morphism M X̃, 

where M X̃ is determined by the following distinguished square:

M N

X̃ X

�

i

f .

Given a morphism represented by X X1 X ′ in H′
N , this is mapped to the 

morphism represented by X̃ X̃1 X̃ ′, where X̃1 is defined by the distinguished 

square

X̃ X

X̃1 X1

� .

Lemma 10.15. Let i: (J N) (I N) be a morphism in JN . Then the diagram
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H
′
I H

′
J

QA

ρi

k′

I k′

J

commutes up to natural isomorphism.

Proof. Consider the object I
h

M in H′
I . Its image under k′

I is Ik/h. For the other 

composition, we consider the distinguished square

J I

M ′ M

�

i

h′ h .

h is mapped to h′, and then to Jk/h′

. Since Ik/h and Jk/h′

are the kernels in a natural 

distinguished square, they are naturally isomorphic, as desired. �

Consider the functor F : HN JN defined by sending each class [M X N ]

to X N , assuming that this representative is chosen so that this morphism is in JN . 

Note that for each class this representative is unique.

Lemma 10.16. HN is fibered over JN .

Proof. For any i: I N ∈ JN , F −1(i), the fiber over i, is isomorphic to H′
I . The 

category Fi/ has as its objects the solid part of the diagram

M ′ I N

M X

i

�

The functor taking such a diagram to I M ′ is the right adjoint to the inclusion 

H
′
I = F −1(i) Fi/.

Thus HN is preferred over JN . To check that it is fibered it suffices to check 

that this right adjoint is compatible with composition in the following sense. For any 

j: (I
i

N) (I ′ i′

N) in JN we get an induced functor j∗: F −1(i′) F −1(i)

defined by the composition
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(
M I ′ N

i′

)
⎛
⎜⎜⎜⎝

M I N

M ′ I ′

� j

i

i′

⎞
⎟⎟⎟⎠

(
M ′ I N

i

)
.

We must show that for any composable j and k, (kj)∗ is naturally isomorphic to j∗k∗. 

This is true because completing a formal composition to a distinguished square is unique 

up to unique isomorphism. As both j∗k∗ and (kj)∗ are obtained by completing a formal 

composition

M I ′′ k
I ′ j

I

to a distinguished square, they are naturally isomorphic. �

We are now ready to prove that kN is a homotopy equivalence.

Lemma 10.17. kN is a homotopy equivalence.

Proof. We begin by checking that k′
N

def
= kN |H′

N
is a homotopy equivalence. Let T be 

an object in QA; it suffices to check that k′
N /T is contractible for all T . An object 

of k′
N /T is a triple (M, he: N M, u: Nk T ) with u ∈ QA. Let C′ be the full 

subcategory of k′
N /T consisting of those morphisms u which can be represented purely 

by an e-morphism.

Represent u as Xk i
Y

j
T , and consider the following diagram:

Nk M N

Y M �Nk Y N

T

hk
e he

i

(hk
e )′ k−1((hk

e )′)

�

j

u

Here, the upper-left square is produced by condition (PP). We claim that the map taking 

(M, he, u) to (M �Nk Y, h′
e, j) is a functor which produces a retraction from k′

N/T to C′. 

To check that this is functorial, consider a morphism in k′
N/T . This is represented by a 

diagram
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T Y Nk/he M

Y ′ Nk/jhe M1 N

Nk/h′

e M ′ N

he

h′

e

=�

�

ij

i′

j′
�

where the morphism is considered to go from the object represented by the diagram 

around the top to the object represented by the diagram around the bottom. This 

diagram produces a map M �Nk/he Y M1 �Nk/jhe Y ′ M ′ �
Nk/h′

e
Y ′ by the func-

toriality conditions in (PP). This is compatible with composition by Lemma 5.12 and 

the definition of morphism composition in QA. This functor also comes with a natural 

transformation from the identity produced by the map M M �Nk Y . Thus k′
N /T

is homotopy equivalent to C′. The category C′ has an initial object (N, 1N , ∅ T ), 

so it is contractible. Thus k′
N /T is contractible for all T , and so k′

N is a homotopy 

equivalence.

We have now shown that k′
N is a homotopy equivalence. By 2-of-3, in order to show 

that kN is a homotopy equivalence it suffices to check that the inclusion H′
N HN is 

a homotopy equivalence.

Since k′
n is a homotopy equivalence, by Lemma 10.15 we see that ρi is a homotopy 

equivalence for all i ∈ JN . Thus, since HN is fibered over JN , by [10, Theorem B, 

Cor], for all I N , H′
I is homotopy equivalent to the homotopy fiber of F . However, 

since JN is contractible it follows that the inclusion H′
I HN is a homotopy equiv-

alence. In particular, taking the m-morphism to be the identity on N gives the desired 

result. �

We now turn our attention to P(N,φ).

We will need two different proofs for this functor, depending on whether A is m-

negligible or m-well-represented in C.

Lemma 10.18. If A is m-negligible in C then P(N,φ) is a homotopy equivalence.

Proof. We prove this using Theorem A. An object of FV is an isomorphism V
ψ

sA. 

We will show that (P(N,φ))A/ is contractible. We can fix representatives for φ and ψ such 

that an object of (P(N,φ))/A is represented by a diagram
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V V ′ Z N ′ N

A′ X

A M ′ M

φ−1

ψ (10.19)

where the dashed arrows commute inside Q(C\A). V ′, Z, N ′, A′ are all fixed by our 

choice of representatives; the only part of the diagram that is allowed to change are the 

bottom and rightmost rows. A representative of an object is well-defined up to unique 

isomorphism, since both the right-hand column (an object in HN) and the bottom row 

are well-defined up to unique isomorphism. The maps M M ′ and M ′ A must also 

be in MA and EA, respectively, since MA and EA are closed under 2-of-3 by Lemma 10.3. 

(This follows by computing a representative of the composition and noting that since its 

components are in MA (resp. EA) the two maps across the bottom are.)

A morphism (M/A) (M ′/A) of (P(N,φ))/A is a diagram

V V ′ Z N ′ N N

A′ X X̂

A M ′ M M1 M̂

where the morphism M̂ A in QC is given by the composition across the bottom.

Let D be the full subcategory of (P(N,φ))/A of those objects which can be represented 

by a diagram where the morphism X M is the identity. Given any object represented 

by (10.19) there is a well-defined morphism given by

V V ′ Z N ′ N N

A′ X X

A M ′ M M X
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which is natural in our object (since the choice of X is unique up to unique isomorphism). 

This shows that D is a retractive subcategory of (P(N,φ))/A, and is thus homotopy 

equivalent to it.

A morphism inside D is represented by a diagram

V V ′ Z N ′ N N

A′ A M ′ M M̂

The only important information here is the lower-right-hand side. Thus we will think of 

morphisms in D as represented by diagrams

N M M ′ A

which are equivalent inside C\A. Since all morphisms in M are monic, such a morphism 

(if it exists) is unique; thus D is a preorder. To show that D is contractible we will show 

that it is nonempty and cofiltered.

Given two objects

N M M ′ A and N M̃ M̃ ′ A

we know that they are equivalent inside C\A if there exists a diagram X Y N

such that precomposition by this diagram sends these to diagrams which are equivalent 

in C. However, since A is m-negligible in C we see that such a diagram exists if and 

only if such a diagram exists with the e-component equal to the identity. Picking such a 

morphism Y N we see that the object represented by

N Y ×N M M ′ A

maps to both of these objects. Thus D is cofiltered.

To see that D is nonempty, consider the diagram

Z N ′ N

given by the chosen representative for φ. Since A is m-negligible in C there exists an m-

morphism M N such that M �N N ′ ∼= M and M N ′ factors through Z N ′. 

Then the diagram

N M A′ A

gives a well-defined object of D. Thus D is nonempty and cofiltered, and therefore con-

tractible. �
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If A is m-negligible in C we are now done. Thus we can now assume that A is m-well-

represented in C.

Consider a diagram N
ge

X
gm

N ′ which we denote g. We define the functor 

g∗: HN HN ′ by

M Y N

Y �N X X N ′

M Y N

ge

gm

�

M Y �N X N ′ .

This is functorial because pseudo-commutative squares compose.

Lemma 10.20. There is a natural transformation kN kN ′g∗.

Proof. We have

kN (M
he

Y N) = Y k/M .

On the other hand,

kN ′g∗(M
he

Y N) = (Y �N X)k/M .

The map Y �N X M factors through Y M , so (by Lemma 2.10) there is a functo-

rially induced map Y k/M (Y �N X)k/M . This map gives the natural transformation. 

To check that this is actually natural, consider a map (M Y N) (M ′ Y ′

N) represented by M M1 M ′. We must show that the square

Y k/M Y k/M1 (Y ′)k/M ′

(Y �N X)k/M (Y �N X)k/M1 (Y ′ �N X)k/M ′

commutes in QA. To show this it suffices to show that there exists a map Y k/M1 (Y �N

X)k/M1 such that the left-hand square is distinguished and the right-hand square com-

mutes. The map exists and makes the right-hand square commute by Lemma 2.10. To 

check that the left-hand square is distinguished it suffices to check that given any diagram

A B C D

the square
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Bk/C Ak/C

Bk/D Ak/D

is distinguished. This follows directly from the definition of c and k. �

Since kN and kN ′ are both homotopy equivalences, we get the following corollary:

Corollary 10.21. g∗ is a homotopy equivalence.

Consider the functor H: Im
V Cat sending (N, φ) to HN and g: (N, φ) (N, φ′)

to g∗.

Lemma 10.22. There is an isomorphism of categories

H̃: colim
Im

V

H FV

induced by P(N,φ): HN FV .

Proof. We first check that H̃ is well-defined. To prove this it suffices to check that for 

g: (N, φ) (N ′, φ′),

P(N ′,φ′)g∗ = P(N,φ).

Since morphisms in HN are defined to be morphisms in QC satisfying extra conditions, 

and since both P(N,φ) and g∗ do not change any of the representation data in the mor-

phism, if the two sides agree on objects they must also agree on morphisms. P(N,φ) maps 

an object (M X N) to the composition

V
φ−1

sN sX sM,

while P(N ′,φ′)g∗ maps it to the composition

V
φ′−1

sN ′ sY sN sX sM.

However, since φ′s(g) = φ, these two compositions represent equivalent diagrams (since 

after being considered inside C\A, all g∗ does is compose with g) and thus the left and 

right sides agree on objects. Therefore the functors P(N,φ) produce a valid cone under H

and H̃ is well-defined.
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It now remains to show that it is, in fact, an isomorphism of categories.

First we show that H̃ is surjective on objects; in other words, that for every 

(M, u: V
∼=

sM) in FV there exists an (N, φ) and an object (M ′, h) in HN such 

that P(N,φ)(M
′, h) = (M, u). To do this, let (N, φ) = (M, u−1) and let (M ′, h) =

(M, M M M). Thus H̃ is surjective on objects.

Now consider injectivity. Since Im
V is filtered, it suffices to check that each individual 

P(N,φ) is injective on objects. Suppose that

P(N,φ)(M, h) = P(N,φ)(M
′, h′).

We must show that there exists g: (N, φ) (N ′, φ′) in Im
V such that g∗(M, h) =

g∗(M ′, h′). Note, that by definition in order for this to hold we must have M = M ′

and s(h) = s(h′). The fact that such a g exists is implied by condition (E); in fact, this 

g will be represented by a morphism where the m-component is the identity. Thus H̃ is 

injective on objects.

We now consider morphisms. As before, we consider surjectivity first. Consider a 

morphism g: (M, u) (M ′, u′) in FV . This is given by a morphism g: M M ′ in QC

such that s(g)u = u′ in Q(C\A). Since both u and u′ are isomorphisms, s(g) must be as 

well; thus it is represented by a diagram M X M ′. Consider the distinguished 

square

M X ′

X M

hm

gm

ge he�

where the composition around the bottom is given by the components of g. Since all 

distinguished squares are pseudo-commutative, this defines a morphism

(M, M
h

mX ′)
f

(M ′, M ′ he
X ′)

in HX′ . Note that s(ge)u = s(h−1
e )u′. Thus P(X,s(ge)u)(f) = g, as desired.

Now consider injectivity. As before, it suffices to consider a single P(N,φ) and show 

that it is faithful. Suppose that P(N,φ)(g) = P(N,φ)(g
′). By definition,
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g, g′: (M X N) (M ′ X ′ N)

are given by morphisms g̃, ̃g′: M M ′ in QC satisfying the diagram in Definition 10.9. 

For P(N,φ)(g) = P(N,φ)(g
′) we must have g̃ = g̃′; however, in this case we must have g

and g′ equal as well. Thus H̃ is injective on morphisms, and we are done. �

We are now ready to finish:

Proposition 10.23. If A is m-well-represented in C then P(N,φ) is a homotopy equivalence.

Proof. [10, Proposition 3, Corollary 1] states the following: given any filtered category 

C and a functor F : C Cat such that for all f : A B ∈ C, F (f) is a homotopy 

equivalence. Then the induced map F (A) colimC F is a homotopy equivalence for 

all A ∈ C.

Applying this to the functor H, we get that the map H(N, φ) colimIm
V

H ∼=

FV is a homotopy equivalence for all (N, φ) ∈ Im
V . By definition this is exactly 

P(N,φ): HN FV , and we are done. �

Appendix A. Checking that C\A is a CGW-category

In this appendix we check as much as possible that the definition of C\A gives a well-

defined CGW-category. More concretely, it is necessary to check that the m-morphisms 

and e-morphisms give well-defined categories, that the distinguished squares compose 

correctly, that φ exists, that c and k are equivalences of categories, and that axioms (Z), 

(I), (M), (K), and (A) hold.

Proposition A.1. Let C be an ACGW-category, A a full ACGW-subcategory closed under 

subobjects, quotients, and extensions. Then C\A is a well-defined CGW-category assum-

ing that the following condition holds:

(Ex) The definitions of c and k in Definition 8.1 give equivalences of categories, in 

the sense that there exist equivalences of categories k: Ar� E Ar� M and 

c: Ar� M Ar� E which agree with the given definitions on objects.

The rest of this appendix is a proof of this proposition.

As the definition of C\A is symmetric with respect to e-morphisms and m-morphisms 

it suffices to focus on proving only half of each statement; the other half will follow by 

symmetry.
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We first begin with a somewhat more explicit definition of the distinguished squares 

in C\A. These are generated by the following types of squares:

A B

C D

�

A B

C D

�

A B

C D

�

A B

C D

A B

C D

A B

C D

�

A B

C D

�

A B

C D

�

A B

C D

A B

C D

A B

C D

�

A B

C D

�

A B

C D

A B

C D

A B

C D

�

A B

C D

�

A B

C D

A B

C D

A B

C D

�

A B

C D

�

We now prove a series of lemmas about how different types of squares in C interact. The 

common consequence of all of these lemmas is that the given squares fit into a cube with 

opposite sides of the same “type” (be that pseudo-commutative squares, distinguished 

squares, or simply squares that commute inside E or M). We do not worry about which 

arrows have c or k in A; the properties of A ensure that whenever such an arrow is 

“pulled back”, the pullback also has c or k in A.

Lemma A.2. Given two diagrams in C

A B A′ X C ′

C D C ′ C D

� �

we can assemble these into a cube
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X ′ X

A C

A′ C ′

B D

in which all faces with mixed morphisms are pseudo-commutative. If ABCD was origi-

nally distinguished, then X ′A′XC ′ will be, as well.

An analogous statement with the roles of e-morphisms and m-morphisms swapped also 

holds.

Proof. Apply c to the left-hand diagram. This turns both of the squares into pullback 

squares in E (by definition). We can then form the following diagram:

Ac ×C X X

Ac C

(A′)c C ′

Bc D

To prove the main statement of the lemma it suffices to show that a morphism Ac ×C

X (A′)c exists and makes the back face into a pullback. To show the last statement

it suffices to show that if Ac Bc is an isomorphism then this morphism is also an 

isomorphism. This is a straightforward diagram chase using the fact that all solid faces 

in the above diagram are pullbacks and all morphisms in E are monic. �

As a corollary we can see that assembling distinguished squares and pullbacks com-

mute:

Corollary A.3. Suppose that we are given a diagram

A B C D.
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The two diagrams

A B B ×C D

X C D

� and

A �B (B ×C D) B ×C D D

A B C

�

fit into a cube

A B

X C

A �B (B ×C D) B ×C D

W D

in which the top and bottom face are distinguished squares, the front and the back face 

are pseudo-commutative squares, and the right and left face are commutative in E with 

the right-hand face a pullback.

We now prove a “complement” to Lemma 5.12: instead of assuming that a commu-

tative square in E is attached to the back of a pseudo-commutative square, we assume 

that it is attached to the front:

Lemma A.4. Suppose that we are given a diagram

A B B′

C D D′

�

Then this diagram assembles into a cube
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A B

A′ B′

C D

C ′ D′

where the front, back, and top faces are pseudo-commutative and the bottom face is distin-

guished. If the right-hand square is a pullback then the top face will also be distinguished.

The dual statement also holds.

Proof. Define C ′ so that the bottom face of the cube is a distinguished square. Define 

A′ = C ′ �D′ B′. By definition this produces a diagram where the front face is pseudo-

commutative and the bottom face is distinguished. It therefore suffices to check that 

there exists a morphism A A′ such that the left face commutes in E and the top face 

is pseudo-commutative. To prove this it suffices to check that there exists a morphism 

Ac/B B′ ×D′ (C ′)c such that in the diagram

Cc/D Ac/B B

(C ′)c (C ′)c ×D′ B′ B′

the left-hand square commutes and the right-hand square is a pullback. This follows 

directly from the definitions. �

We are now ready to turn our attention to proving that C\A is a CGW-category.

The m-morphisms form a well-defined category

The m-morphisms in C\A are defined to be equivalence classes of diagrams

A A′ X B′ B.

The equivalence relation is generated by the following types of diagrams (up to isomor-

phism), where the red diagram is declared to be equivalent to the blue diagram:
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B

B′′ B′

A′′ X ′ X ′ �B′′ B′

A A′ X ′ �A′′ A′ X

�

� �

(A.5)

(For interpretation of the colors in the figures, the reader is referred to the web version 

of this article.) The relation defined between m-morphisms is a formal composition of 

two such relations, one inverse to another. Thus to show that the relation is well-defined 

we must check that if we are given two such relations built on top of one another, then 

either they compose to a single one, or that we can “pull back” two such relations.

Let us consider the first such case. Suppose that we are given two such diagrams, one 

relating A A′ X B′ B to A A′′ X ′ B′′ B, and one 

relating A A′′ X ′ B′′ B to A A′′′ X ′′ B′′′ B. We can 

rearrange this data into the following diagram, where the first formal composition is in 

red, the second is in blue, and the third is in green:

B

B′′′ B′′ B′

A′′′ X ′′ B′′ �B′′′ X ′′ B′ �B′′′ X ′′

A′′ X ′′′ �A′′′ A′′ X ′ B′ �B′′ X ′

A A′ X ′′ �A′′′ A′ X ′ �A′′ A′ X

� �

� � �

� � �

By regrouping the pseudo-commutative squares, we see that the red composition is equiv-

alent to the green composition, as desired.
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To show the second case, consider the following diagram, which shows that red and 

blue are both equivalent to green:

X

A′ X ′′ �A′′′ A′ B′ �B′′′ X ′′ B′

A A′′′ X ′′ B′′′ B

A′′ X ′′ �A′′′ A′′ B′′ �B′′′ X ′′ B′′

X

�

�

�

�

�

�

Then the composition

A A′ ×A′′′ A′′ ((B′ ×B′′′ B′′) �B′′′ X ′′) �X′′ (X ′′ �A′′′ (A′ ×A′′′ A′′))

B′ ×B′′′ B′′ B

is equivalent to both the red and the blue, completing the desired picture. Putting these 

together shows that the relation defined on m-morphisms is an equivalence relation, as 

desired.

Now we can work with the definition of the m-morphisms directly. Given two mor-

phisms A B and B C their composition is defined to be represented by the 

diagonal in the following square:

A A′ X B′ B

A′′ X × (B′ �B B′′) B′ �B B′′ B′′

Z (B′ �B B′′) × Y Y

C ′′ C ′

C

��

�

�
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Here, Z = (X × (B′ �B B′′)) �B′
BB′′ ((B′ �B B′′) × Y ) and A′′ and C ′′ are uniquely 

determined by the distinguished squares they are in.

To check that this is well-defined, it suffices to check that given a diagram as in (A.5)

and a morphism represented as one of , , or the composition (resp. 

precomposition) with the red morphism and the composition (resp. precomposition) with 

the blue morphism are equivalent. We check the case of composing with a morphism 

represented by ; all of the other cases are analogous. This is a straightforward 

diagram chase, using Lemma A.2 to push the diagram showing the equivalence of the two 

representations along the composition; the only nontrivial part is ensured by Lemma 5.12.

We need to check that composition is associative. As a morphism is a formal composi-

tion of four arrows, it suffices to check that compositions of those component arrows are 

associative. It is not necessary to worry about which morphisms have kernel/cokernel in 

A, since that is preserved by the definition of composition; all we are checking is associa-

tivity. Thus our definition of morphism is symmetric in e-morphism and m-morphism. In 

addition, since both E and M are closed under pullbacks, by standard arguments about 

span categories we know that when all three morphisms are e-morphisms or all three 

morphisms are m-morphisms composition is associative. Thus it remains to consider 

the case of 2 m-morphisms and 1 e-morphism or 1 m-morphism and 2 e-morphisms. 

By symmetry again it suffices to consider this second case, and, in fact, it suffices 

to consider the case when the m-morphism is directed covariantly with the composi-

tion.

Now there are 12 cases left (three positions for the m-morphism and four directions 

in which the e-morphisms can point). Most of these have only a single composition, so 

associativity holds automatically for these. The remaining three cases are , 

and . The first and second of these give associative 

compositions because distinguished and pseudo-commutative squares work correctly with 

respect to composition. Thus the last case is the only one of interest, which directly 

follows from Corollary A.3. The fact that the two different compositions assemble into 

a cube implies that they are equivalent in C\A.

Distinguished squares compose correctly This is true by definition.

There exists a φ We must show that the subcategory of m-isomorphisms is isomorphic 

to the category of e-isomorphisms by a functor which takes objects to themselves. To 

construct this functor, use Lemma 2.9 to change a representation of an m-isomorphism 

as

A A′ X B′ B

to

A A′′ X B′′ B,

which gives a representation of an e-isomorphism. Since distinguished squares are unique 

up to unique isomorphism, this is an isomorphism of categories.
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Axiom (Z) We must check that ∅ is initial in M.

There exists a morphism ∅ B for any B by simply taking the representation where 

all but the last morphism are the identity. We must now check that this morphism is 

unique. Suppose that we are given any diagram

∅ ∅ ∅ B′ B.

We must have B′ ∈ A for this diagram to be valid. The diagram

B

B′
∅

∅ ∅ ∅

∅ ∅ ∅ ∅

�

� �

shows that the two are equivalent. Thus ∅ is horizontally initial.

Axiom (I) The m-morphisms which are isomorphisms are exactly those morphisms of 

the form

A B.

Using this description and the listing of different kinds of distinguished squares we can 

construct each of the required squares by hand.

Axiom (M) It suffices to check this for the m-morphisms of C\A; the statement for 

the e-moprhisms will follow by symmetry. Thus we want to check that if we are given 

two morphisms f, g: A B and a morphism h: B C in C\A then if hf = hg

then f = g. All morphisms in M are equal, up to isomorphism, to ones represented 

by diagrams • •. Thus it suffices to assume that h is of this form. This means that 

the compositions hf and hg are computed simply by composing the last m-moprhism 

components.

The fact that hf = hg implies that for any choice of representatives for f and g, the 

following diagram exists:
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• B′

• • C ′

A • • C B

• • C ′′

• B′′

� �

� �

∼=
h

f

g

To show that f = g it suffices to check that there exist maps C ′ B and C ′′ B

such that the triangle

C ′

B

C ′′

∼=

commutes. Setting these maps to be the evident ones generated by the above diagram, 

we see that the given triangle must commute, as it commutes after postcomposition with 

h and h is monic.

Axiom (K) As before, we prove this only for c; the result for k follows by symmetry.

Let f : A B be a morphism. Given a representative

A A′ X B′ B

of f , we can conclude that c(f) ∼= (B′)c B. Thus if we can show that a distinguished 

square as desired exists for this representative, we will be done. The following diagram 

shows that this is the case

∅ ∅ ∅ ∅ (B′)c

A A′ X B′ B

��
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as it is a composition of squares which are distinguished in C\A.

Axiom (A) This holds because it holds inside C and all distinguished squares in C are 

also distinguished in C\A. �
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