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Controller Switching-Enabled Active Detection of Multiplicative
Cyberattacks on Process Control Systems

Shilpa Narasimhan, Nael H. El-Farra, Matthew J. Ellis

Abstract— This work focuses on the problem of enhancing
cyberattack detection capabilities in process control systems
subject to multiplicative cyberattacks. First, the relationship
between closed-loop stability and attack detectability with re-
spect to a class of residual-based detection schemes is rigorously
analyzed. The results are used to identify a set of controller
parameters (called ‘“attack-sensitive” controller parameters)
under which an attack can destabilize the closed-loop system.
The selection of attack-sensitive controller parameters can
enhance the ability to detect attacks, but can also degrade the
performance of the attack-free closed-loop system. To balance
this trade-off, a novel active attack detection methodology
employing controller parameter switching between the nominal
controller parameters (chosen on the basis of standard control
design criteria) and the attack-sensitive controller parameters,
is developed. The proposed methodology is applied to a chemical
process example to demonstrate its ability to detect multiplica-
tive sensor-controller communication link attacks.

I. INTRODUCTION

Traditionally, information technology (IT) infrastructure
is responsible for the cybersecurity of industrial control
systems (ICSs). However, the increased reliance on net-
worked components in recent years has made ICSs targets
for frequent and increasingly complex cyberattacks [1], [2],
[3], demonstrating that I'T-based approaches alone are insuf-
ficient. Consequently, as an additional layer of protection
against cyberattacks, the integration of cybersecurity con-
siderations into traditional ICS design methods has received
increased attention (e.g., [4], [S] and the references therein).

Process control systems (PCSs) are ICSs designed to
control chemical manufacturing processes and may be partic-
ularly attractive to attackers due to their inherent risks. An
attack on a PCS may maliciously modify or falsify either
the control law or the data transmitted over the PCS com-
munication links. The design of a successful communication
link attack resulting in loss of closed-loop stability while
remaining undetected may require some process knowledge
on the part of the attacker [6]. Irrespective of the attacker’s
process knowledge, stealthy attacks may be designed to be
detrimental to the process while evading detection by the
anomaly detection schemes monitoring the process. These
attacks are challenging to detect because the behavior of the
attacked process is difficult to differentiate from the behavior
of the attack-free process [7]. Consequently, the design of
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detection schemes aimed at monitoring a process for several
types of stealthy attacks on PCSs has received significant
attention [8], [9], [10], [11], [12], [13], [14].

Attack detection schemes may be grouped into two cat-
egories: passive attack detection schemes and active attack
detection schemes. Passive attack detection schemes mon-
itor a process for anomalies without employing external
intervention or inducing a perturbation in the process (e.g.,
[8], [9], [14]). Depending on the cyberattack design, passive
approaches for attack detection may not always be successful
in detecting an attack (Sec. III, [10]). As an alternative,
active detection schemes that involve external intervention
to actively probe for cyberattacks may be used. Examples
of such approaches include watermarking and moving target
approaches [10], [11], [12], [13].

This work focuses on the detection of multiplicative
sensor-controller link cyberattacks. These cyberattacks may
be designed to be stealthy without requiring intimate knowl-
edge of process dynamics or without simultaneously target-
ing the actuator-controller communication link. In a prior
work [15], the connection between the PCS design and the
detectability of multiplicative sensor-controller link attacks
was analyzed. The analysis revealed that some controller
parameter choices could prevent attack detection. Conse-
quently, a controller screening methodology to identify and
discard controller parameters that mask the impact of an
attack from the detection scheme was proposed. However,
an attack may still go undetected even when the controllers
are chosen so that they do not mask the impact of an attack.

In the present work, the connection between attack de-
tectability with respect to a residual-based detection scheme
and closed-loop stability is analyzed. The analysis reveals
that it is advantageous to select controller parameters that
render the attacked closed-loop process unstable. However,
operating with these “attack-sensitive” controller parameters
may not be desirable from the standpoint of the performance
of the attack-free closed-loop system. To balance the trade-
off between the enhancement in attack detection capability
and the possible degradation in closed-loop performance, an
active attack detection methodology that employs occasional
controller parameter switching between the nominal and
attack-sensitive parameters is developed and demonstrated
using a chemical process example.

II. PRELIMINARIES

A. Notation and Definitions

The closed Euclidean ball and infinity ball centered at the
origin with radius R > 0 are denoted by B™(R) := {x €
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R™ | |z|| £ R} and B := {z € R" | ||z|lcc < R}. For

a compact set D C R™, Rp denotes the minimal radius of

the Euclidean ball enclosing the set, i.e., Rp := max 1|
fAS

For a set D C R", the linear transformation of the set is
denoted by AD := {Ax | z € D}. Given two nonempty sets
X C R™ and Y C R"™, their Minkowski sum is defined as
XY ={x+y|zeX,yeY} Sequences are denoted
with boldface letters, i.e., d := {d(0),d(1),d(2),...} where
d(t) € R™ for all t > 0.

B. Process Model and Control System

We consider processes modeled by discrete-time linear
time-invariant systems subject to bounded disturbances:

z(t +1) = Az(t) + Bu(t) + Guw(t) )]

where z(t) € R"= is the process state vector, u(t) € R™«
is the manipulated input vector, w(t) € W C R™ is
the bounded process disturbance vector, and the set W is
assumed to be a (compact) polytope containing the origin.
Without loss of generality, the initial time is taken to be zero.
The matrices A, B, and G are of appropriate dimensions.
In this work, multiplicative sensor-controller communication
link attacks are considered. The value of the measured output
received by the controller is modeled by:

y(t) = A(Cx(t) + v(t)) 2

where y(t) € R™ is the potentially falsified output vector re-
ceived by the controller, v(t) € V' C R™ is the measurement
noise vector, the set V' is assumed to be a (compact) polytope
containing the origin, and A is the matrix representing the
magnitude of the multiplicative sensor-controller link attack
on the process, where A = [ indicates the absence of an
attack and A = diag(ay,@2,...,an,) # I indicates the
presence of an attack. Here, «; # 1 is the attack magnitude
on the i*" sensor-controller link. The matrix A is referred to
as the magnitude of the attack. The matrix C'is of appropriate
dimensions.

The pair (A, B) is assumed to be controllable, and the pair
(A, C) is assumed to be observable. A Luenberger observer
is used to estimate the process states and is given by:

Z(t+1) = Az(t) + Bu(t) + L(y(t) — 9(t))
g(t) = Ci(t)

where Z(t) € R™= is the estimated state vector, §(t) € R"v is
the estimated output vector, and L € R™=*"v is the observer
gain selected so the eigenvalues of A — LC are within the
unit circle. To steer the state to the origin, which is assumed
to be the desired operating steady-state, a linear feedback
control law is used:

3)

u(t) = —Ki(t) o)

where K € R™ X" jg the controller gain. The gain is
selected such that the eigenvalues of A — BK are within
the unit circle.

The estimation error is defined as e(t) = z(t) — &(¢), and
the estimation error dynamics are given by:

e(t+1)=L(I—A)Cxz(t) + (A— LC)e(t)

+ Gw(t) — LAv(t) ®)

Defining the augmented state vector as &(t) =
[T (t) T (t)]T, the overall closed-loop system consisting of
the process in (1) with the feedback control law in (4) using
the estimated state from the observer in (3) can be written
as:

(A- BK)  BK G 0
§(t+1) = [L(I —A)C (A- LC)} s+ [G —LA] d(t)
:=A¢(AK,L) :=B¢(AK,L)

(6)
where d(t) = [w’(t) vT(t)}T € F is the augmented
vector of disturbances and measurement noise, and F' =

{ [Iﬂ |weW,ve V} is the set of disturbances. Here, £(t)

denotes the augmented state and A¢(A, K, L) and B¢ (A, L)
are the closed-loop system matrices for the augmented state
dynamics. In what follows, the admissible set of disturbance
and measurement noise sequences is denoted by F := {d |
d(t) e F, V't > 0}.

Given that chemical processes are typically operated at
steady-state for long periods of time, all analyses in the
present work focus on the process operating at its steady-
state, i.e., after the augmented state of the closed-loop system
has converged to its terminal set, which is the minimum
invariant set for the closed-loop system. The minimum
invariant set for the augmented closed-loop system in (6)
such that max;|A;(A¢(A, K, L))| < 1 is the solution to the
infinite Minkowski sum [16]:

De(AK,L) =P A¢(A, K, L)' Bs(A,L) F (1)
=0

Based on (7), the minimum invariant sets are dependent
on the attack matrix A, the controller gain K, and the
observer gain L. For simplicity, the process operated at
steady-state refers to the process in (6) after the augmented
state has converged to the minimum invariant set, i.e., £(t) €
D¢(A, K, L) implying that {(t + 1) € D¢(A, K, L). For the
remainder, the term closed-loop process refers to the process
in (1)-(2) under the feedback law given by (4) using the
estimates of states generated by the observer in (3).

III. ACTIVE ATTACK DETECTION VIA CONTROLLER
PARAMETER SWITCHING

In this section, a residual-based detection scheme is
introduced, followed by detectability-based classifications
of attacks. Several results relating the detectability-based
classifications to closed-loop stability are then discussed,
and the active detection strategy, using controller parameter
switching, is presented. Due to space constraints, proofs of
the theoretical results are omitted.
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A. Residual-based Detection Scheme and Attack Detectabil-
ity

For the closed-loop process, the residual vector, r(t), is
defined as the difference between the output and its estimate
generated by the observer, i.e., r(t) := y(t) — §(t). Writing
the residual in terms of the augmented state vector, £(t), and
the disturbance vector, d(¢), yields:

r(t)=[(A—DC Cl&)+[0 Ald®) (8)
N——— N——

=:A,(A) =:B,(A)

When A¢(A, K, L) has eigenvalues that lie within the
unit circle and F' is compact, D¢(A, K, L) is forward in-
variant [16] and compact (Sec. 4 in [17]), and the residual
is ultimately bounded within a terminal set. From (8), the
residual terminal set is equal to the Minkowski sum of the
projections of the minimum invariant set, D¢ (A, K, L), and
the disturbance set, F', onto the residual space, and is given
by:

D, (A K, L) = A,(A)Dg(A, K, L) & B,(A)F  (9)

For every {(t) € D¢(A,K,L) and d(t) € F, all possible
realizations of the residual will be contained within its
terminal residual set, i.e., 7(t) € D, (A, K, L).

Residual-based anomaly detection schemes are commonly
used in model-based detection schemes for process moni-
toring [18], [19], [20], [21], [22]. A set membership-based
detection scheme of the form:

r(t) € D, (I, K, L)

r(t) ¢ D.(I,K, L) (10

is considered in the present work. Here z(t¢) represents the
output of the detection scheme. An output of z(t) = 0
indicates normal process operation (no attack detection),
and z(t) = 1 indicates that an attack is detected. With
the detector, attacks can be classified into three categories
based on the ability to detect them. These definitions are
specific to the detection scheme considered. While one
could consider more general systems-theoretic definitions
of attack detectability, the following definitions enable the
classification of attacks as detectable and undetectable for
the detection scheme considered.

For the closed-loop process monitored by the detection
scheme in (10), an attack is said to be detected at time ¢, if
r(tq) € D, (I, K, L) with the output of the detection scheme
2(tq) = 1. With respect to the detection scheme in (10), an
attack is defined as a detectable attack, if it is detected in
finite time for all {(0) € D¢(A, K, L) and d € F. An attack
is defined as an undetectable attack, if the residual of the
attacked closed-loop process satisfies r(¢t) € D, (I, K, L)
for all ¢ > 0, for all £(0) € D¢(A,K,L). Finally, an
attack is defined as potentially detectable, if the attack is
neither detectable nor undetectable. If the attack renders the
closed-loop process unstable, then by convention, the set
D¢(A, K, L) is taken to be the Euclidean space R*"=. The
set of initial conditions considered is D¢ (A, K, L) because
steady-state operation is considered. It is possible that, for

some initial conditions in D¢ (A, K, L) and realizations of
d(0) € F, the attack is detected immediately by the detection
scheme in (10). However, this does not imply that the attack
is detectable, as the attack needs to be detected in finite-
time for all initial conditions in D¢(A, K, L). While the def-
initions for attack detectability with respect to the detection
scheme in (10) are valid for any attack, multiplicative sensor-
controller link attacks are considered in the present work.

To motivate the proposed active detection scheme, the con-
nection between closed-loop stability and attack detectability
is analyzed first. Proposition 1 below establishes a relation-
ship between the undetectability of a multiplicative attack
and the terminal residual sets.

Proposition 1. Consider the closed-loop process operated
at steady-state with the controller-observer parameter pair
(K, L) under a multiplicative sensor-controller link attack
of magnitude A. If the attack is such that the closed-loop
process remains stable, i.e., the eigenvalues of A¢(A, K, L)
lie within the unit circle, the multiplicative attack is unde-
tectable with respect to the detection scheme in (10), if and
only if D.(A,K,L) C D,.(I,K,L).

Proposition 2 establishes the relationship between poten-
tial detectability and both stability and instability of the
closed-loop process with controller-observer parameter pair
(K, L), and the possible realizations of the disturbances.
This proposition implies that even when the closed-loop
process with the pair (K, L) under a multiplicative sen-
sor controller link attack of magnitude A is unstable with
max;|A;(Ae (A, K, L))| > 1, attack detection is not guaran-
teed for all d € F.

Proposition 2. Consider the closed-loop process operated
at steady-state with the controller-observer parameter pair
(K, L) under a multiplicative sensor-controller link attack
of magnitude A. If the attack is such that: (1) the at-
tacked closed-loop process is stable with the eigenvalues
of A¢(A, K, L) within the unit circle, and D,(A,K,L) ¢
D.(I,K,L), or (2) the attacked closed-loop process is
unstable with max;|\;(Ae(A, K, L)| > 1, then the attack
is potentially detectable with respect to the detection scheme
in (10).

Proposition 2, indicates that a multiplicative attack may
be only potentially detectable even when the closed-loop
process is unstable in the sense that some eigenvalues of
A¢(A, K, L) lie outside the unit circle (i.e., instability does
not imply detectability). The attack may not be detected for
some trivial solutions generated from the attacked closed-
loop process, such as the one generated when £(0) = 0 and
d = 0. Additionally, pathological cases are possible where
the disturbance d effectively acts as stabilizing input, result-
ing in the closed-loop augmented state remaining bounded.

Under an observability condition, if the augmented state
under an attack is such that ||£(¢)|| — oo as t — oo the
attack will be detected in finite-time. This result is formally
stated in Proposition 3.
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Proposition 3. Consider the closed-loop process with the
controller-observer parameter pair (K, L) under a multi-
plicative attack of magnitude A # I. Let the pair (K, L)
stabilize the attack-free closed-loop process. If the attack
renders the closed-loop process unstable, in the sense that
[lE(t)]| = oo as t — oo, and the pair (A¢(A, K, L), A (A))
is observable, then the attack is detected in finite time with
respect to the detection scheme in (10).

B. Active Attack Detection Methodology

Proposition 3 suggests that choosing controller parameters
that render the closed-loop system unstable in the presence
of an attack is potentially advantageous from the standpoint
of enhancing the monitoring scheme’s ability to detect the
attack. However, sustained operation with these controller
parameters may not be desirable because the resulting closed-
loop performance could be worse than that achieved under
the nominal controller parameters.

To strike a balance between the two conflicting objectives,
the proposed active detection methodology involves occa-
sional switching between the nominal controller parameters,
determined by traditional design approaches (e.g., [23], [24]),
and the parameters that are sensitive to cyberattacks. Attack-
sensitive controller parameters with respect to a multiplica-
tive attack of magnitude A are defined as parameters that
maintain the closed-loop stability of the attack-free process,
but in the presence of the attack, the closed-loop process
is rendered unstable. Additionally, they are such that the
pair (A¢(A,K*,L*),A.(A))) is observable. The attack-
sensitive controller parameters exploit the dependence of
the terminal residual set on the controller parameters. The
presented approach has two design considerations to address
the potential trade-off between attack detection and closed-
loop performance, including (1) how often to switch to the
attack-sensitive controller parameters, and (2) the duration of
the window of operation under the attack-sensitive controller
parameters. The nominal controller parameters are denoted
by (K*, L*), while the attack-sensitive controller parameters
are denoted by (K, Ly).

From the definition of attack-sensitive controller parame-
ters, some eigenvalues of the augmented system matrix lie
outside the unit circle, i.e., max;|A;(Ag(A, K, La))| > 1.
Even though the attacked closed-loop process with attack-
sensitive controller parameters is unstable, it is possible that
some realizations of the disturbances could stabilize the
closed-loop process under an attack. For this reason, mul-
tiplicative sensor-controller link attacks are potentially de-
tectable under attack-sensitive controller parameters (Propo-
sition 2). From a practical point of view, disturbances do not
normally act in a way that stabilizes the closed-loop system
because they are exogenous perturbations.

Under the proposed active detection methodology, the con-
trol system parameters vary over time. The detection scheme
needs to account for this change because the residual terminal
set under attack-free operation depends on the controller and
observer gains. The detection scheme is therefore modified

as follows:

r(t) € D.(I,K(t), L(t))

(1)
r(t) & D, (I, K(t), L(t))

A1) = {(1)

where K (t) is the controller gain used at time step ¢ and
L(t) is the observer gain at time step ¢, z(t) = 0 indicates
anomaly-free operation and z(¢) = 1 indicates anomalous
process operation. For the closed-loop process with the
nominal parameter pair (K (¢), L(t)) = (K*, L*), while for
the closed-loop process with the attack-sensitive parameter
pair, (K (t), L(t)) = (Ka, Ly).

The attack-sensitive controller parameters are chosen to be
sensitive to a (preferably large) range of attack magnitudes.
Under the proposed active detection scheme, the controller
parameter switching occurs occasionally. Considering that
a switch from the nominal pair, (K*, L*), to the attack-
sensitive pair, (K, La), occurs at ¢4, the process is operated
in the “attack-sensitive mode” for a certain period of time,
T. > 0. In the absence of an attack, the residual trajectory
after the switch is expected to evolve in D,.(I, K5, Lp). At
the end of the chosen time window, [ts, ts+7.], the controller
parameters are switched back to the nominal controller
parameters. In the presence of a multiplicative attack, the
residual trajectory may evolve outside D, (I, Ka,Ly) for
some time resulting in a detection alarm by the detection
scheme in (10). If there is a detection of an attack at some
time tq4, attack identification and mitigation strategies could
be employed to cope with the attack, but these strategies
are beyond the scope of the present work. Since attack
detection cannot be guaranteed in general over the period 7,
an attack may go undetected over the period that the process
operates in the attack-sensitive mode. While a more rigorous
assessment is needed, it is expected that the probability of
detection would increase with increasing 7.

Based on these considerations, the implementation of the
active detection methodology is initiated with a controller
parameter switch from (K* L*) to (K, Ls) implemented
on the closed-loop process at some time ¢; > 0. If r(t4) &
D, (I, K, Ly), an attack is detected at ¢ = t4. Following
this, attack identification and mitigation strategies may be
implemented. If no attack is detected for the duration of
operation of the closed-loop process with (K, Ly), then
at time ¢t = t5; + T, a controller parameter switch from
(Ka,Lp) to (K*,L*) is implemented on the closed-loop
process.

IV. APPLICATION TO A CHEMICAL PROCESS EXAMPLE

A chemical process consisting of a continuously stirred
tank reactor (CSTR) is considered, where a second order,
exothermic reaction of the form A — B occurs. The CSTR
contents are assumed to be well-mixed, and the contents may
be heated or cooled using, for example, a cooling jacket or
a submerged heat exchanger coil. A dynamic process model
is obtained from the appropriate mass and energy balances
under standard assumptions, and is given by the following
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system of ordinary differential equations:

dCsy F e
dTA - V(OAO + ACy, — Cy) — koeTTC3

AT F AHky -& Q

L L (Ty+ ATy —T) — 22077 2

L V( 0+ AT, —T) oC, eFr Oy + pcpv(lz)

The parameter definitions and the simulation data are as
described in Section 4.2 in [15]. For the simulation study, a
discrete LTI model (of the form of Eq 1) is dervied for the

. . 0.7364 —0.0041
process in Eq. 12, with A = 10.6953  1.1560 |’ B =
—9.0708 x 1078 0.0433 —0.0001
[ 46741 x 100 | G = 1o 9704 0.0540 l For the
calculation of the minimum invariant and residual terminal

sets, the Multi-Parametric Toolbox (MPT) 3.0 [25] is used.
Numerical approximations of the minimum invariant sets are
computed based on the algorithm in [26] with an error bound
of 5 x 1075, In comparing the numerical estimates of the
terminal residual sets D,.(I, K*, L*) and D,.(A, K*, L*), the
technique presented in [15] is used.

The nominal controller parameters (K*, L*) are chosen to
ensure closed-loop stability using pole placement with the
controller poles placed at [0.5 — 0.1], and the observer poles
placed at [0.48 0.48]. It was verified, based on extensive
closed-loop simulations, that the resulting control system
is stabilizing when applied to the nonlinear process. Fur-
thermore, the nominal controller parameters are not attack-
sensitive to multiplicative sensor-controller link attacks of
magnitudes in the set {diag(1, @) | a € [0.1,0.8]}.

In the simulations below, an attack of magnitude 0.8 on
the temperature sensor (i.e., A = diag(1, 0.8)) is considered.
In the presence of such an attack, the maximum absolute
eigenvalue of the closed-loop process with (K*,L*) is
max;|A; (Ae (A, K*, L*))| = 0.6843 < 1, indicating that
closed-loop stability is maintained under the attack. The
estimates of the terminal set of the residuals of the attack-
free closed-loop process with (K*,L*) (D,(I,K*,L*)),
and for the attacked closed-loop process with (K™, L*)
(D,(A, K*,L*)), are computed and it is observed that
D.(A,K*,L*) ¢ D,(I,K* L*). Thus, the attack is po-
tentially detectable with this choice of parameters (Proposi-
tion 2). However, the two residual sets are found to be almost
equal, and the attack may be difficult to detect. One hundred
closed-loop simulations of the attacked process operated with
(K*, L*) are performed by varying the seed of the random
number generator used to generate the process disturbance
and measurement noise for each simulation. The attack is
not detected over all these simulations.

The attack-sensitive controller parameters (K, Ly) are
selected such that the controller poles are placed at
[—0.4 0.1], and the observer poles are placed at [0.3 —0.1]. In
the presence of an attack of magnitude A = diag(1,0.8), the
maximum absolute eigenvalue for the closed-loop process is
max;|A; (Ae (A, K, La))| = 1.1937 > 1, indicating that the
parameters are sensitive with respect to this attack. Further-
more, the matrix pair (Ag(A, Ka, Ly), A.(A)) is observable.
In addition to an attack of magnitude A = diag(1,0.8),

the attack-sensitive controller parameters are found to be
sensitive to attacks of magnitudes contained in the set
{diag(1, ) | @ € [0.1,0.8]}. The controller parameter switch
for active detection methodology implementation occurs at
ts = 2.5h and the detection cycle is chosen to be T, = 1 h.
The proposed active attack detection methodology is applied
to the CSTR for one hundred closed-loop simulations with
the same realizations of the random variables as the previous
set of simulations. Over all these simulations, implementing
the active detection methodology resulted in the detection
of the attack within a maximum of 10 time steps from the
controller parameter switch.

In what follows, results from two simulation case studies
with the proposed active detection strategy are discussed. The
first case considers an attack-free closed-loop simulation.
With the nominal controller parameters (K*,L*), r(t) is
maintained in D, (I, K*,L*) for t € [0,2.5) h. After the
controller parameters are switched, r(¢) is maintained in
D, (A, K*,L*) for t € [2.5,3.5) h, resulting in zero alarms
generated by the detection scheme. At ¢t = t, + T, =
3.5h, due to absence of an alarm in the detection scheme,
the controller parameters are switched from (K, La) back
to (K*,L*). Thereafter, r(t) € D,.(I,K*,L*) for t €
(3.5,5] h.

In the second case study, a simulation of the attacked
closed-loop process is considered using the same realization
of the random variables, where the attack begins at time
t =0 h. Because the residuals satisfy r(t) € D, (I, K*, L*)
for all time ¢ € [0, 2.5) h (Fig. 1a), the output of the detection
scheme is z(t) = 0, and the attack is not detected. At time
ts = 2.5 h when the controller parameters are switched from
(K*,L*) to (Ka, L), the attack is detected in 10 time steps,
ie., at time t; = 2.6h with the residual of the process
r(tq) = [0.0004 0.0205]7 & D,.(I,Kx,Ly). Since the
nominal controller parameters are stabilizing for the attack
magnitudes that (K, L) are sensitive to, the controller
parameters are switched back to the nominal parameters
immediately after the detection of the attack. This allows
for process stabilization while attack identification and miti-
gation schemes may be implemented. Fig. 1a illustrates that
after the switch from (K, L) back to (K*, L*), there are
alarms generated for 2 more time steps by the detection
scheme due to residuals satisfying r(t) € D,.(I, K*, L*) for
t € (2.6,2.63) h.

V. CONCLUSIONS

This work presented an active attack detection methodol-
ogy utilizing controller parameter switching to proactively
probe a closed-loop process for sensor-controller commu-
nication link attacks. The methodology features switching
between the nominal controller parameters, selected on
the basis of standard control design criteria, and attack-
sensitive controller parameters, selected by exploiting the
interdependence of the attack detectability and closed-loop
stability. The application of the proposed methodology to
enhance attack detection capabilities was demonstrated using
a chemical process example.
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Fig. 1: (a) The residual values for the attacked closed-loop
process with (K*, L*) showing r(t) € D, (I, K*,L*) for
all ¢ € [0,t5). (b) The residual values for the attacked
closed-loop process showing 7(tq) & D, (I, Kx, Ly) at the
detection time t4 = 2.6 h.
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