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Abstract— This work focuses on the problem of enhancing
cyberattack detection capabilities in process control systems
subject to multiplicative cyberattacks. First, the relationship
between closed-loop stability and attack detectability with re-
spect to a class of residual-based detection schemes is rigorously
analyzed. The results are used to identify a set of controller
parameters (called “attack-sensitive” controller parameters)
under which an attack can destabilize the closed-loop system.
The selection of attack-sensitive controller parameters can
enhance the ability to detect attacks, but can also degrade the
performance of the attack-free closed-loop system. To balance
this trade-off, a novel active attack detection methodology
employing controller parameter switching between the nominal
controller parameters (chosen on the basis of standard control
design criteria) and the attack-sensitive controller parameters,
is developed. The proposed methodology is applied to a chemical
process example to demonstrate its ability to detect multiplica-
tive sensor-controller communication link attacks.

I. INTRODUCTION

Traditionally, information technology (IT) infrastructure

is responsible for the cybersecurity of industrial control

systems (ICSs). However, the increased reliance on net-

worked components in recent years has made ICSs targets

for frequent and increasingly complex cyberattacks [1], [2],

[3], demonstrating that IT-based approaches alone are insuf-

ficient. Consequently, as an additional layer of protection

against cyberattacks, the integration of cybersecurity con-

siderations into traditional ICS design methods has received

increased attention (e.g., [4], [5] and the references therein).

Process control systems (PCSs) are ICSs designed to

control chemical manufacturing processes and may be partic-

ularly attractive to attackers due to their inherent risks. An

attack on a PCS may maliciously modify or falsify either

the control law or the data transmitted over the PCS com-

munication links. The design of a successful communication

link attack resulting in loss of closed-loop stability while

remaining undetected may require some process knowledge

on the part of the attacker [6]. Irrespective of the attacker’s

process knowledge, stealthy attacks may be designed to be

detrimental to the process while evading detection by the

anomaly detection schemes monitoring the process. These

attacks are challenging to detect because the behavior of the

attacked process is difficult to differentiate from the behavior

of the attack-free process [7]. Consequently, the design of
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detection schemes aimed at monitoring a process for several

types of stealthy attacks on PCSs has received significant

attention [8], [9], [10], [11], [12], [13], [14].

Attack detection schemes may be grouped into two cat-

egories: passive attack detection schemes and active attack

detection schemes. Passive attack detection schemes mon-

itor a process for anomalies without employing external

intervention or inducing a perturbation in the process (e.g.,

[8], [9], [14]). Depending on the cyberattack design, passive

approaches for attack detection may not always be successful

in detecting an attack (Sec. III, [10]). As an alternative,

active detection schemes that involve external intervention

to actively probe for cyberattacks may be used. Examples

of such approaches include watermarking and moving target

approaches [10], [11], [12], [13].

This work focuses on the detection of multiplicative

sensor-controller link cyberattacks. These cyberattacks may

be designed to be stealthy without requiring intimate knowl-

edge of process dynamics or without simultaneously target-

ing the actuator-controller communication link. In a prior

work [15], the connection between the PCS design and the

detectability of multiplicative sensor-controller link attacks

was analyzed. The analysis revealed that some controller

parameter choices could prevent attack detection. Conse-

quently, a controller screening methodology to identify and

discard controller parameters that mask the impact of an

attack from the detection scheme was proposed. However,

an attack may still go undetected even when the controllers

are chosen so that they do not mask the impact of an attack.

In the present work, the connection between attack de-

tectability with respect to a residual-based detection scheme

and closed-loop stability is analyzed. The analysis reveals

that it is advantageous to select controller parameters that

render the attacked closed-loop process unstable. However,

operating with these “attack-sensitive” controller parameters

may not be desirable from the standpoint of the performance

of the attack-free closed-loop system. To balance the trade-

off between the enhancement in attack detection capability

and the possible degradation in closed-loop performance, an

active attack detection methodology that employs occasional

controller parameter switching between the nominal and

attack-sensitive parameters is developed and demonstrated

using a chemical process example.

II. PRELIMINARIES

A. Notation and Definitions

The closed Euclidean ball and infinity ball centered at the

origin with radius R > 0 are denoted by Bn(R) := {x ∈



R
n | ∥x∥ ≤ R} and Bn

∞
:= {x ∈ R

n | ∥x∥∞ ≤ R}. For

a compact set D ⊂ R
n, RD denotes the minimal radius of

the Euclidean ball enclosing the set, i.e., RD := max
x∈D

∥x∥.

For a set D ⊂ R
n, the linear transformation of the set is

denoted by AD := {Ax | x ∈ D}. Given two nonempty sets

X ⊂ R
n and Y ⊂ R

n, their Minkowski sum is defined as

X ⊕ Y = {x + y | x ∈ X, y ∈ Y }. Sequences are denoted

with boldface letters, i.e., d := {d(0), d(1), d(2), . . .} where

d(t) ∈ R
n for all t ≥ 0.

B. Process Model and Control System

We consider processes modeled by discrete-time linear

time-invariant systems subject to bounded disturbances:

x(t+ 1) = Ax(t) +Bu(t) +Gw(t) (1)

where x(t) ∈ R
nx is the process state vector, u(t) ∈ R

nu

is the manipulated input vector, w(t) ∈ W ⊂ R
nw is

the bounded process disturbance vector, and the set W is

assumed to be a (compact) polytope containing the origin.

Without loss of generality, the initial time is taken to be zero.

The matrices A, B, and G are of appropriate dimensions.

In this work, multiplicative sensor-controller communication

link attacks are considered. The value of the measured output

received by the controller is modeled by:

y(t) = Λ(Cx(t) + v(t)) (2)

where y(t) ∈ R
ny is the potentially falsified output vector re-

ceived by the controller, v(t) ∈ V ⊂ R
ny is the measurement

noise vector, the set V is assumed to be a (compact) polytope

containing the origin, and Λ is the matrix representing the

magnitude of the multiplicative sensor-controller link attack

on the process, where Λ = I indicates the absence of an

attack and Λ = diag(α1, α2, . . . , αny
) ̸= I indicates the

presence of an attack. Here, αi ̸= 1 is the attack magnitude

on the ith sensor-controller link. The matrix Λ is referred to

as the magnitude of the attack. The matrix C is of appropriate

dimensions.

The pair (A,B) is assumed to be controllable, and the pair

(A,C) is assumed to be observable. A Luenberger observer

is used to estimate the process states and is given by:

x̂(t+ 1) = Ax̂(t) +Bu(t) + L(y(t)− ŷ(t))

ŷ(t) = Cx̂(t)
(3)

where x̂(t) ∈ R
nx is the estimated state vector, ŷ(t) ∈ R

ny is

the estimated output vector, and L ∈ R
nx×ny is the observer

gain selected so the eigenvalues of A − LC are within the

unit circle. To steer the state to the origin, which is assumed

to be the desired operating steady-state, a linear feedback

control law is used:

u(t) = −Kx̂(t) (4)

where K ∈ R
nu×nx is the controller gain. The gain is

selected such that the eigenvalues of A − BK are within

the unit circle.

The estimation error is defined as e(t) = x(t)− x̂(t), and

the estimation error dynamics are given by:

e(t+ 1) = L(I − Λ)Cx(t) + (A− LC)e(t)

+Gw(t)− LΛv(t)
(5)

Defining the augmented state vector as ξ(t) =
[xT (t) eT (t)]T , the overall closed-loop system consisting of

the process in (1) with the feedback control law in (4) using

the estimated state from the observer in (3) can be written

as:

ξ(t+1) =

[
(A−BK) BK

L(I − Λ)C (A− LC)

]

︸ ︷︷ ︸

:=Aξ(Λ,K,L)

ξ(t)+

[
G 0
G −LΛ

]

︸ ︷︷ ︸

:=Bξ(Λ,K,L)

d(t)

(6)

where d(t) :=
[
wT (t) vT (t)

]T
∈ F is the augmented

vector of disturbances and measurement noise, and F ={[
w

v

]

| w ∈ W, v ∈ V

}

is the set of disturbances. Here, ξ(t)

denotes the augmented state and Aξ(Λ,K, L) and Bξ(Λ, L)
are the closed-loop system matrices for the augmented state

dynamics. In what follows, the admissible set of disturbance

and measurement noise sequences is denoted by F := {d |
d(t) ∈ F, ∀ t ≥ 0}.

Given that chemical processes are typically operated at

steady-state for long periods of time, all analyses in the

present work focus on the process operating at its steady-

state, i.e., after the augmented state of the closed-loop system

has converged to its terminal set, which is the minimum

invariant set for the closed-loop system. The minimum

invariant set for the augmented closed-loop system in (6)

such that maxi|λi(Aξ(Λ,K, L))| < 1 is the solution to the

infinite Minkowski sum [16]:

Dξ(Λ,K, L) =

∞⊕

i=0

Aξ(Λ,K, L)i Bξ(Λ, L) F (7)

Based on (7), the minimum invariant sets are dependent

on the attack matrix Λ, the controller gain K, and the

observer gain L. For simplicity, the process operated at

steady-state refers to the process in (6) after the augmented

state has converged to the minimum invariant set, i.e., ξ(t) ∈
Dξ(Λ,K, L) implying that ξ(t+ 1) ∈ Dξ(Λ,K, L). For the

remainder, the term closed-loop process refers to the process

in (1)-(2) under the feedback law given by (4) using the

estimates of states generated by the observer in (3).

III. ACTIVE ATTACK DETECTION VIA CONTROLLER

PARAMETER SWITCHING

In this section, a residual-based detection scheme is

introduced, followed by detectability-based classifications

of attacks. Several results relating the detectability-based

classifications to closed-loop stability are then discussed,

and the active detection strategy, using controller parameter

switching, is presented. Due to space constraints, proofs of

the theoretical results are omitted.



A. Residual-based Detection Scheme and Attack Detectabil-

ity

For the closed-loop process, the residual vector, r(t), is

defined as the difference between the output and its estimate

generated by the observer, i.e., r(t) := y(t)− ŷ(t). Writing

the residual in terms of the augmented state vector, ξ(t), and

the disturbance vector, d(t), yields:

r(t) =
[
(Λ− I)C C

]

︸ ︷︷ ︸

=:Ar(Λ)

ξ(t) +
[
0 Λ

]

︸ ︷︷ ︸

=:Br(Λ)

d(t) (8)

When Aξ(Λ,K, L) has eigenvalues that lie within the

unit circle and F is compact, Dξ(Λ,K, L) is forward in-

variant [16] and compact (Sec. 4 in [17]), and the residual

is ultimately bounded within a terminal set. From (8), the

residual terminal set is equal to the Minkowski sum of the

projections of the minimum invariant set, Dξ(Λ,K, L), and

the disturbance set, F , onto the residual space, and is given

by:

Dr(Λ,K, L) = Ar(Λ)Dξ(Λ,K, L)⊕Br(Λ)F (9)

For every ξ(t) ∈ Dξ(Λ,K, L) and d(t) ∈ F , all possible

realizations of the residual will be contained within its

terminal residual set, i.e., r(t) ∈ Dr(Λ,K, L).
Residual-based anomaly detection schemes are commonly

used in model-based detection schemes for process moni-

toring [18], [19], [20], [21], [22]. A set membership-based

detection scheme of the form:

z(t) =

{

0, r(t) ∈ Dr(I,K,L)

1, r(t) ̸∈ Dr(I,K,L)
(10)

is considered in the present work. Here z(t) represents the

output of the detection scheme. An output of z(t) = 0
indicates normal process operation (no attack detection),

and z(t) = 1 indicates that an attack is detected. With

the detector, attacks can be classified into three categories

based on the ability to detect them. These definitions are

specific to the detection scheme considered. While one

could consider more general systems-theoretic definitions

of attack detectability, the following definitions enable the

classification of attacks as detectable and undetectable for

the detection scheme considered.

For the closed-loop process monitored by the detection

scheme in (10), an attack is said to be detected at time td if

r(td) ̸∈ Dr(I,K,L) with the output of the detection scheme

z(td) = 1. With respect to the detection scheme in (10), an

attack is defined as a detectable attack, if it is detected in

finite time for all ξ(0) ∈ Dξ(Λ,K, L) and d ∈ F . An attack

is defined as an undetectable attack, if the residual of the

attacked closed-loop process satisfies r(t) ∈ Dr(I,K,L)
for all t ≥ 0, for all ξ(0) ∈ Dξ(Λ,K, L). Finally, an

attack is defined as potentially detectable, if the attack is

neither detectable nor undetectable. If the attack renders the

closed-loop process unstable, then by convention, the set

Dξ(Λ,K, L) is taken to be the Euclidean space R
2nx . The

set of initial conditions considered is Dξ(Λ,K, L) because

steady-state operation is considered. It is possible that, for

some initial conditions in Dξ(Λ,K, L) and realizations of

d(0) ∈ F , the attack is detected immediately by the detection

scheme in (10). However, this does not imply that the attack

is detectable, as the attack needs to be detected in finite-

time for all initial conditions in Dξ(Λ,K, L). While the def-

initions for attack detectability with respect to the detection

scheme in (10) are valid for any attack, multiplicative sensor-

controller link attacks are considered in the present work.

To motivate the proposed active detection scheme, the con-

nection between closed-loop stability and attack detectability

is analyzed first. Proposition 1 below establishes a relation-

ship between the undetectability of a multiplicative attack

and the terminal residual sets.

Proposition 1. Consider the closed-loop process operated

at steady-state with the controller-observer parameter pair

(K,L) under a multiplicative sensor-controller link attack

of magnitude Λ. If the attack is such that the closed-loop

process remains stable, i.e., the eigenvalues of Aξ(Λ,K, L)
lie within the unit circle, the multiplicative attack is unde-

tectable with respect to the detection scheme in (10), if and

only if Dr(Λ,K, L) ⊆ Dr(I,K,L).

Proposition 2 establishes the relationship between poten-

tial detectability and both stability and instability of the

closed-loop process with controller-observer parameter pair

(K,L), and the possible realizations of the disturbances.

This proposition implies that even when the closed-loop

process with the pair (K,L) under a multiplicative sen-

sor controller link attack of magnitude Λ is unstable with

maxi|λi(Aξ(Λ,K, L))| > 1, attack detection is not guaran-

teed for all d ∈ F .

Proposition 2. Consider the closed-loop process operated

at steady-state with the controller-observer parameter pair

(K,L) under a multiplicative sensor-controller link attack

of magnitude Λ. If the attack is such that: (1) the at-

tacked closed-loop process is stable with the eigenvalues

of Aξ(Λ,K, L) within the unit circle, and Dr(Λ,K, L) ̸⊆
Dr(I,K,L), or (2) the attacked closed-loop process is

unstable with maxi|λi(Aξ(Λ,K, L)| > 1, then the attack

is potentially detectable with respect to the detection scheme

in (10).

Proposition 2, indicates that a multiplicative attack may

be only potentially detectable even when the closed-loop

process is unstable in the sense that some eigenvalues of

Aξ(Λ,K, L) lie outside the unit circle (i.e., instability does

not imply detectability). The attack may not be detected for

some trivial solutions generated from the attacked closed-

loop process, such as the one generated when ξ(0) = 0 and

d ≡ 0. Additionally, pathological cases are possible where

the disturbance d effectively acts as stabilizing input, result-

ing in the closed-loop augmented state remaining bounded.

Under an observability condition, if the augmented state

under an attack is such that ∥ξ(t)∥ → ∞ as t → ∞ the

attack will be detected in finite-time. This result is formally

stated in Proposition 3.



Proposition 3. Consider the closed-loop process with the

controller-observer parameter pair (K,L) under a multi-

plicative attack of magnitude Λ ̸= I . Let the pair (K,L)
stabilize the attack-free closed-loop process. If the attack

renders the closed-loop process unstable, in the sense that

∥ξ(t)∥ → ∞ as t → ∞, and the pair (Aξ(Λ,K, L), Ar(Λ))
is observable, then the attack is detected in finite time with

respect to the detection scheme in (10).

B. Active Attack Detection Methodology

Proposition 3 suggests that choosing controller parameters

that render the closed-loop system unstable in the presence

of an attack is potentially advantageous from the standpoint

of enhancing the monitoring scheme’s ability to detect the

attack. However, sustained operation with these controller

parameters may not be desirable because the resulting closed-

loop performance could be worse than that achieved under

the nominal controller parameters.

To strike a balance between the two conflicting objectives,

the proposed active detection methodology involves occa-

sional switching between the nominal controller parameters,

determined by traditional design approaches (e.g., [23], [24]),

and the parameters that are sensitive to cyberattacks. Attack-

sensitive controller parameters with respect to a multiplica-

tive attack of magnitude Λ are defined as parameters that

maintain the closed-loop stability of the attack-free process,

but in the presence of the attack, the closed-loop process

is rendered unstable. Additionally, they are such that the

pair (Aξ(Λ,K
∗, L∗), Ar(Λ))) is observable. The attack-

sensitive controller parameters exploit the dependence of

the terminal residual set on the controller parameters. The

presented approach has two design considerations to address

the potential trade-off between attack detection and closed-

loop performance, including (1) how often to switch to the

attack-sensitive controller parameters, and (2) the duration of

the window of operation under the attack-sensitive controller

parameters. The nominal controller parameters are denoted

by (K∗, L∗), while the attack-sensitive controller parameters

are denoted by (KΛ, LΛ).

From the definition of attack-sensitive controller parame-

ters, some eigenvalues of the augmented system matrix lie

outside the unit circle, i.e., maxi|λi(Aξ(Λ,KΛ, LΛ))| > 1.

Even though the attacked closed-loop process with attack-

sensitive controller parameters is unstable, it is possible that

some realizations of the disturbances could stabilize the

closed-loop process under an attack. For this reason, mul-

tiplicative sensor-controller link attacks are potentially de-

tectable under attack-sensitive controller parameters (Propo-

sition 2). From a practical point of view, disturbances do not

normally act in a way that stabilizes the closed-loop system

because they are exogenous perturbations.

Under the proposed active detection methodology, the con-

trol system parameters vary over time. The detection scheme

needs to account for this change because the residual terminal

set under attack-free operation depends on the controller and

observer gains. The detection scheme is therefore modified

as follows:

z(t) =

{

0, r(t) ∈ Dr(I,K(t), L(t))

1, r(t) ̸∈ Dr(I,K(t), L(t))
(11)

where K(t) is the controller gain used at time step t and

L(t) is the observer gain at time step t, z(t) = 0 indicates

anomaly-free operation and z(t) = 1 indicates anomalous

process operation. For the closed-loop process with the

nominal parameter pair (K(t), L(t)) = (K∗, L∗), while for

the closed-loop process with the attack-sensitive parameter

pair, (K(t), L(t)) = (KΛ, LΛ).

The attack-sensitive controller parameters are chosen to be

sensitive to a (preferably large) range of attack magnitudes.

Under the proposed active detection scheme, the controller

parameter switching occurs occasionally. Considering that

a switch from the nominal pair, (K∗, L∗), to the attack-

sensitive pair, (KΛ, LΛ), occurs at ts, the process is operated

in the “attack-sensitive mode” for a certain period of time,

Tc > 0. In the absence of an attack, the residual trajectory

after the switch is expected to evolve in Dr(I,KΛ, LΛ). At

the end of the chosen time window, [ts, ts+Tc], the controller

parameters are switched back to the nominal controller

parameters. In the presence of a multiplicative attack, the

residual trajectory may evolve outside Dr(I,KΛ, LΛ) for

some time resulting in a detection alarm by the detection

scheme in (10). If there is a detection of an attack at some

time td, attack identification and mitigation strategies could

be employed to cope with the attack, but these strategies

are beyond the scope of the present work. Since attack

detection cannot be guaranteed in general over the period Tc,

an attack may go undetected over the period that the process

operates in the attack-sensitive mode. While a more rigorous

assessment is needed, it is expected that the probability of

detection would increase with increasing Tc.

Based on these considerations, the implementation of the

active detection methodology is initiated with a controller

parameter switch from (K∗, L∗) to (KΛ, LΛ) implemented

on the closed-loop process at some time ts ≥ 0. If r(td) ̸∈
Dr(I,KΛ, LΛ), an attack is detected at t = td. Following

this, attack identification and mitigation strategies may be

implemented. If no attack is detected for the duration of

operation of the closed-loop process with (KΛ, LΛ), then

at time t = ts + Tc, a controller parameter switch from

(KΛ, LΛ) to (K∗, L∗) is implemented on the closed-loop

process.

IV. APPLICATION TO A CHEMICAL PROCESS EXAMPLE

A chemical process consisting of a continuously stirred

tank reactor (CSTR) is considered, where a second order,

exothermic reaction of the form A → B occurs. The CSTR

contents are assumed to be well-mixed, and the contents may

be heated or cooled using, for example, a cooling jacket or

a submerged heat exchanger coil. A dynamic process model

is obtained from the appropriate mass and energy balances

under standard assumptions, and is given by the following



system of ordinary differential equations:

dCA

dt
=

F

V
(CA0 +∆CA0

− CA)− k0e
−E
RT C2

A

dT

dt
=

F

V
(T0 +∆T0 − T )−

∆Hk0

ρCp

e
−E
RT C2

A +
Q

ρCpV
(12)

The parameter definitions and the simulation data are as

described in Section 4.2 in [15]. For the simulation study, a

discrete LTI model (of the form of Eq 1) is dervied for the

process in Eq. 12, with A =

[
0.7364 −0.0041
10.6953 1.1560

]

, B =
[
−9.0708× 10−8

4.6741× 10−5

]

, and G =

[
0.0433 −0.0001
0.2724 0.0540

]

. For the

calculation of the minimum invariant and residual terminal

sets, the Multi-Parametric Toolbox (MPT) 3.0 [25] is used.

Numerical approximations of the minimum invariant sets are

computed based on the algorithm in [26] with an error bound

of 5 × 10−5. In comparing the numerical estimates of the

terminal residual sets Dr(I,K
∗, L∗) and Dr(Λ,K

∗, L∗), the

technique presented in [15] is used.

The nominal controller parameters (K∗, L∗) are chosen to

ensure closed-loop stability using pole placement with the

controller poles placed at [0.5 −0.1], and the observer poles

placed at [0.48 0.48]. It was verified, based on extensive

closed-loop simulations, that the resulting control system

is stabilizing when applied to the nonlinear process. Fur-

thermore, the nominal controller parameters are not attack-

sensitive to multiplicative sensor-controller link attacks of

magnitudes in the set {diag(1, α) | α ∈ [0.1, 0.8]}.

In the simulations below, an attack of magnitude 0.8 on

the temperature sensor (i.e., Λ = diag(1, 0.8)) is considered.

In the presence of such an attack, the maximum absolute

eigenvalue of the closed-loop process with (K∗, L∗) is

maxi|λi(Aξ(Λ,K
∗, L∗))| = 0.6843 < 1, indicating that

closed-loop stability is maintained under the attack. The

estimates of the terminal set of the residuals of the attack-

free closed-loop process with (K∗, L∗) (Dr(I,K
∗, L∗)),

and for the attacked closed-loop process with (K∗, L∗)
(Dr(Λ,K

∗, L∗)), are computed and it is observed that

Dr(Λ,K
∗, L∗) ̸⊆ Dr(I,K

∗, L∗). Thus, the attack is po-

tentially detectable with this choice of parameters (Proposi-

tion 2). However, the two residual sets are found to be almost

equal, and the attack may be difficult to detect. One hundred

closed-loop simulations of the attacked process operated with

(K∗, L∗) are performed by varying the seed of the random

number generator used to generate the process disturbance

and measurement noise for each simulation. The attack is

not detected over all these simulations.

The attack-sensitive controller parameters (KΛ, LΛ) are

selected such that the controller poles are placed at

[−0.4 0.1], and the observer poles are placed at [0.3 −0.1]. In

the presence of an attack of magnitude Λ = diag(1, 0.8), the

maximum absolute eigenvalue for the closed-loop process is

maxi|λi(Aξ(Λ,KΛ, LΛ))| = 1.1937 > 1, indicating that the

parameters are sensitive with respect to this attack. Further-

more, the matrix pair (Aξ(Λ,KΛ, LΛ), Ar(Λ)) is observable.

In addition to an attack of magnitude Λ = diag(1, 0.8),

the attack-sensitive controller parameters are found to be

sensitive to attacks of magnitudes contained in the set

{diag(1, α) | α ∈ [0.1, 0.8]}. The controller parameter switch

for active detection methodology implementation occurs at

ts = 2.5 h and the detection cycle is chosen to be Tc = 1h.

The proposed active attack detection methodology is applied

to the CSTR for one hundred closed-loop simulations with

the same realizations of the random variables as the previous

set of simulations. Over all these simulations, implementing

the active detection methodology resulted in the detection

of the attack within a maximum of 10 time steps from the

controller parameter switch.

In what follows, results from two simulation case studies

with the proposed active detection strategy are discussed. The

first case considers an attack-free closed-loop simulation.

With the nominal controller parameters (K∗, L∗), r(t) is

maintained in Dr(I,K
∗, L∗) for t ∈ [0, 2.5) h. After the

controller parameters are switched, r(t) is maintained in

Dr(Λ,K
∗, L∗) for t ∈ [2.5, 3.5) h, resulting in zero alarms

generated by the detection scheme. At t = ts + Tc =
3.5 h, due to absence of an alarm in the detection scheme,

the controller parameters are switched from (KΛ, LΛ) back

to (K∗, L∗). Thereafter, r(t) ∈ Dr(I,K
∗, L∗) for t ∈

(3.5, 5] h.

In the second case study, a simulation of the attacked

closed-loop process is considered using the same realization

of the random variables, where the attack begins at time

t = 0 h. Because the residuals satisfy r(t) ∈ Dr(I,K
∗, L∗)

for all time t ∈ [0, 2.5) h (Fig. 1a), the output of the detection

scheme is z(t) = 0, and the attack is not detected. At time

ts = 2.5 h when the controller parameters are switched from

(K∗, L∗) to (KΛ, LΛ), the attack is detected in 10 time steps,

i.e., at time td = 2.6h with the residual of the process

r(td) = [0.0004 0.0205]T ̸∈ Dr(I,KΛ, LΛ). Since the

nominal controller parameters are stabilizing for the attack

magnitudes that (KΛ, LΛ) are sensitive to, the controller

parameters are switched back to the nominal parameters

immediately after the detection of the attack. This allows

for process stabilization while attack identification and miti-

gation schemes may be implemented. Fig. 1a illustrates that

after the switch from (KΛ, LΛ) back to (K∗, L∗), there are

alarms generated for 2 more time steps by the detection

scheme due to residuals satisfying r(t) ̸∈ Dr(I,K
∗, L∗) for

t ∈ (2.6, 2.63) h.

V. CONCLUSIONS

This work presented an active attack detection methodol-

ogy utilizing controller parameter switching to proactively

probe a closed-loop process for sensor-controller commu-

nication link attacks. The methodology features switching

between the nominal controller parameters, selected on

the basis of standard control design criteria, and attack-

sensitive controller parameters, selected by exploiting the

interdependence of the attack detectability and closed-loop

stability. The application of the proposed methodology to

enhance attack detection capabilities was demonstrated using

a chemical process example.



(a)

(b)

Fig. 1: (a) The residual values for the attacked closed-loop

process with (K∗, L∗) showing r(t) ∈ Dr(I,K
∗, L∗) for

all t ∈ [0, ts). (b) The residual values for the attacked

closed-loop process showing r(td) ̸∈ Dr(I,KΛ, LΛ) at the

detection time td = 2.6 h.
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