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Abstract

We study the degenerate Kolmogorov equations (also known as kinetic Fokker–
Planck equations) in nondivergence form. The leading coefficients ai j are merely
measurable in t and satisfy the vanishing mean oscillation condition in x, v with
respect to some quasi-metric. We also assume the boundedness and uniform non-
degeneracy of ai j with respect to v. We prove global a priori estimates in weighted
mixed-norm Lebesgue spaces and solvability results. We also show an application
of the main result to the Landau equation. Our proof does not rely on any kernel
estimates.

1. Introduction

Let d � 1, R
d be a Euclidean space of points (x1, . . . , xd), and for T ∈

(−∞,∞] we denote R
d
T = (−∞, T ) × R

d−1. By z we denote the triple (t, x, v),
where t ∈ R, and x, v ∈ R

d .
In this paper, we study kinetic Kolmogorov–Fokker–Planck (KFP) operator in

nondivergence form given by

Pu = ∂t u − v · Dx u − ai j (z)Dvi v j u.

Here the coefficients a(z) = (ai j (z), i, j = 1, . . . , d) are bounded measurable
and uniformly nondegenerate. When the coefficients ai j are independent of x and
v, we denote P by P0. This operator appears in the theory of diffusion processes
[39], mathematical finance [33], and kinetic equations of plasma. In particular, the
linearized Landau equation nearMaxwellian can be rewritten as a Cauchy problem

P f + b · Dv f + c f = h, f (0, ·, ·) = f0(·, ·), (1.1)

where b is a vector-valued function (see, for instance, [24]), and c is a bounded
function.
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The goal of this article is to prove a priori estimates and the unique solvability
in the weighted mixed-norm spaces Sp,r1,...,rd ,q(R1+2d

T , w) (see Section 2), which
generalize the ultraparabolic Sobolev space Sp (see, for instance, [8]). We do this
under a relaxed V M O type assumption, which appears to be new. In particular, our
coefficients ai j are merely measurable in time and V M O in the x, v variables with
respect to some quasi-distance (see Assumption 2.3). This assumption is analogous
to the V M Ox condition from the theory of nondegenerate parabolic PDEs with
discontinuous coefficients (see [15,27]).

The kinetic Kolmogorov–Fokker–Planck equations have been studied exten-
sively [1,4–8,10–14,18,21–23,31–35,40], including nonlocal equations [11,21,
23,32]. Here we discuss the results of the Sobolev space theory. The interior Sp-
estimate under a V M O assumption with respect to all variables was established in
[8] for nondivergence equations, and in [31] for divergence form equations. The
interior estimate in the ultraparabolic Morrey spaces was proved in [35]. The first
global Sp estimate was discovered in [9] for the constant coefficients ai j case. For
ai j independent of (x, v), the a priori estimates can be found in [12]. The first global
Sp estimate for the variable coefficients ai j case was established by the authors of
[10]. Assuming the uniform continuity of the leading coefficients, they proved the
a priori estimate of D2

vu on a sufficiently small strip [−T, T ] × R
2d . To the best

of our knowledge, no solvability results in ultraparabolic Sobolev spaces were pre-
sented in these works except for the case of constant coefficients, and the operators
considered are more general than P . On the other hand, when the coefficients are
regular enough, say Hölder continuous (in the appropriate sense), the unique solv-
ability is established in [13] (see also [2]) by studying the fundamental solution to
a KFP operator. It seems that the first results in the weighted mixed-norm space
belong to [32]. The authors proved the a priori estimates and unique solvability
in the L p((0, T ), Lq(R2d)) spaces with the power weight in time (see Theorem
8.1 of [32]) assuming that the functions ai j are uniformly continuous with respect
to some quasi-metric. They also studied quasilinear kinetic KFP equations. In the
case of the zero initial condition, the main result of this article covers Theorem 8.1
in [32] because we work with spaces that have a Muckenhoupt weight in the (t, v)

variables.
The current paper generalizes the aforementioned results in several directions.

First, our assumption on the coefficients ai j is weaker than the ones presented in the
literature. Second,we prove the a priori estimates in theweightedmixed-norm space
where each direction t, v1, . . . , vd has a different Muckenhoupt weight. Third, we
also discover the a priori estimate of Dv(−Δx )

1/6u for u ∈ Sp,r1,...,rd ,q(R1+2d
T , w),

which appears to be new. Finally, we show that the constant on the right-hand side
in the Sp estimate (2.8) (see also (2.9)) grows polynomially as the lower eigenvalue
bound of the coefficient matrix ai j decreases. This fact is crucial in the application
to the linearized Landau equation near Maxwellian (1.1). In particular, the matrix
of the leading coefficients ai j has a lower eigenvalue bound of order n−3 on the
annulus (0, T ) × Ω × {|v| ∼ n}, n ∈ {1, 2, . . .} (see [24, Lemma 2.4]), where
Ω ⊂ R

3 is a domain. Then, one can use the Sp estimate (see (2.9)) to obtain an
upper bound of the L p-norm of D2

v f . We elaborate on this in Remark 2.9; see also
[14,16,24].
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We comment on the ideas of the proof. To prove the main result, one needs to,
first, work with the model equation

P0u + λu = f, (1.2)

where the coefficients ai j are independent of x and v. Recall that in the unmixed
and unweighted case, the a priori estimates for Eq. (1.2) were already proved in
[9] and [12] by using the estimates of fundamental solutions. We give a new proof
of these a priori estimates and establish a unique solvability result for Eq. (1.2) in
weighted mixed-norm spaces. As a corollary, we obtain pointwise estimates of

(D2
vu)#T , ((−Δx )

1/3u)#T , (Dv(−Δx )
1/6u)#T

in the case of variable coefficients ai j , which are similar to those in Lemma 6.2.2
of [27] (see Lemma 7.1). Here the superscript # stands for the sharp function
with respect to some quasi-distance. By designing a family of maximal functions
and using a variant of the Hardy–Littlewood and Fefferman–Stein theorems (see
Corollary 3.2), we prove the a priori estimate of Theorem 2.6 (i), which also implies
the uniqueness part of Theorem 2.6. To prove the existence of solutions, we use the
density argument as well as the argument of Section 8 of [15].

The novelty of this work lies in the fact that we do not use an analytic ex-
pression of the fundamental solution of the operator P0 + λ. We use a kernel-free
approach, which can be found in papers by N. V. Krylov, the first named author,
D. Kim, and others (see, for example, [15,27]). Such a method is useful in devel-
oping the solvability theory in Sobolev spaces for second-order operators whose
fundamental solutions do not have an explicit form. The reader can find examples
of such equations in [7] and [28]. Interestingly, the authors of [11,12] also proved
a variant of the Fefferman–Stein theorem (see Theorem 2.11 of [11]). In the same
papers, they use the Fefferman–Stein inequality to prove the a priori estimates of
D2

vu and (−Δx )
1/3u in the L p spaces. However, the main difference is that, in-

stead of estimating (D2
vu)#T and ((−Δx )

1/3u)#T in terms of the maximal functions
of D2

vu, (−Δx )
1/3u and the right-hand side of Eq. (1.2) like we do, these authors

used a variant of the Stampacchia interpolation theorem (see [11, Theorem 2.12]
and [12, Theorem 2.4]), which they derived from the Fefferman–Stein inequality.
One more difference with our work is that the argument of [12] involves kernel
estimates. The method in the present paper allows us to further treat the V M O
coefficients by incorporating the perturbation in the mean oscillation estimates. It
would be interesting to find out if the methods of [8], [10,12,31,32] could be used
to prove Theorem 2.6.

The L p theory of KFP equations developed in this article can be used in math-
ematical theory of plasma and filtering of signals. For example, in [14], the present
authors and Yan Guo showed the well-posedness and higher regularity of the linear
Landau equation with the specular reflection boundary condition by applying the
results of the current paper. The crucial difficulty in this problem is that the pres-
ence of the boundary condition forces one to work with Kolmogorov type equations
with ‘rough in time’ coefficients, which is why Theorem 2.6 and Corollary 2.8 are
useful for such equations. See the details in Section 2 of [14]. Motivated by such
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an example, we plan to study kinetic KFP equations with rough coefficients in
divergence form in suitable Sobolev spaces and equations in nondivergence form
in Morrey-Campanato spaces. In addition, the a priori estimates for KFP equation
might be useful in developing the solvability theory for its stochastic counterparts
which arise in filtering of diffusion processes and interacting particle systems. For
discussion and related studies, see [34,40], and [20]. We plan to further investigate
the stochastic KFP equation in subsequent papers.

The paper is organized as follows: in the next section, we introduce the notation
and assumptions and state the main result of the article. In Section 3, we prove
some auxiliary results, including variants of the Hardy–Littlewood and Fefferman–
Stein theorems for the maximal and sharp functions defined with respect to an
ultraparabolic quasi-distance. In Section 4, we prove Theorem 2.6 for Eq. (1.2)
with P = P0 and p = 2. We extend this result to p ∈ (1,∞) in Section 5.
In Section 6, we prove Theorem 2.6 with P = P0. In the last section, we prove
Theorem 2.6.

2. Notation and Statement of the Main Results

2.1. Notation and assumptions

For r > 0 and x0 ∈ R
d , denote

Br (x0) = {ξ ∈ R
d : |ξ − x0| < r}, Br = Br (0).

For r, R > 0 and z0 ∈ R
1+2d , we set

Qr,R(z0) = {z : −r2 < t − t0 < 0, |v − v0| < r, |x − x0 + (t − t0)v0|1/3 < R},
˜Qr,R(z0) = {z : |t − t0| < r2, |v − v0| < r, |x − x0 + (t − t0)v0|1/3 < R},

Qr (z0) = Qr,r (z0), ˜Qr (z0) = ˜Qr,r (z0),

Qr,R = Qr,R(0), ˜Qr,R = ˜Qr,R(0), Qr = Qr (0), ˜Qr = ˜Qr (0).

For an open set G, by Cb(G), we denote the space of all bounded continuous func-
tions on G. By C∞

0 (Rd), we denote the space of all smooth compactly supported
functions on R

d .
We say that a functionw is aweight onR

d ifw is nonnegative, locally integrable,
and w > 0 almost everywhere. For p > 1, we write w ∈ Ap(R

d) if w is a weight
on R

d such that

[w]Ap(Rd ) := sup
x0∈Rd ,r>0

(

 
Br (x0)

w(x) dx
)(

 
Br (x0)

w−1/(p−1)(x) dx
)p−1

< ∞.

Remark 2.1. For α ∈ (−d, d(p − 1)), w(x) = |x |α is an Ap weight in R
d (see the

details in Example 7.1.7 in [19]).
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Furthermore, for any numbers p, r1, . . . , rd , q > 1, K � 1, and a function w

on R
1+d , we write [w]q,r1,...,rd � K if there exist weights wi , i = 0, . . . , d, on R

such that

w(t, v) = w0(t)
d

∏

i=1

wi (vi ) (2.1)

and

[w0]Aq (R), [wi ]Ari (R) � K , i = 1, . . . , d. (2.2)

By L p,r1,...,rd ,q(G, w), L p;r1,...,rd (G, |x |α ∏d
i=1 wi (vi )), α ∈ (−1, p − 1), we de-

note the spaces of all Lebesgue measurable functions on R
1+2d such that

‖ f ‖L p,r1,...,rd ,q (G,w)

= ∣

∣

ˆ
R

∣

∣ . . .
∣

∣

ˆ
R

∣

∣

ˆ
Rd

| f |p(z)1G(z) dx
∣

∣

r1
p w1(v1)dv1

∣

∣

r2
r1

. . . wd(vd)dvd
∣

∣

q
rd w0(t)dt

∣

∣

1
q , (2.3)

‖ f ‖L p;r1,...,rd (G,|x |α ∏d
i=1 wi (vi ))

= ∣

∣

ˆ
R

. . .
∣

∣

ˆ
R

∣

∣

ˆ
Rd+1

| f |p(z)1G(z)|x |α dxdt
∣

∣

r1
p w1(v1)dv1

∣

∣

r2
r1

. . . wd(vd)dvd
∣

∣

1
rd . (2.4)

For the discussion of basic properties of weighted mixed-norm Lebesgue spaces,
see [6]. We write u ∈ Sp,r1,...,rd ,q(G, w) if

u, ∂t u − v · Dx u, Dvu, D2
vu ∈ L p,r1,...,rd ,q(G, w).

The Sp,r1,...,rd ,q(G, w)-norm is defined as

‖u‖Sp,r1,...,rd ,q (G,w) = ‖u‖L p,r1,...,rd ,q (G,w) + ‖Dvu‖L p,r1,...,rd ,q (G,w)

+‖D2
vu‖L p,r1,...,rd ,q (G,w) + ‖∂t u − v · Dx u‖L p,r1,...,rd ,q (G,w).

If w ≡ 1, we drop w from the above notation. In addition, if p = r1 = . . . = rd =
q, we replace the subscripts p, r1, . . . , rd , q with a single number p. Replacing
L p,r1,...,rd ,q(R1+2d

T , w) with L p;r1,...,rd (R
1+2d
T , |x |α ∏d

i=1 wi (vi )), we define the
space Sp;r1,...,rd (R

1+2d
T , |x |α ∏d

i=1 wi (vi )).
For any s ∈ (0, 1) and u ∈ L p(R

d), by (−Δx )
su we understand the distribution

given by

((−Δx )
1/3u, φ) = (u, (−Δx )

1/3φ), φ ∈ C∞
0 (Rd).

Furthermore, if s ∈ (0, 1/2) and u is regular enough, say,

u is of Lipschitz class on R
d , |u(x)| � K ,
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then, the following pointwise formula hold:

(−Δx )
su(x) = cd,s

ˆ
Rd

u(x) − u(x + y)

|y|d+2s
dy,

where cd,s is the constant depending only on d and s. See, for instance, the discus-
sion in Section 2 of [37].

For c > 0, denote

ρc(z, z0) = max{|t − t0|1/2, c−1|x − x0 + (t − t0)v0|1/3, |v − v0|}.
For a Lebesgue measurable set A, by |A| we denote its Lebesgue measure. For a
function f ∈ L1(A), we denote

( f )A =
 

A
f dz = |A|−1

ˆ
A

f dz

provided that |A| < ∞. For c > 0 and T ∈ (−∞,∞], the maximal and sharp
functions are defined as follows:

Mc,T f (z0) = sup
r>0,z1∈R

1+2d
T :z0∈Qr,cr (z1)

 
Qr,rc(z1)

| f (z)| dz, MT f := M1,T f,

f #T (z0) = sup
r>0,z1∈R

1+2d
T :z0∈Qr (z1)

 
Qr (z1)

| f (z) − ( f )Qr (z1)| dz.

For n ∈ {0, 1, 2, . . .} and a sufficiently regular function u on R
2d , by Dn

x u
we denote the set of all partial derivatives of order n in the x variable. We define
Dn

v u, Dm
x Dn

v u in the same way.
By N = N (· · · ) and θ = θ(· · · ) we mean constants depending only on the

parameters inside the parenthesis. The constants N and θ might change from line
to line. Sometimes, when it is clear what parameters N or θ depend on, we omit
them.

We impose the following assumptions on the coefficients:

Assumption 2.2. The coefficients a(z) = (ai j (z), i, j = 1, . . . , d) are bounded
measurable functions such that for some δ ∈ (0, 1),

δ|ξ |2 � ai j (z)ξiξ j � δ−1|ξ |2, ∀ξ ∈ R
d , z ∈ R

1+2d .

Assumption 2.3. (γ0) There exists R0 > 0 such that for any z0 and R ∈ (0, R0],
oscx,v(a, Qr (z0)) � γ0,

where

oscx,v(a, Qr (z0))

=
 

(t0−r2,t0)

 
Dr (z0,t)×Dr (z0,t)

|a(t, x1, v1) − a(t, x2, v2)| dx1dv1dx2dv2 dt,

and

Dr (z0, t) = {(x, v) : |x − x0 + (t − t0)v0|1/3 < r, |v − v0| < r}.
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Here is an example of a somewhat stronger condition which can be viewed as a
V M Ox,v condition with respect to the anisotropic distance |x − x ′|1/3 + |v − v′|.
Let ω : [0,∞) → [0,∞) be an increasing function such that ω(0+) = 0. Assume
that

osc′
x,v(a, r)

:= sup
t,x,v

r−8d
ˆ

x1,x2∈Br3 (x)

ˆ
v1,v2∈Br (v)

|a(t, x1, v1)

− a(t, x2, v2)| dx1dx2 dv1dv2 � ω(r).

(2.5)

Note that since

oscx,v(a, Qr (z0)) � osc′
x,v(a, r),

the condition (2.5) implies Assumption 2.3 (γ0) for any γ0 ∈ (0, 1).
In the present article, we consider the equation

Pu + bi Dvi u + (c + λ)u = f (2.6)

and for −∞ < S < T � ∞, the Cauchy problem

Pu + bi Dvi u + cu = f, u(S, ·) = 0. (2.7)

Assumption 2.4. The functions b = (bi , i = 1, . . . , d) and c are bounded measur-
able on R

1+2d and they satisfy the condition

|b| + |c| � L

for some constant L > 0.

2.2. Main result

Definition 2.5. Let T ∈ (−∞,∞]. A function u ∈ Sp,r1,...,rd ,q(R2d
T , w) is a solu-

tion to Eq. (2.6) if the identity

∂t u − v · Dx u = ai j Dvi v j u − bi Dvi u − (c + λ)u

holds in L p,r1,...,rd ,q(R2d
T , w). We define a solution in the space

Sp;r1,...,rd (R
2d
T , |x |α

d
∏

i=1

wi (vi ))

in a similar way.
We say that

u ∈ Sp,r1,...,rd ,q((S, T ) × R
2d , w)

is a solution to Eq (2.7) if there exists ũ ∈ Sp,r1,...,rd ,q(R1+2d
T , w) such that ũ = u

on (S, T ) × R
2d , ũ = 0 on (−∞, S) × R

2d , and Pũ + bi Dvi ũ + cũ = f on
(S, T ) × R

2d .
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Theorem 2.6. Let p, r1, . . . , rd , q > 1, K � 1 be numbers, T ∈ (−∞,∞], and
wi , i = 0, 1, . . . , d, be weights satisfying (2.2), and w be a weight defined by (2.1).
Let Assumptions 2.2 and 2.4 hold. There exist constants

β = β(d, p, r1, . . . , rd , q, K ) > 0, γ0 = δβ γ̃0(d, p, r1, . . . , rd , q, K ) > 0

such that if Assumption 2.3 (γ0) holds, then, the following assertions are valid.

(i) There exist constants

θ = θ(d, p, r1, . . . , rd , q, K ) and

λ0 = δ−θ R−2
0

˜λ0(d, p, r1, . . . , rd , q, K , L) � 1

such that for any λ � λ0 and any u ∈ Sp,r1,...,rd ,q(R1+2d
T , w), one has

λ‖u‖ + λ1/2‖Dvu‖ + ‖D2
vu‖ + ‖(−Δx )

1/3u‖ + ‖Dv(−Δx )
1/6u‖

+ ‖∂t u − v · Dx u‖ � Nδ−θ‖Pu + bi Dvi u + cu + λu‖, (2.8)

where R0 ∈ (0, 1) is the constant in Assumption 2.3 (γ0),

‖ · ‖ = ‖ · ‖L p,r1,...,rd ,q (R1+2d
T ,w)

, and N = N (d, p, r1, . . . , rd , q, K ).

In addition, for any f ∈ L p,r1,...,rd ,q(R1+2d
T , w), Eq. (2.6) has a unique solu-

tion u ∈ Sp,r1,...,rd ,q(R1+2d
T , w).

(ii) For any numbers −∞ < S < T < ∞ and f ∈ L p,r1,...,rd ,q((S, T )×R
2d , w),

Eq. (2.7) has a unique solution u ∈ Sp,r1,...,rd ,q((S, T )×R
2d , w). In addition,

‖u‖ + ‖Dvu‖ + ‖D2
vu‖ + ‖(−Δx )

1/3u‖ + ‖Dv(−Δx )
1/6u‖

+ ‖∂t u − v · Dx u‖ � N‖ f ‖,
where ‖ · ‖ = ‖ · ‖L p,r1,...,rd ,q ((S,T )×R2d ,w) and

N = N (d, δ, p, r1, . . . , rd , q, K , L , T − S).

(iii) The assertions (i) and (ii) hold with Sp,r1,...,rd ,q(R1+2d
T , w) replaced with

Sp;r1,...,rd (R
1+2d
T , |x |α ∏d

i=1 wi (vi )), where α ∈ (−1, p − 1). Furthermore,
the constants β, γ0, θ, λ0, N must be modified as follows: one needs to take
into account the dependence on α and remove the dependence on q.

Remark 2.7. The reason why we included the term Dv(−Δx )
1/6 in the a pri-

ori estimate (2.8) is the following. In the proof of Theorem 2.6 with P = P0,
L p,r1,...,rd ,q(R1+2d

T , w) replacedwith L p(R
1+2d) and p ∈ (1, 2) (seeTheorem5.1),

we use an a priori bound of the L p/(p−1)(R
1+2d) norm of Dv(−Δx )

1/6u to prove
(2.8) for ‖D2

vu‖L p(R1+2d ). See page 46. It turns out that the former inequality can

be obtained along the lines of the proof of the a priori estimate of (−Δx )
1/3u.

The next result is a direct corollary of Theorem 2.6 (i).
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Corollary 2.8. There exist constants

β = β(d, p, r1, . . . , rd , q, K ) > 0, γ0 = δβ γ̃0(d, p, r1, . . . , rd , q, K ) > 0,

and

θ = θ(d, p, r1, . . . , rd , q, K ) > 0,

such that if Assumption 2.3 (γ0) holds, then, for any u ∈ Sp,r1,...,rd ,q(R1+2d
T , w)

and λ � 0,

‖u‖Sp,r1,...,rd ,q (R1+2d
T ,w)

+ ‖(−Δx )
1/3u‖ + ‖Dv(−Δx )

1/6u‖
� Nδ−θ (‖Pu + bi Dvi u + cu + λu‖ + R−2

0 ‖u‖), (2.9)

where ‖ · ‖ = ‖ · ‖L p,r1,...,rd ,q (R1+2d
T ,w)

, N = N (d, p, r1, . . . , rd , q, K , L) , and

R0 ∈ (0, 1) is the constant from Assumption2.3 (γ0). Furthermore, the same holds if
we replace Sp,r1,...,rd ,q(R1+2d

T , w)with Sp;r1,...,rd (R
1+2d
T , |x |α ∏d

i=1 wi (vi )), where
α ∈ (−1, p − 1), and modify the constants as suggested in Theorem 2.6 (iii).

Proof. Weonly need to consider the casewhenλ ∈ (0, λ0), whereλ0 is the constant
in Theorem 2.6. Then, by (2.8) and the triangle inequality, (2.9) holds with the term
(λ0 − λ)‖u‖ in place of R−2

0 ‖u‖. Replacing λ0 − λ with λ0 and using the explicit
expression of λ0, we prove (2.9). ��

In the next remark, we explain howCorollary 2.8 can be applied to the linearized
Landau equation. We also show why it is useful to know how the constant on the
right-hand side of (2.9) depends on the lower eigenvalue bound δ of the matrix ai j .

Remark 2.9. Let d = 3. Here we show how Corollary 2.8 can be used to estimate
the Sp-norm of the solution to the linearized Landau equation near Maxwellian
(1.1) in the case of the Coulomb interaction. See the details in [16]. Due to Lemma
2.4 of [24], for Eq. (1.1), there exist constants μ1, μ2 > 0 such that

μ1(1 + |v|)−3|ξ |2 � ai j (z)ξiξ j � μ2(1 + |v|)−1|ξ |2, ∀z ∈ R
7, ∀ξ ∈ R

3.

(2.10)

In addition, we assume that the coefficients ai j are Hölder continuous with respect
to the quasi-distance

d(z, z′) = max{|t − t0|1/2, |x − x0 − (t − t0)v0|1/3, |v − v0|}.
This means that ai j are bounded functions, and there exists a constant κ ∈ (0, 1)
such that

sup
z,z′∈(0,T )×R6:z 
=z′

|ai j (z) − ai j (z′)|
dκ(z, z′)

< ∞, i, j = 1, 2, 3.

Equation (1.1) with the above assumptions arises naturally when one tries to prove
the existence and uniqueness of the solution to the (nonlinear) Landau equation
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near Maxwellian (see [16,24]). Note that, in this case, Assumption 2.3 (γ0) holds
for any γ0 ∈ (0, 1) with

R0 ∼ γ
1/κ
0 . (2.11)

Next, assuming that f0 is a sufficiently regular function and replacing f with
f − f0φ, where φ = φ(t) is an appropriate cutoff function, we reduce Eq. (1.1) to
the Cauchy problem

P f + b · ∇v f + c f = η, f (0, ·, ·) ≡ 0.

Then, localizing (2.9) and using (2.10) and (2.11), for any n ∈ {1, 2, . . . , }, we
obtain

‖ f ‖S2((0,T )×R3×{n<|v|<n+1})
� Nnθ‖|η| + | f |‖L2((0,T )×R3×{n−1/2<|v|<n+3/2}),

(2.12)

where N and θ are positive numbers independent of n and T . If the original initial
value and h decay fast enough at infinity, by using the energy estimate for theLandau
equation, one can show that f, η ∈ L2((0, T )×R

6, |v|θ ′
) for some θ ′ > θ +1 > 0.

This combined with (2.12) gives

‖ f ‖S2((0,T )×R3×{n<|v|<n+1}) � Nnθ−θ ′ ‖|η| + | f |‖L2((0,T )×R6,|v|θ ′
)
,

and, hence, f ∈ S2((0, T ) × R
6). By a Sobolev type embedding theorem for Sp

spaces (see Theorem 2.1 in [35]), the above gives

‖| f | + |∇v f |‖L7/3((0,T )×R6) � N‖|η| + | f |‖L2((0,T )×R6,|v|θ ′
)
.

Similarly, one can show that f belongs to a weighted S2 and L7/3 spaces. Then,
by using a bootstrap type argument, we conclude that f ∈ Sp((0, T ) × R

6) for
any p ∈ [2,∞). If p is large enough, by using a Morrey type embedding theorem
for the Sp spaces (see Theorem 2.1 in [35]), one concludes that f,∇v f are Hölder
continuous with respect to the quasi-distance d, which is crucial in the proof of
the uniqueness of solutions (see, for example, [24, Lemma 8.2]). As mentioned in
Section 1, the present authors used a similar argument to show the higher regularity
of a finite energy weak solution to the linear Landau equation with the specu-
lar reflection boundary condition (see [14]). In particular, near the boundary, one
can reduce such an equation to an equation of the KFP type with the coefficients
L∞((0, T ), Cκ/3,κ

x,v (R6)), κ ∈ (0, 1], where Cκ/3,κ
x,v (R6) is the space of bounded

functions u such that

sup
(xi ,vi )∈R6:(x1,v1) 
=(x2,v2)

|u(x1, v1) − u(x2, v2)|
(|x1 − x2|1/3 + |v1 − v2|)κ

< ∞.

In this case, again, Assumption 2.3 (γ0) holds for any γ0 ∈ (0, 1) with R0 given by
(2.11).

Remark 2.10. The assertion (ii) is derived from (i) in the standard way (see, for
example, Theorem 2.5.3 of [27]). We will not mention this in the sequel.
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Remark 2.11. From Theorem 2.6 (i), we can derive the corresponding results for
elliptic equations when the coefficients and data are independent of t . See, for
instance, the proof of [26, Theorem 2.6]. The idea is that one can view an elliptic
equation as a steady state parabolic equation.

Remark 2.12. It would be interesting to study Eq. (1.1) with singular drift under
the conditions similar to those considered in [25,30,36,38] (see also the references
therein). An interesting result concerning a Langevin type SDE with the drift in the
form b(t, x, v) = Dx F(x) + G(v) was established in [38].

3. Auxiliary Results

The following lemma is a variant of Lemma 2.3 of [12].

Lemma 3.1. Let c � 1, r > 0 be numbers. Then, the following assertions hold:

(i) For any z, z0 ∈ R
1+2d ,

ρc(z, z0) � 2ρc(z0, z).

(ii) For any z, z0, z1 ∈ R
1+2d ,

ρc(z, z0) � 2(ρc(z, z1) + ρc(z1, z0)).

(iii) Denote ρ̂c(z, z0) = ρc(z, z0) + ρc(z0, z). Then, ρ̂c is a (symmetric) quasi-
distance.

(iv) Denote ̂Qr,cr (z0) = {z ∈ R
1+2d : ρ̂c(z, z0) < r}. Then,

̂Qr,cr (z0) ⊂ ˜Qr,cr (z0) ⊂ ̂Q3r,3cr (z0).

(v) For any T ∈ (−∞,∞], the triple (R1+2d
T , ρ̂c, dz) (with the induced topology

if T < ∞) is a space of homogeneous type with parameters independent of c.

Proof. (i) It suffices to show that

c−1|x − x0 + (t − t0)v0|1/3 � 2ρc(z0, z).

By the triangle inequality, we have

|x − x0 + (t − t0)v0|1/3 � |x0 − x + (t0 − t)v|1/3 + |t − t0|1/3|v − v0|1/3
� |x0 − x + (t0 − t)v|1/3 + ρc(z0, z).

Multiplying both sides of the above inequality by c−1 and using the fact that
c � 1, we prove the claim.
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(ii) As in (i), we only need to show that the inequality holds with the left-hand
side replaced with c−1|x − x0 + (t − t0)v|1/3. By the triangle inequality,

|x − x0 + (t − t0)v0|1/3
� |x − x1 + (t − t1)v1|1/3 + |x1 − x0 + (t − t0)v0 − (t − t1)v1|1/3
� cρc(z, z1) + cρc(z1, z0) + |t − t1|1/3|v0 − v1|1/3.

By Young’s inequality,

|t − t1|1/3|v0 − v1|1/3 � (2/3)ρc(z, z1) + (1/3)ρc(z1, z0).

This combined with the fact that c � 1 yields the desired estimate.
(iii) This assertion follows from (ii).
(iv) The claim is a direct corollary of (i).

(v) We only need to check the doubling property. For any z ∈ R
1+2d
T , the assertion

(iv) of this lemma gives

μ := |̂Q2r,2cr (z) ∩ R
1+2d
T |

|̂Qr,cr (z) ∩ R
1+2d
T | � |˜Q2r,2cr (z)|

|˜Qr/3,cr/3(z) ∩ R
1+2d
T | .

Since z ∈ R
1+2d
T , we have

Qr/3,cr/3(z) ⊂ ˜Qr/3,cr/3(z) ∩ R
1+2d
T ,

and, hence,

μ � N (d). (3.1)

The claim is proved. ��
Denote

f #c,T (z0) = sup
r>0,z1∈R

1+2d
T :z0∈Qr,cr (z1)

 
Qr,cr (z1)

| f (z) − ( f )Qr,cr (z1)| dz.

Corollary 3.2. Let c � 1, K � 1, p, q, r1, . . . , rd > 1be numbers, T ∈ (−∞,∞],
and f ∈ L p,r1,...,rd ,q(R1+2d

T , w), where w is a weight such that

[w]q,r1,...,rd � K .

Then, the following assertions hold:

(i) (Hardy–Littlewood type theorem)

‖Mc,T f ‖L p,r1,...,rd ,q (R1+2d
T ,w)

� N (d, p, q, r1, . . . , rd , K )‖ f ‖L p,r1,...,rd ,q (R1+2d
T ,w)

.

(ii) (Fefferman–Stein type theorem)

‖ f ‖L p,r1,...,rd ,q (R1+2d
T ,w)

� N (d, p, q, r1, . . . , rd , K )‖ f #c,T ‖L p,r1,...,rd ,q (R1+2d
T ,w)

.
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Proof. We only present the proof of the assertion in the case when T < ∞. The
case when T = ∞ is treated similarly. We extend f to be zero for t > T .

(i) Denote

̂Mc,T f (z0) = sup
r>0,z1∈R

1+2d
T :z0∈̂Qr,cr (z1)

 
̂Qr,cr (z1)∩R

1+2d
T

| f (z)| dz,

where ̂Qr,cr (z1) is defined in Lemma 3.1. By Lemma 3.1 (iv), for any r > 0

and z1 ∈ R
1+2d
T ,
 

Qr,cr (z1)
| f (z)| dz � |̂Q3r,3cr |

|Qr,cr |
 

̂Q3r,3cr (z1)∩R
1+2d
T

| f (z)| dz

� |˜Q3r,3cr |
|Qr,cr |

 
̂Q3r,3cr (z1)∩R

1+2d
T

| f (z)| dz

= N (d)

 
̂Q3r,3cr (z1)∩R

1+2d
T

| f (z)| dz,

and by this

Mc,T f (z) � N (d)̂Mc,T f (z), ∀z ∈ R
1+2d
T . (3.2)

We recall that ̂Mc,T f is a maximal function on a space of homogeneous type

(R1+2d
T , ρ̂c, dz) (see Lemma 3.1 (v)). Then, by the weighted Hardy–Littlewood

theorem (see [3]), for any ω0 ∈ Ap(R
1+d),

ˆ
R
1+2d
T

|̂Mc,T f (z)|pω0(t, v) dz

� N (d, p, [ω0]Ap(Rd+1))

ˆ
R
1+2d
T

| f (z)|pω0(t, v) dz.

By a variant of the Rubio de Francia extrapolation theorem (see, for example,
Theorem 7.11 of [17] and also [29]),

‖̂Mc,T f ‖L p,r1,...,rd ,q (R1+2d
T ,w)

� N‖ f ‖L p,r1,...,rd ,q (R1+2d
T ,w)

.

Now the assertion follows from (3.2).
(ii) Let

̂f #c,T (z0) = sup
r>0,z1∈R

1+2d
T :z0∈̂Qr,cr (z1)

 
̂Qr,cr (z1)∩R

1+2d
T

| f (z) − ( f )
̂Qr,cr (z1)∩R

1+2d
T

| dz,

˜f #c,T (z0) = sup
r>0,z1∈R

1+2d
T :z0∈˜Qr,cr (z1)

 
˜Qr,cr (z1)∩R

1+2d
T

| f (z) − ( f )
˜Qr,cr (z1)∩R

1+2d
T

| dz.

Clearly, ̂f #c,T is a sharp function defined on the space of homogeneous type

(R1+2d
T , ρ̂c, dz). By the generalized Fefferman–Stein theorem for spaces of
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homogeneous type (see Theorem 2.3 of [15]) combined with the extrapolation
argument as above (see Theorem 7.11 of [17]), we get

‖ f ‖ � N‖ ̂f #c,T ‖.
Therefore, it suffices to show that for any z0 ∈ R

1+2d
T ,

̂f #c,T (z0) � N (d) f #c,T (z0). (3.3)

We prove this inequality in two steps.

Step 1 First, we show that

̂f #c,T (z0) � N (d) ˜f #c,T (z0). (3.4)

We fix any cylinder ̂Qr,cr (z1) containing z0 such that z1 ∈ R
1+2d
T . By Lemma 3.1

(iv) and the doubling property (see (3.1)), 
̂Qr,cr (z1)∩R

1+2d
T

| f (z) − ( f )
̂Qr,cr (z1)∩R

1+2d
T

| dz

�
|˜Qr,cr (z1) ∩ R

1+2d
T |2

|̂Qr,cr (z1) ∩ R
1+2d
T |2

 
˜Qr,cr (z1)∩R

1+2d
T

 
˜Qr,cr (z1)∩R

1+2d
T

| f (z) − f (z′)| dz dz′

� N (d)
|˜Qr,cr (z1) ∩ R

1+2d
T |2

|̂Q3r,3cr (z1) ∩ R
1+2d
T |2

 
˜Qr,cr (z1)∩R

1+2d
T

| f (z) − ( f )
˜Qr,cr (z1)∩R

1+2d
T

| dz

� N (d)

 
˜Qr,cr (z1)∩R

1+2d
T

| f (z) − ( f )
˜Qr,cr (z1)∩R

1+2d
T

| dz, (3.5)

which implies (3.4).

Step 2 We claim that

˜f #c,T (z0) � N (d) f #c,T (z0). (3.6)

For the sake of simplicity, we assume that T = 0. Let ˜Qr,rc(z1) be a cylinder

containing z0 such that z1 ∈ R
1+2d
0 . Note that if t1 < −r2, one has

˜Qr,cr (z1) ⊂ Q2r,2cr (t1 + r2, x1 − r2v1, v1) ⊂ R
1+2d
0 ,

and then, 
˜Qr,cr (z1)∩R

1+2d
0

| f (z) − ( f )
˜Qr,cr (z1)∩R

1+2d
0

| dz

� N (d)

 
Q2r,2cr (t1+r2,x1−r2v1,v1)

| f (z) − ( f )Q2r,2cr (t1+r2,x1−r2v1,v1)| dz

� N (d) f #(z0).

Next, if t1 � −r2, then,

Qr,cr (z1) ⊂ ˜Qr,cr (z1) ∩ R
1+2d
0 ⊂ Q̄2r,2cr (0, x1 + t1v1, v1).
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By this,

 
˜Qr,cr (z1)∩R

1+2d
0

| f (z) − ( f )
˜Qr,cr (z1)∩R

1+2d
0

| dz

� N (d)

 
Q2r,2cr (0,x1+t1v1,v1)

| f (z) − ( f )Q2r,2cr (0,x1+t1v1,v1)| dz

� N (d) f #c,T (z0),

which proves the claim. Thus, (3.3) holds, and the lemma is proved. ��
Corollary 3.3. Let p > 1, K � 1, c � 1 be numbers, T ∈ (−∞,∞] and ω be an

Ap weight on the space of homogeneous type (R1+2d
T , ρc, dz) (see Lemma 3.1 (v))

such that its Ap constant is bounded by K . Then, for any f ∈ L p(R
1+2d
T , ω),

(i) ‖Mc,T f ‖L p(R1+2d ,ω) � N (d, p, K )‖ f ‖L p(R1+2d
T ,ω)

,

(ii) ‖ f ‖L p(R1+2d ,ω) � N (d, p, K )‖ f #c,T ‖L p(R1+2d
T ,ω)

.

Proof. As we pointed out in the proof of Corollary 3.2, the aforementioned in-
equalities hold with

Mc,T f, f #c,T replaced with ̂Mc,T f, ̂f #c,T ,

respectively. To conclude the validity of the assertions, we invoke (3.2), (3.4), and
(3.6). ��
Lemma 3.4. Let p ∈ (1,∞), r > 0, c � 1, α ∈ (−1, p − 1) be numbers, and
T ∈ (−∞,∞]. Then, |x |α is an Ap weight on the space of homogeneous type

(R1+2d
T , ρ̂c, dz), and, furthermore, for any r > 0, z0 ∈ R

1+2d
T ,

A(r, z0) =
 

̂Qr,cr (z0)∩R
1+2d
T

|x |α dz

×
(  

̂Qr,cr (z0)∩R
1+2d
T

|x |−α/(p−1) dz
)p−1 � N (d, α, p).

(3.7)

Proof. Allowing a constant N in (3.7) to depend on d, we may replace ̂Qr,cr (z0)∩
R
1+2d
T with ˜Qr,cr (z0)∩R

1+2d
T (see the argument in (3.5)). Furthermore, in the case

T < ∞, we may assume that T = 0 and replace ˜Qr,cr (z0) ∩ R
1+2d
0 with Qr,cr (z0)

in the expression for A(r, z0). This follows from the fact that if t0 � −r2, then

˜Qr,cr (z0) ⊂ Q2r,2cr (t0 + r2, x0 − r2v0, v0) ⊂ R
1+2d
0 ,

and, otherwise,

˜Qr,cr (z0) ∩ R
1+2d
0 ⊂ Q2r,2cr (0, x0 + t0v0, v0).
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We may assume that |x0| + |v0| > 0. Denote X0 = r−3x0, V0 = r−1v0. By the
argument of the previous paragraph and a change of variables, we get

A(r, z0) � N (d)

ˆ 1

0

 
Bc3 (X0+tV0)

|x |α dxdt

×
( ˆ 1

0

 
Bc3 (X0+tV0)

|x |−α/(p−1) dxdt
)p−1

.

We will consider two cases:

A : |X0 + tV0| > 3c3, ∀t ∈ (0, 1), B : ∃τ ∈ (0, 1) : |X0 + τ V0| � 3c3.

Case A Note that for any t ∈ (0, 1), x ∈ Bc3(X0 + tV0), one has

|x | � |x − X0 − tV0| + |X0 + tV0| � (4/3)|X0 + tV0|,
|x | � |X0 + tV0| − |x − X0 − tV0| � (2/3)|X0 + tV0|,

and hence,

A(r, z0) � N (α, d)

ˆ 1

0
|X0 + tV0|α dt

(ˆ 1

0
|X0 + tV0|−α/(p−1) dt

)p−1

� N (α, d)

ˆ 1

0
|ω′ + tω|α dt

( ˆ 1

0
|ω′ + tω|−α/(p−1) dt

)p−1
,

where ω = (|X0|2 + |V0|2)−1/2V0, ω′ = (|X0|2 + |V0|2)−1/2X0.
Next, if |ω′| � 2|ω|, we have

1

2
|ω′| � |ω′ + tω| � 2|ω′|,

which gives

A(r, z0) � N (d, α, p).

If

|ω′| < 2|ω|,
we decompose ω′ = ω′⊥ + ω′||, where ω′⊥ is perpendicular to ω, and ω′|| is parallel
to ω. Then, for some λ ∈ (−2, 2),

|λ + t |2 |ω|2 � |ω′ + tω|2 = |ω′⊥|2 + |λ + t |2 |ω|2 � |ω|2(4 + |λ + t |2).
Then, in the case α ∈ [0, p − 1),

A(r, z0) � N (α, d)

( ˆ 1

0
|λ + t |−α/(p−1) dt

)p−1 � N (α, d, p).

The case α ∈ (−1, 0) is handled in the same way.
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Case B Observe that for any t ∈ (0, 1), x ∈ Bc3(X0 + tV0),

c−1|x − (t − τ)V0|1/3 � c−1|x − X0 − tV0|1/3 + c−1|X0 + τ V0|1/3 � 3,

and then,

{(t, x) : t ∈ (0, 1), x ∈ Bc3(X0 + tV0)}
⊂ {(t, x) : t ∈ (τ − 1, τ + 1), B(3c)3((t − τ)V0)}.

Thus, we may assume X0 = 0, in addition, by shifting in the time variable, we may
assume τ = 0.

Next, if |V0| � 3c3, then for any t ∈ (−1, 1), we have

Bc3(tV0) ⊂ B4c3(0),

which implies (3.7) in view of Remark 2.1. We now consider the case |V0| > 3c3.
We denote

κ = 2c3

|V0|
and note that for |t | � κ ,

Bc3(tV0) ⊂ B3c3(0),

while for κ < |t | < 1 and x ∈ Bc3(tV0), one has

t

2
|V0| � |x | � 2t |V0|.

Then, in the case α ∈ [0, p − 1),

ˆ 1

−1

 
Bc3 (tV0)

|x |α dxdt � N (d)

ˆ κ

−κ

 
B2c3 (0)

|x |α dxdt

+ (2V0)
α

ˆ 1

−1
|t |α dt � N (d, α)|V0|α,

ˆ 1

−1

 
Bc3 (tV0)

|x |−α/(p−1) dxdt � N (d)

ˆ κ

−κ

 
B2c3 (0)

|x |−α/(p−1) dx

+ (|V0|/2)−α/(p−1)
ˆ 1

−1
|t |−α/(p−1) dt � N (d, α, p)|V0|−α/(p−1),

and, thus, the estimate (3.7) is valid. The case α ∈ (−1, 0) is handled in the same
way. The lemma is proved. ��
Corollary 3.5. Let p, r1, . . . , rd > 1, c � 1, α ∈ (−1, p − 1) be numbers, T ∈
(−∞,∞], and w j , j = 1, . . . , d, be weights satisfying (2.2). Then,

‖Mc,T f ‖ � N‖ f ‖, ‖ f ‖ � N‖ f #c,T ‖,



518 Hongjie Dong & Timur Yastrzhembskiy

where

‖ · ‖ = ‖ · ‖L p;r1,...,rd (R1+2d
T ,|x |α ∏d

i=1 wi (vi ))
,

N = N (d, p, r1, . . . , rd , K , α),

and L p;r1,...,rd (R
1+2d
T , |x |α ∏d

i=1 wi (vi )) is defined in (2.4).

Proof. First, we claim that for any ω ∈ Ap(R
d), the function |x |αω(v) is an

Ap weight on the space of homogeneous type (R1+2d
T , ρc, dz). This follows from

Lemma 3.4 and the fact that in the Ap condition forω(v)|x |α (cf. (3.7)), the integral
is factored into a product of the integral over t, x and the integral over v. Then, by
Corollary 3.3,

ˆ
R
1+2d
T

|Mc,T f |p|x |αω(v) dz � N
ˆ

R
1+2d
T

| f |p|x |αω(v) dz,

ˆ
R
1+2d
T

| f |p|x |αω(v) dz � N
ˆ

R
1+2d
T

| f #c,T |p|x |αω(v) dz.

The assertion now follows from a variant of the Rubio de Francia extrapolation
theorem (see, for example, Theorem 7.11 of [17] and also [29]). ��
Lemma 3.6. Let p ∈ [1,∞], T ∈ (−∞,∞], and u ∈ Sp,loc(R

1+2d
T ). For any

z0 ∈ R
1+2d
T , denote

z̃ =(r2t + t0, r3x + x0 − r2tv0, rv + v0), ũ(z) = u(̃z),

Y =∂t − v · Dx , ˜P = ∂t − v · Dx − ai j (̃z)Dvi v j .

Then,

Y ũ(z) = r2Y u(̃z), ˜Pũ(z) = r2(Pu)(̃z).

Proof. The assertion is a direct consequence of the following calculations:

∂t ũ(z) = r2(∂t u)(̃z) − r2v0 · (Dx u)(̃z),

v · Dx ũ(z) = r3v · (Dx u)(̃z) = r2(rv + v0) · (Dx u)(̃z) − r2v0 · (Dx u)(̃z),

Dvi v j ũ(z) = r2(Dvi v j u)(̃z).

The lemma is proved. ��

4. S2-Estimate for the Model Equation

The goal of this section is to prove Theorem 4.1, which is a version of Theo-
rem 2.6 in the case when p = 2, b ≡ 0, c ≡ 0, w = 1, and the coefficients ai j

are independent of x and v. Here is the outline of the proof. First, we prove the a
priori estimate for smooth and compactly supported functions in the x, v variables
by taking the Fourier transform in the x, v variables and reducing the equation to
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a first-order PDE. Furthermore, we use a limiting argument to extend the result
to the space S2(R

1+2d
T ). Then we prove the denseness of (P0 + λ)C∞

0 (R1+2d) in
L2(R

1+2d) by using a localized version of the L2-estimate. The above ingredients
yield the desired existence and uniqueness result.

Theorem 4.1. The following assertions hold:

(i) For any number λ � 0, T ∈ (−∞,∞], and u ∈ S2(R
1+2d
T ), one has

λ‖u‖ + λ1/2‖Dvu‖ + ‖D2
vu‖ + ‖(−Δx )

1/3u‖
+ ‖Dv(−Δx )

1/6u‖ � N (d)δ−1‖P0u + λu‖, (4.1)

where ‖ · ‖ = ‖ · ‖L2(R
1+2d
T )

.

(ii) For any λ > 0, T ∈ (−∞,∞], and f ∈ L2(R
1+2d
T ), Eq. (1.2) has a unique

solution u ∈ S2(R
1+2d
T ).

(iii) For any finite numbers S < T and f ∈ L2((S, T ) × R
2d), the Cauchy

problem (2.7) with P = P0, b ≡ 0, and c ≡ 0 has a unique solution u ∈
S2((S, T ) × R

2d). In addition,

‖u‖L2((S,T )×R2d ) + ‖Dvu‖L2((S,T )×R2d ) + ‖D2
vu‖L2((S,T )×R2d )

+ ‖(−Δx )
1/3u‖L2((S,T )×R2d ) + ‖Dv(−Δx )

1/6u‖L2((S,T )×R2d )

+ ‖∂t u − v · Dx u‖L2((S,T )×R2d ) � N (d, T − S)δ−1‖ f ‖L2((S,T )×R2d ).

Lemma 4.2. Let λ > 0 be finite, T ∈ (−∞,∞], and h ∈ Cb(R
1+2d
T ), and f ∈

L∞((−∞, T ), Cb(R
2d)) ∩ L2(R

1+2d
T ) be functions satisfying Dξ h ∈ Cb(R

1+2d),
∂t h ∈ L∞((−∞, T ), Cb(R

2d)) ∩ L2(R
1+2d
T ), and the equation

∂t h + ai j (t)ξiξ j h + ki Dξi h + λh = f.

Then, one has

λ‖h‖L2(R
1+2d
T )

+ ‖|ξ |2h‖L2(R
1+2d
T )

+ ‖|k|2/3h‖L2(R
1+2d
T )

+ ‖|k|1/3ξh‖L2(R
1+2d
T )

� N (d)δ−1‖ f ‖L2(R
1+2d
T )

.

Proof. In this proof, we take N = N (d). By the method of characteristics, we have

h(t, k, ξ)

=
ˆ t

−∞
e−λ(t−t ′)e− ´ t

t ′ a jl (s)(k j (s−t)+ξ j )(kl (s−t)+ξl ) ds f (t ′, k, k(t ′ − t) + ξ) dt ′.

Note that by the parabolicity condition and the Minkowski inequality,

‖h(t, ·, ·)‖L2(R2d ) �
ˆ t

−∞
e−λ(t−t ′)‖ f (t ′, ·, ·)‖L2(R2d ) dt ′.

Then, by Young’s inequality, we get

λ‖h‖L2(R
1+2d
T )

� ‖ f ‖L2(R
1+2d
T )

.
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Furthermore, the parabolicity condition givesˆ t

t ′
a jl(s)(k j (s − t) + ξ j )(kl(s − t) + ξl) ds � δ

ˆ t

t ′
|k(s − t) + ξ |2 ds

= δ(t − t ′)(|k|2(t − t ′)2/3 − k · ξ(t − t ′) + |ξ |2)
� (δ/24)(t − t ′)(|k|2(t − t ′)2 + |ξ |2).

(4.2)

By this and the Minkowski inequality, we get

‖|k|2/3h(t, k, ·)‖L2(Rd )

�
ˆ t

−∞
|k|2/3e−(δ/24)(t−t ′)3|k|2‖ f (t ′, k, ·)‖L2(Rd ) dt ′.

Furthermore, by Young’s inequality, and the change of variables t = δs3|k|2,
‖|k|2/3h(·, k, ·)‖L2(R

1+d
T )

� |k|2/3(
ˆ ∞

0
e−(δ/24)s3|k|2 ds

)‖ f (·, k, ·)‖L2(R
1+d
T )

� Nδ−1/3(
ˆ ∞

0
t−2/3e−t/24 dt

)‖ f (·, k, ·)‖L2(R
1+d
T )

.

Integrating the above inequality over k ∈ R
d , we prove the estimate of |k|2/3h.

Next, by the Cauchy–Schwartz inequality and (4.2),

‖|ξ |2h(t, ·, ·)‖2
L2(R

2d
T )

�
ˆ

R
1+2d
T

I1(z)I2(z) dz,

where

I1(z) =
ˆ t

−∞
|ξ |2e−(δ/24)(t−t ′)|ξ |2 dt ′ � Nδ−1,

I2(z) =
ˆ t

−∞
|ξ |2e−(δ/24)(t−t ′)(|k|2(t−t ′)2+|ξ |2) f 2(t ′, k, k(t ′ − t) + ξ) dt ′.

Furthermore, by the change of variables ξ → k(t ′ − t)+ ξ and the Fubini theorem,
we getˆ

R
1+2d
T

I2(z) dz

�
ˆ

R
1+2d
T

ˆ t

−∞
|ξ − k(t ′ − t)|2e− δ

72 (t−t ′)(|k|2(t−t ′)2+|ξ |2) f 2(t ′, k, ξ) dt ′ dz

� 2
ˆ

R2d

(ˆ ∞

0
(|ξ |2 + |k|2t2)e− δ

72 (|k|2t3+|ξ |2t) dt

)(ˆ T

−∞
f 2(t, k, ξ) dt

)

dkdξ

� Nδ−1
ˆ

R
1+2d
T

f 2(z) dz.

Finally, the estimate of |k|1/3ξh(z) follows from the estimates of |k|2/3h(z) and
|ξ |2h(z), and the Cauchy–Schwartz inequality. ��
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Corollary 4.3. Let u(z) be a function such that

– there exists some r > 0 such that for any t ∈ (−∞, T ), u(t, ·, ·) is compactly
supported on Br × Br ,

– u, ∂t u, Dx u, Dvu, D2
vu ∈ Cb(R

1+2d
T ) ∩ L2(R

1+2d
T ).

Then, (4.1) holds.

Proof. Let f = P0u + λu. For a smooth integrable function ζ(x, v), by ζ̂ (k, ξ),
we denote its Fourier transform in the x, v variables. Then, one has

∂t û + ai j (t)ξiξ j û + ki Dξi û + λû = f̂ .

Combining Lemma 4.2 with Parseval’s identity, we prove the assertion. ��
To generalize the estimate (4.1) for the class of functions S2(R

1+2d
T ), we prove

the following approximation result.

Lemma 4.4. For any u ∈ S2(R
1+2d
T ), there exists a sequence of functions un, n �

1, such that

(a) for any t ∈ (−∞, T ), un(t, ·) is compactly supported on B2n3 × B2n,

(b) for any j, k, l ∈ {0, 1, 2, . . .}, ∂
j

t Dk
x Dl

vun ∈ Cb(R
1+2d
T ) ∩ L2(R

1+2d
T ),

(c) limn→∞ ‖un − u‖S2(R
1+2d
T )

= 0.

Proof. Let η ∈ C∞
0 ((0,∞) × R

2d) be a function with unit integral. For ε > 0 and
h ∈ L1,loc(R

1+2d), we denote

h(ε)(t, x, v) =
ˆ

h(t − ε2t ′, x − ε1/2x ′, v − εv′)η(t ′, x ′, v′) dx ′dv′dt ′.

Furthermore, let φ ∈ C∞
0 (B2 × B2) be a function such that φ = 1 on B1 × B1 and

denote

φr (z) = φ(x/r3, v/r), uε,r (z) = u(ε)(z)φr (x, v), un = un−1,n,

so that a) and b) are clearly satisfied.
We now prove c). Clearly, Aun → Au for A = I, Dv, D2

v in L2(R
1+2d
T ) as

n → ∞. To prove the convergence of the transport term, we first, note that for any
z ∈ R

1+2d
T ,

(∂t − v · Dx )(u(n−1) − u) = hn + gn, (4.3)

where

hn(z) = (∂t u − v · Dx u)(n−1)(z) − (∂t u − v · Dx u)(z)

and

gn(z) = − n−1/2
ˆ

u(t − n−2t ′, x − n−1/2x ′, v − n−1v′)v′

·Dxη(t ′, x ′, v′) dx ′dv′dt ′.
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Furthermore, hn → 0 in L2(R
1+2d
T ) as n → ∞ and by the Minkowski inequality,

‖gn‖L2(R
1+2d
T )

� Nn−1/2‖u‖L2(R
1+2d
T )

. (4.4)

Therefore, from (4.3) we obtain ‖(∂t − v · Dx )(u(n−1) − u)‖L2(R
1+2d
T )

→ 0 as
n → ∞. To prove the desired convergence, we write

(∂t − v · Dx )(un − u(n−1)) = (φn − 1)(∂t u − v · Dx u)(n−1)

+ (φn − 1)gn − u(n−1)v · Dxφn =: An + Bn + Cn .

We have

‖Cn‖L2(R
1+2d
T )

� Nn−2‖u‖L2(R
1+2d
T )

,

and by (4.4),

‖Bn‖L2(R
1+2d
T )

� Nn−1/2‖u‖L2(R
1+2d
T )

.

Furthermore, note that

|An| � N (d)|φn − 1|Mt Mx Mv(|∂t u − v · Dx u|),
where Mt , Mx , and Mv are the Hardy–Littlewood maximal function with respect
to the t , x , and v variables. Then, by the Hardy–Littlewood inequality and the
dominated convergence theorem,

‖An‖L2(R
1+2d
T )

→ 0

as n → ∞. Thus, (∂t −v · Dx )(un −u) → 0 in L2(R
1+2d
T ) as n → ∞. The lemma

is proved. ��
Proof of Theorem 4.1 (i). Let un, n � 1, be a sequence from Lemma 4.4. Then, by
Corollary 4.3,

λ‖un‖L2(R
1+2d
T )

+ λ1/2‖Dvun‖L2(R
1+2d
T )

+ ‖D2
vun‖L2(R

1+2d
T )

+ ‖(−Δx )
1/3un‖L2(R

1+2d
T )

+ ‖Dv(−Δx )
1/6un‖L2(R

1+2d
T )

� Nδ−1‖P0un‖L2(R
1+2d
T )

(4.5)

Passing to the limit in the above inequality as n → ∞ and using Lemma 4.4, we
prove (4.1) for u, Dvu, and D2

vu.
Next, we fix any φ ∈ C∞

0 (R1+2d
T ). Since un → u in L2(R

1+2d
T ), for A =

(−Δx )
1/3, Dv(−Δx )

1/6, we have
∣

∣

∣

∣

ˆ
R
1+2d
T

(Au)φ dz

∣

∣

∣

∣

� ‖φ‖L2(R
1+2d
T )

lim
n→∞ ‖Aun‖L2(R

1+2d
T )

.

Now the desired estimates for (−Δx )
1/3u and Dv(−Δx )

1/6 follow from this, (4.5),
and Lemma 4.4. ��
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Next we prove the existence part by using a density argument. We first show
localized L2 estimates.

Lemma 4.5. Let λ � 0 and r1, r2, R1, R2 > 0 be numbers such that r1 < r2, and
R1 < R2. Let u ∈ S2,loc(R

1+2d
0 ) and denote f = P0u + λu. Then, the following

assertions hold:

(i) δ−2(r2 − r1)
−1‖Dvu‖L2(Qr1,R1 ) + ‖D2

vu‖L2(Qr1,R1 )

� N (d)δ−1‖ f ‖L2(Qr2,R2 ) + N (d)δ−4((r2 − r1)
−2

+ r2(R2 − R1)
−3)‖u‖L2(Qr2,R2 ).

(4.6)

(ii) Denote Cr = (−r2, 0) × R
d × Br . Then, we have

δ−2(r2 − r1)
−1‖Dvu‖L2(Cr1 ) + ‖D2

vu‖L2(Cr1 )

� N (d)δ−1‖ f ‖L2(Cr2 ) + N (d)δ−4(r2 − r1)
−2‖u‖L2(Cr2 ).

Proof. The method is standard and can be found in Lemma 2.4.4 of [27]. In this
proof, N is a constant depending only on d.

(i) Let ζ ∈ C∞
loc(R) be a function such that ζ = 0 if t � 1, and ζ = 1 if t � 0.

Denote r̂0 = r1, R̂0 = R1,

r̂n = r1 + (r2 − r1)
n

∑

k=1

2−k, R̂n = R1 + (R2 − R1)

n
∑

k=1

2−k,

ηn(t, v) = ζ
(

22(n+1)(r2 − r1)
−2(−r̂2n − t)

)

ζ
(

2(n+1)(r2 − r1)
−1(|v| − r̂n)

)

,

and

φn(z) = ηn(t, v) ζ
(

23(n+1)(R2 − R1)
−3(|x | − R̂3

n)
)

.

Note that ηn and φn are smooth functions.
Denote

Q(n) = Qr̂n ,R̂n

and observe that in R
1+2d
0 , φn vanishes outside Q(n + 1), and φn = 1 on Q(n).

Furthermore, in R
1+2d
0 , we have

(P0 + λ)(uφn) = f φn + u(P0φn) − 2(aDvφn) · Dvu.

Then by (4.1),

‖D2
vu‖L2(Q(n)) � ‖D2

v(uφn)‖L2(Q(n+1)) � Nδ−1‖ f ‖L2(Qr2,R2 )

+ Nδ−1(δ−122n(r2 − r1)
−2 + 23nr2(R2 − R1)

−3)‖u‖L2(Q(n+1))

+ Nδ−22n(r2 − r1)
−1‖Dvu‖L2(Q(n+1)).

By the interpolation inequality,

‖D2
vu‖L2(Q(n)) + (1 + δ−2(r2 − r1)

−1)‖Dvu‖L2(Q(n))
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� Nδ−1‖ f ‖L2(Qr2,R2 ) + Nδ−4(22n(r2 − r1)
−2

+ 23nr2(R2 − R1)
−3)‖u‖L2(Q(n+1)) + 2−4‖D2

vu‖L2(Q(n+1)).

Wemultiply the above inequality by2−4n and sumupwith respect ton = 0, 1, 2, . . ..
We get

‖D2
vu‖L2(Qr1,R1 ) +

∞
∑

n=1

2−4n‖D2
vu‖L2(Q(n)) + δ−2(r2 − r1)

−1‖Dvu‖L2(Qr1,R2 )

� Nδ−1‖ f ‖L2(Qr2,R2 ) + Nδ−4((r2 − r1)
−2 + r2(R2 − R1)

−3)‖u‖L2(Qr2,R2)

+
∞
∑

n=1

2−4n‖D2
vu‖L2(Q(n)).

Canceling the same sum on both sides of the above inequality, we prove the lemma.
(ii) To prove the claim we substitute R2 = 2R1 in (4.6) and pass to the limit as

R1 → ∞. This assertion is proved. ��
Lemma 4.6. For any number λ � 0, the set (P0 + λ)C∞

0 (R1+2d) is dense in
L2(R

1+2d).

Proof. Proof by contradiction. If the claimdoes not hold, then there exists a function
u ∈ L2(R

1+2d) that is not identically zero and such that for any ζ ∈ C∞
0 (R1+2d),

ˆ
(P0ζ + λζ )u dz = 0.

Hence,

−∂t u + v · Dx u − ai j (t)Dvi v j u + λu ≡ 0

in the sense of distributions. Let w(t, x, v) = u(−t,−x, v). We regularize w

by using a mollification argument from Lemma 4.4. For ε > 0 and a function
h ∈ L1,loc(R

1+2d), we denote

h(ε)(z) =
ˆ

h(t, x − ε1/2x ′, v − εv′)η(x ′, v′) dx ′dv′,

where η ∈ C∞
0 (R2d) and

´
η dxdv = 1. Then, the function w(ε) satisfies the

equation

∂tw(ε) − v · Dxw(ε) − ai j (t)Dvi v j w(ε) + λw(ε) = gε, (4.7)

where

gε = −ε1/2
ˆ

u(t, x − ε1/2x ′, v − εv′)v′ · Dxη(x ′, v′) dx ′dv′,

which satisfies

‖gε‖L2(R1+2d ) � Nε1/2‖u‖L2(R1+2d ). (4.8)
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Furthermore, by Eq. (4.7) and (4.8), ∂tw(ε) ∈ L2,loc(R
1+2d), and, hence, w(ε) ∈

S2,loc(R1+2d). Then, by Lemma 4.5, (4.7), and (4.8), for any r > 0,

‖Dvw(ε)‖L2(Qr ) � N (d, δ)(r‖gε‖L2(Q2r ) + r−1‖w(ε)‖L2(Q2r ))

� N (ε1/2r + r−1)‖w‖L2(R1+2d ).
(4.9)

Therefore, Dvw ∈ L2,loc(R
1+2d
0 ), and, passing to the limit as ε → 0 in (4.9), we

get

‖Dvw‖L2(Qr ) � Nr−1‖w‖L2(R1+2d ).

Finally, passing to the limit as r → ∞, we conclude that Dvw ≡ 0, and hence,
w ≡ 0 in R

1+2d
0 . By a translation in the time coordinate, we see that w and thus

u are identically equal to 0 in R
1+2d , which gives a contradiction. The lemma is

proved. ��
Proof of Theorem 4.1 (ii). First, we consider the case when T = ∞. The assertion
follows from the a priori estimate (i) and the denseness of (P0 + λ)C∞

0 (R1+2d) in
L2(R

1+2d) (see Lemma 4.6).
When T < ∞, we note that the uniqueness holds by the a priori estimate of the

assertion (i) of this theorem. To prove the existence, note that the equation

P0u + λu = f 1t<T

has a unique solution ũ ∈ S2(R1+2d). We conclude that u := ũ1t<T is a S2(R
1+2d
T )

solution of Eq. (1.2). ��

5. Sp-Estimate for the Model Equation

Here we generalize Theorem 4.1 for p ∈ (1,∞). We follow the argument
in Chapter 4 of [27]. To derive an estimate of the sharp functions of (−Δx )

1/3u,
Dv(−Δx )

1/6u, and D2
vu for u ∈ Sp(R

1+2d
T ) (see Proposition 5.7), we split u into

the P0-caloric part and the remainder. The latter is estimated in Lemma 5.2 and the
former - in Proposition 5.3. Throughout this section, the matrix-valued function a
is independent of x, v.

Theorem 5.1. Let p > 1 be a number. The following assertions hold:

(i) For any number λ � 0 and u ∈ Sp(R
1+2d
T ), one has

λ‖u‖ + λ1/2‖Dvu‖ + ‖D2
vu‖ + ‖(−Δx )

1/3u‖
+ ‖Dv(−Δx )

1/6u‖ � N (d, p)δ−θ‖P0u + λu‖, (5.1)

where θ = θ(d) > 0 and ‖ · ‖ = ‖ · ‖L p(R1+2d
T )

.

(ii) For any λ > 0, T ∈ (−∞,∞] and f ∈ L p(R
1+2d
T ), Eq. (1.2) has a unique

solution u ∈ Sp(R
1+2d
T ).
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(iii) For any finite numbers S < T and f ∈ L p((S, T ) × R
2d), the Cauchy

problem (2.7) with P = P0, b ≡ 0, and c ≡ 0 has a unique solution u ∈
Sp((S, T ) × R

2d). In addition,

‖u‖L p((S,T )×R2d ) + ‖Dvu‖L p((S,T )×R2d ) + ‖D2
vu‖L p((S,T )×R2d )

+ ‖(−Δx )
1/3u‖L p((S,T )×R2d ) + ‖Dv(−Δx )

1/6u‖L p(R1+2d
T )

� N (d, p, T − S)δ−θ‖ f ‖L p((S,T )×R2d ),

where θ = θ(d) > 0.

We note that in the next lemma, f is assumed to be compactly supported only
in the t and v variables. The reason for such a choice will be clear when we estimate
the P0-caloric part. See the proof of Proposition 5.3.

Lemma 5.2. Let R � 1 be a number and f ∈ L2(R
1+2d) vanish outside (−1, 0)×

R
d × B1. Let u ∈ S2((−1, 0)×R

2d) be the unique solution to the Cauchy problem
(see Definition 2.5 and Theorem 4.1 (iii))

P0u = f, u(−1, ·) = 0. (5.2)

Then, there exists a number θ = θ(d) > 0 such that

‖|u| + |Dvu| + |D2
vu|‖L2((−1,0)×BR3×BR)

� N (d)δ−1
∞
∑

k=0

2−k(k−1)/4R−k‖ f ‖L2(Q1,2k+1R/δ2 ), (5.3)

(|(−Δx )
1/3u|2)1/2Q1,R

� N (d)δ−θ R−2
∞
∑

k=0

2−2k( f 2)1/2Q1,2k R/δ2
, (5.4)

and

(|Dv(−Δx )
1/6u|2)1/2Q1,R

� N (d)δ−θ R−1
∞
∑

k=0

2−k( f 2)1/2Q1,2k R/δ2
.

Proof. It is possible to obtain the estimates of this lemma by using the fast decay of
the fundamental solution of the operator P0, which can be written down explicitly
(see, for example, [10,12]). Instead of invoking the integral representation of the
solution to Eq. (5.2), we decompose it into a sum of functions supported on dyadic
shells and exploit the global L2-estimate of Theorem 4.1 and the scaling property
of the operator P0.

In this proof, N is a constant depending only on d.
Estimate of u, Dvu, and D2

vu. Denote

f = f0 +
∞
∑

k=1

fk := f 1{x∈B
(2R/δ2)3 } +

∞
∑

k=1

f 1{x∈B
(2k+1R/δ2)3\B

(2k R/δ2)3 }.
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ByTheorem4.1, for k = 0, 1, 2, . . ., there exists a unique solutionuk ∈ S2((−1, 0)×
R
2d) to (5.2) with fk in place of f , which satisfies

‖|uk | + |Dvuk | + |D2
vuk |‖L2((−1,0)×R2d ) � Nδ−1‖ fk‖L2((−1,0)×R2d ). (5.5)

By the same theorem, for A = I , Dv , and D2
v , we have

lim
n→∞

n
∑

k=0

Auk = Au in L2((−1, 0) × R
2d).

Nowwe take a sequenceof functions ζ j = ζ j (x, v) ∈ C∞
0 (B(2 j+1R/δ2)3×B2 j+1R/δ2),

j = 0, 1, 2, . . . , such that ζ j = 1 on B(2 j+1/2R/δ2)3 × B2 j+1/2R/δ2 and

|ζ j | � 1, |Dvζ j | � N2− j R−1δ2,

|D2
vζ j | � N2−2 j R−2δ4, |Dxζ j | � N2−3 j R−3δ6.

For k � 1 and j = 0, 1, . . . , k − 1, we set uk, j = ukζ j , which satisfies

P0uk, j = uk P0ζ j − 2(aDvζ j ) · Dvuk

because fkζ j ≡ 0. By Theorem 4.1,

‖|uk, j | + |Dvuk, j | + |D2
vuk, j |‖L2((−1,0)×R2d )

� Nδ−1‖|uk P0ζ j | + |a||Dvζ j ||Dvuk |‖L2((−1,0)×R2d ),

which by the properties of ζ j and the fact that |ai j | < δ−1 implies that

‖|uk | + |Dvuk | + |D2
vuk |‖L2((−1,0)×B

(2 j R/δ2)3×B2 j R/δ2 )

� N2− j R−1‖|uk | + |Dvuk |‖L2((−1,0)×B
(2 j+1R/δ2)3×B2 j+1R/δ2 ). (5.6)

By an induction argument, (5.5), and (5.6), for k � 1 we get

‖|uk | + |Dvuk | + |D2
vuk |‖L2((−1,0)×BR3×BR)

� N k2−k(k−1)/2R−kδ−1‖ fk‖L2((−1,0)×R2d )

� N2−k(k−1)/4R−kδ−1‖ f ‖L2(Q1,2k+1R/δ2 ). (5.7)

To conclude (5.3), we use (5.5) with k = 0, (5.7), and the triangle inequality.
Estimate of (−Δx )

1/3u. Note that uζ0 satisfies

P0(uζ0) = f ζ0 + u(P0ζ0) − 2(aDvζ0) · Dvu.

By Theorem 4.1 and (5.3),

‖(−Δx )
1/3(uζ0)‖L2((−1,0)×R2d ) + ‖Dv(−Δx )

1/6(uζ0)‖L2((−1,0)×R2d )

� Nδ−1
∞
∑

k=0

2−k(k−1)/4R−k‖ f ‖L2(Q1,2k+1R/δ2 ). (5.8)
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It remains to estimate the commutator term

‖(−Δx )
1/3(uζ0) − ζ0(−Δx )

1/3u‖L2(Q1,R). (5.9)

Since ζ0 = 1 in B(21/2R/δ2)3 × B21/2R/δ2 , for any z ∈ Q1,R , we have

|(−Δx )
1/3(uζ0) − ζ0(−Δx )

1/3u|(z)
� N

ˆ
|y|>(23/2−1)R3

|u|(t, x + y, v)|y|−d−2/3 dy.

By Lemma A.1, (5.9) is bounded by

N R−2
∞
∑

j=0

2−2 j−3d j/2‖u‖L2(Q1,2 j R).

By (5.3), the above sum is further bounded by

Nδ−1R−2
∞
∑

j=0

2−2 j−3d j/2
∞
∑

k=0

2−k(k−1)/4(2 j R)−k‖ f ‖L2(Q1,2k+ j+1R/δ2 ),

which gives (5.4) by a straightforward computation with a change of order of
summations.

Estimate of Dv(−Δx )
1/6u. By (5.8), it suffices to estimate the L2(Q1,R) norm

of

A = (−Δx )
1/6Dv(uζ0) − ζ0(−Δx )

1/6Dvu,

which is bounded above by

A1 + A2 := |(−Δx )
1/6(u Dvζ0)| + |(−Δx )

1/6(ζ0Dvu) − ζ0(−Δx )
1/6Dvu|.

For any z ∈ Q1,R ,

A1(z) � Nδ2
ˆ

|y|>(23/2−1)R3
|u|(t, x + y, v)|y|−d−1/3 dy.

Then, arguing as above, we get

‖A1‖L2(Q1,R) � N (d)R−1δ

∞
∑

k=0

2−k−3dk/2‖ f ‖L2(Q1,2k R/δ2 ). (5.10)

Furthermore, by Lemma A.1,

‖(−Δx )
1/6(ζ0Dvu) − ζ0(−Δx )

1/6Dvu‖L2(Q1,R)

� N R−1
∞
∑

j=0

2− j−3d j/2‖Dvu‖L2(Q1,2 j R).

By a computation similar to the one for (5.9), we get

‖A2‖L2(Q1,R) � N (d)R−1δ−1
∞
∑

k=0

2−k−3dk/2‖ f ‖L2(Q1,2k R/δ2 ).

Combining this with (5.10), we prove the desired estimate. ��
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Proposition 5.3. Let r > 0, ν � 2 be numbers, T ∈ (−∞,∞], z0 ∈ R
1+2d
T , and

u ∈ S2,loc(R
1+2d
T ). Assume that P0u = 0 in (t0 − ν2r2, t0) × R

d × Bνr (v0). Then,
there exist constants N (d) > 0 and θ = θ(d) > 0 such that

J1 :=
(

|(−Δx )
1
3 u − ((−Δx )

1
3 u)Qr (z0)|2

)1/2

Qr (z0)

� Nν−1δ−θ (|(−Δx )
1
3 u|2)1/2Qνr (z0)

,

J2 :=
(

|Dv(−Δx )
1
6 u − (Dv(−Δx )

1
6 u)Qr (z0)|2

)1/2

Qr (z0)

� Nν−1δ−θ (|Dv(−Δx )
1
6 u|2)1/2Qνr (z0)

+ Nν−1δ−θ
∞
∑

k=0

2−2k(|(−Δx )
1
3 u|2)1/2Q

νr,2k νr (z0)
,

J3 :=
(

|D2
vu − (D2

vu)Qr (z0)|2
)1/2

Qr (z0)

� Nν−1δ−θ (|D2
vu|2)1/2Qνr (z0)

+ Nν−1δ−θ
∞
∑

k=0

2−k(|(−Δx )
1
3 u|2)1/2Q

νr,2k νr (z0)
.

5.1. Proof of Proposition 5.3

We follow the scheme of Chapter 4 of [27]. Thanks to the Poincaré inequality,
to handle the P0-caloric function, it suffices to estimate its Hölder norm. We do
this by using Caccioppoli type estimate combined with the localized version of
Theorem 4.1. See Lemma 4.5. The proof of Proposition 5.3 is given at the end of
this subsection after a series of lemmas.

The following lemma contains one of the key estimates of the proof.

Lemma 5.4. (Caccioppoli type estimate) Let u ∈ S2,loc(R
1+2d
0 ) be a function such

that

P0u = 0 in Q1.

Then, for any numbers 0 < r < R � 1,

‖Dx u‖L2(Qr ) � N (d, r, R)δ−7‖u‖L2(Q R).

Proof. By modifying u outside Q1, we may certainly assume that u is compactly
supported. By taking the standard mollification with respect to x and then taking
the limit, we may assume without loss of generality that (−Δx )

βu ∈ S2(R
1+2d
0 )

for any β � 0. Let r < r1 < r2 < R be numbers, ψ ∈ C∞
0 (Rd) vanish outside B1

and η ∈ C∞
0 (R1+d) vanish outside (−1, 1)× B1. We set φ1(t, v) = η(t/r21 , v/r1),

φ2(x) = ψ(x/r32 ) and denote

φ(z) = φ1(t, v)φ2(x).
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Throughout the proof, a constant N depends only on d, r , and R.
Note that uφ satisfies the equation

P0(uφ) = u P0φ − 2(aDvφ) · Dvu (5.11)

on R
1+2d
0 because φP0u ≡ 0. Then, by Theorem 4.1 applied to (5.11), one has

‖(−Δx )
1/3(uφ)‖L2(R

1+2d
0 )

� Nδ−1‖u P0φ‖L2(R
1+2d
0 )

+ Nδ−1‖(aDvφ) · Dvu‖L2(R
1+2d
0 )

.

Applying Lemma 4.5 (i) with r1 in place of r1, R1 = r2, and with R in place of r2
and R2 and using the fact that |ai j | < δ−1, from the above inequality we get

‖φ1(−Δx )
1/3(uφ2)‖L2(R

1+2d
0 )

� Nδ−4‖u‖L2(Q R). (5.12)

Furthermore, the function w = (−Δx )
1/3(uφ) solves the equation

P0w = (−Δx )
1/3[u(P0φ)] − 2(aDvφ1) · Dv(−Δx )

1/3(uφ2) (5.13)

on R
1+2d
0 . Due to Theorem 4.1 (i) applied to (5.13),

‖(−Δx )
2/3(uφ)‖L2(R

1+2d
0 )

� Nδ−1(‖(−Δx )
1/3(u P0φ)‖L2(R

1+2d
0 )

+ ‖(aDvφ1) · Dv(−Δx )
1/3(uφ2)‖L2(R

1+2d
0 )

) =: J1 + J2.
(5.14)

By (5.12),

J1 � Nδ−6‖u‖L2(Q R). (5.15)

Next we consider the term J2. Observe that f = (−Δx )
1/3(uφ2) satisfies the

equation

P0 f = −(−Δx )
1/3[(v · Dxφ2)u] on (−1, 0) × R

d × B1.

By Lemma 4.5 (ii) and the assumption |ai j | < δ−1,

J2 � Nδ−3‖η(−Δx )
1/3(uφ2)‖L2(R

1+2d
0 )

+ N‖ηvi (−Δx )
1/3(u Dxi φ2)‖L2(R

1+2d
0 )

.

Here η ∈ C∞(R1+d) is a function of (t, v) such that η = 1 on (−r22 , r22 )× Br2 and
η = 0 outside (−r23 , r23 ) × Br3 , where r2 < r3 < R. Then, using (5.12), we get

J2 � Nδ−7‖u‖L2(Q R). (5.16)

By (5.14)–(5.16), we obtain

‖(1 − Δx )
2/3(uφ)‖L2(R

1+2d
0 )

� N (d)‖uφ‖L2(R
1+2d
0 )

+ N (d)‖(−Δx )
2/3(uφ)‖L2(R

1+2d
0 )

� Nδ−7‖u‖L2(Q R).
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We assume that φ1 = 1 on (−r2, r2) × Br and φ2 = 1 on Br3 . We conclude the
proof as follows:

‖Dx u‖L2(Qr ) � ‖Dx (uφ)‖L2(R
1+2d
0 )

� N (d)‖(1 − Δx )
2/3(uφ)‖L2(R

1+2d
0 )

� Nδ−7‖u‖L2(Q R).

The lemma is proved. ��
We also need the following nonlocal estimates.

Lemma 5.5. Let r ∈ (0, 1) be a number and u ∈ S2,loc(R
1+2d
0 ). We denote f =

P0u and assume that f = 0 in (−1, 0) × R
d × B1. Then,

(i) ‖Dx u‖L2(Qr ) � Nδ−4
∞
∑

k=0

2−k(|(−Δx )
1/3u|2)1/2Q1,2k

,

(ii) ‖Dx u‖L2(Qr ) � Nδ−4
∞
∑

k=0

2−2k(|(−Δx )
1/6u|2)1/2Q1,2k

, (5.17)

where N = N (d, r).

Proof. (i) By mollifying u in the x variable, we may assume that u is sufficiently
regular in x . Fix some number R ∈ (r, 1). Let η ∈ C∞

0 (R1+2d) be a function
such that η = 1 on ˜Qr and η vanishes outside ˜Q R . In this proof, we assume that
N = N (d, r, R).

We decompose

η2Dx u = η2Rx (−Δx )
1/2u = η(Lu + Comm),

where Rx = Dx (−Δx )
−1/2 is the Riesz transform,

Lu = Rx (−Δx )
1/6(η(−Δx )

1/3u),

Comm = ηRx (−Δx )
1/2u − Rx (−Δx )

1/6(η(−Δx )
1/3u).

Thus, to prove the claim we only need to show that (5.17) holds if we replace the
left-hand side with ‖Lu‖L2(Q R) + ‖Comm‖L2(Q R).

Estimate of Lu. Denote

w = (−Δx )
1/3u.

Then, since P0u = 0 in (−1, 0) × R
d × B1, the function ηw satisfies the equation

P0(ηw) = wP0η − 2(aDvη) · Dvw onR
1+2d
0 . (5.18)

By the fact that Rx is an isometry in L2(R
d), the interpolation inequality, and

Theorem 4.1, we have

‖Lu‖L2(R
1+2d
0 )

� N (d)‖ηw‖L2(R
1+2d
0 )

+ N (d)‖(−Δx )
1/3(ηw)‖L2(R

1+2d
0 )

� Nδ−2‖w‖L2(Q R) + Nδ−1‖(aDvη) · Dvw‖L2(Q R).
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By the fact that P0w = 0 in (−1, 0)×R
d × B1, Lemma 4.5 (i), andAssumption 2.2,

the last term is bounded by

N (d, r, R)δ−4‖w‖L2(Q1).

Estimate of Comm. Denote

A = Rx (−Δx )
1/6 = Dx (−Δx )

−1/3

and observe that

Comm = ηAw − A(ηw).

It is well known that for any Schwartz function φ on R
d ,

(−Δx )
−1/3φ = K ∗ φ,

where

K(x) = N
ˆ ∞

0
t1/3 p(t, x)

dt

t

and

p(t, x) = (4π t)−d/2e−|x |2/(4t).

Furthermore, by the change of variables t → t
|x |2 for any x ∈ R

d \ {0}, we have

DxK(x) = N x
ˆ ∞

0
t−2/3−d/2e−|x |2/(4t) dt

t

= N x |x |−(d+4/3)
ˆ ∞

0
t−2/3−d/2e−1/(4t) dt

t
= N x |x |−(d+4/3).

Therefore, for any z ∈ R
1+2d
0 ,

|Comm(z)| � N
ˆ

Rd
|w(t, x − y, v)| |η(t, x, v) − η(t, x − y, v)| |y|−(d+1/3) dy.

We split the above integral into two parts. The first part, I1, is the integral over
|y| � 2, and the remainder is denoted by I2. First, by the mean-value theorem,

|I1(z)| � N
ˆ

|y|<2
|w(t, x − y, v)| |y|−d+2/3 dy, z ∈ R

1+2d
0 .

Then by the Minkowski inequality,

‖I1‖L2(Q R) � N
ˆ

|y|<2
‖w(·, · − y, ·)‖L2(Q R) |y|−d+2/3 dy

� N‖w‖L2(Q1,2)

ˆ
|y|<2

|y|−d+2/3 dy � N‖w‖L2(Q1,2).
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Furthermore, since η vanishes outside Q R , for any z ∈ Q R ,

I2(z) = N |η(z)|
ˆ

|y|>2
|w(t, x − y, v)| |y|−(d+1/3) dy.

By virtue of Lemma A.1,

‖I2‖L2(Q R) � N
∞
∑

k=0

2−k(w2)
1/2
Q1,2k

.

Thus, the commutator term is less than the right-hand side of (5.17).
(ii) The proof is almost the same as of (i). Let us point out some minor differ-

ences. This time, we denote

˜Lu = Rx (−Δx )
1/3(η(−Δx )

1/6u),

˜A = Rx (−Δx )
1/3 = Dx (−Δx )

−1/6, w̃ = (−Δx )
1/6u,

Comm = ηRx (−Δx )
1/2u − Rx (−Δx )

1/3(η(−Δx )
1/6u) = η˜Aw̃ − ˜A(ηw̃).

Note that ηw̃ satisfies Eq. (5.18) with w replaced with w̃. Then, by Theorem 4.1
and Lemma 4.5 (i),

‖˜Lu‖L2(R
1+2d
0 )

� N (d)δ−1(‖w̃P0η‖L2(R
1+2d
0 )

+ ‖(aDvη) · Dvw̃‖L2(R
1+2d
0 )

) � Nδ−4‖w̃‖L2(Q1).

Furthermore, as above

|Comm| � N
ˆ

Rd
|w̃(t, x − y, v)| |η(t, x, v) − η(t, x − y, v)| |y|−(d+2/3) dy.

Finally, we repeat the last paragraph of the proof of (i). The lemma is proved. ��
Lemma 5.6. Let R ∈ (1/2, 1) be a number and u ∈ S2,loc(R

1+2d
0 ) be a function

such that P0u = 0 in (−1, 0) × R
d × B1. Then, for any l, m = {0, 1, 2, . . .}, there

exists a constant θ = θ(d, l, m) > 0 such that

(i) sup
Q1/2

|Dl
x Dm

v u| + sup
Q1/2

|∂t Dl
x Dm

v u| � N (d, l, m, R)δ−θ‖u‖L2(Q R),

(ii) sup
Q1/2

(|Dl
x Dm+1

v (−Δx )
1/6u| + |∂t Dl

x Dm+1
v (−Δx )

1/6u|)

� N (d, l, m)δ−θ (‖Dv(−Δx )
1/6u‖L2(Q1) +

∞
∑

k=0

2−2k(|(−Δx )
1/3u|2)1/2Q1,2k

)

,

(iii) sup
Q1/2

|Dl
x Dm+2

v u| + sup
Q1/2

|∂t Dl
x Dm+2

v u| � N (d, l, m)δ−θ
(‖D2

vu‖L2(Q1)

+
∞
∑

k=0

2−k(|(−Δx )
1/3u|2)1/2Q1,2k

)

.

Proof. In this proof, N is a constant independent of δ.
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(i) Let us fix some number r ∈ (1/2, R). First, we prove that for any
m ∈ {0, 1, 2, . . .},

‖Dm+1
v u‖L2(Qr ) � N (d, r, R, m)δ−θ‖u‖L2(Q R), (5.19)

where θ = θ(d, m).

Proof by induction. First, for m = 0 the assertion holds due to Lemma 4.5
(i). For m > 0, let α = (α1, . . . αd) be a multi-index of order m. Then, by
the product rule, formally we have

P0(Dα
v u) =

∑

α̃: α̃<α,|̃α|=m−1

cα̃ Dα̃
v Dα−α̃

x u. (5.20)

We fix some numbers r1, r2 such that r < r1 < r2 < R. By Lemma 4.5 (i),

‖Dm+1
v u‖L2(Qr ) � Nδ‖Dm−1

v Dx u‖L2(Qr1 ) + Nδ−2‖Dm
v u‖L2(Qr1 ). (5.21)

Observe that Dx u satisfies P0(Dx u) = 0 in (−1, 0) × R
d × B1. Hence, by

the induction hypothesis and Lemma 5.4,

‖Dm−1
v Dx u‖L2(Qr1 ) � Nδ−θ‖Dx u‖L2(Qr2 ) � Nδ−θ‖u‖L2(Q R). (5.22)

To make the argument above rigorous, we need to use the method of finite-
difference quotient. Thus, by induction (5.19) holds.
Next, observe that for any multi-index α, the function Dα

x u satisfies

P0(Dα
x u) = 0 in (−1, 0) × R

d × B1.

Then, by (5.19),

‖Dm
v Dl

x u‖L2(Q1/2) � Nδ−θ‖Dl
x u‖L2(Qr ).

Iterating the estimate of Lemma 5.4, we get

‖Dm
v Dl

x u‖L2(Q1/2) � Nδ−θ‖u‖L2(Q R). (5.23)

Here again, we need to use the method of finite-difference quotient.
Furthermore, the fact that |ai j | < δ−1,

∂t u = ai j Dvi v j + v · Dx u (5.24)

in Q1 combined with (5.23) yields the estimate

‖∂t Dm
v Dl

x u‖L2(Q1/2) � Nδ−θ‖u‖L2(Q R).

By this, (5.23), and the Sobolev embedding theorem,weprove the inequality
for the sup-norm of Dl

x Dm
v u. The estimate of the second term follows from

(5.24).
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(ii) First, since u − (u)Qr satisfies the same equation as u, by the assertion (i)
and the Poincaré inequality,

J := sup
Q1/2

(|Dl
x Dm+1

v u| + |∂t Dl
x Dm+1

v u|) � Nδ−θ‖u − (u)Qr ‖L2(Qr )

� Nδ−θ (‖Dvu‖L2(Qr ) + ‖Dx u‖L2(Qr ) + ‖∂t u‖L2(Qr )).

Furthermore, by (5.24) and (5.21), we get

‖∂t u‖L2(Qr ) � Nδ−1‖D2
vu‖L2(Qr ) + N‖Dx u‖L2(Qr )

� Nδ−θ (‖Dx u‖L2(Q R) + ‖Dvu‖L2(Q R)),

where R ∈ (r, 1). By the above,

J � Nδ−θ (‖Dvu‖L2(Q R) + ‖Dx u‖L2(Q R)). (5.25)

Finally, note that P0((−Δx )
1/6u) = 0 in (−1, 0) × R

d × B1. Substituting
(−Δx )

1/6u in (5.25) and using Lemma 5.5 (ii), we prove the assertion.
(iii) Denote

u1(z) = u(z) − (u)Qr − vi (Dvi u)Qr

and observe that P0u1 = 0 in (−1, 0) × R
d × B1. Then, by (i),

sup
Q1/2

|Dl
x Dm

v D2
vu| + sup

Q1/2

|∂t Dl
x Dm

v D2
vu| � Nδ−θ‖u1‖L2(Qr ). (5.26)

Applying the Poincaré inequality twice and using (5.24), we get

‖u1‖L2(Qr )

� N (‖Dx u‖L2(Qr ) + ‖∂t u‖L2(Qr ) + ‖Dvu − (Dvu)Qr ‖L2(Qr ))

� N (‖Dx u‖L2(Qr ) + δ−1‖D2
vu‖L2(Qr ) + ‖Dvx u‖L2(Qr ) + ‖∂t Dvu‖L2(Qr )).

(5.27)

By (5.22) with m = 2,

‖Dvx u‖L2(Qr ) � Nδ−θ‖Dx u‖L2(Q R). (5.28)

Furthermore, by (5.20) with |α| = 1,

‖∂t Dvu‖L2(Qr )

� Nδ−1‖D3
vu‖L2(Qr ) + N‖Dvx u‖L2(Qr ) + N‖Dx u‖L2(Qr ).

(5.29)

By (5.21) with m = 2 and (5.28), we have

‖D3
vu‖L2(Qr ) � Nδ−θ (‖Dx u‖L2(Q R) + ‖D2

vu‖L2(Q R)). (5.30)

Combining (5.27)–(5.30), we obtain

‖u1‖L2(Qr ) � Nδ−θ (‖D2
vu‖L2(Q R) + ‖Dx u‖L2(Q R)).

Now the assertion follows from (5.26), the above inequality, and Lemma 5.5 (i).
��



536 Hongjie Dong & Timur Yastrzhembskiy

Proof of Proposition 5.3. Let ũ and ˜P0 be the function and the operator from
Lemma 3.6 defined with νr in place of r . Then, by the aforementioned lemma,
we have

˜P0ũ = 0 in (−1, 0) × R
d × B1,

and, for any c > 0,
 

Qνr,cνr (z0)
|(−Δx )

1/3u|2 dz = (νr)−4
 

Q1,c

|(−Δx )
1/3ũ|2 dz,

 
Qr (z0)

∣

∣

∣

∣

(−Δx )
1/3u − ((−Δx )

1/3u)Qr (z0)

∣

∣

∣

∣

2

dz

= (νr)−4
 

Q1/ν

∣

∣

∣

∣

(−Δx )
1/3ũ − ((−Δx )

1/3ũ)Q1/ν

∣

∣

∣

∣

2

dz.

Similar identities hold for Dv(−Δx )
1/6u and D2

vu. Hence, we may assume that
r = 1/ν and z0 = 0.

Next, the fact that P0((−Δx )
1/3u) = 0 in (−1, 0) × R

d × B1 combined with
Lemma 5.6 (i) gives

J1 � sup
z1,z2∈Q1/ν

|(−Δx )
1/3u(z1) − (−Δx )

1/3u(z2)|

� N (d)ν−1δ−θ

(  
Q1

|(−Δx )
1/3u|2 dz

)1/2

.

Similarly, by Lemma 5.6 (ii), we prove the estimate of J2. Finally, Lemma 5.6 (iii)
implies the desired estimate of J3. ��

5.2. Proof of Theorem 5.1

Let us give an outline of the proof. First, we prove a mean oscillation estimate
(see Proposition 5.7), and, as a result, we obtain Theorem5.1 (i) with p > 2 andλ =
0. Then, by usingAgmon’smethod, we derive the a priori estimate of λ‖u‖L p(R1+2d

T )

for the same range of p. Furthermore, we show that (P0 + λ)C∞
0 (R1+2d) is dense

in L p(R
1+2d) for p > 2 and λ � 0. Thus, we prove the unique solvability of Eq.

(1.2) for p > 2. The results for p ∈ (1, 2) are obtained by using the duality method.

Proposition 5.7. Let r > 0, ν � 2 be numbers, z0 ∈ R
1+2d
T , and u ∈ S2(R

1+2d
T ).

Suppose that P0u = f in R
1+2d
T . Then, there exists constants θ = θ(d) > 0 and

N = N (d) > 0 such that the following assertions hold.

(i)

(

∣

∣(−Δx )
1/3u − ((−Δx )

1/3u)Qr (z0)
∣

∣

2
)1/2

Qr (z0)

� Nν−1δ−θ (|(−Δx )
1/3u|2)1/2Qνr (z0)
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+ Nν1+2dδ−θ
∞
∑

k=0

2−2k( f 2)1/2Q2νr,2k+1νr/δ2 (z0)
,

(ii)

(

∣

∣Dv(−Δx )
1/6u − (Dv(−Δx )

1/6u)Qr (z0)
∣

∣

2
)1/2

Qr (z0)

� Nν−1δ−θ (|Dv(−Δx )
1/6u|2)1/2Qνr (z0)

+ Nν−1δ−θ
∞
∑

k=0

2−2k(|(−Δx )
1/3u|2)1/2Q

νr,2k νr (z0)

+ Nν1+2dδ−θ
∞
∑

k=0

2−k( f 2)1/2Q2νr,2k+1νr/δ2 (z0)
,

(iii)

(

∣

∣D2
vu − (D2

vu)Qr (z0)
∣

∣

2
)1/2

Qr (z0)

� Nν−1δ−θ (|D2
vu|2)1/2Qνr (z0)

+ Nν−1δ−θ
∞
∑

k=0

2−k(|(−Δx )
1/3u|2)1/2Q

νr,2k νr (z0)

+ Nν1+2dδ−θ
∞
∑

k=0

2−k( f 2)1/2Q2νr,2k+1νr/δ2 (z0)
.

Proof. Here we assume that N depends only on d.
Let φ ∈ C∞

0 ((t0 − (2νr)2, t0 + (2νr)2) × B2νr (v0)) be a function of (t, v)

such that φ = 1 on (t0 − (νr)2, t0) × Bνr (v0). Then, by Theorem 4.1 there exists
a unique solution g ∈ S2((t0 − (2νr)2, t0) × R

2d) to the Cauchy problem

P0g = f φ, g(t0 − (2νr)2, ·) ≡ 0,

and, by Lemma 5.2 and the scaling argument (see Lemma 3.6),

 
Qνr (z0)

|(−Δx )
1/3g|2 dz � Nδ−θ

( ∞
∑

k=0

2−2k( f 2)1/2Q2νr,2k+1νr/δ2 (z0)

)2

, (5.31)

 
Qr (z0)

|(−Δx )
1/3g|2 dz � Nν2+4d

 
Q2νr (z0)

|(−Δx )
1/3g|2 dz

� Nν2+4dδ−θ

( ∞
∑

k=0

2−2k( f 2)1/2Q2νr,2k+1νr/δ2 (z0)

)2

. (5.32)

Furthermore, note that the function h = u − g ∈ S2((t0 − (2νr)2, t0) × R
2d)

satisfies

P0h = f (1 − φ) in (t0 − (2νr)2, t0) × R
2d .

Then, by Proposition 5.3 and (5.31),

 
Qr (z0)

∣

∣

∣

∣

(−Δx )
1/3h − ((−Δx )

1/3h)Qr (z0)

∣

∣

∣

∣

2

dz
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� Nν−2δ−θ (|(−Δx )
1/3u|2)Qνr (z0) + Nν−2δ−θ (|(−Δx )

1/3g|2)Qνr (z0)

� Nν−2δ−θ (|(−Δx )
1/3u|2)Qνr (z0)

+ Nν−2δ−θ

( ∞
∑

k=0

2−2k( f 2)1/2Q2νr,2k+1νr/δ2 (z0)

)2

.

Combining this with (5.32), we prove the assertion (i).
(ii) By Lemmas 5.2 and 3.6,

(  
Qνr (z0)

|Dv(−Δx )
1/6g|2 dz

)1/2

� Nδ−θ
∞
∑

k=0

2−k( f 2)1/2Q2νr,2k+1νr/δ2 (z0)
, (5.33)

(  
Qr (z0)

|Dv(−Δx )
1/6g|2 dz

)1/2

� Nδ−θ ν1+2d
∞
∑

k=0

2−k( f 2)1/2Q2νr,2k+1νr/δ2 (z0)
. (5.34)

Furthermore, by Proposition 5.3 and the triangle inequality,
(  

Qr (z0)

∣

∣

∣

∣

Dv(−Δx )
1/6h − (Dv(−Δx )

1/6h)Qr (z0)

∣

∣

∣

∣

2

dz

)1/2

� Nν−1δ−θ (|Dv(−Δx )
1/6u|2)1/2Qνr (z0)

+ Nν−1δ−θ (|Dv(−Δx )
1/6g|2)1/2Qνr (z0)

+ Nν−1δ−θ
∞
∑

k=0

2−2k(|(−Δx )
1/3u|2)1/2Q

νr,2k νr (z0)

+ Nν−1δ−θ
∞
∑

k=0

2−2k(|(−Δx )
1/3g|2)1/2Q

νr,2k νr (z0)
.

By (5.31) and (5.33), we estimate the terms containing g on the right-hand side of
the above inequality. We obtain

(  
Qr (z0)

∣

∣

∣

∣

Dv(−Δx )
1
6 h − (Dv(−Δx )

1
6 h)Qr (z0)

∣

∣

∣

∣

2

dz

)1/2

� Nν−1δ−θ (|Dv(−Δx )
1
6 u|2)1/2Qνr (z0)

+ Nν−1δ−θ
∞
∑

k=0

2−2k(|(−Δx )
1
3 u|2)1/2Q

νr,2k νr (z0)

+ Nν−1δ−θ
∞
∑

l=0

2−l( f 2)1/2Q2νr,2l+1νr/δ2 (z0)

+ Nν−1δ−θ
∞
∑

k,l=0

2−2k−l( f 2)1/2Q2νr,2k+l+1νr/δ2 (z0)
.
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Changing the index of summation l → k + l, we replace the last term with

Nν−1δ−θ
∞
∑

l=0

2−l( f 2)1/2Q2νr,2l+1νr/δ2 (z0)
.

Combining this inequality with (5.34), we prove the assertion (ii).
(iii) This time, by Lemma 5.2 we have

(  
Qνr (z0)

|D2
vg|2 dz

)1/2

� Nδ−θ
∞
∑

k=0

2−k2/8( f 2)1/2Q2νr,2k+1νr/δ2 (z0)
, (5.35)

(  
Qr (z0)

|D2
vg|2 dz

)1/2

� Nδ−θ ν1+2d
∞
∑

k=0

2−k2/8( f 2)1/2Q2νr,2k+1νr/δ2 (z0)
. (5.36)

Next, by using Proposition 5.3 and (5.35) and arguing as above, we get

( 
Qr (z0)

∣

∣

∣

∣

D2
vh − (D2

vh)Qr (z0)

∣

∣

∣

∣

2

dz

)1/2

� Nν−1δ−θ (|D2
vu|2)1/2Qνr (z0)

+ Nν−1δ−θ (|D2
vg|2)1/2Qνr (z0)

+ Nν−1δ−θ
∞
∑

k=0

2−k
(

(|(−Δx )
1/3u|2)1/2Q

νr,2k νr (z0)
+(|(−Δx )

1/3g|2)1/2Q
νr,2k νr (z0)

)

� Nν−1δ−θ (|D2
vu|2)1/2Qνr (z0)

+ Nν−1δ−θ
∞
∑

k=0

2−k(|(−Δx )
1/3u|2)1/2Q

νr,2k νr (z0)

+ Nν−1δ−θ
∞
∑

l=0

2−l2/8( f 2)1/2Q2νr,2l+1νr/δ2 (z0)

+ Nν−1δ−θ
∞
∑

k,l=0

2−l2/8−k( f 2)1/2Q2νr,2k+l+1νr/δ2 (z0)
.

As above, we may replace the double sum with the term

Nν−1δ−θ
∞
∑

k=0

2−k( f 2)1/2Q2νr,2k+1νr/δ2 (z0)
.

As before, this inequality and (5.36) imply the estimate of the mean-square oscil-
lation of D2

vu. ��
Proposition 5.8. For any p ∈ (2,∞), T ∈ (−∞,∞], and u ∈ Sp(R

1+2d
T ), the

estimate (5.1) holds with λ = 0.

Proof. By Proposition 5.7, there exist constants N = N (d) and θ = θ(d) > 0
such that for any z ∈ R

1+2d
T ,

((−Δx )1/3u)#T (z) � Nν−1δ−θM1/2
T |(−Δx )1/3u|2(z)
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+ Nν1+2dδ−θ
∞
∑

k=0

2−2k
M

1/2
2k ,T

f 2(z),

(Dv(−Δx )1/6u)#T (z) � Nν−1δ−θM1/2
T |Dv(−Δx )1/6u|2(z)

+ Nν1+2dδ−θ
∞
∑

k=0

2−k
M

1/2
2k/δ2,T

f 2(z)

+ Nν−1δ−θ
∞
∑

k=0

2−2k
M

1/2
2k ,T

|(−Δx )1/3u|2(z),

(D2
vu)#T (z) � Nν−1δ−θM1/2

T |D2
vu|2(z) + Nν1+2dδ−θ

∞
∑

k=0

2−k
M

1/2
2k/δ2,T

f 2(z)

+ Nν−1δ−θ
∞
∑

k=0

2−k
M

1/2
2k ,T

|(−Δx )1/3u|2(z).

We raise the above inequalities to the p-th power, integrate over R
1+2d
T , and use

the Minkowski inequality. Furthermore, we apply Corollary 3.2 (i) and (ii) with
p/2 > 1. We obtain

‖(−Δx )
1/3u‖L p(R1+2d

T )

� Nν−1δ−θ‖(−Δx )
1/3u‖L p(R1+2d

T )
+ Nν1+2dδ−θ‖ f ‖L p(R1+2d

T )
,

‖Dv(−Δx )
1/6u‖L p(R1+2d

T )
� Nν−1δ−θ‖Dv(−Δx )

1/6u‖L p(R1+2d
T )

+ Nν−1δ−θ‖(−Δx )
1/3u‖L p(R1+2d

T )
+ Nν1+2dδ−θ‖ f ‖L p(R1+2d

T )
,

‖D2
vu‖L p(R1+2d

T )
� Nν−1δ−θ‖D2

vu‖L p(R1+2d
T )

+ Nν−1δ−θ‖(−Δx )
1/3u‖L p(R1+2d

T )
+ Nν1+2dδ−θ‖ f ‖L p(R1+2d

T )
. (5.37)

By setting ν = 2(1 + Nδ−θ ), we cancel the term containing (−Δx )
1/3u on the

right-hand side of (5.37). Using this and our choice of ν, we prove the estimates
for Dv(−Δx )

1/6u and D2
vu. The theorem is proved. ��

Lemma 5.9. Under the assumptions of Proposition 5.8, for any λ > 0,

λ‖u‖L p(R1+2d
T )

� Nδ−θ‖P0u + λu‖L p(R1+2d
T )

,

where N = N (d, p) and θ = θ(d) > 0.

Proof. We use S. Agmon’s method (see, for example, the proof of Lemma 6.3.8 of
[27]).

Denote

x̂ = (x1, . . . , xd+1), v̂ = (v1, . . . , vd+1), ẑ = (t, x̂, v̂),

P̂0(ẑ) = ∂t −
d+1
∑

i=1

vi Dxi −
d

∑

i, j=1

ai j Dvi v j − Dvd+1vd+1 .
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Let ζ be a smooth cutoff function on R such that ζ 
≡ 0 and denote

û(ẑ) = u(z)ζ(vd+1) cos(λ
1/2vd+1).

By direct calculations,

λu(z)ζ(vd+1) cos(λ
1/2vd+1) = −Dvd+1vd+1 û(ẑ)

+ u(z)(ζ ′′(vd+1) cos(λ
1/2vd+1) − 2λ1/2ζ ′(vd+1) sin(λ

1/2vd+1)),
(5.38)

P̂0û(ẑ) = ζ(vd+1) cos(λ
1/2vd+1)(P0u(z) + λu(z))

− u(z)(ζ ′′(vd+1) cos(λ
1/2vd+1) − 2λ1/2ζ ′(vd+1) sin(λ

1/2vd+1)).
(5.39)

Note that for any p > 0 and λ > 1ˆ
R

|ζ(t) cos(λ1/2t)|p dt � N1(p) > 0.

This combined with (5.38) gives

λ‖u‖L p(R1+2d
T )

� N (p)‖Dvd+1vd+1 û‖L p(R3+2d
T )

+ N (p)(1 + λ1/2)‖u‖L p(R1+2d
T )

.

Furthermore, by Proposition 5.8 and (5.39),

‖Dvd+1vd+1 û‖L p(R3+2d
T )

� Nδ−θ‖P̂0û‖L p(R3+2d
T )

� Nδ−θ‖P0u + λu‖L p(R1+2d
T )

+ Nδ−θ (1 + λ1/2)‖u‖L p(R1+2d
T )

.

Thus, by the above,

λ‖u‖L p(R1+2d
T )

� Nδ−θ‖P0u + λu‖L p(R1+2d
T )

+ Nδ−θ (1 + λ1/2)‖u‖L p(R1+2d
T )

.

We note that for any λ � λ0 = 16N 2δ−2θ +1, one has λ− Nδ−θ (1+λ1/2) > λ/2.
This gives the desired estimate for λ � λ0. This restriction is removed by using a
scaling argument (see Lemma 3.6). ��

Combining Proposition 5.8 with Lemma 5.9, we prove the following result.

Corollary 5.10. Under the assumptions of Proposition 5.8, the estimate (5.1) holds.

To prove the next lemma, we repeat the argument of Lemma 4.5 and replace
Theorem 4.1 with Corollary 5.10.

Lemma 5.11. Let p > 2, λ � 0, and r1, r2, R1, R2 > 0 be numbers such that
r1 < r2, and R1 < R2. Let u ∈ Sp,loc(R

1+2d
0 ) and denote f = P0u + λu. Then,

there exist constants N = N (d, p) and θ = θ(d) > 0 such that the following
assertions hold.

(i) δ−θ/2(r2 − r1)
−1‖Dvu‖L p(Qr1,R1 ) + ‖D2

vu‖L p(Qr1,R1 ) � Nδ−θ‖ f ‖L p(Qr2,R2 )

+ Nδ−θ ((r2 − r1)
−2 + r2(R2 − R1)

−3)‖u‖L p(Qr2,R2 ).

(ii) Denote Cr = (−r2, 0) × R
d × Br . Then we have

δ−θ/2(r2 − r1)
−1‖Dvu‖L p(Cr1 ) + ‖D2

vu‖L p(Cr1 )

� Nδ−θ
(‖ f ‖L p(Cr2 ) + (r2 − r1)

−2‖u‖L p(Cr2 )

)

.
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Lemma 5.12. For any λ � 0 and p > 1, the set (P0 + λ)C∞
0 (R1+2d) is dense in

L p(R
1+2d).

Proof. We may assume that p 
= 2, since the case p = 2 is covered in Lemma 4.6.
Proof by contradiction. Denote q = p/(p−1). If the claim does not hold, there

exists a function u ∈ Lq(R1+2d
T ) that is not identically zero and such that for any

ζ ∈ C∞
0 (R1+2d),

ˆ
(P0ζ + λζ )u dz = 0.

Case p ∈ (1, 2).We repeat the argument of Lemma4.6with appropriatemodifi-
cations. This time, instead of Lemma 4.5, we use Lemma 5.11 (i) with R1 = r1 = r
and R2 = r2 = 2r . By this lemma and (4.8) with 2 replaced with q, we conclude

‖Dvw(ε)‖Lq (Qr ) � N (d, δ, q)(r‖gε‖Lq (Q2r ) + r−1‖w(ε)‖Lq (Q2r ))

� N (ε1/2r + r−1)‖w‖Lq (R1+2d ).

As in the proof of Lemma 4.6, this implies thatw ≡ 0, which gives a contradiction.
Case p > 2. Let ηε = ηε(x) be a standard mollifier. For an integer k � 1,

we denote by wε,k the k-fold mollification of the function w(z) = u(−t,−x, v)

in the x variable with ηε. The idea of the proof is to, first, show that wε,k ∈
L2(R

1+2d) ∩ S2,loc(R1+2d) for some large k, and then conclude that wε,k ≡ 0 by
using the localized S2-estimate.

Step 1 For s ∈ (1,∞) and an open set G ⊂ R
1+2d , denote

‖ f ‖Ws (G) = ‖| f | + |∂t f | + |Dv f | + |D2
v f |‖Ls (G).

Note that wε,1 := w ∗ ηε satisfies

∂twε,1 − ai j Dvi v j wε,1 + λwε,1 = v · Dxwε,1 (5.40)

with

‖v · Dxwε,1‖Lq (˜Q1/2)
� N (d)ε−1‖w‖Lq (˜Q1)

provided that ε ∈ (0, 1/2). Mollifying Eq. (5.40) in the v variable with a standard
mollifier and applying the interior estimate for nondegenerate equations for fixed
x ∈ B(1/4)3 (see, for example, Theorem 5.2.5 of [27]), we get

‖wε,1‖Wq (˜Q1/4)
� N (d, δ, q, ε)‖w‖Lq (˜Q1)

.

By this and the Sobolev embedding theorem for any q1 > q such that

2

d + 2
� 1

q
− 1

q1
,

we obtain

‖wε,1‖Lq1 (˜Q1/4)
� N (d, δ, q, q1, ε)‖w‖Lq (˜Q1)

.
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Step 2 There exists m = m(d, q) ∈ {1, 2, . . .} and a sequence {qk, k =
0, 1, 2, . . .}, such that q0 = q, qm = 2, and

2

d + 2
� 1

qk−1
− 1

qk
> 0, k = 1, . . . , m.

We set wε,0 = w,

wε,k = wε,k−1 ∗ ηε, k = 1, . . . , m.

We claim that for k = 1, . . . , m,

‖wε,k‖Lqk (˜Q2−2k ) � N (d, δ, qk−1, qk, k, ε)‖wε,k−1‖Lqk−1 (˜Q2−2(k−1) )
.

To prove this, we repeat the argument of Step 1 with w replaced with wε,k−1, q
with qk−1, and q1 with qk . Iterating the above estimate, we conclude that

‖wε,m‖L2(˜Q2−2m ) � N (d, δ, q, ε)‖w‖Lq (˜Q1)
.

By this and the argument of Step 1 again,

‖wε,m+1‖W2(˜Q2−2(m+1) )
� N (d, δ, q, ε)‖w‖Lq (˜Q1)

. (5.41)

Shifting the center of coordinates and using Lemma 3.6 give

‖wε,m+1‖L2(˜Q2−2(m+1) (z))
� N (d, q, δ, ε)‖w‖Lq (˜Q1(z)), ∀z ∈ R

1+2d . (5.42)

Next, by the argument of Lemma 21 of [9], there exists a sequence of points
zn ∈ R

1+2d , n � 1, such that

∞
⋃

n=1

˜Q2−2(m+1) (zn) = R
1+2d ,

∞
∑

n=1

1
˜Q1(zn) � N0(d, m).

Then, by this, (5.42), and the inequality

∞
∑

k=1

bα
k �

(
∞
∑

k=1

bk

)α

, α � 1, bk � 0, k � 1

with α = 2/q > 1, we obtain
ˆ

R1+2d
|wε,m+1|2 dz �

∞
∑

n=1

ˆ
˜Q2−2(m+1) (zn)

|wε,m+1|2 dz

� N
∞
∑

n=1

(

ˆ
˜Q1(zn)

|w|q dz
)2/q

� N‖w‖2Lq (R1+2d )
< ∞.

Furthermore, generalizing (5.41) for double cylinders ˜Qr and ˜Q2−2(m+1)r , we show
that wε,m+1 ∈ S2,loc(R1+2d). Therefore, by Lemma 4.5 (i), for any r > 0,

‖Dvwε,m+1‖L2(Qr ) � N (d, δ)r−1‖wε,m+1‖L2(R1+2d ).

Passing to the limit as r → ∞ gives Dvwε,m+1 ≡ 0 in R
1+2d
0 . Shifting in the t

variable, we prove that Dvwε,m+1 ≡ 0 in R
1+2d , and hence, wε,m+1 = 0, which

implies w ≡ 0. ��



544 Hongjie Dong & Timur Yastrzhembskiy

Proof of Theorem 5.1. We consider three cases:

p > 2, p ∈ (1, 2), T = ∞, and p ∈ (1, 2), T < ∞.

Case 1 p > 2. Thanks to Corollary 5.10, it remains to prove the assertion (ii).
The latter follows from the a priori estimate in Corollary 5.10 and the denseness
result (see Lemma 5.12).

Case 2 p ∈ (1, 2), T = ∞. (i) We use the standard duality argument (see,
for example, Theorem 4.3.8 of [27]). Throughout the proof, we assume that N =
N (d, p).

Let U ∈ C∞
0 (R1+2d) and u ∈ Sp(R

1+2d). Denote

f = P0u + λu.

For h ∈ L1,loc(R
1+2d), by hε we denote the mollification in the x variable with the

standard mollifier.
Estimate of (−Δx )

1/3u. It is well known that

(−Δx )
1/3U, (−Δx )

1/3∂tU, (−Δx )
1/3(vi Dxi U ), (−Δx )

1/3D2
vU

∈ C∞
loc(R

1+2d) ∩ L1(R
1+2d).

Then, by using duality and integrating by parts, we get

J :=
ˆ

((−Δx )
1/3uε)(−∂tU + vi Dxi U − ai j Dvi v j U + λU ) dz

=
ˆ

uε(−∂t + vi Dxi − ai j Dvi v j + λ)((−Δx )
1/3U ) dz

=
ˆ

((−Δx )
1/3U )(P0uε + λuε) dz.

Furthermore, by Hölder’s inequality, Corollary 5.10, and the change of variables
t → −t, x → −x , one has

|J | � ‖(−Δx )
1/3U‖Lq (R1+2d )‖ fε‖L p(R1+2d )

� Nδ−θ‖ − ∂tU + vi Dxi U − ai j Dvi v j U + λU‖Lq (R1+2d )‖ fε‖L p(R1+2d ),

where q = p/(p − 1). By Lemma 5.12 and the same change of variables, we
conclude that (−∂t − ai j Dvi v j + vi Dxi + λ)C∞

0 (R1+2d) is dense in Lq(R1+2d).
Thus, we obtain

‖(−Δx )
1/3uε‖L p(R1+2d ) � Nδ−θ‖ fε‖L p(R1+2d ).

Taking the limit as ε → 0, we prove the desired estimate.
Estimate of Dv(−Δx )

1/6u. As above, by using duality and integration by parts,
we get

I =
ˆ

(Dv(−Δx )
1/6uε)(−∂tU + v · DxU − ai j (t)Dvi v j U + λU ) dz

= −
ˆ

(P0uε + λuε)Dv(−Δx )
1/6U dz



Global L p Estimates for Kinetic Kolmogorov–Fokker–Planck Equations 545

−
ˆ

((−Δx )
1/6uε) DxU dz =: I1 + I2.

Furthermore, by Corollary 5.10 with q > 2,

I1 � Nδ−θ‖ − ∂tU + vi Dxi U − ai j Dvi v j U + λU‖Lq (R1+2d )‖ fε‖L p(R1+2d ).

Next, by Hölder’s inequality,

I2 � N‖(−Δx )
1/3uε‖L p(R1+2d )‖Rx (−Δx )

1/3U‖Lq (R1+2d ) =: I2,1I2,2,
where Rx = Dx (−Δx )

−1/2 is the Riesz transform. Due to the L p estimate of
(−Δx )

1/3uε,

I2,1 � Nδ−θ‖ fε‖L p(R1+2d ).

By the Lq boundedness of the Riesz transform and Corollary 5.10 combined with
the change of variables as before, we get

I2,2 � Nδ−θ‖ − ∂tU + vi Dxi U − ai j Dvi v j U + λU‖Lq (R1+2d ).

These estimates imply the desired inequality for Dv(−Δx )
1/6u.

Estimate of D2
vu. For any k, l ∈ {1, . . . , d}, we have

I =
ˆ

Dvkvl uε(−∂tU + vi Dxi U − ai j Dvi v j U + λU ) dz =: I1 + I2,

where

I1 =
ˆ

Dvkvl U (P0uε + λuε) dz,

I2 = −
ˆ

(δik Dvl U + δil Dvk U )Dxi uε dz.

We only need to show that

|I1| + |I2|
� Nδ−θ‖ − ∂tU + vi Dxi U − ai j Dvi v j U + λU‖Lq (R1+2d )‖ fε‖L p(R1+2d ).

(5.43)

The estimate of I1 follows from Corollary 5.10. Furthermore, Hölder’s inequality
yields

|I2| � ‖(−Δx )
1/6DvU‖Lq (R1+2d )‖Rx (−Δx )

1/3uε‖L p(R1+2d ) =: I2,1 I2,2.

By Corollary 5.10,

I2,1 � Nδ−θ‖ − ∂tU + vi Dxi U − ai j Dvi v j U + λU‖Lq (R1+2d ).

Then, by the L p-boundedness ofRx and the L p estimate of (−Δx )
1/3uε, we obtain

I2,2 � Nδ−θ‖ fε‖L p(R1+2d ).
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Combining these estimates, we prove (5.43).
Estimate of u. For λ > 0, integration by parts gives

ˆ
λuε(−∂tU + vi Dxi U − ai j Dvi v j U + λU ) dz =

ˆ
λU fε dz.

Now the L p estimate of λu follows from Hölder’s inequality and Corollary 5.10.
Thus, the assertion (i) is proved.The claim (ii) now follows from(i) andLemma5.12.

Case 3 p ∈ (1, 2), T < ∞. (i) We fix an arbitrary function φ ∈ Lq(R1+2d
T ),

where q = p/(p − 1), and extend it by zero for t > T . By the assertion (ii) in the
case p > 2 and the change of variables t → −t, x → −x , the equation

−∂tU + v · DxU − ai j Dvi v j U + λU = φ

has a unique solution U such that U , (−∂t + v · Dx )U , DvU , D2
vU ∈ Lq(R1+2d).

Note that by Lemma 5.9 and the aforementioned change of variables, U = 0 a.e.
on (T,∞) × R

2d .
Furthermore, for a measurable function h on R

1+2d , we denote

T h(z) = h(t, x − vt, v).

By the change of variables x → x −vt and the chain rule for distributions, we have
ˆ

u(−∂tU + v · DxU ) dz = −
ˆ

T u T (∂tU − v · DxU ) dz

= −
ˆ

T u ∂t (T U ) dz.

Since T u, ∂t (T u) ∈ L p(R
1+2d), T U, ∂t (T U ) ∈ Lq(R1+2d), we may integrate by

parts and obtain
ˆ

u(−∂tU + v · DxU ) dz =
ˆ

(∂t T u)T U dz

=
ˆ

T (∂t u − v · Dx u)T U dz =
ˆ

(∂t u − v · Dx u)U dz.

By this and integration by parts, we get

I :=
ˆ

R
1+2d
T

uφ dz =
ˆ

R1+2d
u(−∂tU + v · DxU − ai j (t)Dvi v j U + λU ) dz

=
ˆ

R
1+2d
T

U (P0u + λu) dz.

By Hölder’s inequality and Lemma 5.9,

|I| � Nδ−θλ−1‖ − ∂tU + v · DxU − ai j (t)Dvi v j U + λU‖Lq (R1+2d )

× ‖P0u + λu‖L p(R1+2d
T )

= Nλ−1δ−θ‖φ‖Lq (R1+2d
T )

‖P0u + λu‖L p(R1+2d
T )

.
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This gives

λ‖u‖L p(R1+2d
T )

� Nδ−θ‖P0u + λu‖L p(R1+2d
T )

. (5.44)

Next, by the solvability when T = ∞, the equation

P0u1 + λu1 = (P0u + λu)1t<T

has a unique solution u1 ∈ Sp(R
1+2d). Then, by (5.1) with T = ∞,

λ‖u1‖L p(R1+2d
T )

+ λ1/2‖Dvu1‖L p(R1+2d
T )

+ ‖D2
vu1‖L p(R1+2d

T )

+ ‖(−Δx )
1/3u1‖L p(R1+2d

T )
+ ‖Dv(−Δx )

1/6u1‖L p(R1+2d
T )

� Nδ−θ‖P0u + λu‖L p(R1+2d
T )

.

It follows from (5.44) that u1 = u a.e. in R
1+2d
T . Thus, the desired estimate holds

for u.
(ii) Similar to the proof of Theorem 4.1 (ii), this claim follows from the a priori

estimate in the assertion (i) when p ∈ (1, 2), T < ∞ and the solvability in the
assertion (ii) when p ∈ (1, 2), T = ∞. ��

6. Mixed-Norm Estimate for the Model Equation

In this section, we prove the following theorem, which is Theorem 2.6 for
the operator P0. We follow the argument of Theorem 5.1 and make only minor
adjustments.

Theorem 6.1. Invoke the assumptions of Theorem 2.6 and assume b ≡ 0, c ≡ 0.
Then, for any number λ � 0 and u ∈ Sp,r1,...,rd ,q(R1+2d

T , w), one has

λ‖u‖ + λ1/2‖Dvu‖ + ‖D2
vu‖ + ‖(−Δx )

1/3u‖ + ‖Dv(−Δx )
1/6u‖

� Nδ−θ‖P0u + λu‖, (6.1)

where ‖ · ‖ = ‖ · ‖L p,r1,...,rd ,q (R1+2d
T ,w)

, N = N (d, p, r1, . . . , rd , q, K ), and θ =
θ(d, p, r1, . . . , rd , q, K ) > 0. Furthermore, the part of the Theorem 2.6 (iii) con-
cerning the Sp;r1,...,rd (R

1+2d
T , |x |α ∏d

i=1 wi (vi )) estimates is valid with P0 in place
of P for any λ � 0.

Here is a generalization of Lemma 5.2.

Lemma 6.2. Let p > 1, R � 1 be numbers and f ∈ L p(R
1+2d
0 ) vanish outside

(−1, 0) × R
d × B1. Let u ∈ Sp((−1, 0) × R

2d) be the unique solution to

P0u = f, u(−1, ·) = 0.

Then, there exist positive constants θ0 = θ0(d), θ = θ(d), and N = N (d, p) such
that for ck = 2k/δθ0 , k � 0,

‖|u| + |Dvu| + |D2
vu|‖L p((−1,0)×BR3×BR)
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� Nδ−θ
∞
∑

k=0

2−k(k−1)/4R−k‖ f ‖L p(Q1,2ck R),

(|(−Δx )
1/3u|p)

1/p
Q1,R

� Nδ−θ R−2
∞
∑

k=0

2−2k(| f |p)
1/p
Q1,ck R

,

(|Dv(−Δx )
1/6u|p)

1/p
Q1,R

� Nδ−θ R−1
∞
∑

k=0

2−k(| f |p)
1/p
Q1,ck R

.

Proof. We repeat the proof of Lemma 5.2. Let us point out twominor modifications
that wemake. First, in the definition of cutoff functions ξ j (x, v), we replace δ2 with

δ
˜θ+1, where˜θ = ˜θ(d) > 1 is the constant from the a priori estimate in Theorem 5.1
(i). Second, one needs to use Theorem 5.1 instead of Theorem 4.1. ��

Proposition 6.3. Let p > 1, r > 0, ν � 2 be numbers, z0 ∈ R
1+2d
T , and u ∈

Sp,loc(R
1+2d
T ) be a function such that P0u = 0 in (t0 − ν2r2, t0) × R

d × Bνr (v0).
Then, there exist positive constants N (d, p) and θ = θ(d) such that

(

|(−Δx )
1/3u − ((−Δx )

1/3u)Qr (z0)|p
)1/p

Qr (z0)
� Nν−1δ−θ

(|(−Δx )
1/3u|p)1/p

Qνr (z0)
,

(

|Dv(−Δx )
1/6u − (Dv(−Δx )

1/6u)Qr (z0)|p
)1/p

Qr (z0)

� Nν−1δ−θ (|Dv(−Δx )
1/6u|p)

1/p
Qνr (z0)

+ Nν−1δ−θ
∞
∑

k=0

2−2k(|(−Δx )
1/3u|p)

1/p
Q

νr,2k νr (z0)
,

(

|D2
vu − (D2

vu)Qr (z0)|p
)1/p

Qr (z0)
� Nν−1δ−θ (|D2

vu|p)
1/p
Qνr (z0)

+ Nν−1δ−θ
∞
∑

k=0

2−k(|(−Δx )
1/3u|p)

1/p
Q

νr,2k νr (z0)
.

6.1. Proof of Proposition 6.3

First, we need a localized L p estimate, which we prove by repeating the argu-
ment of Lemma 4.5 and replacing Theorem 4.1 with Theorem 5.1.

Lemma 6.4. Lemma 5.11 holds for any p ∈ (1,∞).

The next two lemmas are generalizations of Lemmas 5.4 and 5.5 , respectively.
Their proofs go along the same lines as in the lemmas in Section 5. One minor
adjustment one needs to make is to replace Theorem 4.1 and Lemma 4.5 with
Theorem 5.1 and Lemma 6.4, respectively.
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Lemma 6.5. Let 0 < r < R � 1 and p ∈ (1,∞) be numbers, and u ∈
Sp,loc(R

1+2d
0 ) be a function such that P0u = 0 in Q1. Then, there exist constants

N = N (d, p, r, R) and θ = θ(d) > 0 such that

‖Dx u‖L p(Qr ) � Nδ−θ‖u‖L p(Q R).

Lemma 6.6. Let p ∈ (1,∞) and u ∈ Sp,loc(R
1+2d
0 ) be a function such that P0u =

0 in (−1, 0) × R
d × B1. Then, for any r ∈ (0, 1), we have

‖Dx u‖L p(Qr ) � Nδ−θ
∞
∑

k=0

2−k(|(−Δx )
1/3u|p)

1/p
Q1,2k

,

‖Dx u‖L p(Qr ) � Nδ−θ
∞
∑

k=0

2−2k(|(−Δx )
1/6u|p)

1/p
Q1,2k

,

where N = N (d, p, r) and θ = θ(d) > 0.

Lemma 6.7. Under the assumptions of Lemma 6.6, for any l, m ∈ {0, 1, . . .}, there
exists a constant θ = θ(d, p, l, m) > 0 such that the following assertions hold:

(i) For any R ∈ (1/2, 1],
sup
Q1/2

|Dl
x Dm

v u| + sup
Q1/2

|∂t Dl
x Dm

v u| � N (d, p, l, m, R)δ−θ‖u‖L p(Q R),

(i i) sup
Q1/2

(|Dl
x Dm+1

v (−Δx )
1/6u| + |∂t Dl

x Dm+1
v (−Δx )

1/6u|)

� N (d, p, l, m)δ−θ
(‖Dv(−Δx )

1/6u‖L p(Q1)

+
∞
∑

k=0

2−2k(|(−Δx )
1/3u|p)

1/p
Q1,2k

)

,

(i i i) sup
Q1/2

|Dl
x Dm+2

v u| + sup
Q1/2

|∂t Dl
x Dm+2

v u| � N (d, p, l, m)δ−θ‖D2
vu‖L p(Q1)

+ N (d, p, l, m)δ−θ
∞
∑

k=0

2−k(|(−Δx )
1/3u|p)

1/p
Q1,2k

.

Proof. (i) The proof is almost identical to that of Lemma 5.6 (i). By the induction
argument, for any j ∈ {0, 1}, we get

‖∂ j
t Dl

x Dm
v u‖L p(Q1/2) � N (d, p, j, l, m, R)δ−θ‖u‖L p(Q R),

where θ = θ(d, j, l, m) > 0. Now the assertion follows from the last inequality,
(5.24) and the Sobolev embedding theorem.

(ii), (iii) The proof is almost the same as the one of Lemma 5.6 (ii), (iii). One
merely needs to replace Lemma 5.5 with Lemma 6.6 in this argument. ��
Proof of Proposition 6.3. The assertion follows from Lemma 6.7 and the scaling
argument (see Lemma 3.6). ��
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6.2. Proof of Theorem 6.1

Proposition 6.8. Let p > 1, r > 0, ν � 2 be numbers, z0 ∈ R
1+2d
T , and u ∈

Sp(R
1+2d
T ).

Then, there exist positive constants N = N (d, p), θ0 = θ0(d), and θ = θ(d, p)

such that for ck = 2k/δθ0 , k � 0, and any z0 ∈ R
1+2d
T ,

(

∣

∣(−Δx )
1/3u − ((−Δx )

1/3u)Qr (z0)
∣

∣

p
)1/p

Qr (z0)

� Nν−1δ−θ
(|(−Δx )

1/3u|p)1/p
Qνr (z0)

+ Nν(4d+2)/pδ−θ
∞
∑

k=0

2−2k(|P0u|p)
1/p
Q2νr,2νrck (z0)

,

(

∣

∣Dv(−Δx )
1/6u − (Dv(−Δx )

1/6u)Qr (z0)
∣

∣

p
)1/p

Qr (z0)

� Nν−1δ−θ (|Dv(−Δx )
1/6u|p)

1/p
Qνr (z0)

+ Nν−1δ−θ
∞
∑

k=0

2−2k(|(−Δx )
1/3u|p)

1/p
Q

νr,2k νr (z0)

+ Nν(4d+2)/pδ−θ
∞
∑

k=0

2−k(|P0u|p)
1/p
Q2νr,2νrck (z0)

,

(|D2
vu − (D2

vu)Qr (z0)|p)
1/p
Qr (z0)

� Nν−1δ−θ
(|D2

vu|p)1/p
Qνr (z0)

+ Nν−1δ−θ
∞
∑

k=0

2−k(|(−Δx )
1/3u|p)

1/p
Q

νr,2k νr (z0)

+ Nν(4d+2)/pδ−θ
∞
∑

k=0

2−k(|P0u|p)
1/p
Q2νr,2νrck (z0)

.

Proof. The assertion is derived from Lemma 6.2 and Proposition 6.3. See the proof
of Proposition 5.7 in Section 5.1. ��
Proof of Theorem 6.1. First, we consider the case when the weight depends on t, v
variables only. In this proof, N is a constant depending only on d, p, r1, . . . , rd , q,
and K .

Step 1: Case λ = 0 and u vanishing for large |z| . By Lemma A.2 and the self-
improving property of the Ap-weights (see, for instance, Corollary 7.2.6 of [19]),
there exists a number

p0 = p0(d, p, r1, . . . , rd , q, K ), 1 < p0 < min{p, r1, . . . , rd , q},
such that u ∈ Sp0,loc(R

1+2d
T ),

w0 ∈ Aq/p0(R), wi ∈ Ari /p0(R), i = 1, . . . , d. (6.2)
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Denote f = P0u. By what was said above and the fact that u is compactly
supported, we have u ∈ Sp0(R

1+2d
T ). Then, by Proposition 6.8 with p replaced

with p0, for any z0 ∈ R
1+2d
T , we get

((−Δx )
1/3u)#T (z0) � Nν−1δ−θM1/p0

T |(−Δx )
1/3u|p0(z0)

+ Nν(4d+2)/p0δ−θ
∞
∑

k=0

2−2k
M

1/p0
2k/δθ0 ,T

| f |p0(z0),

(Dv(−Δx )
1/6u)#T (z0) � Nν−1δ−θM1/p0

T |Dv(−Δx )
1/6u|p0(z0)

+ Nν−1δ−θ
∞
∑

k=0

2−2k
M

1/p0
2k ,T

|(−Δx )
1/3u|p0(z0)

+ Nν(4d+2)/p0δ−θ
∞
∑

k=0

2−k
M

1/p0
2k/δθ0 ,T

| f |p0(z0),

and

(D2
vu)#T (z0) � Nν−1δ−θM1/p0

T |D2
vu|p0(z0)

+ Nν−1δ−θ
∞
∑

k=0

2−k
M

1/p0
2k ,T

|(−Δx )
1/3u|p0(z0)

+ Nν(4d+2)/p0δ−θ
∞
∑

k=0

2−k
M

1/p0
2k/δθ0 ,T

| f |p0(z0).

We take the ‖ · ‖-normonboth sides of the above inequalities and use theMinkowski
inequality. After that we apply Corollary 3.2 (i) with p/p0, r1/p0, . . . , rd/p0,
q/p0 > 1 and (6.2) combined with Corollary 3.2 (ii). We obtain

‖(−Δx )
1
3 u‖ � Nν−1δ−θ‖(−Δx )

1
3 u‖ + Nν(4d+2)/p0δ−θ‖ f ‖,

‖Dv(−Δx )
1
6 u‖ � Nν−1δ−θ (‖Dv(−Δx )

1
6 u‖ + ‖(−Δx )

1
3 u‖)

+ Nν(4d+2)/p0δ−θ‖ f ‖,
‖D2

vu‖ � Nν−1δ−θ (‖D2
vu‖ + ‖(−Δx )

1
3 u‖) + Nν(4d+2)/p0δ−θ‖ f ‖.

Taking ν = 2 + 2Nδ−θ , we prove the desired estimate.

Step 2: Case λ = 0 and arbitrary u ∈ Sp,r1,...,rd ,q(R1+2d
T , w). Letφ ∈ C∞

0 (R1+2d)

be a function such that φ = 1 on ˜Q1 and denote for n � 1,

φn(z) = φ(t/n2, x/n3, v/n), un = uφn .

By the result of Step 1,

‖D2
vun‖ + ‖(−Δx )

1/3un‖ + ‖Dv(−Δx )
1/6un‖ � Nδ−θ‖P0un‖. (6.3)

Estimate of D2
vu. By (6.3),

‖D2
vu‖L p,r1,...,rd ,q (˜Qn∩R

1+2d
T ,w)

� Nδ−θ (‖P0u‖ + A1 + A2 + A3),
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where

A1 = ‖P0u(φn − 1)‖, A2 = ‖(P0φn)u‖, A3 = 2‖(aDvu) · Dvφn‖.
Since u ∈ Sp,r1,...,rd ,q(R1+2d , w), by the dominated convergence theorem,

A1 → 0 as n → ∞. (6.4)

Furthermore,

A2 + A3 � Nδ−1n−1(‖u‖ + ‖Dvu‖) → 0 as n → ∞. (6.5)

Thus, the estimate for D2
vu holds.

Estimate of (−Δx )
1/3u and Dv(−Δx )

1/6u. We use the duality argument as in the
proof of Theorem 4.1 (i). It follows from (6.3)–(6.5) that

‖(−Δx )
1/3un‖ + ‖Dv(−Δx )

1/6un‖ � Nδ−θ (‖P0u‖ + n−1‖|u| + |Dvu|‖).
(6.6)

Next, for any η ∈ C∞
0 (R1+2d

T ), we have

|(−Δx )
1/3η|(z) � N (d)(1 + |x |)−d−2/3, (6.7)

and by this (−Δx )
1/3η ∈ L p∗,r∗

1 ,...,r∗
d ,q∗(R1+2d

T , w∗) of p, r1, . . . , rd , q respec-
tively, where p∗, r∗

1 . . . , r∗
d , q∗ are Hölder conjugates, and

w∗ := w
−1/(q−1)
0 (t)

d
∏

i=1

w
−1/(ri −1)
i (vi ).

Then, since un → u in L p,r1,...,rd ,q(R1+2d
T , w), we have

∣

∣

∣

∣

ˆ
R
1+2d
T

η(−Δx )
1/3u dz

∣

∣

∣

∣

� ‖η‖L p∗,r∗
1 ,...,r∗

d ,q∗ (R1+2d
T ,w∗) lim

n→∞ ‖(−Δx )
1/3un‖.

This combined with (6.6) implies (6.1) for (−Δx )
1/3u. In the same way, we prove

the estimate for Dv(−Δx )
1/6u.

Step 3: Case λ > 0. We set rd+1 = rd and wd+1 ≡ 1. Repeating the proof of
Lemma 5.9 with the spaces L p(R

1+2d
T ) and L p(R

3+2d
T ) replaced with

L p,r1,...,rd ,q(R1+2d
T , w) and L p,r1,...,rd+1,q(R3+2d

T , w),

respectively, we conclude that for λ � λ0 = 16N 2δ−2θ + 1 > 0,

λ‖u‖ � Nδ−θ‖P0u + λu‖.
To show that the desired estimate holds for λ � 0, we use a scaling argument (see
Lemma 3.6) and the fact that the map x → λx preserves the Ap constant. This
combined with (6.1) with λ = 0 proves the desired estimate.
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For the estimate in Sp;r1,...,rd (R
1+2d
T , |x |α ∏d

i=1 wi (vi )) (see p. 5), the proof
goes along the lines of the above argument. Let us point out oneminormodification:
due to (6.7) and the fact that α ∈ (−1, p − 1), one has

(−Δx )
1/3η ∈ L p∗;r∗

1 ,...,r∗
d
(R1+2d

T , |x |−α/(p−1)
d

∏

i=1

w
−1/(ri −1)
i (vi ))

for any η ∈ C∞
0 (R1+2d

T ). ��

7. Proof of Theorem 2.6

First, we prove a key lemma analogous to Proposition 6.8, which will imply
the a priori estimate of D2

vu for u ∈ Sp,r1,...,rd ,q(R1+2d
T , w).

Lemma 7.1. Let γ0 > 0, ν � 2, p0 ∈ (1,∞), α ∈ (1, 3/2) be numbers, T ∈
(−∞,∞], R0 be the constant from Assumption 2.3 (γ0), and u ∈ Sp0(R

1+2d
T ).

Then, under Assumptions 2.2–2.3 (γ0), there exist positive constants θ0 = θ0(d),
θ = θ(d, p0), N = N (d, p0, α), and a sequence of positive numbers {ak, k � 0}
such that

∞
∑

k=0

ak � N ,

and for ck = 2k/δθ0 and any z ∈ R
1+2d
T , and r ∈ (0, R0/(4ν)),

(|D2
vu − (D2

vu)Qr (z)|p0)
1/p0
Qr (z)

� Nν−1δ−θ (|D2
vu|p0)

1/p0
Qνr (z)

+ Nν−1δ−θ
∞
∑

k=0

2−k(|(−Δx )
1/3u|p0)

1/p0
Q

νr,2k νr (z)

+ Nν(2+4d)/p0δ−θ
∞
∑

k=0

2−k(|Pu|p0)
1/p0
Q2νr,2νrck (z)

+ Nν(2+4d)/p0δ−θ γ
(α−1)/(p0α)
0

∞
∑

k=0

ak(|D2
vu|p0α)

1/(p0α)

Q2νr,2νrck (z).

(7.1)

To prove the above lemma we need the following result:

Lemma 7.2. Let γ0 > 0 be a number and R0 be the constant from Assumption 2.3
(γ0). Let r ∈ (0, R0/2), c > 0 be numbers. Then, one has

I :=
 

Qr,cr

|a(t, x, v) − (a(t, ·, ·))Br3×Br | dz � N (d)c3γ0.
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Proof. Let X ⊂ B(cr)3 be a finite set such that {Br3/2(x), x ∈ X} is a maximal
family of disjoint balls. Then, since B(cr)3 ⊂ ∪x∈X Br3(x), we have

I � |Qr,cr |−1
∑

x∈X

ˆ
Qr (0,x,0)

|a(z) − (a(t, ·, ·))Br3×Br | dz

� |Qr,cr |−1
∑

x∈X

(B(x) + C(x)),

where

B(x) =
ˆ

Qr (0,x,0)
|a(z) − (a(t, ·, ·))Br3 (x)×Br | dz,

C(x) =
ˆ

Qr (0,x,0)
|(a(t, ·, ·))Br3 (x)×Br − (a(t, ·, ·))Br3×Br | dz.

By the facts that Dr ((0, x, 0), t) = Br3(x) × Br and r < R0, and Assumption 2.3
(γ0), we have

B(x) � |Qr |γ0. (7.2)

Furthermore, for any x ∈ X such that x 
= 0, let x j , j = 0, 1, . . . , m, be a sequence
of points such that x0 = 0, xm = x , and |x j − x j+1| � r3 for j = 0, . . . , m − 1,
where m � N (d)c3. Then, by the triangle inequality, we have

C(x) �
m−1
∑

j=0

ˆ
Qr (0,x,0)

|(a(t, ·, ·))Br3 (x j+1)×Br − (a(t, ·, ·))Br3 (x j )×Br | dz

�
m−1
∑

j=0

ˆ
Qr (0,x,0)

|(a(t, ·, ·))Br3 (x j+1)×Br − (a(t, ·, ·))B8r3 (x j )×B2r | dz

+
m−1
∑

j=0

ˆ
Qr (0,x,0)

|(a(t, ·, ·))B8r3 (x j )×B2r − (a(t, ·, ·))Br3 (x j )×Br | dz.

It is easy to check that for any two sets A ⊂ A′ ⊂ R
d of positive finite Lebesgue

measure and any f ∈ L1,loc(R
d), one has

|( f )A − ( f )A′ | � |A′|
|A| (| f − ( f )A′ |)A′ .

By this, the fact that 2r < R0, and Assumption 2.3 (γ0),

C(x) � |Qr |N (d)

m−1
∑

j=0

 
Q2r (0,x,0)

|a(z) − (a(t, ·, ·))B8r3 (x j )×B2r | dz

� N (d)|Qr |mγ0 � N (d)|Qr |c3γ0.
Combining this with (7.2) and using the fact that |X | � N (d)c3d , we prove the
lemma. ��
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Proof of Lemma 7.1. Clearly, we may assume that for any k � 0,

D2
vu ∈ L p0α(Q2νr,2νrck )

because otherwise the sum on the right-hand side of (7.1) is infinite, and the in-
equality holds trivially. Furthermore, by Lemma 3.6, it suffices to prove (7.1) for
z = 0. We denote

ā(t) = (a(t, ·, ·))B
ν3r3×Bνr and P̄ = ∂t − v · Dx − āi j Dvi v j .

By Proposition 6.8, there exist positive numbers θ0 = θ0(d), θ = θ(d, p), and
N = N (d, p0) such that

(|D2
vu − (D2

vu)Qr |p0)
1/p0
Qr

� Nν−1δ−θ
(|D2

vu|p0
)1/p0

Qνr

+ Nν−1δ−θ
∞
∑

k=0

2−k(|(−Δx )
1/3u|p0)

1/p0
Q

νr,2k νr

+ Nν(4d+2)/p0δ−θ
∞
∑

k=0

2−k(|Pu|p0)
1/p0
Q2νr,2νrck

+ Nν(4d+2)/p0δ−θ
∞
∑

k=0

2−k(|a − ā|p0 |D2
vu|p0)

1/p0
Q2νr,2νrck

,

(7.3)

where ck = 2k/δθ0 .
Fix any k ∈ {0, 1, 2, . . .} and denote α1 = α/(α − 1)(> 3). Then, by Hölder’s

inequality,

(|a − ā|p0 |D2
vu|p0)

1/p0
Q2νr,2νrck

� (|a − ā|p0α1)
1/(p0α1)
Q2νr,2νrck

(|D2
vu|p0α)

1/(p0α)
Q2νr,2νrck

=: A1/(p0α1)
1 A1/(p0α)

2 .

(7.4)

Since a is a bounded function, we have

A1 � Nδ−θ

 
Q2νr,2νrck

|a − ā| dz.

Then, by Lemma 7.2 with r replaced with 2νr and c = 2k/δθ0 ,

A1 � N (d)23kδ−3θ0γ0.

By this and (7.4), we conclude that

2−k(|a − ā|p0 |D2
vu|p0)

1/p0
Q2νr,2νrck

� Nδ−θ γ
1/(p0α1)
0 2−k+3k/(p0α1)(|D2

vu|p0α)
1/(p0α)
Q2νr,2νrck

.

With ak := 2−k+3k/(p0α1), the series converges since p0α1 > 3. Now the assertion
follows from this and (7.3). ��
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Proof of Theorem 2.6 (i). Wewill focus on the case when the weight depends only
on t and v. The estimate in Sp;r1,...,rd (R

1+2d
T , |x |α ∏d

i=1 wi (vi )) is proved in the
same way by using a partition of unity in the vd variable and the interpolation
inequality in the weighted mixed-norm space to absorb the norm of the gradient on
the right-hand side of the a priori estimate.

First, we consider the case T = ∞. We follow the idea of Section 5.1 of [15].
In the first step, we prove a priori estimate for a function u with a sufficiently
small support in the temporal variable. Then, we use partition of unity to handle an
arbitrary function u ∈ Sp,r1,...,rd ,q(R1+2d

T , w). Throughout the proof, we assume
that N = N (d, p, r1, . . . , rd , q, K , L).

Step 1 We show that there exists β = β(d, p, r1, . . . , rd , q, K ) > 0,

R1 = δβ
˜R1(d, p, r1, . . . , rd , q, K )>0, γ0=δβ γ̃0(d, p, r1, . . . , rd , q, K )>0,

and θ = θ(d, p, r1, . . . , rd , q, K ) > 0, (7.5)

such that for any t0 ∈ R and u ∈ Sp,r1,...,rd ,q(R1+2d
T , w) vanishing outside (t0 −

(R0R1)
2, t0) × R

2d ,

‖D2
vu‖+‖(−Δx )

1/3u‖+‖Dv(−Δx )
1/6u‖� N (d, p, r1, . . . , rd , q, K )δ−θ‖Pu‖.

By Lemma A.2, there exists a number

p0 = p0(d, p, r1, . . . , rd , q, K )

such that

1 < p0 < min{p, r1, . . . , rd , q}
and u ∈ Sp0,loc(R

1+2d
T ). Since u is assumed to be compactly supported, this gives

u ∈ Sp0(R
1+2d
T ). By the self-improving property of the Ap-weights (see, for in-

stance, Corollary 7.2.6 of [19]), we also fix a number α and p0 further smaller such
that

1 < α < min
{3

2
,

p

p0
,

r1
p0

, . . . ,
rd

p0
,

q

p0

}

and

w0 ∈ A q
αp0

(R), wi ∈ A ri
αp0

(R), i = 1, . . . , d. (7.6)

Let ν � 2, γ0, and R1 be some numbers which will be chosen later.
If 4νr � R0, then by Hölder’s inequality with α and α1 = α/(α − 1), for any

z ∈ R
1+2d
T we have

(|D2
vu − (D2

vu)Qr (z)|p0)
1/p0
Qr (z)

� 2(|D2
vu|p0)

1/p0
Qr (z)

� 2(I(t0−(R0R1)2,t0))
1/(p0α1)
Qr (z)

(|D2
vu|p0α)

1/(p0α)

Qr (z)

� 2(R1R0r−1)2/(p0α1)M1/(p0α)
T |D2

vu|p0α(z)
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� Nν2/(p0α1) R2/(p0α1)
1 M1/(p0α)

T |D2
vu|p0α(z).

In the casewhen 4νr < R0, we use Lemma 7.1with p replacedwith p0. Combining

these cases, we get in R
1+2d
T ,

(D2
vu)#T � N (ν−1δ−θ + ν2/(p0α1) R2/(p0α1)

1 )M1/p0
T |D2

vu|p0

+ Nν−1δ−θ
∞
∑

k=0

2−k
M

1/p0
2k ,T

|(−Δx )
1/3u|p0

+ Nν(4d+2)/p0δ−θ γ
1/(p0α1)
0

∞
∑

k=0

akM
1/(p0α)

2k/δθ0 ,T
|D2

vu|p0α

+ Nν(4d+2)/p0δ−θ
∞
∑

k=0

2−k
M

1/p0
2k/δθ0 ,T

|Pu|p0 .

We take the ‖ · ‖-norm of both sides of this inequality, use Corollary 3.2 (ii) with
p, r1, . . . , rd , q > 1 and Corollary 3.2 (i) with

p/(p0α), r1/(p0α), . . . , rd/(p0α), q/(p0α) > 1

and (7.6). An application of the Minkowski inequality gives

‖D2
vu‖ � N (ν−1δ−θ + ν2/(p0α1) R2/(p0α1)

1 + ν(4d+2)/p0δ−θ γ
1/(p0α1)
0 )‖D2

vu‖
+ Nν−1δ−θ‖(−Δx )

1/3u‖ + Nν(4d+2)/p0δ−θ‖Pu‖. (7.7)

Furthermore, note that u solves the equation

∂t u − v · Dx u − Δvu = f, (7.8)

where f = Pu + (ai j − δi j )Dvi v j . Then, by Theorem 6.1 applied to (7.8),

‖(−Δx )
1/3u‖ + ‖Dv(−Δx )

1/6u‖ � Nδ−θ (‖Pu‖ + ‖D2
vu‖). (7.9)

Combining this with (7.7), we get

‖D2
vu‖ � N (ν−1 + ν(4d+2)/p0γ

1/(p0α1)
0 )δ−θ‖D2

vu‖
+ Nν2/(p0α1) R2/(p0α1)

1 ‖D2
vu‖ + N (ν−1 + ν(4d+2)/p0)δ−θ‖Pu‖.

(7.10)

Furthermore, we set ν = 2 + 4Nδ−θ . Then we choose γ0 > 0 and R1 > 0 such
that (7.5) holds and

Nν(4d+2)/p0δ−θ γ
1/(p0α1)
0 � 1/4, Nν2/(p0α1) R2/(p0α1)

1 � 1/4.

Thus, we can cancel the term containing D2
vu on the right-hand side of (7.10). By

(7.9), we also obtain the estimate of (−Δx )
1/3u and Dv(−Δx )

1/6u.
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Step 2 Let ζ ∈ C∞
0 ((−(R0R1)

2, 0)) be a nonnegative function such that
ˆ

ζ q(t) dt = 1, |ζ ′| � N (R0R1)
−2−2/q . (7.11)

Observe that for any t ∈ R,

‖D2
vu(t, ·)‖q

L p,r1,...,rd ,q (R2d ,
∏d

i=1 wi )

=
ˆ

R

‖D2
vu(t, ·)‖q

L p,r1,...,rd ,q (R2d ,
∏d

i=1 wi )
ζ q(t − s) ds.

Multiplying the above inequality by w0 and integrating over R give

‖D2
vu‖q =

ˆ
R

‖D2
v

(

uζ(· − s)
)‖q ds.

A similar identity holds for ‖(−Δx )
1/3u‖ and ‖Dv(−Δx )

1/6u‖. Furthermore, we
fix arbitrary s ∈ R and note that us(z) := u(z)ζ(t − s) vanishes outside (s −
(R0R1)

2, s) and satisfies the equation

Pus(z) = ζ(t − s)Pu(z) + uζ ′(t − s).

Then, by the conclusion of Step 1 and (7.11),

‖D2
vus‖ + ‖(−Δx )

1/3us‖ + ‖Dv(−Δx )
1/6us‖

� Nδ−θ‖(Pu)ζ(· − s)‖ + Nδ−θ (R0R1)
−2−2/q‖uφ(· − s)‖,

where φ ∈ C∞
0 ((−(R0R1)

2, 0)) is such that φ = 1 on the support of ζ and´ |φ|q dt = N (R0R1)
2. Raising the above inequality to the q-th power and in-

tegrating with respect to s, we get

‖D2
vu‖ + ‖(−Δx )

1/3u‖ + ‖Dv(−Δx )
1/6u‖

� Nδ−θ‖Pu‖ + Nδ−θ (R0R1)
−2‖u‖.

Due to (7.5), we may replace the last term with Nδ−θ R−2
0 ‖u‖. By using Agmon’s

method (see the proof of Theorem 6.1), we conclude that, for any λ � 1,

λ‖u‖ + ‖D2
vu‖ + ‖(−Δx )

1/3u‖ + ‖Dv(−Δx )
1/6u‖

� Nδ−θ‖Pu + λu‖ + Nδ−θ (R−2
0 + λ1/2)‖u‖.

Setting λ0 = 16(Nδ−θ R−2
0 )2 + 1 and canceling the term containing ‖u‖ on the

right-hand side, we prove the desired a priori estimate.
Finally, in the case when b and c are not identically zero, we use the a priori

estimate that we just proved. We get

λ‖u‖ + ‖D2
vu‖ + ‖(−Δx )

1/3u‖ + ‖Dv(−Δx )
1/6u‖

� Nδ−θ (‖Pu + bi Dvi u + cu + λu‖ + ‖Dvu‖ + ‖u‖).
By using the interpolation inequality in the weighted mixed-norm Sobolev spaces
(see Lemma A.3) and further increasing λ0, we prove the assertion. ��
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Next, we show the existence part.

Proposition 7.3. Theorem 2.6 holds if p = q = ri , i = 1, . . . , d, and w = 1.

Proof. By the method of continuity, the assertion follows from Theorems 2.6 (i)
and 5.1 (ii). ��

Lemma 7.4. Invoke the assumptions of Theorem 2.6 (ii) and assume, additionally,
that f vanishes outside ˜Q R for some R � 1. Let λ0 > 1 be the constant from
Theorem 2.6 (i). Fix any λ � λ0 and let u ∈ Sp(R

1+2d) be the unique solution to
Eq. (2.6) (see Proposition 7.3). Then, for any j ∈ {0, 1, 2, . . .} one has

λ‖u‖L p(˜Q2 j+1R\˜Q2 j R) + λ1/2‖Dvu‖L p(˜Q2 j+1R\˜Q2 j R) + ‖D2
vu‖L p(˜Q2 j+1R\˜Q2 j R)

� N2− j ( j−1)/4R− j‖ f ‖L p(R1+2d ),

where N = N (d, δ, p).

Proof. We follow the argument of Section 8 of [15], which is somewhat similar to
the one of Lemma 5.2.

First, by Theorem 2.6 (i),

λ‖u‖L p(R1+2d ) + λ1/2‖Dvu‖L p(R1+2d ) + ‖D2
vu‖L p(R1+2d )

� N‖ f ‖L p(R1+2d ).
(7.12)

Furthermore, let {η j , j = 0, 1, 2, . . .} be a sequence of smooth functions such that
η j = 0 in ˜Q2 j R , η j = 1 outside ˜Q2 j+1R ,

|η j | � 1, |Dvη j | � N2− j R−1, |D2
vη j | � N2−2 j R−2,

|Dxη j | � N2−3 j R−3, |∂tη j | � N2−2 j R−2.
(7.13)

Then, since f = 0 outside ˜Q R , the function u j = uη j satisfies the equation

Pu j + bi Dvi u j + cu j + λu j = u(Pη j + bi Dvi η j ) − 2(aDvη j ) · Dvu.

By Theorem 2.6 (i), interpolation inequality, and (7.13), we get

‖λ|u| + λ1/2|Dvu| + |D2
vu|‖L p(˜Q2 j+2R\˜Q2 j+1R)

� λ‖u j‖L p(R1+2d ) + λ1/2‖Dvu j‖L p(R1+2d ) + ‖D2
vu j‖L p(R1+2d )

� N2− j R−1‖|u| + |Dvu|‖L p(˜Q2 j+1R\˜Q2 j R)

� N2− j R−1(λ‖u‖L p(˜Q2 j+1R\˜Q2 j R) + λ1/2‖Dvu‖L p(˜Q2 j+1R\˜Q2 j R)).

Iterating this estimate and using (7.12), we prove the assertion. ��
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Proof of Theorem 2.6 (ii). We will only consider the case when the weight is a
function of t, v because the result in

Sp;r1,...,rd (R
1+2d
T , |x |α

d
∏

i=1

wi (vi ))

is established in the same way. The uniqueness follows from Theorem 2.6 (i).
To prove the existence part, we first consider the case when T = ∞. By the

reverse Hölder inequality for Ap-weights (see, for example, Theorem 7.2.5 of [19])
and the scaling property of Ap-weights (see Proposition 7.1.5 (9) of [19]), there
exist a large constant p1 > 1 and small constants εi > 0, i = 0, . . . , d depending
only on d, δ, p, r1, . . . , rd , q, and K such that for any R > 1,

p1
q

= 1 + ε0

ε0
,

p1
ri

= 1 + εi

εi
, i = 1, . . . , d,

(

 0

−R2
w

1+ε0
0 dt

) 1
1+ε0 � N (q, K )

 0

−R2
w0 dt � N (q, K )R2q−2

ˆ 1

−1
w0 dt,

(

 R

−R
w

1+εi
i dvi

) 1
1+εi � N (ri , K )

 R

−R
wi dvi

� N (ri , K )Rri −1
ˆ 1

−1
wi dvi , i = 1, . . . , d.

Then, applying Hölder’s inequality repeatedly, we prove that, for any R > 1 and
h ∈ L p1(

˜Q R),

‖h‖L p,r1,...,rd ,q (˜Q R ,w) � N Rκ‖h‖L p1 (˜Q R), (7.14)

where κ = κ(d, p, r1, . . . , rd , q, K ) > 0 and

N = N (d, δ, p, r1, . . . , rd , q, w0, w1, . . . , wd) > 0.

Note that (7.14) also holds if we replace ˜Q R with ˜Q2R \ ˜Q R .
Next, let fn ∈ C∞

0 (R1+2d) be a sequence of functions such that fn → f in
L p,r1,...,rd ,q(R1+2d , w) as n → ∞. Now we fix some n ∈ {1, 2, . . .}. We may
assume that fn vanishes outside ˜Q R for some R > 1 depending on n. Let us
consider the equation

Pun + bi Dvi un + cun + λun = fn . (7.15)

By Proposition 7.3, this equation has a unique solution un ∈ L p1(R
1+2d). Then,

by (7.14), un ∈ Sp,r1,...,rd ,q,loc(R
1+2d , w). Furthermore, denote

X j = L p,r1,...,rd ,q(˜Q2 j+1R \ ˜Q2 j R, w), j � 0.

Then, by Lemma 7.4 and (7.14) with R replaced with 2 j R, we have

λ‖un‖X j + λ1/2‖Dvun‖X j + ‖D2
vun‖X j

� N2 jκ Rκ
(

λ‖un‖L p1 (˜Q2 j+1R\˜Q2 j R) + λ1/2‖Dvun‖L p1 (˜Q2 j+1R\˜Q2 j R)
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+ ‖D2
vun‖L p1 (˜Q2 j+1R\˜Q2 j R)

)

� N2− j ( j−1)/4+ jκ Rκ− j‖ fn‖L p1 (R1+2d ).

Summing up the above inequality with respect to j , we conclude that

un ∈ Sp,r1,...,rd ,q(R1+2d , w).

Then, by the a priori estimate of Theorem 2.6 (i), {un, n � 1} is a Cauchy sequence
in Sp,r1,...,rd ,q(R1+2d , w). Therefore, this sequence has a limit

u ∈ Sp,r1,...,rd ,q(R1+2d , w).

Finally, passing to the limit in (7.15), we prove that u is the solution to Eq. (2.6).
In the case when T < ∞, we consider the equation

Pu1 + bi Dvi u1 + cu1 + λu1 = f 1t<T .

By the above, this equation has a unique solution u1 ∈ Sp,r1,...,rd ,q(R1+2d , w),
which is the solution to Eq. (2.6). The theorem is proved. ��
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Appendix A

Lemma A.1. Let σ > 0, R > 0, p � 1 be numbers, and f ∈ L p,loc(R
d). Denote

g(x) =
ˆ

|y|>R3
f (x + y)|y|−(d+σ) dy.

Then,

(|g|p)
1/p
BR3

� N (d, σ )R−3σ
∞
∑

k=0

2−3kσ (| f |p)
1/p
B

(2k R)3
.
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Proof. By Hölder’s inequality for any x ∈ BR3 , we have

|g(x)| �
∞
∑

k=0

ˆ
23k R3<|y|<23(k+1) R3

| f |(x + y)|y|−(d+σ) dy

� N (d)

∞
∑

k=0

2−3kσ R−3σ
(  

23k R3<|y|<23(k+1) R3
| f |p(x + y) dy

)1/p

.

Taking the L p-average of the both sides of the last inequality over BR3 and using
the Minkowski inequality, we prove the assertion of this lemma. ��
Lemma A.2. Let p > 1 be a number, w ∈ Ap(R

d), and f ∈ L p(R
d , w). Then,

there exists a number p0 > 1 depending only on d, p, and [w]Ap such that f ∈
L p0,loc(R

d).

Proof. By Corollary 7.2.6 of [19], there exists q ∈ (1, p) depending only on p, d,
and [w]Ap(Rd ) such that w ∈ Aq(Rd). Let p0 = p/q. Then, by this and Hölder’s
inequality for any cube C ,ˆ

C
| f |p0 dx �

(

ˆ
C

| f |pw dx
)1/q(

ˆ
C

w−1/(q−1) dx
)(q−1)/q

< ∞.

The lemma is proved. ��
For numbers p1, . . . , pd ∈ (1,∞), by L p1,...,pd (w1, . . . , wd) we denote the space
of measurable functions with the finite norm

‖ f ‖L p1,...,pd (w1,...,wd )

= ∣

∣

ˆ
R

∣

∣ . . .
∣

∣

ˆ
R

∣

∣

ˆ
R

| f |p1(x) w1(x1)dx1
∣

∣

p2
p1 . . . wd(xd)dxd

∣

∣

1
pd .

Furthermore, by W 2
p1,...,pd

(w1, . . . , wd)wemean the Sobolev space of all functions
u ∈ L p1,...,pd (w1, . . . , wd) such that Dx u, D2

x u ∈ L p1,...,pd (w1, . . . , wd).

Lemma A.3. (Interpolation inequality) Let p1, . . . , pd ∈ (1,∞)be arbitrary num-
bers and wi ∈ Api (R), i = 1, . . . , d, such that [wi ]Api (R) � K , i = 1, . . . , d, for

some K � 1. Then, for any u ∈ W 2
p1,...,pd

(w1, . . . , wd) and ε > 0, we have

‖Dx u‖ � ε‖D2
x u‖ + Nε−1‖u‖,

where ‖ · ‖ = ‖ · ‖L p1,...,pd (w1,...,wd ) and N = N (d, p1, . . . , pd , K ).

Proof. First, by Lemma 3.8 (iii) of [17], for any w ∈ Ap1(R
d) and ε > 0, one hasˆ

|Dx u|p1w(x) dx � N
ˆ

|g|p1w(x) dx,

where

g(x) = ε|D2
x u| + ε−1|u|

and N = N (d, p1, [w]Ap1 (Rd )). Applying a variant of the Rubio de Francia extrap-
olation theorem (see, for example, Theorem 7.11 of [17] and also [29]), we prove
the lemma. ��
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