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GRADIENT ESTIMATES FOR STOKES AND NAVIER--STOKES

SYSTEMS WITH PIECEWISE DMO COEFFICIENTS\ast 

JONGKEUN CHOI\dagger , HONGJIE DONG\ddagger , AND LONGJUAN XU\S 

Abstract. We study stationary Stokes systems in divergence form with piecewise Dini mean
oscillation (DMO) coefficients and data in a bounded domain containing a finite number of subdo-
mains with C1,Dini boundaries. We prove that if (u, p) is a weak solution of the system, then (Du, p)
is bounded and piecewise continuous. The corresponding results for stationary Navier--Stokes sys-
tems are also established, from which the Lipschitz regularity of the stationary H1-weak solution
in dimensions d = 2, 3, 4 is obtained. Our results can be applied to stationary Stokes systems and
Navier--Stokes systems with the second-order term div(\tau \scrS u), where \scrS u = 1

2
(Du + (Du)\top ) is the

strain tensor and \tau is a positive piecewise DMO scalar function.
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1. Introduction. In this paper, we consider stationary Stokes systems with
variable coefficients

\Biggl\{ 
\scrL u+\nabla p = D\alpha f\alpha in \scrD ,

div u = g in \scrD .
(1.1)

The differential operator \scrL is in divergence form acting on column vector valued
functions u = (u1, . . . , ud)\top as follows:

(1.2) \scrL u = D\alpha (A
\alpha \beta D\beta u),

where we use the Einstein summation convention over repeated indices. The domain
\scrD is bounded in \BbbR 

d, which consists of a finite number of disjoint subdomains, and
the coefficients A\alpha \beta = A\alpha \beta (x) can have jump discontinuities along the boundaries of
the subdomains. As is well known, such a system is partly motivated by the study
of composite materials with closely spaced interfacial boundaries. In an earlier work
[31], Masliyah et al. studied the creeping flow past a solid sphere with porous shell by
using the Brinkman equation for the flow field inside the fluid permeable surface layer
and the Stokes equations for the flow field external to the particle. Jaiswal and Gupta
[21] investigated Stokes flow over the composite sphere filled with Reiner--Rivlin liq-
uid and coated with the porous layer. Also, the system can be used to model the
motion of inhomogeneous fluids with density-dependent viscosity (see, for instance,
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3610 JONGKEUN CHOI, HONGJIE DONG, AND LONGJUAN XU

[25, 30, 1]). Moreover, it has a close connection to the motion of two fluids with
interfacial boundaries. In [12], Dong and Kim studied Lq-estimates under the as-
sumption that the coefficients A\alpha \beta are merely measurable in one direction and satisfy
the bounded mean oscillation (BMO) condition in orthogonal directions. Such type
of coefficients was first introduced by Krylov [24] and is called a (variably) partially
BMO coefficient. For further results about Stokes systems with irregular coefficients,
we refer the reader to [23, 13, 28], the work [8] for Stokes systems with partially Dini
mean oscillation (DMO) coefficients, and the recent paper [22] on systems with L\infty 

viscosity coefficients.
System (1.1) is also related to hydrodynamic interactions in soft matter systems.

This is reduced to the study of stress (represented by Du) concentration in high-
contrast composites with densely packed inclusions whose material properties differ
from that of the background. In [3], Ammari et al. investigated the stress concentra-
tion of Stokes flow between adjacent circular cylinders.

There is a large body of literature concerning regularity theory for partial differ-
ential equations/systems with coefficients which satisfy some proper piecewise con-
tinuous conditions arising from the problems of composite materials. For the theory
of second-order elliptic equations/systems in divergence form, W 1,\infty - and piecewise
C1,\delta \prime -estimates were obtained by Li and Vogelius [27] for elliptic equations with piece-
wise C\delta coefficients in a domain which consists of a finite number of disjoint subdo-
mains with C1,\mu boundaries, where 0 < \mu \leq 1 and 0 < \delta \prime \leq min\{ \delta , \mu 

d(1+\mu )\} . A

similar result was proved for systems in [26], where 0 < \delta \prime \leq min\{ \delta , \mu 
2(1+\mu )\} . The

results in [26] were extended by the second and third authors [17] to the system
with piecewise DMO coefficients and subdomains having C1,Dini boundaries. They
also established piecewise C1,\delta \prime -estimate for solutions under the same conditions and
with 0 < \delta \prime \leq min\{ \delta , \mu 

1+\mu \} . See also [18] for the corresponding results for parabolic
systems. It is important to remark that the subdomains are allowed to touch each
other in [27, 26, 17, 18] and these results are independent of the distance between
subdomains. For more related results, one can refer to [7, 5, 2, 16, 15, 34] and the ref-
erences therein. In particular, for 2D elliptic equations, Mateu, Orobitg, and Verdera
[32] derived C1,\delta \prime -regularity in each subdomain with 0 < \delta \prime < min\{ \delta , \mu \} by assum-
ing that the determinant of the coefficients equals 1. The works [10, 11, 33] contain
C1,\delta \prime -regularity results for \delta \prime = min\{ \delta , \mu \} . However, the estimates there depend on
the distance between subdomains.

Inspired by the work [8, 17] mentioned above, we are interested in gradient es-
timates for Stokes systems with piecewise DMO coefficients. The goal of this paper
consists of two aspects. We first extend the results in [17] for elliptic systems to
the stationary Stokes systems (1.1). Precisely, we show in Theorem 2.4 that if the
coefficients and data are of piecewise Dini mean oscillation and the boundaries of
subdomains are C1,Dini, then for every weak solution (u, p) \in W 1,q(\scrD )d \times Lq(\scrD ) to
(1.1), q \in (1,\infty ), Du and p are locally bounded and piecewise continuous. As an
application, we obtain piecewise H\"older continuity for Du and p under H\"older reg-
ularity assumptions on the coefficients and the boundaries of the subdomains. We
remark that the corresponding estimates are independent of the distance between
subdomains so that the boundaries of more than two subdomains can touch at some
points. We also prove a local W 1,q-estimate for W 1,1-weak solutions in Corollary 2.8
by exploiting the argument in [6, 4] combined with Theorem 2.4.
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GRADIENT ESTIMATES 3611

Second, we consider the stationary Navier--Stokes systems
\Biggl\{ 
\scrL u+\nabla p+ u\alpha D\alpha u = D\alpha f\alpha in \scrD ,

div u = g in \scrD .

We obtain that any W 1,q-solution is Lipschitz and piecewise C1, where q \in [d/2,\infty );
see Theorem 2.10 for details. This result can be applied to H1-weak solutions to
stationary Navier--Stokes systems with piecewise DMO coefficients in dimensions d =
2, 3, 4. Related work can be found in [19], in which the author considered the Laplace
operator and proved the smoothness of every weak solution for d = 4, provided the
data are good enough.

Let us briefly describe our arguments based on Campanato's approach. Such
an approach was used in [20, 29] and further developed in [11, 14, 8, 17]. The key
point is to show that the mean oscillations of Du and p in balls vanish in a certain
order as the radii of the balls go to zero. Recalling the nature of the domain and the
coefficients, Du and p are discontinuous in one direction, say, xd, which is the main
challenge in this paper. We overcome this difficulty by choosing a coordinate system
according to the geometry of the subdomains and then using the weak type-(1, 1)
estimates obtained in [8, Lemma 3.4] to control the L1/2-mean oscillations of Dx\prime u
and the linear combinations Ad\beta D\beta u+ ped  - fd; see Lemma 3.1 for details. We point
out that the proof in our case is more involved than that in [8] since our arguments
and estimates depend on the coordinate system, and also more involved than that in
[17] because of the pressure term and the divergence equation in the Stokes systems
(1.1). For example, in the proof of local boundedness of Du and p (see Step 4 in the
proof of Theorem 2.4), an additional difficulty appears from the pressure term on the
right-hand side after the localization. For this, we adapt a delicate approximation
argument and the fixed point theorem.

The rest of the paper is organized as follows. In section 2, we fix our notation,
introduce function spaces and assumptions on the domain, coefficients, and data, and
then state our main results, Theorem 2.4 for stationary Stokes systems, and Theorem
2.10 for stationary Navier--Stokes systems. In section 3, we provide the proofs of the
main theorems.

2. Assumptions and main results. We first fix some notation and common
definitions used throughout the paper. We use x = (x\prime , xd) to denote a generic point
in the Euclidean space \BbbR 

d, where d \geq 2 and x\prime = (x1, . . . , xd - 1) \in \BbbR 
d - 1. We also

write y = (y\prime , yd) and x0 = (x\prime 
0, x

d
0), etc. For r > 0, we denote

Br(x) = \{ y \in \BbbR 
d : | y  - x| < r\} , B\prime 

r(x
\prime ) = \{ y\prime \in \BbbR 

d - 1 : | y\prime  - x\prime | < r\} .

We often write Br and B\prime 
r instead of Br(0) and B\prime 

r(0), respectively. For k \in \{ 1, . . . , d\} ,
we use ek to denote the kth unit vector in \BbbR 

d.
Let \Omega be a domain in \BbbR 

d. For q \in (0,\infty ], we define

\~Lq(\Omega ) = \{ f \in Lq(\Omega ) : (f)\Omega = 0\} ,

where (f)\Omega is the average of f over \Omega , i.e.,

(f)\Omega =

 

\Omega 

f dx =
1

| \Omega | 

ˆ

\Omega 

f dx.

For q \in [1,\infty ], we denote by W 1,q(\Omega ) the usual Sobolev space and by W 1,q
0 (\Omega ) the

completion of C\infty 
0 (\Omega ) inW 1,q(\Omega ), where C\infty 

0 (\Omega ) is the set of all infinitely differentiable
functions with compact support in \Omega .
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3612 JONGKEUN CHOI, HONGJIE DONG, AND LONGJUAN XU

For 0 < \gamma < 1, the H\"older seminorm is defined by

[u]C\gamma (\Omega ) := sup
x,y\in \Omega 
x \not =y

| u(x) - u(y)| 

| x - y| \gamma 
,

and the partial H\"older seminorm with respect to x\prime is defined by

[u]C\gamma 

x\prime 
(\Omega ) := sup

x,y\in \Omega 

x\prime \not =y\prime ,xd=yd

| u(x) - u(y)| 

| x\prime  - y\prime | \gamma 
.

By C\gamma (\Omega ) we denote the set for all bounded measurable functions u satisfying [u]C\gamma (\Omega )

< \infty .
We say that a function \omega : [0, 1] \rightarrow [0,\infty ) is a Dini function if it is monotonically

increasing and satisfies

(2.1)

ˆ 1

0

\omega (t)

t
dt < +\infty .

We also say that a function f defined on \Omega is Dini continuous if the function \varrho f :
[0, 1] \rightarrow [0,\infty ) given by

\varrho f (t) = sup
x,y\in \Omega 
| x - y| \leq t

| f(x) - f(y)| 

is a Dini function.

Definition 2.1. Let f \in L1(\Omega ). We say that f is of partially DMO with respect
to x\prime in \Omega if the function

\omega f,x\prime (r) := sup

 

Br(x)

\bigm| \bigm| \bigm| f(y) - 
 

B\prime 

r(x
\prime )

f(z\prime , yd) dz\prime 
\bigm| \bigm| \bigm| dy

satisfies (2.1), where the sup is taken with respect to all x \in \Omega with Br(x) \subset \Omega .

Let f\alpha \in Lq(\Omega )d and g \in Lq(\Omega ) with q \geq 1. We say that (u, p) \in W 1,q(\Omega )d\times Lq(\Omega )
is a weak solution of \Biggl\{ 

\scrL u+\nabla p = D\alpha f\alpha in \Omega ,

div u = g in \Omega 

if div u = g a.e. in \Omega and
ˆ

\Omega 

A\alpha \beta D\beta u \cdot D\alpha \phi dx+

ˆ

\Omega 

p div \phi dx =

ˆ

\Omega 

f\alpha \cdot D\alpha \phi dx

holds for \phi \in C\infty 
0 (\Omega )d. We also say that (u, p) \in W 1,q(\Omega )d\times Lq(\Omega ) is a weak solution

of \Biggl\{ 
\scrL u+\nabla p+ u\alpha D\alpha u = D\alpha f\alpha in \Omega ,

div u = g in \Omega ,

if div u = g a.e. in \Omega and
ˆ

\Omega 

A\alpha \beta D\beta u \cdot D\alpha \phi dx+

ˆ

\Omega 

p div \phi dx - 

ˆ

\Omega 

u\alpha D\alpha u \cdot \phi dx =

ˆ

\Omega 

f\alpha \cdot D\alpha \phi dx

holds for \phi \in C\infty 
0 (\Omega )d. When q = 2, we sometimes call (u, p) a H1-weak solution.
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2.1. Assumptions on the domain. Before we state our assumptions on the
domain, we recall the definition of a domain having a C1,Dini boundary.

Definition 2.2. Let \Omega be a domain in \BbbR 
d. We say that \Omega has a C1,Dini boundary

if there exist a constant R0 \in (0, 1] and a concave Dini function \varrho 0 such that the
following holds. For any x0 = (x\prime 

0, x
d
0) \in \partial \Omega , there exist a C1 function \chi : \BbbR d - 1 \rightarrow \BbbR 

and a coordinate system depending on x0 such that

\varrho \nabla x\prime \chi (t) \leq \varrho 0(t) for all t \in [0, R0]

and that in the new coordinate system, we have

| \nabla x\prime \chi (x\prime 
0)| = 0

and

(2.2) \Omega \cap BR0
(x0) = \{ x \in BR0

(x0) : x
d > \chi (x\prime )\} .

In this paper, we always assume that \scrD is a bounded domain in \BbbR 
d containing

M subdomains \sansD 1, . . . ,\sansD M such that
(i) \sansD M = \scrD \setminus 

\bigl( 
\cup M - 1
i=1 \sansD i

\bigr) 
;

(ii) for i, j \in \{ 1, . . . ,M  - 1\} with i \not = j, we have either

(2.3) \sansD i \subset \sansD j or \sansD i \cap \sansD j = \emptyset ;

(iii) for i \in \{ 1, . . . ,M  - 1\} , \sansD i has a C1,Dini boundary as in Definition 2.2 with the
same constant R0 and Dini function \varrho 0.

Our assumptions on the domain, which look a bit different from those in [17],
are in fact identical. Precisely, by disjointing the subdomains \sansD 1, . . . ,\sansD M - 1, one can
understand \scrD as a domain containing M disjoint subdomains \scrD 1, . . . ,\scrD M such that
(i\prime ) \scrD M = \sansD M ;
(ii\prime ) any point in \scrD belongs to the boundaries of at most two of the subdomains;
(iii\prime ) for i \in \{ 1, . . . ,M  - 1\} , \scrD i has a C1,Dini boundary in an appropriate sense.

Among the above two expressions of the nature of the domain, the second is useful
in describing the regularity conditions on the coefficients and data, which may have
jump discontinuities across the interfacial boundaries; see section 2.2. On the other
hand, the first expression is convenient to explain the regularity of the boundaries by
using Definition 2.2. Because the disjointed subdomains \scrD i in the second expression
may have ``narrow"" regions, (2.2) is not guaranteed with the same constant R0 inde-
pendent of the distance between subdomains. For example, if M = 3, \scrD 1 := B1/2 - \varepsilon ,

\scrD 2 := B1/2 \setminus B1/2 - \varepsilon , and \scrD 3 := B1 \setminus B1/2, then when we explain the regularity of \partial \scrD 2

via Definition 2.2, we need to take R0 to be less than \varepsilon , which is the distance between
\scrD 1 and \scrD 3. That is why we added ``appropriate sense"" to the condition (iii\prime ). In the
following, we will use the notation \scrD i introduced above to denote the subdomains.

We end this subsection with a remark that condition (2.3) can be relaxed to

\sansD i \subset \sansD j or \sansD i \cap \sansD j = \emptyset ,

so that the boundaries of more than two subdomains touch at some points; see Remark
2.5.
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2.2. Assumptions on the coefficients and data. We assume that the coef-
ficients A\alpha \beta of the operator \scrL in (1.2) are bounded and satisfy the strong ellipticity
condition, that is, there exists \nu \in (0, 1) such that

(2.4) | A\alpha \beta (x)| \leq \nu  - 1,

d\sum 

\alpha ,\beta =1

A\alpha \beta (x)\xi \beta \cdot \xi \alpha \geq \nu 

d\sum 

\alpha =1

| \xi \alpha | 
2

for any x \in \BbbR 
d and \xi \alpha \in \BbbR 

d, \alpha \in \{ 1, . . . , d\} . We also assume that the coefficients and
data are of piecewise DMO satisfying Definition 2.3 below in the domain \scrD containing
M disjoint subdomains \scrD 1, . . . ,\scrD M as in section 2.1.

Definition 2.3. Let f \in L1(\scrD ). We say that f is of piecewise DMO in \scrD if
there exists a Dini function \omega f such that for any x0 \in \scrD and r \in (0, 1] satisfying
Br(x0) \subset \scrD , we have

(2.5)

 

Br(x0)

\bigm| \bigm| f(x) - \^f(x)
\bigm| \bigm| dx \leq \omega f (r),

where \^f = \^fx0,r is a piecewise continuous function on Br(x0) given by

\^f(x) =

 

Br(x0)\cap \scrD i

f(y) dy if x \in Br(x0) \cap \scrD i.

Our definition of a function of piecewise DMO is equivalent to the definition in
[17], where the piecewise mean oscillation is measured by taking the infimum over the
set of all piecewise constant functions.

2.3. Main results. The main results of this paper are as follows.

Theorem 2.4. Let \scrD be a bounded domain in \BbbR 
d containing M disjoint subdo-

mains \scrD 1, . . . ,\scrD M with C1,Dini boundaries as in section 2.1. Also, let q \in (1,\infty ) and
(u, p) \in W 1,q(\scrD )d \times Lq(\scrD ) be a weak solution of

(2.6)

\Biggl\{ 
\scrL u+\nabla p = D\alpha f\alpha in \scrD ,

div u = g in \scrD ,

where f\alpha \in L\infty (\scrD )d and g \in L\infty (\scrD ). If A\alpha \beta , f\alpha , and g are of piecewise DMO in \scrD 
satisfying Definition 2.3, then for any \scrD \prime \Subset \scrD , we have

(u, p) \in W 1,\infty (\scrD \prime )d \times L\infty (\scrD \prime )

and
(u, p) \in C1

\bigl( 
\scrD i \cap \scrD \prime 

\bigr) d
\times C

\bigl( 
\scrD i \cap \scrD \prime 

\bigr) 
, i \in \{ 1, . . . ,M\} .

If we further assume that there exist \gamma 0 \in (0, 1) and K > 0 such that

(2.7) \varrho 0(r) \leq Kr
\gamma 0

1 - \gamma 0 , \omega A\alpha \beta (r) + \omega f\alpha (r) + \omega g(r) \leq Kr\gamma 0

for all r \in (0, R0], then

(u, p) \in C1,\gamma 0

\bigl( 
\scrD i \cap \scrD \prime 

\bigr) d
\times C\gamma 0

\bigl( 
\scrD i \cap \scrD \prime 

\bigr) 
, i \in \{ 1, . . . ,M\} .

Related to the theorem above, we have a few remarks.
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Remark 2.5. Upper bounds of the L\infty -norms and the modulus of continuity of
Du and p can be found in the proof of the theorem; see section 3.1. Note that these
upper bounds are independent of the distance between the subdomains. Thus our
results can be applied to the case when the boundaries of more than two subdomains
touch at some points.

In the middle of the proof, we also proved that for any x0 \in \scrD \prime , there exists a
coordinate system associated with x0 such that the certain linear combinations

Dx\prime u and Ad\beta D\beta u+ ped  - fd

are continuous at x0. Moreover, if (2.7) holds, then they are H\"older continuous with
the same exponent \gamma 0.

Remark 2.6. Condition (2.7) holds, provided that the subdomains \scrD i have
C1,\gamma 0/(1 - \gamma 0) boundaries and thatA\alpha \beta , f\alpha , and g are in C\gamma 0(\scrD i) for each i \in \{ 1, . . . ,M\} .

Remark 2.7. By the same reasoning as in [8, Remark 2.4], one can extend the
results in Theorem 2.4 to weak solutions of the system

\Biggl\{ 
\scrL u+\nabla p = D\alpha f\alpha + f in \scrD ,

div u = g in \scrD ,

where f \in Ls(\scrD )d with s > d. The corresponding upper bounds of the L\infty -norms
and the modulus of continuity of Du and p can be found in Remark 3.2 at the end of
section 3.1.

In the corollary below, we present the W 1,q-estimate for W 1,1-weak solutions,
which follows from Theorem 2.4, the solvability results in [13], and the argument in
Brezis [6] (see also [4, Appendix]). One may refer to the proof of [8, Theorem 2.5],
where the authors proved the W 1,q-estimate for W 1,1-weak solutions to the Stokes
system with partially DMO coefficients.

Corollary 2.8. Let \scrD be a bounded domain in \BbbR 
d containing M disjoint sub-

domains \scrD 1, . . . ,\scrD M as in section 2.1. Also, let (u, p) \in W 1,1(\scrD )d\times L1(\scrD ) be a weak
solution of (2.6), where f\alpha \in Lq(\scrD )d and g \in Lq(\scrD ) with q \in (1,\infty ). If A\alpha \beta , f\alpha , and
g are piecewise DMO in \scrD satisfying Definition 2.3, then for \scrD \prime \Subset \scrD , we have

(u, p) \in W 1,q(\scrD \prime )d \times Lq(\scrD \prime )

with the estimate

\| u\| W 1,q(\scrD \prime ) + \| p\| Lq(\scrD \prime ) \leq N
\bigl( 
\| u\| W 1,1(\scrD ) + \| p\| L1(\scrD ) + \| f\alpha \| Lq(\scrD ) + \| g\| Lq(\scrD )

\bigr) 
,

where the constant N depends only on d, \nu , M , R0, \varrho 0, \omega A\alpha \beta , q, and dist(\partial \scrD ,\scrD \prime ).

Remark 2.9. From Corollary 2.8, the results in Theorem 2.4 still hold under the
assumption that (u, p) \in W 1,1(\scrD )d \times L1(\scrD ).

We also consider stationary Navier--Stokes systems with piecewise DMO coeffi-
cients.

Theorem 2.10. Let \scrD be a bounded domain in \BbbR 
d containing M disjoint subdo-

mains \scrD 1, . . . ,\scrD M with C1,Dini boundaries as in section 2.1. Also, let q \in (1,\infty ) with
q \geq d/2 and (u, p) \in W 1,q(\scrD )d \times Lq(\scrD ) be a weak solution of

\Biggl\{ 
\scrL u+\nabla p+ u\alpha D\alpha u = D\alpha f\alpha in \scrD ,

div u = g in \scrD ,
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where f\alpha \in L\infty (\scrD )d and g \in L\infty (\scrD ). If A\alpha \beta , f\alpha , and g are of piecewise DMO in \scrD 
satisfying Definition 2.3, then for any \scrD \prime \Subset \scrD , we have

(u, p) \in W 1,\infty (\scrD \prime )d \times L\infty (\scrD \prime )

and
(u, p) \in C1

\bigl( 
\scrD i \cap \scrD \prime 

\bigr) d
\times C

\bigl( 
\scrD i \cap \scrD \prime 

\bigr) 
, i \in \{ 1, . . . ,M\} .

If we further assume (2.7), then

(u, p) \in C1,\gamma 0

\bigl( 
\scrD i \cap \scrD \prime 

\bigr) d
\times C\gamma 0

\bigl( 
\scrD i \cap \scrD \prime 

\bigr) 
, i \in \{ 1, . . . ,M\} .

As a corollary of Theorem 2.10, in dimensions d = 2, 3, 4, for anyH1-weak solution
(u, p) to the stationary Navier--Stokes system with piecewise DMO coefficients, (Du, p)
is locally bounded, i.e., the flow velocity u is locally Lipschitz, as the condition 2 \geq d/2
is satisfied.

We finish this section with a remark that our results can be applied to (aniso-
tropic) Stokes systems

\Biggl\{ 
div(\tau \scrS u) +\nabla p = D\alpha f\alpha in \scrD ,

div u = g in \scrD 
(2.8)

as well as the corresponding stationary Navier--Stokes systems. Here \tau = \tau (x) is a
piecewise DMO (or piecewise H\"older continuous) scalar function satisfying \nu \leq \tau \leq 
\nu  - 1 and \scrS u = 1

2 (Du + (Du)\top ) is the so-called rate of deformation tensor or strain
tensor. Systems in this form were considered, for example, in [25, 30, 1]. Notice that
the coefficient matrix in this case is given by

A\alpha \beta 
ij =

\tau 

2
(\delta ij\delta \alpha \beta + \delta \alpha j\delta \beta i),

which satisfies the Legendre--Hadamard ellipticity condition, but not the strong el-
lipticity condition (2.4). Hence, our results cannot be applied directly. However, by
using the condition div u = g in \scrD , we have

div(\tau \scrS u)i = Dj

\Bigl( \tau 
2
(Dju

i +Diu
j)
\Bigr) 
= Dj

\Bigl( \tau 
2
Dju

i +
\Bigl( \tau 
2
 - \varepsilon 

\Bigr) 
Diu

j
\Bigr) 
+ \varepsilon Dig,

where \varepsilon \in (0, \nu /2). Thus the first equation in (2.8) can be replaced with

(2.9) div( \widehat \scrS u) +\nabla p = D\alpha f\alpha  - \varepsilon D\alpha g\alpha in \scrD ,

where gi\alpha = g\delta \alpha i and the new coefficient matrix is given by

\widehat A\alpha \beta 
ij =

\tau 

2
\delta ij\delta \alpha \beta +

\Bigl( \tau 
2
 - \varepsilon 

\Bigr) 
\delta \alpha j\delta \beta i,

which is a piecewise DMO (or piecewise H\"older continuous) function satisfying the
strong ellipticity condition with ellipticity constant \varepsilon . Therefore, our results hold true
for (2.8).

3. Proofs of main theorems. Throughout this paper, we use the following
notation.

Notation 3.1. For nonnegative (variable) quantities A and B, we denote A \lesssim B
if there exists a generic positive constant C such that A \leq CB. We add subscript
letters like A \lesssim a,b B to indicate the dependence of the implicit constant C on the
parameters a and b.
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3.1. Proof of Theorem 2.4. We begin the proof with the following observation.
Under the assumptions on the domain \scrD with a scaling whose parameter depends
only on d, R0, \varrho 0, and dist(\partial \scrD ,\scrD \prime ), we may suppose that for any x0 \in \scrD \prime , there exist
C1,Dini functions \chi i : \BbbR d - 1 \rightarrow \BbbR , i \in \{ 1, . . . , \ell \} for some \ell < M , and a coordinate
system such that the following properties hold in the new coordinate system (called
the coordinate system associated with x0):
(A1) We have that

\varrho \nabla x\prime \chi i
(r) \leq \varrho 0(r)

for all r \in [0, R0] and i \in \{ 1, . . . , \ell \} , and that

\chi 0(x
\prime ) < \chi 1(x

\prime ) < \cdot \cdot \cdot < \chi \ell (x
\prime ) < \chi l+1(x

\prime )

for all x\prime \in B\prime 
1(x0), where we have adopted the notation \chi 0 \equiv xd

0  - 1 and
\chi l+1 \equiv xd

0 + 1.
(A2) B1(x0) \subset \scrD and B1(x0) is divided into \ell + 1 disjoint subdomains

\widehat \scrD i := \{ x \in B1(x0) : \chi i - 1(x
\prime ) < xd < \chi i(x

\prime )\} , i \in \{ 1, . . . , \ell + 1\} .

Here, in an appropriate sense one may think of \widehat \scrD i as \scrD i \cap B1(x0). Moreover,

x0 \in \widehat \scrD i0 \cup \partial \widehat \scrD i0 for some i0 \in \{ 1, . . . , \ell + 1\} ,

the closest point on \partial \widehat \scrD i0 to x0 is (x\prime 
0, \chi i0(x

\prime 
0)), and \nabla x\prime \chi i0(x

\prime 
0) = 0\prime .

Throughout this proof, we shall use the following notation and properties in the
coordinate system associated with x0 satisfying (A1) and (A2).
(B1) For i \in \{ 1, . . . , \ell + 1\} , we denote

\Omega i = \{ x \in B1(x0) : \chi i - 1(x
\prime 
0) < xd < \chi i(x

\prime 
0)\} .

By [17, Lemma 2.3], there exists R1 = R1(R0, \varrho 0) \in (0, R0] such that for any
r \in (0, R1],

(3.1) r - d| ( \widehat \scrD i \setminus \Omega i) \cap Br(x0)| \lesssim d,M,\varrho 0
\varrho 1(r),

where \varrho 1 is a Dini function derived from \varrho 0.
(B2) Let f be of piecewise DMO in \scrD satisfying Definition 2.3 with a Dini function

\omega f . For r \in (0, R1], we define piecewise continuous functions \^f = \^fx0,r and
\=f = \=fx0,r in Br(x0) by

\^f(x) =

 

\widehat \scrD i\cap Br(x0)

f(y) dy if x \in Br(x0) \cap \widehat \scrD i

and

(3.2) \=f(x) =

 

\widehat \scrD i\cap Br(x0)

f(y) dy if x \in Br(x0) \cap \Omega i,

where \=f is indeed a function of xd. Since \^f \equiv \=f in Br(x0) \cap \widehat \scrD i \cap \Omega i, by (3.1),
we have

 

Br(x0)

| \^f  - \=f | dx =
1

| Br| 

\ell +1\sum 

i=1

ˆ

( \widehat \scrD i\setminus \Omega i)\cap Br(x0)

| \^f  - \=f | dx

\lesssim \| f\| L\infty (Br(x0))\varrho 1(r).
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3618 JONGKEUN CHOI, HONGJIE DONG, AND LONGJUAN XU

From this together with (2.5), it follows that

(3.3)

 

Br(x0)

| f  - \=f | dx \lesssim d,M,\varrho 0
\omega f (r) + \| f\| L\infty (Br(x0))\varrho 1(r).

(B3) We set
U = Ad\beta D\beta u+ ped  - fd.

For y \in \scrD and r > 0 with Br(y) \subset B1(x0), we define

\Phi x0
(y, r) = inf

\Theta \in \BbbR d\times d

\biggl( 
 

Br(y)

| (Dx\prime u, U) - \Theta | 
1

2 dx

\biggr) 2

,

where we used the subindex x0 to indicate that the function is defined in the
coordinate system associated with x0.

To prove Theorem 2.4, we will use the following decay estimates.

Lemma 3.1. Let x0 \in \scrD \prime , r \in (0, R1], and \gamma \in (0, 1). Then under the same
hypotheses as those of Theorem 2.4 with an additional assumption that Du and p
are locally bounded, there exists N = N(d, \nu ,M, \varrho 0, \gamma ) > 0 such that the following
assertions hold:
(i) For any \rho \in (0, r], we have

(3.4)

\Phi x0
(x0, \rho ) \leq N

\Bigl( \rho 
r

\Bigr) \gamma 

\Phi x0
(x0, r) +N\| Du\| L\infty (Br(x0))

\bigl( 
\~\omega A\alpha \beta (\rho ) + \~\varrho 1(\rho )

\bigr) 

+N
\bigl( 
\| f\alpha \| L\infty (Br(x0)) + \| g\| L\infty (Br(x0))

\bigr) 
\~\varrho 1(\rho )

+N
\bigl( 
\~\omega f\alpha (\rho ) + \~\omega g(\rho )

\bigr) 
.

(ii) For any y \in Br/2(x0) and \rho \in (0, r/2] such that B\rho (y) \subset \widehat \scrD i1 for some i1 \in 
\{ 1, . . . , \ell + 1\} , we have

(3.5)

\Phi x0
(y, \rho ) \leq N

\biggl( 
\rho 

r

\biggr) \gamma 

\Phi y(y, r/2) +N\| Du\| L\infty (Br/2(y))

\bigl( 
\~\omega A\alpha \beta (\rho ) + \~\varrho 1(\rho )

\bigr) 

+N
\bigl( 
\| f\alpha \| L\infty (Br/2(y)) + \| g\| L\infty (Br/2(y))

\bigr) \bigl( 
\~\omega A\alpha \beta (\rho ) + \~\varrho 1(\rho )

\bigr) 

+N
\bigl( 
\~\omega f\alpha (\rho ) + \~\omega g(\rho )

\bigr) 
.

In the above, \~\omega \bullet and \~\varrho 1 are Dini functions derived from \omega \bullet and \varrho 1, respectively, as
formulated in (3.10).

Proof. We may assume that x0 = 0 for simplicity of notation. For a given function
f , we denote by \=f = \=f(xd) the piecewise constant function in Br defined as in (3.2).

We first prove assertion (i). Let \scrL 0 be an elliptic operator given by

\scrL 0u = D\alpha ( \=A
\alpha \beta D\beta u)

and set

ue = u - 

ˆ xd

 - 1

u0 ds, pe = p - p0,

where u0 = (u1
0, . . . , u

d
0)

\top and p0 are functions of xd satisfying

ud
0 = \=g, \=Addu0 + p0ed = \=fd.
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GRADIENT ESTIMATES 3619

Then (ue, pe) satisfies

\Biggl\{ 
\scrL 0ue +\nabla pe = D\alpha F\alpha in Br,

div ue = G in Br,

where F\alpha = ( \=A\alpha \beta  - A\alpha \beta )D\beta u+ f\alpha  - \=f\alpha and G = g  - \=g. We decompose

(3.6) (ue, pe) = (v, p1) + (w, p2),

where (v, p1) \in W 1,2
0 (Br)

d \times \~L2(Br) is the unique weak solution of

\Biggl\{ 
\scrL 0v +\nabla p1 = D\alpha (IBr/4

F\alpha ) in Br,

div v = IBr/4
G - (IBr/4

G)Br
in Br.

Here, IBr/4
is the characteristic function. Since \=A\alpha \beta only depends on xd, by [8, Lemma

3.4] with scaling and relabeling the coordinate axes, we have for all t > 0 that

\bigm| \bigm| \{ x \in Br/4 : | Dv(x)| + | p1(x)| > t\} 
\bigm| \bigm| \lesssim d,\nu 

1

t

ˆ

Br/4

\bigl( 
| F\alpha | + | G| 

\bigr) 
dx.

This implies that (cf. [8, equation (4.5)])

(3.7)

\biggl( 
 

Br/4

(| Dv| + | p1| )
1

2 dx

\biggr) 2

\lesssim 

 

Br/4

(| F\alpha | + | G| ) dx.

On the other hand, since (w, p2) satisfies

\Biggl\{ 
\scrL 0w +\nabla p2 = 0 in Br/4,

divw = (IBr/4
G)Br

in Br/4,

by [8, equation (3.7)], we obtain

(3.8)

\biggl( 
 

B\kappa r

\bigm| \bigm| Dx\prime w  - (Dx\prime w)B\kappa r

\bigm| \bigm| 1

2 +
\bigm| \bigm| W  - (W )B\kappa r

\bigm| \bigm| 1

2 dx

\biggr) 2

\lesssim \kappa inf
\Theta \in \BbbR d\times d

\biggl( 
 

Br/4

| (Dx\prime w,W ) - \Theta | 
1

2 dx

\biggr) 2

for any \kappa \in (0, 1/8], where W = \=Ad\beta D\beta w + p2ed.
Now we set

Ue = \=Ad\beta D\beta ue + peed

and observe that

(3.9) Dx\prime ue = Dx\prime u, U  - Ue = (Ad\beta  - \=Ad\beta )D\beta u - (fd  - \=fd).
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By (3.6)--(3.8) and the triangle inequality, we have

\biggl( 
 

B\kappa r

\bigm| \bigm| Dx\prime ue  - (Dx\prime w)B\kappa r

\bigm| \bigm| 1

2 +
\bigm| \bigm| Ue  - (W )B\kappa r

\bigm| \bigm| 1

2 dx

\biggr) 2

\lesssim 

\biggl( 
 

B\kappa r

\bigm| \bigm| Dx\prime w  - (Dx\prime w)B\kappa r

\bigm| \bigm| 1

2 +
\bigm| \bigm| W  - (W )B\kappa r

\bigm| \bigm| 1

2 dx

\biggr) 2

+

\biggl( 
 

B\kappa r

(| Dv| + | p1| )
1

2 dx

\biggr) 2

\lesssim \kappa inf
\Theta \in \BbbR d\times d

\biggl( 
 

Br/4

| (Dx\prime w,W ) - \Theta | 
1

2 dx

\biggr) 2

+ \kappa  - 2d

 

Br/4

(| F\alpha | + | G| ) dx

\lesssim \kappa inf
\Theta \in \BbbR d\times d

\biggl( 
 

Br

| (Dx\prime ue, Ue) - \Theta | 
1

2 dx

\biggr) 2

+ \kappa  - 2d

 

Br

(| F\alpha | + | G| ) dx.

From this, together with (3.3) and (3.9), we get

\Phi 0(0, \kappa r) \leq N0\kappa \Phi 0(0, r) +N0\kappa 
 - 2d\| Du\| L\infty (Br)(\omega A\alpha \beta (r) + \varrho 1(r))

+N0\kappa 
 - 2d

\bigl( 
\| f\alpha \| L\infty (Br) + \| g\| L\infty (Br)

\bigr) 
\varrho 1(r) +N0\kappa 

 - 2d(\omega f\alpha (r) + \omega g(r)),

where N0 = N0(d, \nu ,M, \varrho 0) > 0. Fix \kappa \in (0, 1/8] small enough so that N0\kappa 
1 - \gamma \leq 1.

Then

\Phi 0(0, \kappa r) \leq \kappa \gamma \Phi 0(0, r) +N\| Du\| L\infty (Br)(\omega A\alpha \beta (r) + \varrho 1(r))

+N
\bigl( 
\| f\alpha \| L\infty (Br) + \| g\| L\infty (Br)

\bigr) 
\varrho 1(r) +N(\omega f\alpha (r) + \omega g(r)),

where N = N(d, \nu ,M, \varrho 0, \gamma ) > 0. Let \~\omega \bullet and \~\varrho 0 be Dini functions defined by

(3.10)

\~\omega \bullet (r) =

\infty \sum 

i=1

\kappa \gamma i
\bigl( 
\omega \bullet (\kappa 

 - ir)[\kappa  - ir < 1] + \omega \bullet (1)[\kappa 
 - ir \geq 1]

\bigr) 
,

\~\varrho 1(r) =
\infty \sum 

i=1

\kappa \gamma i
\bigl( 
\varrho 1(\kappa 

 - ir)[\kappa  - ir < 1] + \varrho 1(1)[\kappa 
 - ir \geq 1]

\bigr) 
,

where we used the Iverson bracket notation, i.e., [P ] = 1 if P is true and [P ] = 0
otherwise. By iterating and using the fact that

j\sum 

i=1

\kappa \gamma (i - 1)\omega \bullet (\kappa 
j - ir) \leq \kappa  - \gamma \~\omega \bullet (\kappa 

jr), j \in \{ 1, 2, . . .\} ,

we obtain

(3.11)
\Phi 0(0, \kappa 

jr) \leq \kappa \gamma j\Phi 0(0, r) +N\| Du\| L\infty (Br)

\bigl( 
\~\omega A\alpha \beta (\kappa jr) + \~\varrho 1(\kappa 

jr)
\bigr) 

+N
\bigl( 
\| f\alpha \| L\infty (Br) + \| g\| L\infty (Br)

\bigr) 
\~\varrho 1(\kappa 

jr) +N
\bigl( 
\~\omega f\alpha (\kappa 

jr) + \~\omega g(\kappa 
jr)

\bigr) 
,

which also obviously holds for j = 0. Finally, for \rho \in (0, r], by taking the nonnegative
integer j such that \kappa j+1 < \rho /r \leq \kappa j and using (3.11) with \rho in place of \kappa jr, we get
the desired estimate.

Next, we prove assertion (ii). For a given function f , we define

\^f =

 

B\rho (y)

f(x) dx.

D
o
w

n
lo

ad
ed

 0
5
/3

0
/2

3
 t

o
 1

2
8
.1

4
8
.2

5
4
.5

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GRADIENT ESTIMATES 3621

Notice from the definition of U that for any \Theta \beta \in \BbbR 
d and \theta \in \BbbR , we have

| U  - \Theta 0| 
1

2 \leq 
\bigm| \bigm| (Ad\beta  - \^Ad\beta )D\beta u

\bigm| \bigm| 1

2 +
\bigm| \bigm| \^Ad\beta (D\beta u - \Theta \beta )

\bigm| \bigm| 1

2 + | p - \theta | 
1

2 + | fd  - \^fd| 
1

2 ,

where \Theta 0 = \^Ad\beta \Theta \beta + \theta ed  - \^fd, in the coordinate system associated with x0. By
averaging the above inequality on B\rho (y), taking the square, and using (2.5) (with the
fact that B\rho (y) is contained in a subdomain), we obtain

\biggl( 
 

B\rho (y)

| U  - \Theta 0| 
1

2 dx

\biggr) 2

\lesssim 

\biggl( 
 

B\rho (y)

| D\beta u - \Theta \beta | 
1

2 + | p - \theta | 
1

2 dx

\biggr) 2

+ \| Du\| L\infty (B\rho (y))\omega A\alpha \beta (\rho ) + \omega f\alpha (\rho ).

From this we get

(3.12) \Phi x0
(y, \rho ) \lesssim \Psi (y, \rho ) + \| Du\| L\infty (B\rho (y))\omega A\alpha \beta (\rho ) + \omega f\alpha (\rho ),

where

\Psi (y, \rho ) := inf
\theta \in \BbbR 

\Theta \in \BbbR 
d\times d

\biggl( 
 

B\rho (y)

| Du - \Theta | 
1

2 + | p - \theta | 
1

2 dx

\biggr) 2

.

Note that \Psi (y, \rho ) is independent of coordinate systems.
We now control the quantity \Psi (y, \rho ) in the coordinate system associated with y.

Using (2.5) and the relation

(3.13) Ddu
d = g  - 

d - 1\sum 

i=1

Diu
i,

we have

inf
\theta \in \BbbR 

\biggl( 
 

B\rho (y)

| Ddu
d  - \theta | 

1

2 dx

\biggr) 2

\lesssim 

d - 1\sum 

i=1

inf
\theta \in \BbbR 

\biggl( 
 

B\rho (y)

| Diu
i  - \theta | 

1

2 dx

\biggr) 2

+

 

B\rho (y)

| g  - \^g| dx

\lesssim \Phi y(y, \rho ) + \omega g(\rho ).(3.14)

Note that

(3.15)

d - 1\sum 

j=1

Add
ij Ddu

j = U i  - 
d\sum 

j=1

d - 1\sum 

\beta =1

Ad\beta 
ij D\beta u

j  - Add
idDdu

d + f i
d, i \in \{ 1, . . . , d - 1\} ,

where, by the ellipticity condition on A\alpha \beta , (Add
ij )

d - 1
i,j=1 is nondegenerate. Hence,

\scrX = \scrY \scrZ ,

where
\scrX = (Ddu

1, . . . , Ddu
d - 1)\top , \scrY =

\bigl( 
(Add

ij )
d - 1
i,j=1

\bigr)  - 1
,

\scrZ = (\scrZ 1, . . . ,\scrZ d - 1)\top , \scrZ i = U i  - 
d\sum 

j=1

d - 1\sum 

\beta =1

Ad\beta 
ij D\beta u

j  - Add
idDdu

d + f i
d.
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Since

| \scrX  - \^\scrY \vargamma | \leq | (\scrY  - \^\scrY )\scrZ | + | \^\scrY (\scrZ  - \vargamma )| for all \vargamma \in \BbbR 
d - 1,

we see that

inf
\vargamma \in \BbbR d - 1

\biggl( 
 

B\rho (y)

| \scrX  - \vargamma | 
1

2 dx

\biggr) 2

\lesssim 

\biggl( 
 

B\rho (y)

| \scrY  - \^\scrY | 
1

2 dx

\biggr) 2

\| \scrZ \| L\infty (B\rho (y)) + inf
\vargamma \in \BbbR d - 1

\biggl( 
 

B\rho (y)

| \scrZ  - \vargamma | 
1

2 dx

\biggr) 2

\lesssim \Phi y(y, \rho ) +
\bigl( 
\| Du\| L\infty (B\rho (y)) + \| f\alpha \| L\infty (B\rho (y))

\bigr) 
\omega A\alpha \beta (\rho ) + \omega f\alpha (\rho ) + \omega g(\rho ) =: K0.

From this, together with (3.14), we get

inf
\Theta \in \BbbR d\times d

\biggl( 
 

B\rho (y)

| Du - \Theta | 
1

2 dx

\biggr) 2

\lesssim K0.

By the relation

(3.16) p = Ud  - 
d\sum 

j=1

d\sum 

\beta =1

Ad\beta 
dj D\beta u

j + fd
d ,

we also have

inf
\theta \in \BbbR 

\biggl( 
 

B\rho (y)

| p - \theta | 
1

2 dx

\biggr) 2

\lesssim K0.

Combining these inequalities, we obtain that \Psi (y, \rho ) \lesssim K0, which together with (3.12)
gives \Phi x0

(y, \rho ) \lesssim K0. We finish the proof of assertion (ii) by applying (3.4) with y
and r/2 in place of x0 and r, to bound K0 by the right-hand side of (3.5).

We are ready to prove Theorem 2.4.

Proof of Theorem 2.4. We adapt the arguments in the proof of [17, Theorem 1.1].
Let \~\omega \bullet and \~\varrho 1 be the Dini functions derived from \omega \bullet and \varrho 1, respectively, as formulated
in (3.10) with a fixed \gamma \in (0, 1). We denote

\scrF (r) =

ˆ r

0

\~\omega f\alpha (t) + \~\omega g(t)

t
dt.

For given y \in \scrD and \rho > 0 with B\rho (y) \subset B1(x0), we let \Theta x0
(y, \rho ) \in \BbbR 

d\times d be such
that

\Phi x0
(y, \rho ) =

\biggl( 
 

B\rho (y)

| (Dx\prime u, U) - \Theta x0
(y, \rho )| 

1

2 dx

\biggr) 2

.

We divide the proof into four steps. In the first step, we will derive an a priori L\infty -
estimate for (Du, p) under the assumption that (Du, p) is locally bounded. We then
obtain an estimate of the modulus of continuity of (Dx\prime u, U) in the second step, from
which the piecewise continuity of (Du, p) follows. In the third step, we shall derive an
a priori estimate of the modulus of continuity of (Du, p) under the additional condition
(2.7). In the last step, we shall show that (Du, p) is indeed locally bounded by using
the technique of flattening the boundary and a fixed point argument combined with
partial Schauder estimates for Stokes systems.
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Step 1. Let r \in (0, R1]. Note that Lemma 3.1 (i) implies

lim
i\rightarrow \infty 

\Phi x0
(x0, \kappa 

ir) = 0

for all x0 \in \scrD \prime , where \kappa \in (0, 1/8] is the constant from the proof of Lemma 3.1. Thus,
using the assumption that Du and p are bounded, we have

lim
i\rightarrow \infty 

\Theta x0
(x0, \kappa 

ir) = (Dx\prime u(x0), U(x0))

for a.e. x0 \in \scrD \prime in the coordinate systems associated with x0 satisfying (A1) and
(A2). By the same iteration argument that led to [8, equation (4.10)], we have

(3.17) | (Dx\prime u(x0), U(x0)) - \Theta x0
(x0, r)| \lesssim 

\infty \sum 

i=0

\Phi x0
(x0, \kappa 

ir).

Since
| \Theta x0

(x0, r)| \lesssim r - d
\bigl( 
\| Dx\prime u\| L1(Br(x0)) + \| U\| L1(Br(x0))

\bigr) 
,

by Lemma 3.1 (i) and the fact that

(3.18)
\infty \sum 

i=0

\~\omega \bullet (\kappa 
ir) \lesssim 

ˆ r

0

\~\omega \bullet (t)

t
dt,

\infty \sum 

i=0

\~\varrho 1(\kappa 
ir) \lesssim 

ˆ r

0

\~\varrho 1(t)

t
dt,

we obtain

| Dx\prime u(x0)| + | U(x0)| \lesssim d,\nu ,M,\varrho 0,\gamma \| Du\| L\infty (Br(x0))

ˆ r

0

\~\omega A\alpha \beta (t) + \~\varrho 1(t)

t
dt

+ r - d
\bigl( 
\| Dx\prime u\| L1(Br(x0)) + \| U\| L1(Br(x0))

\bigr) 

+
\bigl( 
\| f\alpha \| L\infty (Br(x0)) + \| g\| L\infty (Br(x0))

\bigr) ˆ r

0

\~\varrho 1(t)

t
dt+ \scrF (r).

From this, together with the fact that

| Du| + | p| \lesssim d,\nu | Dx\prime u| + | U | + | fd| + | g| ,

we get

| Du(x0)| + | p(x0)| \leq N0\| Du\| L\infty (Br(x0))

ˆ r

0

\~\omega A\alpha \beta (t) + \~\varrho 1(t)

t
dt

+N0r
 - d

\bigl( 
\| Du\| L1(Br(x0)) + \| p\| L1(Br(x0))

\bigr) 

+N0

\bigl( 
\| f\alpha \| L\infty (Br(x0)) + \| g\| L\infty (Br(x0))

\bigr) \biggl( 
1 +

ˆ r

0

\~\varrho 1(t)

t
dt

\biggr) 
+N0\scrF (r),

where N0 = N0(d, \nu ,M, \varrho 0, \gamma ). Taking r0 \in (0, R1] sufficiently small so that

N0

ˆ r0

0

\~\omega A\alpha \beta (t) + \~\varrho 1(t)

t
dt \leq 

1

3d
,

we have

| Du(x0)| + | p(x0)| \leq 3 - d\| Du\| L\infty (Br(x0))

+N0r
 - d

\bigl( 
\| Du\| L1(Br(x0)) + \| p\| L1(Br(x0))

\bigr) 

+N0

\bigl( 
\| f\alpha \| L\infty (Br(x0)) + \| g\| L\infty (Br(x0))

\bigr) 
+N0\scrF (r)
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for all r \in (0, r0]. Note that the above inequality holds for a.e. x0 \in \scrD \prime and does not
depend on coordinate systems. Therefore, by the same iteration argument that led
to [8, equation (4.16)], we obtain the following L\infty -estimate for Du and p:

(3.19)

\| Du\| L\infty (Br/2(x0)) + \| p\| L\infty (Br/2(x0))

\leq Nr - d
\bigl( 
\| Du\| L1(Br(x0)) + \| p\| L1(Br(x0))

\bigr) 

+N
\bigl( 
\| f\alpha \| L\infty (Br(x0)) + \| g\| L\infty (Br(x0))

\bigr) 
+N\scrF (r),

where x0 \in \scrD \prime and r \in (0, R1] with Br(x0) \subset \scrD \prime . In the above, N depends only on d,
\nu , M , \varrho 0, \omega A\alpha \beta , and \gamma .

Step 2. Let x0 \in \scrD \prime and r \in (0, R1] with Br(x0) \subset \scrD \prime , and fix a coordinate
system associated with x0 satisfying (A1) and (A2). We claim that

(3.20)

| (Dx\prime u(x0), U(x0)) - (Dx\prime u(y0), U(y0))| 

\lesssim r - d
\bigl( 
\| Du\| L1(Br(x0)) + \| p\| L1(Br(x0))

\bigr) 
\scrE (| x0  - y0| )

+
\bigl( 
\| f\alpha \| L\infty (Br(x0)) + \| g\| L\infty (Br(x0))

\bigr) 
\scrE (| x0  - y0| )

+ \scrF (r)\scrE (| x0  - y0| ) + \scrF (| x0  - y0| )

for any y0 \in Br/4(x0), where

\scrE (| x0  - y0| ) :=

\biggl( 
| x0  - y0| 

r

\biggr) \gamma 

+

ˆ | x0 - y0| 

0

\~\omega A\alpha \beta (t) + \~\varrho 1(t)

t
dt.

Let y0 \in Br/4(x0) and \rho := | x0  - y0| . We consider the following two cases:

B\rho (y0) \subset \widehat \scrD i0 , B\rho (y0) \not \subset \widehat \scrD i0 .

Case 1. B\rho (y0) \subset \widehat \scrD i0 . By the triangle inequality, we have

| (Dx\prime u(x0), U(x0)) - (Dx\prime u(y0), U(y0))| 
1

2

\leq | (Dx\prime u(x0), U(x0)) - \Theta x0
(x0, \rho )| 

1

2 + | (Dx\prime u(x), U(x)) - \Theta x0
(x0, \rho )| 

1

2

+ | (Dx\prime u(y0), U(y0)) - \Theta x0
(y0, \rho )| 

1

2 + | (Dx\prime u(x), U(x)) - \Theta x0
(y0, \rho )| 

1

2

for all x \in B\rho (x0) \cap B\rho (y0). Taking the average over x \in B\rho (x0) \cap B\rho (y0) and then
taking the square, we obtain that

| (Dx\prime u(x0), U(x0)) - (Dx\prime u(y0), U(y0))| \lesssim I1 + I2,

where
I1 = | (Dx\prime u(x0), U(x0)) - \Theta x0

(x0, \rho )| +\Phi x0
(x0, \rho ),

I2 = | (Dx\prime u(y0), U(y0)) - \Theta x0
(y0, \rho )| +\Phi x0

(y0, \rho ).

Note that by (3.17), we have

I1 \lesssim 

\infty \sum 

i=0

\Phi x0
(x0, \kappa 

i\rho ).

It follows from Lemma 3.1 (ii) that

lim
i\rightarrow \infty 

\Phi x0
(y0, \kappa 

ir) = 0.

D
o
w

n
lo

ad
ed

 0
5
/3

0
/2

3
 t

o
 1

2
8
.1

4
8
.2

5
4
.5

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GRADIENT ESTIMATES 3625

Then by replicating an argument similar to that used in (3.17), we obtain

I2 \lesssim 

\infty \sum 

i=0

\Phi x0
(y0, \kappa 

i\rho ).

Therefore, by Lemma 3.1, (3.18), and (3.19), we get (3.20).

Case 2. B\rho (y0) \not \subset \widehat \scrD i0 . In this case, for simplicity of notation, we assume that

y0 = 0. Suppose that 0 \in \widehat \scrD i1 \cup \partial \widehat \scrD i1 for some i1 \in \{ 1, . . . , \ell + 1\} and denote by \~y0
the closest point on \partial \widehat \scrD i1 to the origin. We also denote \~x0 = (x\prime 

0, \chi i0(x
\prime 
0)), which is

the closest point on \partial \widehat \scrD i0 to x0. Since | \~y0| < \rho and | \~x0  - x0| < 2\rho , we have

(3.21) | \~x0  - \~y0| \leq | \~x0  - x0| + | x0| + | \~y0| < 4\rho < r \leq R1.

Let

y = \Lambda x, x = \Lambda  - 1y = \Gamma y,

where \Lambda is a d\times d rotation matrix from the coordinate systems associated with x0 to a
coordinate system associated with the origin. Then by (3.21) and the same argument
as in [17, pp. 2465--2466], we see that

| I - \Gamma | \lesssim \varrho 1(4\rho ),

where I is the d \times d identity matrix. From the definition of \~\varrho 1 and (3.18), it follows
that

(3.22) | I - \Gamma | \lesssim \~\varrho 1(\rho ) \lesssim 

ˆ \rho 

0

\~\varrho 1(t)

t
dt.

Now we set

v(y) = \Lambda u(x), \pi (y) = p(x),

which satisfies \Biggl\{ 
D\alpha (\scrA 

\alpha \beta D\beta v) +\nabla \pi = D\alpha F\alpha ,

div v = G,

where

\scrA \alpha \beta (y) = \Lambda (\Lambda \alpha k\Lambda \beta lAkl(x))\Gamma ,

(F1, . . . , Fd)(y) = \Lambda (f1, . . . , fd)(x)\Gamma , G(y) = g(x).

We also denote

V = \scrA d\beta D\beta v + \pi ed  - Fd.

By the triangle inequality, we have

| (Dx\prime u(x0), U(x0)) - (Dx\prime u(0), U(0))| 
1

2

\leq | (Dx\prime u(x0), U(x0)) - \Theta x0
(x0, \rho )| 

1

2 + | (Dx\prime u(x), U(x)) - \Theta x0
(x0, \rho )| 

1

2

+ | \Gamma (Dy\prime v(0), V (0)) - \Gamma \Theta 0(0, \rho )| 
1

2 + | \Gamma (Dy\prime v(\Lambda x), V (\Lambda x)) - \Gamma \Theta 0(0, \rho )| 
1

2

+ | (Dx\prime u(0), U(0)) - \Gamma (Dy\prime v(0), V (0))| 
1

2

+ | (Dx\prime u(x), U(x)) - \Gamma (Dy\prime v(\Lambda x), V (\Lambda x))| 
1

2
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for any x \in B\rho (x0) \cap B\rho (0), where \Gamma (Dy\prime v, V ) := (\Gamma Dy\prime v,\Gamma V ). Taking the average
over x \in B\rho (x0) \cap B\rho (0) and then taking the square, we obtain that

(3.23) | (Dx\prime u(x0), U(x0)) - (Dx\prime u(0), U(0))| \lesssim J1 + J2 + J3,

where
J1 = | (Dx\prime u(x0), U(x0)) - \Theta x0

(x0, \rho )| +\Phi x0
(x0, \rho ),

J2 = | (Dy\prime v(0), V (0)) - \Theta 0(0, \rho )| +\Phi 0(0, \rho ),

J3 = ess sup
x\in B\rho (x0)\cap B\rho (0)

| (Dx\prime u(x), U(x)) - \Gamma (Dy\prime v(\Lambda x), V (\Lambda x))| .

Note that J1 and J2 can be estimated by Lemma 3.1 (i), (3.18), and (3.19) in the
same way as in Case 1. For the estimate of J3, we observe that

Dx\prime u(x) - \Gamma Dy\prime v(\Lambda x) = Dxu(x)I0  - \Gamma Dyv(\Lambda x)I0 = Dxu(x)(I - \Gamma )I0,

where I0 = (I\alpha \beta 0 ) is a d\times (d - 1) matrix with

I\alpha \beta 0 = \delta \alpha \beta for \alpha , \beta = 1, . . . , d - 1; Id\beta 0 = 0 for \beta = 1, . . . , d - 1,

and
U(x) - \Gamma V (\Lambda x) = (\delta d\alpha  - \Lambda d\alpha )A\alpha \beta (x)D\beta u(x)

+ p(x)(I  - \Gamma )ed + (f1, . . . , fd)(x)(I - \Gamma )\cdot d,

where (I - \Gamma )\cdot d is the dth column of I - \Gamma . Hence by (3.18) and (3.22), we have

J3 \lesssim 
\bigl( 
\| Du\| L\infty (Br/4(x0)) + \| p\| L\infty (Br/4(x0)) + \| f\alpha \| L\infty (Br(x0))

\bigr) ˆ \rho 

0

\~\varrho 1(t)

t
dt

\lesssim r - d
\bigl( 
\| Du\| L1(Br(x0)) + \| p\| L1(Br(x0))

\bigr) ˆ \rho 

0

\~\varrho 1(t)

t
dt

+
\bigl( 
\| f\alpha \| L\infty (Br(x0)) + \| g\| L\infty (Br(x0))

\bigr) ˆ \rho 

0

\~\varrho 1(t)

t
dt+ \scrF (r)

ˆ \rho 

0

\~\varrho 1(t)

t
dt.

Using this together with the estimates J1 and J2, we get (3.20) from (3.23).
Note that the piecewise continuity of (Du, p) follows from the estimate (3.20)

combined with the fact that the coefficients and data are piecewise continuous. Indeed,
by using the relations (3.13), (3.15), and (3.16), and using the triangle inequality, we
have that

| Ddu
d(x0) - Ddu

d(y0)| \leq | Dx\prime u(x0) - Dx\prime u(y0)| + | g(x0) - g(y0)| ,

| \scrX (x0) - \scrX (y0)| \lesssim d,\nu | (Dx\prime u(x0), U(x0)) - (Dx\prime u(y0), U(y0))| 

+
\bigl( 
\| Du\| L\infty (Br/4(x0)) + \| p\| L\infty (Br/4(x0))

\bigr) 
| A\alpha \beta (x0) - A\alpha \beta (y0)| 

+ \| f\alpha \| L\infty (Br/4(x0))| A
\alpha \beta (x0) - A\alpha \beta (y0)| 

+ | Ddu
d(x0) - Ddu

d(y0)| + | f\alpha (x0) - f\alpha (y0)| ,

where \scrX = (Ddu
1, . . . , Ddu

d - 1)\top , and

| p(x0) - p(y0)| \lesssim d,\nu | (Dx\prime u(x0), U(x0)) - (Dx\prime u(y0), U(y0))| 

+ \| Du\| L\infty (Br/4(x0))| A
\alpha \beta (x0) - A\alpha \beta (y0)| + | f\alpha (x0) - f\alpha (y0)| .
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Therefore, by (3.19) and (3.20), we obtain that

| (Du(x0), p(x0)) - (Du(y0), p(y0))| 

\leq Nr - d
\bigl( 
\| Du\| L1(Br(x0)) + \| p\| L1(Br(x0))

\bigr) \bigl( 
\scrE (| x0  - y0| ) + | A\alpha \beta (x0) - A\alpha \beta (y0)| 

\bigr) 

+N
\bigl( 
\| f\alpha \| L\infty (Br(x0)) + \| g\| L\infty (Br(x0))

\bigr) \bigl( 
\scrE (| x0  - y0| ) + | A\alpha \beta (x0) - A\alpha \beta (y0)| 

\bigr) 

+N\scrF (r)
\bigl( 
\scrE (| x0  - y0| ) + | A\alpha \beta (x0) - A\alpha \beta (y0)| 

\bigr) 
+N\scrF (| x0  - y0| )

+N | f\alpha (x0) - f\alpha (y0)| +N | g(x0) - g(y0)| 
(3.24)

for any x0, y0 \in \scrD \prime and r \in (0, R1] satisfying y0 \in Br/4(x0) \subset Br(x0) \subset \scrD \prime , which
gives the piecewise continuity of (Du, p).

Step 3. In this step, we derive the corresponding estimate of (3.24) under the
additional stronger (2.7). We again let x0 \in \scrD \prime and r \in (0, R1] with Br(x0) \subset \scrD \prime and
fix a coordinate system associated with x0 satisfying (A1) and (A2). To present the
precise dependence of the constant in the estimates, we assume that

(3.25) \varrho 0(r) \leq K0r
\gamma 0

1 - \gamma 0 , \omega A\alpha \beta (r) \leq K0r
\gamma 0 , \omega f\alpha (r) + \omega g(r) \leq K1r

\gamma 0

for some constants K0,K1 > 0. Thus if f\alpha and g are in C\gamma 0(\scrD i) for each i \in 
\{ 1, . . . ,M\} , then K1 can be regarded as

max
1\leq i\leq M

\bigl\{ 
[f\alpha ]C\gamma 0 (\scrD i)

+ [g]C\gamma 0 (\scrD i)

\bigr\} 
.

From [27, Lemma 5.1] it follows that for any r \in (0, R1]

r - d| ( \widehat \scrD i \setminus \Omega i) \cap Br(x0)| \lesssim d,M,K0,\gamma 0
r\gamma 0 =: \varrho 1(r).

Hence we have
\~\omega A\alpha \beta (r) + \~\varrho 1(r) \lesssim d,M,K0,\gamma 0

r\gamma 0

and
\~\omega f\alpha (r) + \~\omega g(r) \lesssim d,M,K0,\gamma 0

K1r
\gamma 0 .

Therefore by (3.24) with \gamma = 1+\gamma 0

2 , we conclude that

| (Du(x0), p(x0)) - (Du(y0), p(y0))| 

\leq Nr - d
\bigl( 
\| Du\| L1(Br(x0)) + \| p\| L1(Br(x0))

\bigr) \biggl( | x0  - y0| 
\gamma 0

r\gamma 0

+ | A\alpha \beta (x0) - A\alpha \beta (y0)| 

\biggr) 

+N
\bigl( 
\| f\alpha \| L\infty (Br(x0)) + \| g\| L\infty (Br(x0))

\bigr) \biggl( | x0  - y0| 
\gamma 0

r\gamma 0

+ | A\alpha \beta (x0) - A\alpha \beta (y0)| 

\biggr) 

+NK1

\bigl( 
| x0  - y0| 

\gamma 0 + | A\alpha \beta (x0) - A\alpha \beta (y0)| 
\bigr) 

+N | f\alpha (x0) - f\alpha (y0)| +N | g(x0) - g(y0)| ,
(3.26)

whereN = N(d, \nu ,M,K0, \gamma 0). We can see from (3.26) that if x0 and y0 are in the same
subdomain, then the estimate of the modulus of continuity of (Du, p) is established.

Step 4. In this last step, we prove the local boundedness of (Du, p). We first
observe that

(3.27) (Du, p) \in Lq
loc(\scrD )d \times Lq

loc(\scrD ) for any q < \infty .
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Indeed, since (u, p) satisfies (2.6), where the coefficients A\alpha \beta are of variably partially
small bounded mean oscillation (variably partially BMO) satisfying [13, Assumption
2.2 (\rho ) (i)] for any \rho > 0 and the data f\alpha , g are bounded, by applying a local version
of [13, Theorem 2.4] combined with a bootstrap argument, we get (3.27).

Due to the regularity result in [8], where the authors proved W 1,\infty -estimates for
solutions to Stokes systems with (partially) DMO coefficients in a ball, it suffices to
show that for x0 = (x\prime 

0, x
d
0) \in \partial \scrD i, i \in \{ 1, . . . ,M  - 1\} , there is a neighborhood of

x0 in which (Du, p) is bounded. Recall that x0 belongs to the boundaries of at most
two of the subdomains. Thus we can find a small r0 > 0 and a C1,Dini function, say
\chi : \BbbR d - 1 \rightarrow \BbbR , such that Br0(x0) is divided into two disjoint subdomains separated
by \chi and | \nabla x\prime \chi (x\prime 

0)| = 0 in a coordinate system. Here, we choose r0 small enough so
that

(3.28) | \nabla x\prime \chi (x\prime )| \leq \mu 0 if | x\prime  - x\prime 
0| \leq r0,

where \mu 0 > 0 is a constant to be chosen below. Without loss of generality, we assume
that x0 = (0\prime , 0) and \chi (0\prime ) = 0. For sufficiently small \varepsilon > 0, we let \chi \varepsilon be a standard
mollification of \chi with respect to x\prime . We also let \phi \in C\infty 

0 (B1) be a smooth nonnegative
function with unit integral, and define piecewise mollifications of A\alpha \beta by

A\alpha \beta 
\varepsilon (x) =

ˆ

B\varepsilon (x\varepsilon )

\phi \varepsilon (x\varepsilon  - y)A\alpha \beta (y) dy =

ˆ

B\varepsilon 

\phi \varepsilon (y)A
\alpha \beta (x\varepsilon  - y) dy,

where \phi \varepsilon (x) = \varepsilon  - d\phi (x/\varepsilon ) and

x\varepsilon =

\Biggl\{ 
x+ \lambda \varepsilon ed if xd > \chi \varepsilon (x

\prime ),

x - \lambda \varepsilon ed if xd < \chi \varepsilon (x
\prime ).

Here \lambda is large enough, say \lambda = \mu 0 + 1. Similarly, we define f\alpha ,\varepsilon and g\varepsilon . Then the
piecewise mollifications are piecewise DMO in Br0 with

\omega \bullet \varepsilon 
(r) \leq \omega \bullet (r).

Let (\~u\varepsilon , \~p\varepsilon ) be the weak solution in W 1,2
0 (Br0)

d \times \~L2(Br0) to the problem

(3.29)

\Biggl\{ 
D\alpha (A

\alpha \beta 
\varepsilon D\beta \~u\varepsilon ) +\nabla \~p\varepsilon = D\alpha (f\alpha  - f\alpha ,\varepsilon ) +D\alpha ((A

\alpha \beta 
\varepsilon  - A\alpha \beta )D\beta u),

div \~u\varepsilon = g  - g\varepsilon  - (g  - g\varepsilon )Br0
.

Since f\alpha ,\varepsilon \rightarrow f\alpha in L2, g\varepsilon \rightarrow g in L2, and A\alpha \beta 
\varepsilon \rightarrow A\alpha \beta a.e., by the dominated

convergence theorem, the right-hand sides of (3.29) go to zero in L2 as \varepsilon \rightarrow 0+. By
the W 1,2-estimate, we see that

\| D\~u\varepsilon \| L2(Br0 )
+ \| \~p\varepsilon \| L2(Br0 )

\rightarrow 0 as \varepsilon \rightarrow 0+,

and thus there is a subsequence, still denoted by (\~u\varepsilon , \~p\varepsilon ), such that | D\~u\varepsilon | + | \~p\varepsilon | \rightarrow 0
a.e. in Br0 .

Now we set (u\varepsilon , p\varepsilon ) = (u - \~u\varepsilon , p - \~p\varepsilon ) \in W 1,2(Br0)
d \times L2(Br0), which satisfies

(3.30)

\Biggl\{ 
D\alpha (A

\alpha \beta 
\varepsilon D\beta u\varepsilon ) +\nabla p\varepsilon = D\alpha f\alpha ,\varepsilon ,

div u\varepsilon = g\varepsilon + (g  - g\varepsilon )Br0
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in Br0 . By the same reasoning as in (3.27), it holds that

(Du\varepsilon , p\varepsilon ) \in Lq
loc(Br0)

d\times d \times Lq
loc(Br0) for any q < \infty .

We shall prove that (Du\varepsilon , p\varepsilon ) is bounded near the origin so that (3.19) can be applied
to the above system, which gives the uniform L\infty -estimate of (Du\varepsilon , p\varepsilon ). To this end,
we fix \varepsilon > 0 and let

y = \Lambda (x) = (x\prime , xd  - \chi \varepsilon (x
\prime )), x = \Lambda  - 1(y) = \Gamma (y) = (y\prime , yd + \chi \varepsilon (y

\prime )).

Then (v(y), \pi (y)) = (u\varepsilon (x), p\varepsilon (x)) satisfies

(3.31)

\Biggl\{ 
D\alpha (\scrA 

\alpha \beta D\beta v) +\nabla \pi = D\alpha F\alpha +Dd(\pi b),

div v = G+Ddv \cdot b

in Br1 with a sufficiently small r1 > 0 so that Br1 \subset \Lambda (Br0), where

\scrA \alpha \beta (y) = Dl\Lambda 
\beta Dk\Lambda 

\alpha Akl
\varepsilon (x), F\alpha (y) = Dk\Lambda 

\alpha fk,\varepsilon (x),

G(y) = g\varepsilon (x) + (g  - g\varepsilon )Br0
, b(y) =

\bigl( 
D1\chi \varepsilon (y

\prime ), . . . , Dd - 1\chi \varepsilon (y
\prime ), 0

\bigr) 
.

Note that the coefficients and data are of partially DMO in Br1 except \pi b and Ddv \cdot b,
which are only known to be in Lq(Br1) for q < \infty . Thus we are not able to apply the
result in [8, Theorem 2.2] to (3.31) directly. To overcome this difficulty, we use the
following fixed point argument.

Let \eta be an infinitely differentiable function in \BbbR 
d such that

0 \leq \eta \leq 1, \eta \equiv 1 in Br1/2, supp \eta \subset Br1 .

Then we see that (\eta v, \eta \pi ) satisfies

(3.32)

\Biggl\{ 
D\alpha (\scrA 

\alpha \beta D\beta (\eta v)) +\nabla (\eta \pi ) = D\alpha 
\~F\alpha + \~F +Dd(\eta \pi b),

div(\eta v) = \~G+Dd(\eta v) \cdot b

in Br1 , where

\~F\alpha = \eta F\alpha +\scrA \alpha \beta D\beta \eta v, \~F = \scrA \alpha \beta D\alpha \eta D\beta v  - D\alpha \eta F\alpha  - Dd\eta \pi b+\nabla \eta \pi ,

\~G = \eta G+\nabla \eta \cdot v  - Dd\eta v \cdot b.

For each positive integer k, let (v(k), \pi (k)) be the weak solution inW 1,2
0 (Br1)

d\times \~L2(Br1)
to the problem

(3.33)

\Biggl\{ 
D\alpha (\scrA 

\alpha \beta D\beta v
(k)) +\nabla \pi (k) = D\alpha 

\~F\alpha + \~F +Dd(\pi 
(k - 1)b),

div v(k) = \~G+Ddv
(k - 1) \cdot b - ( \~G+Ddv

(k - 1) \cdot b)Br1

in Br1 , where (v(0), \pi (0)) = (0, 0). By applying the W 1,2-estimate to

(3.34)
\bigl( 
v(k+1)  - v(k), \pi (k+1)  - \pi (k)

\bigr) 

and using (3.28), we have

(3.35)

\| Dv(k+1)  - Dv(k)\| L2(Br1 )
+ \| \pi (k+1)  - \pi (k)\| L2(Br1 )

\leq N0

\bigm\| \bigm\| \bigl( Dv(k)  - Dv(k - 1)
\bigr) 
b
\bigm\| \bigm\| 
L2(Br1

)
+N0

\bigm\| \bigm\| \bigl( \pi (k)  - \pi (k - 1)
\bigr) 
b
\bigm\| \bigm\| 
L2(Br1

)

\leq \mu 0N0

\bigm\| \bigm\| Dv(k)  - Dv(k - 1)
\bigm\| \bigm\| 
L2(Br1

)
+ \mu 0N0

\bigm\| \bigm\| \pi (k)  - \pi (k - 1)
\bigm\| \bigm\| 
L2(Br1

)
,
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where the constant N0 is independent of \varepsilon and \{ (v(k), \pi (k))\} . We take r0 sufficiently
small so that (3.28) holds with \mu 0 = 1/(2N0). Then by the fixed point theorem, there
exists

(v\ast , \pi \ast ) = (v\ast \varepsilon , \pi 
\ast 
\varepsilon ) \in W 1,2

0 (Br1)
d \times \~L2(Br1)

such that as k \rightarrow \infty ,

v(k) \rightarrow v\ast in W 1,2
0 (Br1), \pi (k) \rightarrow \pi \ast in L2(Br1)

and such that, in Br1 ,

(3.36)

\Biggl\{ 
D\alpha (\scrA 

\alpha \beta D\beta v
\ast ) +\nabla \pi \ast = D\alpha 

\~F\alpha + \~F +Dd(\pi 
\ast b),

div v\ast = \~G+Ddv
\ast \cdot b - ( \~G+Ddv

\ast \cdot b)Br1
.

From (3.32) and (3.36), it follows that in Br1 ,

\Biggl\{ 
D\alpha (\scrA 

\alpha \beta D\beta (\eta v  - v\ast )) +\nabla (\eta \pi  - (\eta \pi )Br1
 - \pi \ast ) = Dd((\eta \pi  - \pi \ast )b),

div(\eta v  - v\ast ) = Dd(\eta v  - v\ast ) \cdot b+ ( \~G+Ddv
\ast \cdot b)Br1

.

Note that Ddb = 0 and ( \~G + Dd(\eta v) \cdot b)Br1
= 0. Hence by the W 1,2-estimate with

the smallness of b, we obtain that

\eta v = v\ast , \eta \pi  - (\eta \pi )Br2
= \pi \ast .

Next, let \rho 0 \in (0, r0] be small enough so that

(3.37) | \nabla x\prime \chi (x\prime )| \leq \mu 1 if | x\prime | \leq \rho 0,

where \mu 1 is a constant to be chosen below. We also let \rho 1 \in (0, r1] such that B\rho 1
\subset 

\Lambda (B\rho 0
). Observe that \scrA \alpha \beta , \~F\alpha , and \~G are partially H\"older continuous with respect to

y\prime , \~Fd \in L\infty (B\rho 1
), and \~F \in Lq(B\rho 1

) for all q < \infty . Therefore, the regularity results
in [8, Theorem 2.2 (b)] are applicable to the system (3.33). Precisely, by applying [8,
Theorem 2.2 (b) and Remark 2.4], combined with covering and scaling arguments, we
obtain that

(Dv(1), \pi (1)) \in L\infty (B\rho )
d\times d \times L\infty (B\rho ) for all \rho < \rho 1.

Moreover,

\scrA d\beta D\beta v
(1) + \pi (1)ed \in C\delta (B\rho )

d, Dy\prime v(1) \in C\delta (B\rho )
d\times (d - 1),

from which we get

(Dv(1), \pi (1)) \in C\delta 
y\prime (B\rho )

d\times d \times C\delta 
y\prime (B\rho ) for all \delta \in (0, 1).

Repeating this procedure, we see that

(Dv(k), \pi (k)) \in 
\bigl( 
L\infty (B\rho )

d\times d \times L\infty (B\rho )
\bigr) 
\cap 
\bigl( 
C\delta 

y\prime (B\rho )
d\times d \times C\delta 

y\prime (B\rho )
\bigr) 

for any positive integer k. Hence, from the estimates in the proof of [8, Theorem
2.2 (b)] applied to (3.34) with covering and scaling arguments, we deduce that for any
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0 < s < \rho < \rho 1,

\| Dv(k+1)  - Dv(k)\| L\infty (Bs) + \| \pi (k+1)  - \pi (k)\| L\infty (Bs)

+ (\rho  - s)\delta 
\Bigl( \bigl[ 

Dv(k+1)  - Dv(k)
\bigr] 
C\delta 

y\prime 
(Bs)

+
\bigl[ 
\pi (k+1)  - \pi (k)

\bigr] 
C\delta 

y\prime 
(Bs)

\Bigr) 

\leq N1(\rho  - s) - d
\Bigl( 
\| Dv(k+1)  - Dv(k)\| L1(B\rho ) + \| \pi (k+1)  - \pi (k)\| L1(B\rho )

\Bigr) 

+N1

\Bigl( \bigm\| \bigm\| \bigl( Dv(k)  - Dv(k - 1)
\bigr) 
b
\bigm\| \bigm\| 
L\infty (B\rho )

+
\bigm\| \bigm\| \bigl( \pi (k)  - \pi (k - 1)

\bigr) 
b
\bigm\| \bigm\| 
L\infty (B\rho )

\Bigr) 

+N1(\rho  - s)\delta 
\Bigl( \bigl[ \bigl( 

Dv(k)  - Dv(k - 1)
\bigr) 
b
\bigr] 
C\delta 

y\prime 
(B\rho )

+
\bigl[ \bigl( 
\pi (k)  - \pi (k - 1)

\bigr) 
b
\bigr] 
C\delta 

y\prime 
(B\rho )

\Bigr) 

\leq \mu 0N0N1(\rho  - s) - d/2
\Bigl( 
\| Dv(k)  - Dv(k - 1)\| L2(Br1 )

+ \| \pi (k)  - \pi (k - 1)\| L2(Br1 )

\Bigr) 

+ \mu 1N1

\Bigl( 
\| Dv(k)  - Dv(k - 1)\| L\infty (B\rho ) + \| \pi (k)  - \pi (k - 1)\| L\infty (B\rho )

\Bigr) 

+ [b]C\delta 
y\prime 

(B\rho 1 )
N1(\rho  - s)\delta 

\Bigl( 
\| Dv(k)  - Dv(k - 1)\| L\infty (B\rho ) + \| \pi (k)  - \pi (k - 1)\| L\infty (B\rho )

\Bigr) 

+ \mu 1N1(\rho  - s)\delta 
\Bigl( \bigl[ 

Dv(k)  - Dv(k - 1)
\bigr] 
C\delta 

y\prime 
(B\rho )

+
\bigl[ 
\pi (k)  - \pi (k - 1)

\bigr] 
C\delta 

y\prime 
(B\rho )

\Bigr) 
,

where we used (3.28), (3.35), and (3.37) in the second inequality. Note that the
constant N1 is independent of \{ (v(k), \pi (k))\} , but it may depend on \varepsilon . By choosing \rho 0
sufficiently small, which (along with \rho 1) may depend on \varepsilon , and following a standard
iteration argument, we get uniform L\infty bounds of Dv(k) and \pi (k) in B\rho 1/2. Thus the
functions

Dv(y) = Dv\ast (y), \pi (y) = \pi \ast (y),

and hence Du\varepsilon (x) and p\varepsilon (x) are bounded in a neighborhood of the origin with a
radius depending also on \varepsilon . It is easy to check that the same argument as above still
works at every point near the origin, for instance, in Br0/2, where r0 is the constant
from the beginning of this step, which is independent of \varepsilon . Therefore,

(Du\varepsilon , p\varepsilon ) \in L\infty (Br0/2)
d\times d \times L\infty (Br0/2).

Now we can apply the a priori estimate in Step 1 to (3.30) to get uniform L\infty -bounds
of (Du\varepsilon , p\varepsilon ), and then take the limit \varepsilon \rightarrow 0+ to obtain the boundedness of the limit
function (Du, p) in Br0/2. The theorem is proved.

We conclude the proof of Theorem 2.4 with the following remark.

Remark 3.2. As mentioned in Remark 2.7, the regularity results in Theorem 2.4
can be extended to weak solutions of

\Biggl\{ 
\scrL u+\nabla p = D\alpha f\alpha + f in \scrD ,

div u = g in \scrD ,

where f \in Ls(\scrD )d with s > d. In this case, the upper bounds of the L\infty -norm of
(Du, p) and the modulus of continuity of (Dx\prime u, U) can be derived as follows.

Let x0 \in \scrD \prime and r \in (0, R1] such that Br(x0) \subset \scrD \prime . Due to the solvability
of the divergence equation (see, for instance, [9, Lemma 3.1]), there exist h\alpha \in 
W 1,s(Br(x0))

d, \alpha \in \{ 1, 2, . . . , d\} , such that

d\sum 

\alpha =1

D\alpha h\alpha = f in Br(x0)
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and
(h\alpha )Br(x0) = 0, \| Dh\alpha \| Ls(Br(x0)) \lesssim d,s \| f\| Ls(Br(x0)).

Then (u, p) satisfies

\Biggl\{ 
\scrL u+\nabla p = D\alpha (f\alpha + h\alpha ) in Br(x0),

div u = g in Br(x0),

where, by both Morrey and Poincar\'e inequalities,

r1 - d/s[h\alpha ]C1 - d/s(Br(x0)) + \| h\alpha \| L\infty (Br(x0)) \lesssim r1 - d/s\| f\| Ls(Br(x0)).

Thus by the same argument as in the proof of Theorem 2.4 with a fixed \gamma \in 
\bigl( 
1 - d

s , 1
\bigr) 
,

we have

\| Du\| L\infty (Br/2(x0)) + \| p\| L\infty (Br/2(x0))

\leq Nr - d
\bigl( 
\| Du\| L1(Br(x0)) + \| p\| L1(Br(x0))

\bigr) 

+N
\bigl( 
\| f\alpha \| L\infty (Br(x0)) + \| g\| L\infty (Br(x0))

\bigr) 
+N\scrF (r) +Nr1 - d/s\| f\| Ls(Br(x0)),

where N = N(d, \nu ,M, \varrho 0, \omega A\alpha \beta , s). Moreover, for y0 \in Br/4(x0), we obtain that

| (Dx\prime u(x0), U(x0)) - (Dx\prime u(y0), U(y0))| 

\leq Nr - d
\bigl( 
\| Du\| L1(Br(x0)) + \| p\| L1(Br(x0))

\bigr) 
\scrE (| x0  - y0| )

+N
\bigl( 
\| f\alpha \| L\infty (Br(x0)) + \| g\| L\infty (Br(x0))

\bigr) 
\scrE (| x0  - y0| )

+N(\scrF (r) + r1 - d/s\| f\| Ls(Br(x0)))\scrE (| x0  - y0| ) +N\scrF (| x0  - y0| )

+N\| f\| Ls(Br(x0))| x0  - y0| 
1 - d/s.

3.2. Proof of Theorem 2.10. Note that (u, p) satisfies

\Biggl\{ 
\scrL u+\nabla p = D\alpha f\alpha + f in \scrD ,

div u = g in \scrD ,

where f =  - u\alpha D\alpha u. We consider two cases.
Case 1. q > d. In this case, by the Morrey--Sobolev embedding theorem, we see

that f \in Lq
loc(\scrD )d. Thus the theorem follows from Remark 2.7 applied to a slightly

diminished domain.
Case 2. q \leq d. From the first case, it suffices to improve the regularity of Du

from Lq to Ls
loc for some s > d. Let x0 \in \scrD . We may assume that x0 = 0 and B1 \subset \scrD 

after translating and scaling the coordinates.
We first derive an a priori estimate for (Du, p) under the assumption that (u, p) \in 

W 1,q\ast (B1)
d\times Lq\ast (B1), where q

\ast is the Sobolev conjugate of q, i.e., q\ast = dq/(d - q) when
q < d and q\ast \in (q,\infty ) is arbitrary when q = d. Let \eta be an infinitely differentiable
function in \BbbR 

d such that

0 \leq \eta \leq 1, \eta \equiv 1 in B1/2, supp \eta \subset B1, | \nabla \eta | \lesssim d 1.

We define an elliptic operator \~\scrL by

\~\scrL u = D\alpha ( \~A
\alpha \beta D\beta u),
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where \~A\alpha \beta = \eta A\alpha \beta + \nu (1  - \eta )\delta \alpha \beta I. Here, \nu is the constant from (2.4), \delta \alpha \beta is the

Kronecker delta symbol, and I is the d \times d identity matrix. Note that \~A\alpha \beta and
\Omega = B1 satisfy [13, Assumption 2.2 (\rho )] for any \rho > 0. Therefore, the W 1,q\ast -estimate
in [13, Theorem 2.4] is available for \~\scrL on \Omega = B1.

Now, for r,R with 0 < r < R \leq 1/2, let \zeta = \zeta r,R be an infinitely differentiable
function in \BbbR 

d such that

0 \leq \zeta \leq 1, \zeta \equiv 1 in Br, supp \zeta \subset BR, | \nabla \zeta | \lesssim d (R - r) - 1.

Then (v, \pi ) = (\zeta u, \zeta p) \in W 1,q
0 (B1)

d \times Lq(B1) satisfies

\Biggl\{ 
\~\scrL v +\nabla \pi = F +D\alpha F\alpha in B1,

div v = G in B1,
(3.38)

where
F = D\alpha \zeta A

\alpha \beta D\beta u+\nabla \zeta p - D\alpha \zeta f\alpha  - u\alpha D\alpha v + u\alpha uD\alpha \zeta ,

F\alpha = A\alpha \beta uD\beta \zeta + \zeta f\alpha , G = \nabla \zeta \cdot u+ \zeta g.

Observe that F\alpha \in Lq\ast (B1)
d, G \in Lq\ast (B1), and

\| F\| Lq(B1) \lesssim d,\nu (R - r) - 1
\bigl( 
\| Du\| Lq(BR) + \| p\| Lq(BR) + \| u\| 2L2q(BR)

\bigr) 

+R(R - r) - 1\| f\alpha \| Lq\ast (BR) + \| u\| Ld(BR)\| Dv\| Lq\ast (BR).

Then by the W 1,q\ast -solvability in [13, Theorem 2.4], (3.38) also have a unique solution

(\~v, \~\pi ) \in W 1,q\ast 

0 (B1)
d\times \~Lq\ast (B1), which is also inW 1,q

0 (B1)
d\times \~Lq(B1). By the uniqueness

ofW 1,q
0 (B1)

d\times Lq(B1) solutions, we get (\~v, \~\pi ) = (v, \pi  - (\pi )B1
). By applying theW 1,q\ast -

estimate in [13, Theorem 2.4] to (3.38) and using the above inequality, we obtain that
(3.39)
\| Dv\| Lq\ast (B1) + \| \pi  - (\pi )B1

\| Lq\ast (B1)

\leq N
\bigl( 
\| F\| Lq(B1) + \| F\alpha \| Lq\ast (B1) + \| G\| Lq\ast (B1)

\bigr) 

\leq N0(R - r) - 1
\bigl( 
\| Du\| Lq(BR) + \| p\| Lq(BR) + \| u\| 2L2q(BR)

\bigr) 
+N0(R - r) - 1\| u\| Lq\ast (BR)

+N0R(R - r) - 1\| f\alpha \| Lq\ast (BR) +N0\| g\| Lq\ast (BR) +N0\| u\| Ld(BR)\| Dv\| Lq\ast (BR),

where N0 = N0(d, \nu ,M,R0, \varrho 0, \omega A\alpha \beta , q). Then by taking R \in (0, 1/2] sufficiently small
so that

N0\| u\| Ld(BR) \leq \varepsilon :=
1

8
,

we can absorb the last term on the right-hand side of (3.39) to the left-hand side.
From the triangle and H\"older's inequalities, we have

(3.40)

\| Du\| Lq\ast (Br) + \| p\| Lq\ast (Br)

\leq \| Dv\| Lq\ast (B1) + \| \pi  - (\pi )B1
\| Lq\ast (B1) +N1\| \pi \| L1(B1)

\leq \| Dv\| Lq\ast (B1) + \| \pi  - (\pi )B1
\| Lq\ast (B1) +N1\| p\| Lq(BR).

Noting that q\ast \geq 2q, it follows from (3.40) and (3.39) that

\| Du\| Lq\ast (Br) + \| p\| Lq\ast (Br)

\leq (N0 +N1)(R - r) - 1
\bigl( 
\| Du\| Lq(BR) + \| p\| Lq(BR) + \| u\| 2Lq\ast (BR)

\bigr) 

+N0(R - r) - 1\| u\| Lq\ast (BR) +N0R(R - r) - 1\| f\alpha \| Lq\ast (BR) +N0\| g\| Lq\ast (BR).
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We are ready to prove

(3.41) Du \in Ls
loc(\scrD )d\times d for some s > d.

From the a priori estimate (3.39) and the fixed point argument as in the proof of

Theorem 2.4, one can show that Du \in Lq\ast 

loc(\scrD )d\times d. This yields (3.41) when d/2 <
q \leq d because q\ast > d. On the other hand, if q = d/2, then since Du \in Lq1

loc(\scrD )d\times d for
all q1 \leq d, by applying the above regularity result again, we get (3.41). We have thus
proved the regularity results in the theorem. The corresponding upper bounds of the
L\infty -norm of (Du, p) and the modulus of continuity of (Dx\prime u, U) can be derived as in
Remark 3.2.
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