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GRADIENT ESTIMATES FOR STOKES AND NAVIER-STOKES
SYSTEMS WITH PIECEWISE DMO COEFFICIENTS*
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Abstract. We study stationary Stokes systems in divergence form with piecewise Dini mean
oscillation (DMO) coefficients and data in a bounded domain containing a finite number of subdo-
mains with C1-Pin boundaries. We prove that if (u, p) is a weak solution of the system, then (Du, p)
is bounded and piecewise continuous. The corresponding results for stationary Navier—Stokes sys-
tems are also established, from which the Lipschitz regularity of the stationary H!-weak solution
in dimensions d = 2, 3,4 is obtained. Our results can be applied to stationary Stokes systems and
Navier—Stokes systems with the second-order term div(rSu), where Su = %(Du + (Du)T) is the
strain tensor and 7 is a positive piecewise DMO scalar function.
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1. Introduction. In this paper, we consider stationary Stokes systems with
variable coefficients

Lu~+Vp = Dyfa in D,
divu=g in D.

(1.1)

The differential operator £ is in divergence form acting on column vector valued

functions u = (u!,...,u?) " as follows:

(1.2) Lu = Do (AP Dgu),

where we use the Einstein summation convention over repeated indices. The domain
D is bounded in R%, which consists of a finite number of disjoint subdomains, and
the coefficients A% = A*8(zx) can have jump discontinuities along the boundaries of
the subdomains. As is well known, such a system is partly motivated by the study
of composite materials with closely spaced interfacial boundaries. In an earlier work
[31], Masliyah et al. studied the creeping flow past a solid sphere with porous shell by
using the Brinkman equation for the flow field inside the fluid permeable surface layer
and the Stokes equations for the flow field external to the particle. Jaiswal and Gupta
[21] investigated Stokes flow over the composite sphere filled with Reiner—Rivlin lig-
uid and coated with the porous layer. Also, the system can be used to model the
motion of inhomogeneous fluids with density-dependent viscosity (see, for instance,
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[25, 30, 1]). Moreover, it has a close connection to the motion of two fluids with
interfacial boundaries. In [12], Dong and Kim studied L,-estimates under the as-
sumption that the coefficients A%? are merely measurable in one direction and satisfy
the bounded mean oscillation (BMO) condition in orthogonal directions. Such type
of coeflicients was first introduced by Krylov [24] and is called a (variably) partially
BMO coefficient. For further results about Stokes systems with irregular coefficients,
we refer the reader to [23, 13, 28], the work [8] for Stokes systems with partially Dini
mean oscillation (DMO) coefficients, and the recent paper [22] on systems with L
viscosity coeflicients.

System (1.1) is also related to hydrodynamic interactions in soft matter systems.
This is reduced to the study of stress (represented by Du) concentration in high-
contrast composites with densely packed inclusions whose material properties differ
from that of the background. In [3], Ammari et al. investigated the stress concentra-
tion of Stokes flow between adjacent circular cylinders.

There is a large body of literature concerning regularity theory for partial differ-
ential equations/systems with coefficients which satisfy some proper piecewise con-
tinuous conditions arising from the problems of composite materials. For the theory
of second-order elliptic equations/systems in divergence form, W~ and piecewise
1% _estimates were obtained by Li and Vogelius [27] for elliptic equations with piece-
wise C? coefficients in a domain which consists of a finite number of disjoint subdo-
mains with C1# boundaries, where 0 < p < 1 and 0 < ¢ < min{J, m} A
similar result was proved for systems in [26], where 0 < ¢’ < min{0, ﬁ} The
results in [26] were extended by the second and third authors [17] to the system
with piecewise DMO coefficients and subdomains having C'P! boundaries. They
also established piecewise C' L&' _estimate for solutions under the same conditions and
with 0 < ¢’ < min{d, £} See also [18] for the corresponding results for parabolic
systems. It is important to remark that the subdomains are allowed to touch each
other in [27, 26, 17, 18] and these results are independent of the distance between
subdomains. For more related results, one can refer to [7, 5, 2, 16, 15, 34] and the ref-
erences therein. In particular, for 2D elliptic equations, Mateu, Orobitg, and Verdera
[32] derived C'9"-regularity in each subdomain with 0 < & < min{é, u} by assum-
ing that the determinant of the coefficients equals 1. The works [10, 11, 33] contain
C’l"s/—regularity results for ¢’ = min{d, u}. However, the estimates there depend on
the distance between subdomains.

Inspired by the work [8, 17] mentioned above, we are interested in gradient es-
timates for Stokes systems with piecewise DMO coefficients. The goal of this paper
consists of two aspects. We first extend the results in [17] for elliptic systems to
the stationary Stokes systems (1.1). Precisely, we show in Theorem 2.4 that if the
coefficients and data are of piecewise Dini mean oscillation and the boundaries of
subdomains are C1:Pii then for every weak solution (u,p) € Wh4(D)? x L4(D) to
(1.1), ¢ € (1,00), Du and p are locally bounded and piecewise continuous. As an
application, we obtain piecewise Holder continuity for Du and p under Holder reg-
ularity assumptions on the coefficients and the boundaries of the subdomains. We
remark that the corresponding estimates are independent of the distance between
subdomains so that the boundaries of more than two subdomains can touch at some
points. We also prove a local W' 4-estimate for W''-weak solutions in Corollary 2.8
by exploiting the argument in [6, 4] combined with Theorem 2.4.
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Second, we consider the stationary Navier—Stokes systems

Lu+ Vp+u*Dou = Dy fa in D,
divu=g in D.

We obtain that any W' %-solution is Lipschitz and piecewise C', where ¢ € [d/2, );
see Theorem 2.10 for details. This result can be applied to H'-weak solutions to
stationary Navier—Stokes systems with piecewise DMO coeflicients in dimensions d =
2,3, 4. Related work can be found in [19], in which the author considered the Laplace
operator and proved the smoothness of every weak solution for d = 4, provided the
data are good enough.

Let us briefly describe our arguments based on Campanato’s approach. Such
an approach was used in [20, 29] and further developed in [11, 14, 8, 17]. The key
point is to show that the mean oscillations of Du and p in balls vanish in a certain
order as the radii of the balls go to zero. Recalling the nature of the domain and the
coefficients, Du and p are discontinuous in one direction, say, ¢, which is the main
challenge in this paper. We overcome this difficulty by choosing a coordinate system
according to the geometry of the subdomains and then using the weak type-(1,1)
estimates obtained in [8, Lemma 3.4] to control the L'/2-mean oscillations of D,/ u
and the linear combinations A% Dgu + peg — fa; see Lemma 3.1 for details. We point
out that the proof in our case is more involved than that in [8] since our arguments
and estimates depend on the coordinate system, and also more involved than that in
[17] because of the pressure term and the divergence equation in the Stokes systems
(1.1). For example, in the proof of local boundedness of Du and p (see Step 4 in the
proof of Theorem 2.4), an additional difficulty appears from the pressure term on the
right-hand side after the localization. For this, we adapt a delicate approximation
argument and the fixed point theorem.

The rest of the paper is organized as follows. In section 2, we fix our notation,
introduce function spaces and assumptions on the domain, coefficients, and data, and
then state our main results, Theorem 2.4 for stationary Stokes systems, and Theorem
2.10 for stationary Navier—Stokes systems. In section 3, we provide the proofs of the
main theorems.

2. Assumptions and main results. We first fix some notation and common
definitions used throughout the paper. We use x = (2', 2%) to denote a generic point
in the Euclidean space R?, where d > 2 and 2’ = (2!,...,297!) € R%~!. We also
write y = (y',y%) and xg = (zf, xd), etc. For r > 0, we denote

Bi(z)={yeR?: |y —z[<r}, Bia)={y eR" |y —a'| <r}.

T

We often write B, and B, instead of B,.(0) and B..(0), respectively. For k € {1,...,d},
we use ey to denote the kth unit vector in R%.
Let © be a domain in R%. For ¢ € (0, 00], we define

LY(Q) = {f € L) : (f)a = 0},

where (f)q is the average of f over Q, i.e.,

(f)sz:fgfdx=@1|/9fdx-

For ¢ € [1,00], we denote by W'4(Q) the usual Sobolev space and by W, () the
completion of C§°(Q2) in W14(Q2), where C§° () is the set of all infinitely differentiable
functions with compact support in 2.
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For 0 < v < 1, the Holder seminorm is defined by

lu(z) — u(y)|
[u]cv(q) i= sup ————,
@ z,yeN |.13 - y|’y
z#Y

and the partial Holder seminorm with respect to 2’ is defined by

u(z) — u(y)|
ulev (@) = sup
[ ]Cz/(Q) 2ye =/ —y' [y
2 £y at=y?

By C7(£2) we denote the set for all bounded measurable functions u satisfying [u]c~(q)
< 00.

We say that a function w : [0,1] — [0, 00) is a Dini function if it is monotonically
increasing and satisfies

(2.1) /1 @ dt < +oo.
0

We also say that a function f defined on € is Dini continuous if the function oy :
[0,1] — [0, 00) given by
os(t) = sup |f(z) — f(y)]

x,ycfl
|lz—y|<t

is a Dini function.

DEFINITION 2.1. Let f € LY(2). We say that f is of partially DMO with respect
to ' in Q if the function

W (r) = sup][

Br(z)

- S ] dy
Bl (")
satisfies (2.1), where the sup is taken with respect to all x € Q with B,.(x) C Q.
Let f, € LY(Q)? and g € L9(Q2) with ¢ > 1. We say that (u,p) € WH9(Q)4x L1()

is a weak solution of

Lu~+ Vp=D,fa in Q,
divu=g in Q

if divu = g a.e. in Q and
/AaﬁDgu-Da¢dx+/pdiv¢dx=/fa~Da¢dx
Q Q Q

holds for ¢ € C§°(02)?. We also say that (u,p) € WH4(Q)4 x LI(£2) is a weak solution
of

Lu~+ Vp+u*Dou = Dy fo in Q,
divu =g in 9,

if divu = g a.e. in Q and
/AaﬁDﬁu-Da(bda:—i—/pdivqﬁdm—/uaDau-qux:/fa-Daqusc
Q Q Q Q

holds for ¢ € C§°(2)?. When ¢q = 2, we sometimes call (u,p) a H'-weak solution.
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2.1. Assumptions on the domain. Before we state our assumptions on the
domain, we recall the definition of a domain having a C*P"! boundary.

DEFINITION 2.2. Let Q be a domain in R?. We say that Q has a CP™ boundary
if there exist a constant Ry € (0,1] and a concave Dini function g9 such that the
following holds. For any xq = (x,xd) € 0Q, there exist a C* function x : Rt — R
and a coordinate system depending on xo such that

ov,x(t) < oo(t) forall t €0, Ry]
and that in the new coordinate system, we have
[Varx(2p) =0
and
(2.2) QN Bg, (z9) = {x € Br,(z) : 2 > x(«)}.

In this paper, we always assume that D is a bounded domain in R? containing
M subdomains Dq,...,Djys such that
(i) Dar =D\ (UL Dy);
(i) for 4,5 € {1,...,M — 1} with i # j, we have either

(23) E C DJ or DZ 0D73 = @,

(iii) for i € {1,...,M — 1}, D; has a C*P boundary as in Definition 2.2 with the
same constant Ry and Dini function gg.
Our assumptions on the domain, which look a bit different from those in [17],

are in fact identical. Precisely, by disjointing the subdomains Dy, ...,D;_1, one can
understand D as a domain containing M disjoint subdomains Dy, ..., Dys such that
(i/) DM = DM;

(ii") any point in D belongs to the boundaries of at most two of the subdomains;
(iii") for i € {1,...,M — 1}, D; has a C1:P! houndary in an appropriate sense.
Among the above two expressions of the nature of the domain, the second is useful
in describing the regularity conditions on the coefficients and data, which may have
jump discontinuities across the interfacial boundaries; see section 2.2. On the other
hand, the first expression is convenient to explain the regularity of the boundaries by
using Definition 2.2. Because the disjointed subdomains D; in the second expression
may have “narrow” regions, (2.2) is not guaranteed with the same constant Ry inde-
pendent of the distance between subdomains. For example, if M = 3, Dy := By,
Dy := By/2\ Bi/2_., and D3 := B; \ By /3, then when we explain the regularity of 9D,
via Definition 2.2, we need to take Ry to be less than ¢, which is the distance between
D, and D3. That is why we added “appropriate sense” to the condition (iii’). In the
following, we will use the notation D; introduced above to denote the subdomains.
We end this subsection with a remark that condition (2.3) can be relaxed to

DZ'CDJ‘ or DlﬂDj:(Z),

so that the boundaries of more than two subdomains touch at some points; see Remark
2.5.
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2.2. Assumptions on the coefficients and data. We assume that the coef-
ficients A®# of the operator £ in (1.2) are bounded and satisfy the strong ellipticity
condition, that is, there exists v € (0,1) such that

d d
(2.4) AP (@) <vh Y AP (@) bazv )l

a,f=1 a=1

for any x € R? and ¢, € R, a € {1,...,d}. We also assume that the coefficients and
data are of piecewise DMO satisfying Definition 2.3 below in the domain D containing
M disjoint subdomains Dy, ...,Djys as in section 2.1.

DEFINITION 2.3. Let f € LY(D). We say that f is of piecewise DMO in D if
there exists a Dini function wy such that for any xo € D and r € (0,1] satisfying
B, (z¢) C D, we have

(25) F @) - f@)] e < ws0),
BT(ZE[))
where f = fwo’r is a piecewise continuous function on By(xg) given by
fo=f  fwdy i o Bieo) D
By (z0)ND;

Our definition of a function of piecewise DMO is equivalent to the definition in
[17], where the piecewise mean oscillation is measured by taking the infimum over the
set of all piecewise constant functions.

2.3. Main results. The main results of this paper are as follows.

THEOREM 2.4. Let D be a bounded domain in R¢ containing M disjoint subdo-
mains D1, ..., Dy with CP™ boundaries as in section 2.1. Also, let ¢ € (1,00) and
(u,p) € Wh4(D)4 x LY(D) be a weak solution of

=D in D
26) {£u+Vp ofa in D,

divu=g in D,

where fo € L®(D)? and g € L>®(D). If A*P, f., and g are of piecewise DMO in D
satisfying Definition 2.3, then for any D' € D, we have

(u,p) € WhH(D")? x L>°(D')

and

(u,p) € CH(Din D) x C(D;ND'), ie{l,...,M}.
If we further assume that there exist v € (0,1) and K > 0 such that

(2.7) oo(r) < Krlzigo, Waas (1) +wy, (1) + wg(r) < Kr?°
for all r € (0, Rol, then
(u,p) € CV*(D; N D) x C(D;ND'), i€{l,...,M}.

Related to the theorem above, we have a few remarks.
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Remark 2.5. Upper bounds of the L*°-norms and the modulus of continuity of
Du and p can be found in the proof of the theorem; see section 3.1. Note that these
upper bounds are independent of the distance between the subdomains. Thus our
results can be applied to the case when the boundaries of more than two subdomains
touch at some points.

In the middle of the proof, we also proved that for any z¢y € D', there exists a
coordinate system associated with zg such that the certain linear combinations

Dyu  and AdﬁDlgu + peq — fq
are continuous at xg. Moreover, if (2.7) holds, then they are Holder continuous with

the same exponent 7.

Remark 2.6. Condition (2.7) holds, provided that the subdomains D; have
C0/(1=7) houndaries and that A*?, f,,, and g are in C"°(D;) for eachi € {1,..., M}.

Remark 2.7. By the same reasoning as in [8, Remark 2.4], one can extend the
results in Theorem 2.4 to weak solutions of the system

Lu+Vp=Dyfo+f in D,
divu=g in D,

where f € L*(D)¢ with s > d. The corresponding upper bounds of the L>-norms
and the modulus of continuity of Du and p can be found in Remark 3.2 at the end of
section 3.1.

In the corollary below, we present the W19-estimate for W' l-weak solutions,
which follows from Theorem 2.4, the solvability results in [13], and the argument in
Brezis [6] (see also [4, Appendix]). One may refer to the proof of [8, Theorem 2.5],
where the authors proved the W' 4-estimate for W'!-weak solutions to the Stokes
system with partially DMO coefficients.

COROLLARY 2.8. Let D be a bounded domain in R¢ containing M disjoint sub-
domains Dy, ..., Dy as in section 2.1. Also, let (u,p) € WHH(D)4 x LY(D) be a weak
solution of (2.6), where fo € LY(D)? and g € LI(D) with q € (1,00). If A*#, f., and
g are piecewise DMO in D satisfying Definition 2.3, then for D' € D, we have

(u,p) € WH9(D")¢ x LI(D")
with the estimate

lullwr.a(pry + Dl Lapry < N (lullwrroy + 1Pl ) + 1 fallLay + l9llLao)),

where the constant N depends only on d, v, M, Ry, 00, waas, ¢, and dist(0D,D").

Remark 2.9. From Corollary 2.8, the results in Theorem 2.4 still hold under the
assumption that (u,p) € WHH(D)4 x L1(D).

We also consider stationary Navier—Stokes systems with piecewise DMO coeffi-
cients.

THEOREM 2.10. Let D be a bounded domain in R? containing M disjoint subdo-
mains D1, ..., Dy with CHP™ boundaries as in section 2.1. Also, let ¢ € (1, 00) with

q>d/2 and (u,p) € WH4(D)? x L4(D) be a weak solution of

Lu+Vp+u*Dou = Dy fa mn D,
divu=g in D,
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where f, € L>®(D)? and g € L>®(D). If A°P, f., and g are of piecewise DMO in D
satisfying Definition 2.3, then for any D' € D, we have

(u,p) € WH(D")? x L>=(D)

and

(u,p) € CH(Din D) x C(D;ND), ie{l,...,M}.
If we further assume (2.7), then

(u,p) € Clﬁo(ﬁﬂD’)d xC*(D;ND'), ie{l,...,M}.

As a corollary of Theorem 2.10, in dimensions d = 2, 3, 4, for any H '-weak solution
(u, p) to the stationary Navier—Stokes system with piecewise DMO coeflicients, (Du, p)
is locally bounded, i.e., the flow velocity w is locally Lipschitz, as the condition 2 > d/2
is satisfied.

We finish this section with a remark that our results can be applied to (aniso-
tropic) Stokes systems

(2.8)

div(7Su) + Vp = D, fa in D,
divu =g in D

as well as the corresponding stationary Navier—Stokes systems. Here 7 = 7(x) is a
piecewise DMO (or piecewise Holder continuous) scalar function satisfying v < 7 <
v~! and Su = £(Du+ (Du)") is the so-called rate of deformation tensor or strain
tensor. Systems in this form were considered, for example, in [25, 30, 1]. Notice that
the coefficient matrix in this case is given by

a T
Aijﬂ = 5(5ij5a,6 + 8a;0pi),

which satisfies the Legendre-Hadamard ellipticity condition, but not the strong el-
lipticity condition (2.4). Hence, our results cannot be applied directly. However, by
using the condition divu = ¢ in D, we have

-

div(rSu) = D; (%(Djui + Diuj)) =D, (%Djui + (5 - 5) Diuj> +eDig,

where € € (0,v/2). Thus the first equation in (2.8) can be replaced with
(2.9) div(Su) + Vp = Dy fo — eDpge  in D,

where ¢!, = g6,; and the new coefficient matrix is given by
T
Z - g) Saj 05,

which is a piecewise DMO (or piecewise Holder continuous) function satisfying the

strong ellipticity condition with ellipticity constant €. Therefore, our results hold true
for (2.8).

/\a ’7’
Ay = 509008 + (

3. Proofs of main theorems. Throughout this paper, we use the following
notation.

NOTATION 3.1. For nonnegative (variable) quantities A and B, we denote A < B
if there exists a gemeric positive constant C such that A < CB. We add subscript
letters like A Sqp B to indicate the dependence of the implicit constant C' on the
parameters a and b.
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3.1. Proof of Theorem 2.4. We begin the proof with the following observation.
Under the assumptions on the domain D with a scaling whose parameter depends
only on d, Ry, 0o, and dist(0D, D’), we may suppose that for any xy € D', there exist
CHPi functions y; : R™! — R, i € {1,...,¢} for some £ < M, and a coordinate
system such that the following properties hold in the new coordinate system (called
the coordinate system associated with zg):

(A1) We have that
ov,x: (1) < eo(r)

for all r € [0, Ro] and 7 € {1,...,¢}, and that

xo(2') < xa(2) <+ < xel2') < xipa(2’)

for all o’ € B/(x¢), where we have adopted the notation yo = #d — 1 and
Xi4+1 = ch + 1.
(A2) Bi(zo) C D and Bj(xg) is divided into £+ 1 disjoint subdomains

D, :={z € By(x0) : xi1(2') < z? < xs(z)}, ie{l,....0+1}.
Here, in an appropriate sense one may think of ﬁi as D; N Bi(xp). Moreover,
To € ﬁio U 6@0 for some ip € {1,...,0+ 1},

the closest point on 8D;, to xq is (), Xi, (€4)), and Vxi, (24) = 0.
Throughout this proof, we shall use the following notation and properties in the
coordinate system associated with xg satisfying (A1) and (A2).
(B1) Forie {1,...,£+ 1}, we denote

Qi = {z € Bi(z0) : xi_1(xp) <z < xi(xh)}.

By [17, Lemma 2.3], there exists Ry = R1(Ro,00) € (0, Ro] such that for any
re (O, Rl],

(3.1) (i \ Q) N Br(wo)| Sant,0 01(r),

where 01 is a Dini function derived from gg.
(B2) Let f be of piecewise DMO in D satisfying Definition 2.3 with a Dini function
ws. For r € (0, Ry}, we define piecewise continuous functions f = fz, , and

f = fwo,r in Br(-rO) by

fo=f  fu)dy it xe Bz D
DiNB,(z0)

and

(3.2) f(z) = ]énB . )f(y) dy if € B,(z0) N Qy,

where f is indeed a function of z%. Since f = f in B, (zg) N DN Q;, by (3.1),

we have
41

o 1 o
fofldo= > [ f— flda
f];s’r(ro) |By| ; (D \Q)NB, (z0)
S fllzoe (B, (zo))01(7)-
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From this together with (2.5), it follows that
(3.3) ]i = T Sastn 910+ L e a )
(o

(B3) We set
U= Ad’BDgu + peq — fa-

For y € D and r > 0 with B,.(y) C B1(zo), we define

2
®, (y,r) = inf (][ |(Dm/u,U)—®|5d:v>7
B, (y)

O€Rdxd

where we used the subindex xg to indicate that the function is defined in the
coordinate system associated with z.
To prove Theorem 2.4, we will use the following decay estimates.

LEMMA 3.1. Let zg € D', r € (0,R1], and v € (0,1). Then under the same
hypotheses as those of Theorem 2.4 with an additional assumption that Du and p
are locally bounded, there exists N = N(d,v, M, 09,7v) > 0 such that the following
assertions hold:

(i) For any p € (0,7], we have

P\” - .
@, (@0, p) < N (L) s (0,7) + NIIDul o2 (5, ) (@105 () + 61(0))

+ N (I fall= (B, (z0)) + 19l (B, 0))) 1 ()
+ N (@5, (p) + @g(p))-

(3.4)

(ii) For any y € By 2(x0) and p € (0,7/2] such that B,(y) C ﬁil for some i, €
{1,...,4+ 1}, we have

i
p N -
By (3:9) < N () 007/ + NIDuli 8, (@105(0) + 30)

3.5 . -
(8:5) N (allze 5wt + 19ll =B, a(o)) (@108 (0) + 1)

N (@1, () + 24 (0)).
In the above, e and 91 are Dini functions derived from we and g1, respectively, as
formaulated in (3.10).

Proof. We may assume that zo = 0 for simplicity of notation. For a given function
f, we denote by f = f(x%) the piecewise constant function in B, defined as in (3.2).
We first prove assertion (i). Let Lo be an elliptic operator given by

Lou = Do (A%’ Dgu)
and set

d

x

Ue =u—/ ug ds, pe=p—po,
~1

where ug = (u},...,ud)" and py are functions of % satisfying

Ug =g, A%uy+poeq = fa.
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Then (ue, pe) satisfies

»C()ue + vpe = DaFa in B'r‘»

divue =G in By,
where F,, = (A%? — A*®)Dgu + fo — fo and G = g — g. We decompose
(3.6) (e, pe) = (v,p1) + (w, p2),

where (v,p1) € Wy(B,)% x L*(B,) is the unique weak solution of

;CoU-f—Vpl :DQ<IBT/4FQ) in BT,
diVU:IBTMG_(IBTMG)BT in BT.

Here, I, ,, is the characteristic function. Since A%% only depends on z%, by [8, Lemma
3.4] with scaling and relabeling the coordinate axes, we have for all ¢ > 0 that

1
{z € Byya - 1Do(@)] + pr(2)] > £}] Saw E/ (1Fal +1G)) da.
B4

This implies that (cf. [8, equation (4.5)])

(3.7) (f LR dx>2 = ORI+ de

On the other hand, since (w, p2) satisfies

Low+ Vpy =0 in BT/4,
divw = (I5,,,G)B, in B, /4,

by [8, equation (3.7)], we obtain

( ][ Dy — (Dyrw)s,,
Byr

2
<k inf (][ |(Dyrw, W) — ®|% da:)
B,,,/4

OcRrdxd

%+|W_(W)B

. 2
2
| dr

(3.8)

for any € (0,1/8], where W = A% Dgw + paeg.
Now we set

Ue = A Dgu, + peeq
and observe that

(3.9) Dyue = Dy, U —Ue = (Adﬁ - Adﬂ)DﬁU —(fa— fd)
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By (3.6)—(3.8) and the triangle inequality, we have

KT

1 2
P U - (W)p, |? d:zc)

(][ |D$rue — (DI/M)BM
BK/’V‘
<

1 1 2
(f |Dz’w - (Dl”w)Bﬁr|§ + |W - (W)Bnr 2 dl’)
BKT’

(4 mm+mmEMY

KT

2
<k it (][ |(D$/w,W)—@|§dx) +K—2d][ (1Fa| + |G)) da
Br/4 Br/4

OcRIxd

2
<k inf (][ |(Dx/ue,Ue)—®|5dx> +ff2d][ (|FL| +|G)) de.
B, B,

@e]RdXd
From this, together with (3.3) and (3.9), we get
D4(0, k1) < Nok®0(0,7) + N()K;i2d||DuHLoo(BT)(CUAaB (r) + 01(r))
+ Now (| falloe () + 19l o=(B,)) 01.(r) + Now™ 4wy, (r) + wy(r)),

where No = Ny(d,v, M, 00) > 0. Fix x € (0,1/8] small enough so that Nox!~=7 < 1.
Then

Do(0, kr) < K700 (0,7) + N|[Dul[ = (B,)(waas (r) + 01(r))
+ N([lfallze s,y + 19l (s,))01(r) + N(wy, (r) +wy(r)),
where N = N(d,v, M, gg,7) > 0. Let @s and gy be Dini functions defined by

We(r) = Z K (we(K7r) [k < 1] + we(1)[xr > 1]),

(3.10) !
510 = S W (o)l < 1]+ oy (D[~ 2 1),
i=1
where we used the Iverson bracket notation, i.e., [P] = 1 if P is true and [P] = 0

otherwise. By iterating and using the fact that

J
Zﬁy(i_l)w.(ﬁj_ir) <K Qe (K1), j € {1,2,...},
i=1
we obtain
(3.11) @o(0,577) < K @(0,7) + N[ Dul o< (5,) (©a0s (K1) + 01(K77))
. + N (I fallzes) + Igllpem) 1 (K1) + N (@, (577) + @g(77)),

which also obviously holds for j = 0. Finally, for p € (0,r], by taking the nonnegative
integer j such that x/*1 < p/r < K/ and using (3.11) with p in place of K77, we get
the desired estimate.

Next, we prove assertion (ii). For a given function f, we define

f= ]ip(y) f(z)dzx.
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Notice from the definition of U that for any ©g € R? and 6 € R, we have
~ 1 ~ 1 ~
U — 6] < |(A% — A%)Dgu|? + | A% (Dgu — ©p)|% + Ip — 0]% + | fa — fal?,

where Q¢ = Adﬁ@ﬂ + Oeg — fd, in the coordinate system associated with zy. By
averaging the above inequality on B,(y), taking the square, and using (2.5) (with the
fact that B,(y) is contained in a subdomain), we obtain

2 2
(f w-edias) s(f (D=5l ook i)
B, (y) B, (y)

+ | Dul| Lo (B, (y)waes (p) +wy, (p)-

From this we get

(3.12) @y, (Y, 0) S V(Y p) + [[Dull L (B, (y))waes (p) +wr., (p),

where

2
U(y,p):= inf ( |Du— 0|z +|p—0|2 dx) .
ge(ﬂfxd By (y)
OcR**?
Note that ¥U(y, p) is independent of coordinate systems.
We now control the quantity ¥(y, p) in the coordinate system associated with y.

Using (2.5) and the relation

d—1
(3.13) Dgu' =g = Dat,
i=1
we have
) 2
inf (][ |Dgud — 6|2 dx)
9eR By (y)
d—1 2
< inf (][ |Dju’ — 0] dm) +][ lg — 9| dz
; 0E\ B, () B, (y)
(3.14) S ©y(y, p) +wy(p).
Note that
d—1 ‘ o d_d-1 ‘ .
(3.15) > AMDaw = U =Y "> AV Dgu — AN Dgut + fi, ie€{l,....d—1},
j=1 j=1p8=1
where, by the ellipticity condition on A®?, (A?jd)g;il is nondegenerate. Hence,
X =Yz,
where .
X =(Dgu',...,Dgu® ", Y= (AL,
‘ o d a1
z=(2",...,27 ", 2'=U"-> Y AYDg’ — AXDyu + £,
j=1p=1
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Since
X =D < |(V=D)Z|+ |V(Z—0)| forall ¥R,

we see that

inf (][ |X —19|% dac)
YERI—1 B,(y)

2 2
< V- d:v) IZl LB, ) + inf <][ 1Z - d:c>
(]im) B T yerar \ S,

S @y (y,p) + (I1Dull Lo (B, ) + 1 fallLo (B, ) )wass (p) + wy, (p) + wg(p) =: Ko.

2

From this, together with (3.14), we get

2
inf <][ |Du—©|? da:) < K.
OcRdxd B,(y)

By the relation

d
(3.16) p=U"=>"> AV Dgu’ + ff,
j=1p8=1

we also have

2
inf ][ p—95dx> < K.
9€R< Bp<y>‘ | ’

Combining these inequalities, we obtain that U(y, p) < Ko, which together with (3.12)
gives ®,, (v, p) < Ko. We finish the proof of assertion (ii) by applying (3.4) with y
and r/2 in place of zy and r, to bound Ky by the right-hand side of (3.5). 0

We are ready to prove Theorem 2.4.

Proof of Theorem 2.4. We adapt the arguments in the proof of [17, Theorem 1.1].
Let we and g1 be the Dini functions derived from we and o1, respectively, as formulated
in (3.10) with a fixed v € (0,1). We denote

F(r) = /O ' —@f“(t):‘:’g(t) dt.

For given y € D and p > 0 with B,(y) C Bi(x), we let O, (y,p) € R™? be such
that

2
Doy (ysp) = ( F D)~ Orn)l dm) .
Bp(y)

We divide the proof into four steps. In the first step, we will derive an a priori L>°-
estimate for (Du,p) under the assumption that (Du,p) is locally bounded. We then
obtain an estimate of the modulus of continuity of (D, u,U) in the second step, from
which the piecewise continuity of (Du, p) follows. In the third step, we shall derive an
a priori estimate of the modulus of continuity of (Du, p) under the additional condition
(2.7). In the last step, we shall show that (Du,p) is indeed locally bounded by using
the technique of flattening the boundary and a fixed point argument combined with
partial Schauder estimates for Stokes systems.
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Step 1. Let r € (0, Ry]. Note that Lemma 3.1 (i) implies

lim @, (20, x'r) =0
1— 00

for all g € D/, where k € (0,1/8] is the constant from the proof of Lemma 3.1. Thus,

using the assumption that Du and p are bounded, we have

lim ©,,(zo, k'r) = (Dypu(zg), U(zo))

i—00
for a.e. g € D’ in the coordinate systems associated with z( satisfying (A1) and
(A2). By the same iteration argument that led to [8, equation (4.10)], we have

oo

(3.17) |(Daru(w0), U (0)) = Oy (20,7)] S D Pay (o, 7).
i=0

Since
104 (@0, 7)| S (1Dl 22 (B, (o)) + U L1 (B, (20)))
by Lemma 3.1 (i) and the fact that

- ~ i T(D'(t) - ~ i Tél(t)
(3.18) Sain s [ = ar i}%mms/{) al) 4

=0 t
we obtain
" Opas(t) + 01(¢
Do) + 10 0)| Savianane 1Dl ay | 22020 g
0
+ 17 (1Dwull 21 (5, (20) + 10|22 (5, w0))

")
(Ul ooy + o=, o) [ 252+ 7).

From this, together with the fact that
|Du| + [p| Saw |Darul + |U[ +[fal + 191,
we get

" Wpes(t) + 01(1)
t

Dtz + pteo) < Noll Dl s, oy | at
0

+ Nor™* (1 Dull L1 (8, (z0)) + 1Pl L1 (B, 20)))

"o1(t)
+ No([lfallze (B, @) + 9l (B, z0))) (1 +/0 5 dt) + NoF(r),

where Ng = No(d, v, M, gg,7). Taking rq € (0, R1] sufficiently small so that

No / B @Aaﬁ(t);r a1(t) 1
0

we have
|Du(zo)| + p(w0)| < 37| Dull o< (B, (20))
+ Nor~* (1 Dull 12 (B, (wo)) + 1Pl (B, @0)))
+ No (I fall Lo (B, (20)) + 191l (B.(w0))) + NoF(r)
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for all r € (0,79]. Note that the above inequality holds for a.e. g € D’ and does not
depend on coordinate systems. Therefore, by the same iteration argument that led
to [8, equation (4.16)], we obtain the following L>-estimate for Du and p:

[ Dul| Lo (B, s (z0)) + [IPIlLo (B, 2 (z0))
(3.19) < N~ (I1Dull (5, o)) + Pl (B, 20))
+ N ([l fallze B, @0y + 9l (B, o)) + NF(r),
where xg € D’ and r € (0, R;] with B,.(x¢) C D’. In the above, N depends only on d,
v, M, 0o, Wqas, and 7.

Step 2. Let g € D’ and r € (0, Ry] with B,(z¢) C D', and fix a coordinate
system associated with zg satisfying (A1) and (A2). We claim that

|(Dzru(xo), Ulxo)) — (Daru(yo), Ulyo))|
S 1Dull L1 (B, 20)) + P22 (B, (20)) ) E(1T0 — Yol

+ (I fall Lo (Br(wo)) + 9/l Lo (B, (z0)) ) E (JT0 — Yol)
+ F(r)E(|o — yol) + F(|zo — vol)

(3.20)

for any yo € B, /4(z0), where

— v |zo—yol| ~ ~
& — ol := (o) [ G200
0

Let yo € B, /4(x0) and p := |x¢ — yo|. We consider the following two cases:

B,(y0) C Diy, Bp(yo) € Di,-

Case 1. B,(yo) C ﬁm By the triangle inequality, we have

[(Daru(z0), Ulwo)) — (Daru(yo), Uyo))|2
< |(Daru(z0), U(wo)) — Ouy (0, p)|* + [(Doru(z), U(z)) — Ouy (w0, p) 2
+(Daru(y0), U%0)) = O (40, £)| 2 + [(Daru(a), U (2)) — Ouy (50, p)|2

for all © € B,(x0) N B,(yo). Taking the average over « € B,(x¢) N B,(yo) and then
taking the square, we obtain that

|(Daru(zo), Ulxo)) — (Dartlyo), Uyo))| S Th + Iz,

where
Il = |(D1/U($0),U(J)0))

Iy = |(Daru(yo), U(yo))
Note that by (3.17), we have

- @Io(x()? ﬂ)‘ + (I);Eg (mOap)a
- 910 (y07p>‘ + (I)Io (y()?p)'

IS ®uy (o, 5 p).
=0

It follows from Lemma 3.1 (ii) that

lim @, (yo, nir) =0.
—00

7
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Then by replicating an argument similar to that used in (3.17), we obtain

I S) @y (o, k7).
1=0

Therefore, by Lemma 3.1, (3.18), and (3.19), we get (3.20).

Case 2. B,(yo) ¢ ﬁio. In this case, for simplicity of notation, we assume that
1Yo = 0. Suppose that 0 € 132-1 U 8131-1 for some i1 € {1,...,£+ 1} and denote by %
the closest point on dD;, to the origin. We also denote o = (65 Xio (20)), which is
the closest point on aﬁio to xg. Since |Jo| < p and |Tg — zo| < 2p, we have

(3.21) [Zo = ol < |Zo — wol + |zo| + |F0] < 4p <7 < Ry.

Let
y=Az, z=A'y=Ty,

where A is a d X d rotation matrix from the coordinate systems associated with zq to a
coordinate system associated with the origin. Then by (3.21) and the same argument
as in [17, pp. 2465-2466], we see that

where I is the d x d identity matrix. From the definition of g; and (3.18), it follows
that

~

(3.22) I-T|< a0 < / ey,

Now we set
v(y) = Au(z), 7(y) = p(x),

which satisfies

Do (A Dgv) + V' = Dy F,,
dive = G,

where
AP (y) = A(A*FAPAM ()T,
(F1,.. o Fa)(y) = Af1, -, fa) (@)D, G(y) = g(2).

We also denote
V= .AdBng + meq — Fy.

By the triangle inequality, we have

|(Daru(z0), Ulo)) — (Daru(0), U(0))|2
< |(Daru(z0), Ulwo)) — Ouy (20, p)| 2 + |(Doru(z), U (z)) — Ouy (w0, p)| =
+ [D(Dyv(0), V(0)) = O (0, p)|* + [[(Dyv(Az), V(Az)) — TO,(0, p)|?

+(Daru(0), U(0)) = T(Dyv(0), V(0))[2
+ [(Deru(z), U(z)) = T'(Dyv(Az), V(Az))]

[NIE
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for any = € B,(zo) N B,(0), where I'(Dyv,V) := (I'Dyv,T'V). Taking the average
over x € B,(zo) N B,(0) and then taking the square, we obtain that

(3.23) |(Daru(xo), U(o)) = (Deru(0), U0)| S J1 + J2 + Js,

where
‘]1 = |(Dr/u(ac0), U('»fo)) - Gzo ($07P)| + q)zo (l’o,p),

J2 = |(Dyv(0), V(0)) — ©0(0, p) + o (0, p),

J3= esssup [(Dyu(z),U(z)) —T'(Dyv(Azx), V(Az))|.
z€B,(xz0)NB,(0)

Note that J; and J; can be estimated by Lemma 3.1 (i), (3.18), and (3.19) in the
same way as in Case 1. For the estimate of J3, we observe that

Dgyu(z) —I'Dyv(Az) = Dyu(x)ly — I'Dyv(Az)Iy = Dyu(x)(I —T')Io,
where T = (I§”) is a d x (d — 1) matrix with
187 = bgp for a, f=1,...,d—1; I =0for f=1,...,d—1,

and
U(z) = TV (Az) = (840 — A%) AP (2) Dgu(z)
+p(l’)([ - F)ed + (fla tey fd)(x)(]: - F)Vdv
where (I —T)? is the dth column of I — T'. Hence by (3.18) and (3.22), we have

Fou(t)
t

dt

J3 /S (||Du||L°°(Br/4(wo)) + ||pHL°°(BT/4(a:o)) + ||foz||L°°(Br(a:0))) /O

PG (t
Q1t()dt

S (10Ul 5o + Wl ) |
» au(t) 0

+ (Mol oo + o= ) [ 22 a7y [ 2 ar

Using this together with the estimates J; and Jo, we get (3.20) from (3.23).

Note that the piecewise continuity of (Du,p) follows from the estimate (3.20)
combined with the fact that the coefficients and data are piecewise continuous. Indeed,
by using the relations (3.13), (3.15), and (3.16), and using the triangle inequality, we
have that

|Dgu®(z0) — Dau (yo)| < |Dyru(zo) — Doru(yo)| + lg(zo) — g(vo)l,

| X (z0) = X(yo)| Saw [(Darulzo), Uzo)) — (Darulyo), Ulyo))l
+ (HDU\|LOO(BT/4(IO)) + HPHLOO(BTM(zo)))‘Aaﬁ(ﬂﬁo) — A% (o)
+ 1 fall (B, u(@on A (20) — A% (o)
+ |Dau® (o) — Dau(yo)| + | fa(20) = falvo)l,

where X = (Dgu?, ..., Dqu®")T, and

Ip(z0) — p(vo)| Saw [(Daru(xo), U(xo)) — (Darulyo), Ulyo))|
+ ||DU||LOO(BT/4(1:0))\Aaﬂ(fﬂo) — A% (yo)| + [ fa(@0) = falyo)l-
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Therefore, by (3.19) and (3.20), we obtain that

|(Du(zo), p(z0)) — (Du(yo), p(yo))|
< Nr= (|1 Dull 1, (zo)) + 1P 1B, (z0))) (€0 — wol) + [A* (w0) — A% (o))
+ N(Hfa||L°°(B,.(zo)) + HQHLOC(B,,.(;DO))) (5(\330 —yol) + |A*P (o) — Aaﬂ(yoﬂ)
+ NF(r)(E(Jxo — yol) + 1A (x0) — A% (yo)]) + NF(lzo — yol)
(3.24)
+ N|fa(@o) = fa(yo)| + Nlg(zo) — 9(yo)|

for any xo,y0 € D’ and r € (0, R1] satisfying yo € B, 4(x0) C B,(x0) C D', which
gives the piecewise continuity of (Du,p).

Step 3. In this step, we derive the corresponding estimate of (3.24) under the
additional stronger (2.7). We again let g € D’ and r € (0, Ry] with B,.(z9) C D' and
fix a coordinate system associated with z( satisfying (A1) and (A2). To present the
precise dependence of the constant in the estimates, we assume that

(3.25) o0(r) < Korljiovo7 waas (1) < Kor™°,  wy, (1) + we(r) < Kir™®

for some constants Ko, K; > 0. Thus if f, and g are in C"(D;) for each i €
{1,..., M}, then K; can be regarded as

22, el +lowmn

From [27, Lemma 5.1] it follows that for any r € (0, R1]

(D \ %) N Byr(20)| Sam,komo 770 =1 01(7).

Hence we have
D pas (1) + 01(7) sd,M,Ko,’YU 7
and
G (1) + Qg (r) Sa.m, k0.0 K1r™

Therefore by (3.24) with v = H‘%, we conclude that

|(Du(zo), p(z0)) — (Du(yo), p(¥0))]

— |ZO B y0|70 a «
< Nr d(”DuHLl(Br(wo)) + ol 22 (B (20))) < + [A%P (z9) — A (o)

r7o

|1‘ —Y "YO o a
+ N (|| falloe (B, (z0)) + 9]l L= (By(20))) (00 + [ AP (z0) — A% (yo)|

ro
+ NK1 (Jzo — yol 7 + [A% (m0) — A% (10)])

(3.26)
+ N|fa(x0) = falyo)| + Nlg(zo) — g(yo)l,

where N = N(d, v, M, Ko,70). We can see from (3.26) that if zy and yo are in the same

subdomain, then the estimate of the modulus of continuity of (Du, p) is established.
Step 4. In this last step, we prove the local boundedness of (Du,p). We first

observe that

(3.27) (Du,p) € LL (D)* x LY

loc loc

(D) for any ¢ < oo.
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Indeed, since (u,p) satisfies (2.6), where the coefficients A*? are of variably partially
small bounded mean oscillation (variably partially BMO) satisfying [13, Assumption
2.2 (p) (4)] for any p > 0 and the data f,, g are bounded, by applying a local version
of [13, Theorem 2.4] combined with a bootstrap argument, we get (3.27).

Due to the regularity result in [8], where the authors proved W1 *-estimates for
solutions to Stokes systems with (partially) DMO coefficients in a ball, it suffices to
show that for zg = (zf,zd) € 9D;, i € {1,..., M — 1}, there is a neighborhood of
Zo in which (Du,p) is bounded. Recall that xo belongs to the boundaries of at most
two of the subdomains. Thus we can find a small ry > 0 and a C*Pi function, say
x : R4™1 — R, such that B,,(x¢) is divided into two disjoint subdomains separated
by x and |V, x(z()] = 0 in a coordinate system. Here, we choose 79 small enough so
that

(3.28) Varx(@) < po i |o/ —ahl < 7o,

where g > 0 is a constant to be chosen below. Without loss of generality, we assume
that zo = (0’,0) and x(0’) = 0. For sufficiently small ¢ > 0, we let x. be a standard
mollification of x with respect to z’. We also let ¢ € C§°(B1) be a smooth nonnegative
function with unit integral, and define piecewise mollifications of A%? by

AP@) = [ ATy = [ 6.)A e ) dy
Ba(xa) B,
where ¢.(z) = e~ 9¢(z/c) and

x + Aeeg if 29 > x.(2),
Tr- =
: r—deeg  if 2¢ < x (2).

Here X is large enough, say A = po + 1. Similarly, we define f, . and g.. Then the
piecewise mollifications are piecewise DMO in B,, with

we_ (1) < we(r).
Let (i, p-) be the weak solution in W, ?(B,,)¢ x L*(B,,) to the problem

(3 29) DQ(A?ﬁDﬂﬂs) + vﬁs = Da(fa - fa,s) + DOC((A?ﬁ - Aaﬁ)Dﬁu)’
' divie =g — g — (9 — 9)B,,-

Since fae — fo in L2, g. — g in L%, and A%® — AP ae., by the dominated
convergence theorem, the right-hand sides of (3.29) go to zero in L? as ¢ — 0F. By
the W1-2-estimate, we see that

|Dic|p2(B,,) + [1Pell2(B,,) =0 ase— 0+,
and thus there is a subsequence, still denoted by (e, pe), such that |Dae| + |pe| — 0

a.e. in By, .
Now we set (uc,pe) = (u — e, p — p=) € WH2(B,,, )% x L*(B,,), which satisfies

D, AP D = Dy face,
(3.30) { ( & Bua) + Vp. f €

divue = g: + (9 — 9¢)B,,
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in By,. By the same reasoning as in (3.27), it holds that
(Due,pe) € L}

loc

(Bro)dXd X L{]oc(BTo) for any ¢ < oo.

We shall prove that (Due,p.) is bounded near the origin so that (3.19) can be applied
to the above system, which gives the uniform L*-estimate of (Du.,p.). To this end,
we fix € > 0 and let

y=Aa) = (2~ xe(@)), z=A"(y) =T =" y"+x:)
Then (v(y), 7(y)) = (ue(z), pe(x)) satisfies

(3.31)

Do (AP Dgv) + Vit = Do Fy + Da(rb),
dive =G+ Dgv-b

in B,, with a sufficiently small 71 > 0 so that B,, C A(B,,), where
AP (y) = DIN' DA AP (2),  Faly) = DrA® fre(2),

G(y) = ge(x) + (9 — 9:)B,,» bY) = (Dixc(¥),- -, Da—1x=(y'),0).

Note that the coefficients and data are of partially DMO in B,, except b and Dgv-b,
which are only known to be in LI(B,,) for ¢ < co. Thus we are not able to apply the
result in [8, Theorem 2.2] to (3.31) directly. To overcome this difficulty, we use the
following fixed point argument.

Let 7 be an infinitely differentiable function in R? such that

0<n<1l, n=1in B, 3, suppnC B,,.

Then we see that (nu, nm) satisfies

(3.32)

{Da (AP D (1v)) + V() = DaFou + F + Da(ymb).

div(nv) = G+ Dg(nv) - b

in B,,, where

F,=nF,+ A"‘ﬁDﬁnv, F= AaﬂDaanv — DonFy — Dgnmb + Vi,
G=nG+Vn-v— Dgnu-b.

For each positive integer k, let (v*), 7)) be the weak solution in Wy *(B,., )*x L?(B,,)
to the problem

Do (AP Dgv®)) 4 Vi) = D, F, + F + Dy(nk=1b),
(3.33) (k) A k-1 ~ k-1
divo®) = G+ D=1 b — (G + Dgv*=V - b) 5,

in B,,, where (v, 7(9)) = (0,0). By applying the W!2-estimate to
(3.34) (1) y®) (1) _ (b))
and using (3.28), we have
HDv(kJrl) _ Dv(}“)IILQ(Brl) + ”ﬂ.(k+1) _ W(k)HLZ(BTl)
k k—1 k k-1
(3.35) < Nol| (D) = D)o o 5y No| (5 = 770
< /j,oN()HD’U(k) — Dv(k_l)Her(Brl) + uoNoHW(k) -7

(Bry)

s,y
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where the constant Nj is independent of € and {(v*), 7))} . We take r( sufficiently
small so that (3.28) holds with pg = 1/(2Np). Then by the fixed point theorem, there
exists

(v, %) = (vF,m2) € Wy *(Br,)? x L*(By,)

ere

such that as k£ — oo,
v® o' in Wei(B,,), 7% =1 in L*(B,,)

and such that, in B, ,

(3.36) {DQ(AQBDBU*) +Vr* = DoFy + F + Da(7*b),

dive* = G+ Dgv* - b— (G + Dgv* - b), .
From (3.32) and (3.36), it follows that in B,,,

Do(A**Dg(nv —v*)) + V(nr — (n7),, — 7*) = Dal(nm — 7*)b),
div(nv — v*) = Dg(nv —v*) - b+ (G + Dgv* - b)

ry°

Note that Dgb = 0 and (G 4 Dg(nv) - b)p
the smallness of b, we obtain that

. = 0. Hence by the Wh2_estimate with

T

n=v", nr— (), ="

Next, let pg € (0,7¢] be small enough so that
(3.37) [Varx ()] < p if |2'] < po,

where i is a constant to be chosen below. We also let p; € (0,r;] such that Bip1 C
A(B,,). Observe that AP F. . and G are partially Holder continuous with respect to
y', Fy € L™(B,,), and F' € LY(B,,) for all ¢ < co. Therefore, the regularity results
in [8, Theorem 2.2 (b)] are applicable to the system (3.33). Precisely, by applying [8,
Theorem 2.2 (b) and Remark 2.4], combined with covering and scaling arguments, we
obtain that

(Do, 70 € L(B,)" x L¥(B,) for all p < pi.
Moreover,
AdﬁDlgv(l) +7Me, € C‘S(Bp)d7 Dyfv(l) € Cé(Bp)dX(d_1)>
from which we get
(DvM, 7MWy € CO,(B,)™ x C8,(B,) for all § € (0,1).
Repeating this procedure, we see that
(Dv®), 7 ®)) € (L2(B,)™ x L=(B,)) N (Cy (B,)™ x Cy(B,))

for any positive integer k. Hence, from the estimates in the proof of [8, Theorem
2.2 (b)] applied to (3.34) with covering and scaling arguments, we deduce that for any
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0<s<p<p,
| Dv*D — D™ o) + D — 78| e 5,

+(p— )7 ([Do®+D) — Du®] [ =2 e )

< Ni(p = 5)~* (IDv* D = Do®|| 15,y + 75 = 70| 11 5,

5
C3,(B,)

N (|20 = Doty 1 =70l )

FNi(p— 5)5([(Dv(k) — Do) [(x®) — 7 (k= DYp]

c:j/(Bﬂ))
< 1oNoN1(p — S)—d/2(”DU(k) _ Dv(k_l)HL%Brl) + ||7T(lc) _ 7T(k_1>||L2(BT1))

os,8,) T

+ N (Do) = Do* ||,y + 75 = 74D )
+ [b}cj,(Bpl)Nl (p— 5)6(||Dv(k) — Do Y| ooy + ||7H) — 7T(k_l)HLoo(Bp))

+ Ny (p — 3)6([1)@(@ — D] [x9) (k=]

s, (8,) T c;(m))’

where we used (3.28), (3.35), and (3.37) in the second inequality. Note that the
constant Nj is independent of {(v®), 7(®))}, but it may depend on e. By choosing po
sufficiently small, which (along with p;) may depend on e, and following a standard
iteration argument, we get uniform L> bounds of Dv®) and 7(*) in By, /2. Thus the
functions

Du(y) = Dv*(y), =(y)=7"(y),

and hence Du(x) and p.(x) are bounded in a neighborhood of the origin with a
radius depending also on €. It is easy to check that the same argument as above still
works at every point near the origin, for instance, in B, /2, where rq is the constant
from the beginning of this step, which is independent of €. Therefore,

(Dueape) € LOO(BTU/Z)dXd X LOO<BT0/2)'

Now we can apply the a priori estimate in Step 1 to (3.30) to get uniform L*°-bounds
of (Dug,p.), and then take the limit ¢ — 0T to obtain the boundedness of the limit
function (Du,p) in B, /2. The theorem is proved. d

We conclude the proof of Theorem 2.4 with the following remark.

Remark 3.2. As mentioned in Remark 2.7, the regularity results in Theorem 2.4
can be extended to weak solutions of

Lu+Vp=Dyfoa+f in D,
divu=g in D,

where f € L*(D)? with s > d. In this case, the upper bounds of the L>-norm of
(Du,p) and the modulus of continuity of (D, u,U) can be derived as follows.

Let 29 € D' and r € (0, R;] such that B,(xg) C D’. Due to the solvability
of the divergence equation (see, for instance, [9, Lemma 3.1]), there exist h, €
Whs(B,(x0))¢, a € {1,2,...,d}, such that

d
> Doha =f in By()
a=1
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and
(ha)Br(ro) =0, HDhoz‘

Then (u, p) satisfies

LBy (z0)) Sdus [ FIlLe(B, (20))-

Lu+Vp=Dy(fo+ ha) in B,(z),
divu=g in B, (zo),

where, by both Morrey and Poincaré inequalities,

P 0 o] er-ase (Bo(ae)) T el (B, o)) ST Y I f 2B, (wo))-

Thus by the same argument as in the proof of Theorem 2.4 with a fixed v € (1 — g, 1),
we have
[ DullLe (B, 5(20)) + 1Pl 2o (B, 2 (x0))
< N~ Dull 11 (8, (o)) + 1Pl L1 (B, (o))
+ N ([l falloe (B, (z0)) + N9l L= (B (o)) + NF(r) + Nr't= s £

L#(Br(wo))»

where N = N(d,v, M, go,w0s,5). Moreover, for yo € B;./4(0), we obtain that

|(Daru(zo),Ulzo)) — (Daru(yo), Ulyo))|

< Nr= (| Dull 1. (B (wo)) + 1Pl 21 (B, (20))) € (120 — %0l)
+ N(ll fallo (B, (z0)) + 19l Lo (B, (20))) € (120 = Yol)
+ N(F@) + 7Y fll 2s (8, (20)) ) (120 — wol) + NF (|20 — yol)
+ NI/ s

LS(BT(aco))|xO — Yo

3.2. Proof of Theorem 2.10. Note that (u,p) satisfies

Lu+Vp=Dyfo+f in D,
divu=g in D,

where f = —u®D,u. We consider two cases.

Case 1. g > d. In this case, by the Morrey—Sobolev embedding theorem, we see
that f € quoc(’D)d. Thus the theorem follows from Remark 2.7 applied to a slightly
diminished domain.

Case 2. ¢ < d. From the first case, it suffices to improve the regularity of Du
from L? to Lj, . for some s > d. Let g € D. We may assume that o = 0 and B; C D
after translating and scaling the coordinates.

We first derive an a priori estimate for (Du, p) under the assumption that (u,p) €
Wha" (By)4x L9 (By), where ¢* is the Sobolev conjugate of ¢, i.e., ¢* = dg/(d—q) when
g < d and ¢* € (g,00) is arbitrary when ¢ = d. Let 7 be an infinitely differentiable
function in R? such that

0<n<1, n=1in By, suppnC By, |Vnl<al.

We define an elliptic operator £ by

Lu = Dy (A*? Dgu),
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where A% = nA®% 4+ v(1 — n)dapl. Here, v is the constant from (2.4), Jup is the
Kronecker delta symbol, and I is the d x d identity matrix. Note that A*° and
Q = By satisfy [13, Assumption 2.2 (p)] for any p > 0. Therefore, the W¢ -estimate
in [13, Theorem 2.4] is available for £ on Q = B;.

Now, for r, R with 0 < r < R < 1/2, let ( = (, g be an infinitely differentiable
function in R? such that

0<(¢(<1, ¢(=1in B,, supp(C Bg, [V{ Zq(R—7)""

Then (v,7) = (Cu, Cp) € Wy U(By)? x L(B,) satisfies

(3.38)

Lv+Vr=F+D.,F, in By,
dive =G in By,

where
F = DoCA*P Dgu 4 V(p — Dol fo — u“Dov 4+ u®uD,yC,

Fo = A*PuDgC + Cfo, G=VC-u+(yg.
Observe that F, € L9 (By)%, G € L4 (By), and

1F Loy Saw (BR=7)" (IDullpacsr) + 1Pl Lacsr) + 1uliss,))
+ R(R—r)" Y fall o (Br) T 1ullLasp) 1DV Lo* (-
Then by the W4 -solvability in [13, Theorem 2.4], (3.38) also have a unique solution
(0,7) € W' (By)?x LY (By), which is also in W'Y (B;)?x LY(By). By the uniqueness
of Wy 9(By)%x L9(B; ) solutions, we get (#,7) = (v, 7—(7)p, ). By applying the W14 -
estimate in [13, Theorem 2.4] to (3.38) and using the above inequality, we obtain that
(3.39)
DVl e B,y + |7 = (7) By | L (1)
SN\IF|lpacsyy + 1Fall e 3y + 1GllLer (51))
< No(R =) (IDulla(sry + 1Pl La(mry + 1ullio(s,)) + No(R =) Hlull Lo (5,
+ NoR(R = 1)~ || fall o (B) + Nollgll o () + Nollwll oz 1DVl Lo (5.
where No = No(d, v, M, Ry, 09, w4as,q). Then by taking R € (0, 1/2] sufficiently small
so that
NollullLasgy < €:= g,
we can absorb the last term on the right-hand side of (3.39) to the left-hand side.
From the triangle and Hoélder’s inequalities, we have
| Dull o B,y + 1Pl a* (8,)
(3.40) <SPl g,y + 7 = (1) B e (3,) + Nall7llLr(s,)
< |IDvllpa 5,y + Im = (1) Bl 2o () + NallpllLeB)-

Noting that ¢* > 2q, it follows from (3.40) and (3.39) that

| Dull Lo (B,) + IPll Lo (5,
< (No+ Ni)(R—7)" (|1 Dull acsr) + Pl La(sr) + [ullZar (5,))
+ No(R—7)"ullpo () + NoR(R —7) | fall o (Br) T Nollgll L (Br)-
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We are ready to prove

(3.41)

Du € L, .(D)™?  for some s > d.

From the a priori estimate (3.39) and the fixed point argument as in the proof of
Theorem 2.4, one can show that Du € Lﬁ:c(D)dXd. This yields (3.41) when d/2 <
q < d because ¢* > d. On the other hand, if ¢ = d/2, then since Du € L (D)%*¢ for
all ¢; < d, by applying the above regularity result again, we get (3.41). We have thus
proved the regularity results in the theorem. The corresponding upper bounds of the
L>®-norm of (Du,p) and the modulus of continuity of (Dyu,U) can be derived as in
Remark 3.2. 0

»® =
- =
=

=)
(-

[20] M.
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