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Abstract

We study the degenerate Kolmogorov equations (also known as kinetic Fokker—
Planck equations) in nondivergence form. The leading coefficients a’/ are merely
measurable in ¢ and satisfy the vanishing mean oscillation condition in x, v with
respect to some quasi-metric. We also assume the boundedness and uniform non-
degeneracy of a'/ with respect to v. We prove global a priori estimates in weighted
mixed-norm Lebesgue spaces and solvability results. We also show an application
of the main result to the Landau equation. Our proof does not rely on any kernel
estimates.

1. Introduction

Letd = 1, R9 be a Euclidean space of points (x1,...,x4), and for T €
(—00, 0o] we denote R‘% = (=00, T) x R4-1, By z we denote the triple (z, x, v),
where t € R, and x, v € RY.

In this paper, we study kinetic Kolmogorov—Fokker—Planck (KFP) operator in
nondivergence form given by

Pu = du — v - Dy —a" () Dy, u.

Here the coefficients a(z) = (a“(z),i,j = 1,...,d) are bounded measurable
and uniformly nondegenerate. When the coefficients a'/ are independent of x and
v, we denote P by Py. This operator appears in the theory of diffusion processes
[39], mathematical finance [33], and kinetic equations of plasma. In particular, the
linearized Landau equation near Maxwellian can be rewritten as a Cauchy problem

Pf+b-Dyf+cf =h fO.- )= fol.-), (1.1)

where b is a vector-valued function (see, for instance, [24]), and ¢ is a bounded
function.
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The goal of this article is to prove a priori estimates and the unique solvability
in the weighted mixed-norm spaces Sy ;|,....r4.q (R1T+2d, w) (see Section 2), which
generalize the ultraparabolic Sobolev space S, (see, for instance, [8]). We do this
under arelaxed V M O type assumption, which appears to be new. In particular, our
coefficients a¥/ are merely measurable in time and V M O in the x, v variables with
respect to some quasi-distance (see Assumption 2.3). This assumption is analogous
to the VM O, condition from the theory of nondegenerate parabolic PDEs with
discontinuous coefficients (see [15,27]).

The kinetic Kolmogorov-Fokker—Planck equations have been studied exten-
sively [1,4-8,10-14,18,21-23,31-35,40], including nonlocal equations [11,21,
23,32]. Here we discuss the results of the Sobolev space theory. The interior §,-
estimate under a V M O assumption with respect to all variables was established in
[8] for nondivergence equations, and in [31] for divergence form equations. The
interior estimate in the ultraparabolic Morrey spaces was proved in [35]. The first
global S, estimate was discovered in [9] for the constant coefficients a' case. For
a'/ independent of (x, v), the a priori estimates can be found in [12]. The first global
S, estimate for the variable coefficients a'/ case was established by the authors of
[10]. Assuming the uniform continuity of the leading coefficients, they proved the
a priori estimate of Dgu on a sufficiently small strip [—T, T'] x R?¢. To the best
of our knowledge, no solvability results in ultraparabolic Sobolev spaces were pre-
sented in these works except for the case of constant coefficients, and the operators
considered are more general than P. On the other hand, when the coefficients are
regular enough, say Holder continuous (in the appropriate sense), the unique solv-
ability is established in [13] (see also [2]) by studying the fundamental solution to
a KFP operator. It seems that the first results in the weighted mixed-norm space
belong to [32]. The authors proved the a priori estimates and unique solvability
in the L,((0, T), Lq(RZd )) spaces with the power weight in time (see Theorem
8.1 of [32]) assuming that the functions %/ are uniformly continuous with respect
to some quasi-metric. They also studied quasilinear kinetic KFP equations. In the
case of the zero initial condition, the main result of this article covers Theorem 8.1
in [32] because we work with spaces that have a Muckenhoupt weight in the (¢, v)
variables.

The current paper generalizes the aforementioned results in several directions.
First, our assumption on the coefficients a*/ is weaker than the ones presented in the
literature. Second, we prove the a priori estimates in the weighted mixed-norm space
where each direction ¢, vy, . .., vg has a different Muckenhoupt weight. Third, we
also discover the a priori estimate of D, (—A,) /6y foru € Sportseranq (R1T+2d, w),
which appears to be new. Finally, we show that the constant on the right-hand side
in the S, estimate (2.8) (see also (2.9)) grows polynomially as the lower eigenvalue
bound of the coefficient matrix '/ decreases. This fact is crucial in the application
to the linearized Landau equation near Maxwellian (1.1). In particular, the matrix
of the leading coefficients a’/ has a lower eigenvalue bound of order n~3 on the
annulus (0, 7) x £2 x {|v]| ~ n},n € {1,2,...} (see [24, Lemma 2.4]), where
£ c R3 is a domain. Then, one can use the Sp estimate (see (2.9)) to obtain an
upper bound of the L ,-norm of Dg f. We elaborate on this in Remark 2.9; see also
[14,16,24].
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We comment on the ideas of the proof. To prove the main result, one needs to,
first, work with the model equation

Pou+ hu = f, (1.2)

where the coefficients ¢/ are independent of x and v. Recall that in the unmixed
and unweighted case, the a priori estimates for Eq. (1.2) were already proved in
[9] and [12] by using the estimates of fundamental solutions. We give a new proof
of these a priori estimates and establish a unique solvability result for Eq. (1.2) in
weighted mixed-norm spaces. As a corollary, we obtain pointwise estimates of

(D3, (AP, (Dy(—a0)" )]

in the case of variable coefficients a'/, which are similar to those in Lemma 6.2.2
of [27] (see Lemma 7.1). Here the superscript # stands for the sharp function
with respect to some quasi-distance. By designing a family of maximal functions
and using a variant of the Hardy—Littlewood and Fefferman—Stein theorems (see
Corollary 3.2), we prove the a priori estimate of Theorem 2.6 (i), which also implies
the uniqueness part of Theorem 2.6. To prove the existence of solutions, we use the
density argument as well as the argument of Section 8 of [15].

The novelty of this work lies in the fact that we do not use an analytic ex-
pression of the fundamental solution of the operator Py + A. We use a kernel-free
approach, which can be found in papers by N. V. Krylov, the first named author,
D. Kim, and others (see, for example, [15,27]). Such a method is useful in devel-
oping the solvability theory in Sobolev spaces for second-order operators whose
fundamental solutions do not have an explicit form. The reader can find examples
of such equations in [7] and [28]. Interestingly, the authors of [11,12] also proved
a variant of the Fefferman—Stein theorem (see Theorem 2.11 of [11]). In the same
papers, they use the Fefferman—Stein inequality to prove the a priori estimates of
D%u and (—Ax)l/ 34 in the L p spaces. However, the main difference is that, in-
stead of estimating (Dlz)u)? and ((—A,)Y/3 u)*; in terms of the maximal functions
of Dgu, (=AY 3u and the right-hand side of Eq. (1.2) like we do, these authors
used a variant of the Stampacchia interpolation theorem (see [11, Theorem 2.12]
and [12, Theorem 2.4]), which they derived from the Fefferman—Stein inequality.
One more difference with our work is that the argument of [12] involves kernel
estimates. The method in the present paper allows us to further treat the VM O
coefficients by incorporating the perturbation in the mean oscillation estimates. It
would be interesting to find out if the methods of [8], [10,12,31,32] could be used
to prove Theorem 2.6.

The L, theory of KFP equations developed in this article can be used in math-
ematical theory of plasma and filtering of signals. For example, in [14], the present
authors and Yan Guo showed the well-posedness and higher regularity of the linear
Landau equation with the specular reflection boundary condition by applying the
results of the current paper. The crucial difficulty in this problem is that the pres-
ence of the boundary condition forces one to work with Kolmogorov type equations
with ‘rough in time’ coefficients, which is why Theorem 2.6 and Corollary 2.8 are
useful for such equations. See the details in Section 2 of [14]. Motivated by such
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an example, we plan to study kinetic KFP equations with rough coefficients in
divergence form in suitable Sobolev spaces and equations in nondivergence form
in Morrey-Campanato spaces. In addition, the a priori estimates for KFP equation
might be useful in developing the solvability theory for its stochastic counterparts
which arise in filtering of diffusion processes and interacting particle systems. For
discussion and related studies, see [34,40], and [20]. We plan to further investigate
the stochastic KFP equation in subsequent papers.

The paper is organized as follows: in the next section, we introduce the notation
and assumptions and state the main result of the article. In Section 3, we prove
some auxiliary results, including variants of the Hardy—Littlewood and Fefferman—
Stein theorems for the maximal and sharp functions defined with respect to an
ultraparabolic quasi-distance. In Section 4, we prove Theorem 2.6 for Eq. (1.2)
with P = Py and p = 2. We extend this result to p € (I, 00) in Section 5.
In Section 6, we prove Theorem 2.6 with P = Py. In the last section, we prove
Theorem 2.6.

2. Notation and Statement of the Main Results

2.1. Notation and assumptions
For r > 0 and xo € R?, denote
By(x0) = {§ € R?: |§ —xo| <7}, B, = B, (0).
Forr, R > 0 and zo € R4 we set

0rr(z0) ={z:—r* <t —19 < 0,|v—vo| <r |x —x0+ (t —to)vo|'* < R},
0rr(z0) = {z 1 It —to] < 7% Jv—vol <1, |x —x0+ (t — to)vo|"/* < R},
0,(20) = Qrr(20),  Or(20) = Orr(20),
01k = 0rr(0), Ornr=0:r0), Or=0,0), 0 =0,0).

For an open set G, by C(G), we denote the space of all bounded continuous func-
tions on G. By C° (R9), we denote the space of all smooth compactly supported
functions on RY.

We say that a function w is a weight on R? if w is nonnegative, locally integrable,
and w > 0 almost everywhere. For p > 1, we write w € A p(Rd) if w is a weight
on R? such that

p—1
[w]AP(Rd) ‘= sup (7[ w(x) dx)(f w1/ (x) dx) < 0.
J By (x0) J By (x0)

xoeR4,r>0

Remark 2.1. Fora € (—=d,d(p — 1)), w(x) = |x|% is an A, weight in R (see the
details in Example 7.1.7 in [19]).
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Furthermore, for any numbers p,ry,...,r4,q > 1, K 2 1, and a function w
on R we write (Wlg,ry,.ra < K if there exist weights w;,i =0,...,d, on R
such that
d
w(t, v) = wo(®) [ Jwi) .1)
i=1
and
[wola,®), [wila, ®m = K, i=1....d. (2.2)

BY Lprirrag(Go ), Ly (G 11 TTEZ wii), @ € (=1, p = 1), we de-
note the spaces of all Lebesgue measurable functions on R!*2¢ such that

WALy sy (Gow)

= |/ |}/ |/ |f|p(Z)1G(Z)d)€|% wi (vy)dvy
R R JRd

a9 1
7 wo(t)de| 7, (2.3)

n
1

. wd(vd)dvd

17 ”Lp:rl _____ rg (Golx 1 TTEZ ) wi ()

s .

= y/...|/ \/ | f17(2)16(2)|x|* dxdt| 7wy (vy)dvy |
R R Rd+1

1

d (2.4)

... wg(vg)dvg

For the discussion of basic properties of weighted mixed-norm Lebesgue spaces,
see [6]. We write u € Sp ... ry.q(G, w) if

u,ou —v- Dyu, Dyu, Dgu €Lpy,.raq(G,w).
The Sy /,....r4,4(G, w)-norm is defined as

Netlls,,,...pqGwy = NtllL,, . oGw) F1DvUlL,, .o (Gow)

2
+||Dvu”Lp,rl,,.,,rd.q(G!w) + ||8[M - U Dxu”Lp,rl,w.rd,q(va)'
If w = 1, we drop w from the above notation. In addition, if p =r; =... =ry =
q, we replace the subscripts p,ry, ..., rq, g with a single number p. Replacing

Lpr,.. ,d,q(]RlTHd, w) with Lp.r (R1T+2d, [x]¥ ngl:l w; (v;)), we define the
space Sy g (REF24 1|2 T w; (00)).

Foranys € (0, 1)andu € L p(Rd), by (— Ay )*u we understand the distribution
given by

(=40 Pu, ¢) = (. (—4)'P¢). ¢ € CERY.
Furthermore, if s € (0, 1/2) and u is regular enough, say,

u is of Lipschitz class on RY, |u(x)| < K,
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then, the following pointwise formula hold:

s _ ux) —ulx +y)
A = [ MO D ay,

where c4 ¢ s the constant depending only on d and s. See, for instance, the discus-
sion in Section 2 of [37].
For ¢ > 0, denote

1/3

1/2 -1
pe(z, 20) = max{|t — 1o]"/%, ¢ x — x0 + (t — t9)vo|'?, [v — wvol}.

For a Lebesgue measurable set A, by |A| we denote its Lebesgue measure. For a
function f € L1(A), we denote

(s =]ifdz= |A|—1/Afdz

provided that |[A| < co. For ¢ > 0 and T € (—o0, oo], the maximal and sharp
functions are defined as follows:

Me 1 f(z0) = sup ][ |f(2)|dz, Mrf:=Mrf
r>o’zlER;+2[13ZOEQ;-,N(ZI) Orre(z1)
o) = sup f If @) = (o, epldz.

r>0,21€1RlT+2d:zo€Qr(z1) 0Or(z1)

For n € {0,1,2,...} and a sufficiently regular function u on R2d by D!u
we denote the set of all partial derivatives of order n in the x variable. We define
Dlu, DT D u in the same way.

By N = N(---) and & = 6(---) we mean constants depending only on the
parameters inside the parenthesis. The constants N and 6 might change from line
to line. Sometimes, when it is clear what parameters N or 6§ depend on, we omit
them.

We impose the following assumptions on the coefficients:

Assumption 2.2. The coefficients a(z) = (a'/(z),i,j = 1,...,d) are bounded
measurable functions such that for some § € (0, 1),

SIE1* < a (2)&iE; S 8TVEP, VE eRY, z e R
Assumption 2.3. (y) There exists Ry > 0 such that for any zg and R € (0, Ro],
oscx,v(a, Qr(20)) = yo.

where

OSCyx v (a, Qr(z0))

=][ ][ la(t, x1, v1) — a(t, x2, v2)| dx;dvidxaduv, dr,
(to—r2,10) J Dy (20,1)% Dy (20,1)

and

D (20, 1) = {(x, ) : |x —x0 + (t — t0)vol'® < 7, |v — wo| < r}.
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Here is an example of a somewhat stronger condition which can be viewed as a
VM Oy , condition with respect to the anisotropic distance |x — X|V3 4+ v =)
Letw : [0, 00) — [0, 00) be an increasing function such that w (0+) = 0. Assume
that

/
osc, ,(a,r)

= sup r_Sd/ / la(t, x1, v1) (2.5)
1,x,v x1,x2€B,3(x) Jvi,v2€B:(v)

— a(t, xy, v2)| dxidxp dvidvy § w(r).
Note that since
oscy v(a, Qr(20)) = oscy ,(a,r),

the condition (2.5) implies Assumption 2.3 (yy) for any yp € (0, 1).
In the present article, we consider the equation

Pu+b'Dyu+ (c+Mu=f (2.6)
and for —oo < § < T < 00, the Cauchy problem
Pu+b'Dyu+cu=f, u(S,-)=0. (2.7)

Assumption 2.4. The functions b = (bi, i =1,...,d) and c are bounded measur-
able on R!*2¢ and they satisfy the condition

bl + |l = L

for some constant L > 0.

2.2. Main result

Definition 2.5. Let T € (—o0, oo]. A function u € Sp,rl,,_,,rd,q(Rsz, w) is a solu-
tion to Eq. (2.6) if the identity

u —v-Dyu = aijDvivju — biDviu —(c+Mu

holdsin Ly . ...ry.q (R24, w). We define a solution in the space

.....

d
Spirt.era (Rsz» |x|* H w; (vi))
i=1
in a similar way.
We say that

ue Sp,rl,...,rd,q((s, T) X R2d’ w)

is a solution to Eq (2.7) if there exists & € Sp,r,w,,d’q(RlTﬂd., w) such that ¥ = u
on (S,T) x R* % = 0 on (—00, §) x R?, and P + b'D,,ii + cii = f on
(S, 7T) x R¥,
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Theorem 2.6. Let p, ry, ..., rq, ¢ > 1, K 2 1 be numbers, T € (—00, 0], and
wi, i =0,1,...,d, beweights satisfying (2.2), and w be a weight defined by (2.1).
Let Assumptions 2.2 and 2.4 hold. There exist constants

B=pBW, p.ri,....ta.q. K) >0, v=8%d,p.r.....ra.q.K) >0
such that if Assumption 2.3 (yo) holds, then, the following assertions are valid.

(i) There exist constants

0=60d,p,r1,...,rq,q9,K) and
ro =8 Ry Ro(d, p,r1s .. ra g K L) 21

such that for any . 2 Ao and any u € Sprtses ,d,q(RlT"'Zd, w), one has

Mull + X2 Dyull + I DRl + (=20 Pull + 1Dy (—A) Y Cul|
+ 18 — v - Dyull £ N8| Pu + b Dyu + cu + ul, (2.8)

where Ry € (0, 1) is the constant in Assumption 2.3 (yp),
N-1=1- ”Lp.rl,.“,r,,,q(R]T”d,w)’ and N=N(d,p,r1,...,rq4,q, K).

In addition, for any f € Lp,rl,.._,rd,q(er+2d
tionu € Sp,,],m,rd,q(R]THd, w).
(ii) For any numbers —oo < S < T < ooand f € Ly ... r4,q((S, T)xR%  w),

Eq. (2.7) has a unique solutionu € Sp ... ry.q((S, T) X R, w). In addition,

, w), Eq. (2.6) has a unique solu-

lull + I Dyull + 1Dl + [1(=A0) " Pull + 1| Dy (= Ax)Oul|
+ 18u — v - Deull < N f1I,

where ” . || = || . ”Lp,rl,...,rd,q((SsT)Xdevw) and
N=Nd,é,p,r1,...,74,q9,. K, L, T = S).

(ii1) The assertions (i) and (ii) hold with Sp,rl,_”,rd,q(RlTHd, w) replaced with
Spirtsora (R]T+2d, [x]* ]—[?’;1 w; (v;)), where a € (—1, p — 1). Furthermore,
the constants B, yo, 0, Ao, N must be modified as follows: one needs to take
into account the dependence on a and remove the dependence on q.

Remark 2.7. The reason why we included the term D,(—A,)'/% in the a pri-
ori estimate (2.8) is the following. In the proof of Theorem 2.6 with P = Py,
Lpri,..raq (RITH‘I, w) replaced with L , (R'*24)y and p € (1, 2) (see Theorem 5.1),
we use an a priori bound of the Lp/<p,1)(R1+2d) norm of D,(—A,)"%u to prove
(2.8) for || Dgu I L (RI+2d)- See page 46. It turns out that the former inequality can

be obtained along the lines of the proof of the a priori estimate of (—A,)/3u.

The next result is a direct corollary of Theorem 2.6 (i).
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Corollary 2.8. There exist constants
B=RBd, p.ri,....ta.q. K) >0, v=8%d,p.r.....ra.q.K) > 0,
and
0 =0d,p,r,...,rq,q9,K) >0,

such that if Assumption 2.3 (yo) holds, then, for any u € Sp ..., rd,q(RlT"’_zd, w)
and A 2 0,

lulls,, @iy + 1= A0 Pl + 1Dy (= A0 oul
< NO~!(1Pu+ b Dy + cu+ a4 Ry ), 2.9

where || - || = || - ”mel,...,rd,q( w) N = N, p,r1,....rq4,q, K, L), and
Ry € (0, 1) is the constant from Assumption2.3 (yp). Furthermore, the same holds if
wereplace Sp ;,....ry.q (R1T+2d, W) WIith Sp.ry | .. ry (R1T+2d, [x]* H?:l w; (v;)), where

o € (—1, p — 1), and modify the constants as suggested in Theorem 2.6 (iii).

1+2d
RT

Proof. We only need to consider the case when A € (0, X¢), where A¢ is the constant
in Theorem 2.6. Then, by (2.8) and the triangle inequality, (2.9) holds with the term
(Ao — A)|lu|| in place of RO_2 |lu]l. Replacing Ly — A with Ag and using the explicit
expression of Ao, we prove (2.9). O

In the next remark, we explain how Corollary 2.8 can be applied to the linearized
Landau equation. We also show why it is useful to know how the constant on the
right-hand side of (2.9) depends on the lower eigenvalue bound § of the matrix a'/.

Remark 2.9. Let d = 3. Here we show how Corollary 2.8 can be used to estimate
the §,-norm of the solution to the linearized Landau equation near Maxwellian
(1.1) in the case of the Coulomb interaction. See the details in [16]. Due to Lemma
2.4 of [24], for Eq. (1.1), there exist constants 1, 2 > 0 such that

(1 + ) 3EP < aV (&8 < po(1+ v))EIR, Vze R, Ve e R
(2.10)

In addition, we assume that the coefficients ¢’/ are Holder continuous with respect
to the quasi-distance

1/2 1/3
d(z, z') = max{|r — 10]"/%, |x — x0 — (t — t0)vo|'/3, [ — vol}.

This means that ¢’/ are bounded functions, and there exists a constant ¥ € (0, 1)
such that

la'l (z) — a' ()]

sup _

< 00, l?] = 1,2,3.
L2eO xRSz (2 2)

Equation (1.1) with the above assumptions arises naturally when one tries to prove
the existence and uniqueness of the solution to the (nonlinear) Landau equation



510 HoNGIE DONG & TIMUR YASTRZHEMBSKIY

near Maxwellian (see [16,24]). Note that, in this case, Assumption 2.3 (3p) holds
for any yp € (0, 1) with

Ro~ ' . @2.11)

Next, assuming that fj is a sufficiently regular function and replacing f with
f — fop, where ¢ = ¢(¢) is an appropriate cutoff function, we reduce Eq. (1.1) to
the Cauchy problem

Pf+b'vvf+cf:7]7 f(()"v')EO'
Then, localizing (2.9) and using (2.10) and (2.11), for any n € {1,2,...,}, we

obtain

I f 5,0, 7) <R3 x {n<|v|<n+1}) 2.12)

9
S NaZllnl+ 11 Ly (0,7) <R3 x (n—1/2<v] <n+3/2})»

where N and 6 are positive numbers independent of n and 7. If the original initial
value and h decay fast enough at infinity, by using the energy estimate for the Landau
equation, one can show that f, n € L,((0, T) x RS, |v|9/) forsome 8’ > 0+1 > 0.
This combined with (2.12) gives

0—0'
”f||Sz((0,T)><R3><{n<|v|<n+l}) g Nn |||77| + |f|||L2((0,T)><]R6,|v|9/)’

and, hence, f € $2((0, T) x R%). By a Sobolev type embedding theorem for § »
spaces (see Theorem 2.1 in [35]), the above gives

N+ 190 £l 0188 S NI+ Ly 0.7y w6, o

Similarly, one can show that f belongs to a weighted S, and L7,3 spaces. Then,
by using a bootstrap type argument, we conclude that f € §,((0, T) x R®) for
any p € [2, 00). If p is large enough, by using a Morrey type embedding theorem
for the §), spaces (see Theorem 2.1 in [35]), one concludes that f, V, f are Holder
continuous with respect to the quasi-distance d, which is crucial in the proof of
the uniqueness of solutions (see, for example, [24, Lemma 8.2]). As mentioned in
Section 1, the present authors used a similar argument to show the higher regularity
of a finite energy weak solution to the linear Landau equation with the specu-
lar reflection boundary condition (see [14]). In particular, near the boundary, one
can reduce such an equation to an equation of the KFP type with the coefficients
Loo((0, T), CZL7(R), 5 € (0, 11, where CZ5>* (RS) is the space of bounded
functions # such that

sup [ (x1, v1) — u(x2, v2)|
(er.00) €RO:(ron) () (1= X211 4 Jor — v )

In this case, again, Assumption 2.3 (yp) holds for any yg € (0, 1) with R given by
(2.11).

Remark 2.10. The assertion (ii) is derived from (i) in the standard way (see, for
example, Theorem 2.5.3 of [27]). We will not mention this in the sequel.
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Remark 2.11. From Theorem 2.6 (i), we can derive the corresponding results for
elliptic equations when the coefficients and data are independent of ¢. See, for
instance, the proof of [26, Theorem 2.6]. The idea is that one can view an elliptic
equation as a steady state parabolic equation.

Remark 2.12. Tt would be interesting to study Eq. (1.1) with singular drift under
the conditions similar to those considered in [25,30,36,38] (see also the references
therein). An interesting result concerning a Langevin type SDE with the drift in the
form b(t, x, v) = D, F(x) + G(v) was established in [38].

3. Auxiliary Results

The following lemma is a variant of Lemma 2.3 of [12].

Lemma 3.1. Let ¢ 2 1, r > 0 be numbers. Then, the following assertions hold:

(i) For any z, zo € R1124,

pe(z, 20) = 2p¢(20, 2).

(i) For any z, 2o, 21 € RI+2d

0c(z,20) < 2(pe(z, 21) + pe(z1, 20))-

(iii) Denote po(z,20) = pc(z,20) + pc (20, 2). Then, p. is a (symmetric) quasi-
distance.A
(iv) Denote Q. (z0) = {z € R"?4 2 5.(z, z0) < r}. Then,

@r,cr (z0) C ér,cr (z0) C @3r,3cr (z0)-

-~

(v) Forany T € (—o0, 00], the triple (R1T+2d, D¢, dz) (with the induced topology
if T < 00) is a space of homogeneous type with parameters independent of c.

Proof. (1) It suffices to show that

“Hx = xo + (2 — 1) vol'? < 2p,(20, 2).

c
By the triangle inequality, we have

Ix — x0 + (t — to)vol'/* < |xo — x + (tg — DV|' + |t — 10| |v — v|'/3

< |xo — x + (to — V'3 + pe(z0, 2).

Multiplying both sides of the above inequality by ¢~! and using the fact that
¢ 2 1, we prove the claim.
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(i1) Asin (i), we only need to show that the inequality holds with the left-hand
side replaced with ¢! [x —x0 4+ (t — tp)v] /3, By the triangle inequality,

Ix — xo + (t — fo)vg|'/?

S e —x1 4+ @ — |3+ |x1 — xo + (¢ — t0)vo — (¢ — 1) vy
1/3 1/3

1/3

< epe(z, z1) + cpe(zi, z0) + |t — 11 Jvg — v

By Young’s inequality,
It — 1113wy — v1]'? £ (2/3)pe(z, 21) + (1/3) pe(z1, 20)-

This combined with the fact that ¢ 2 1 yields the desired estimate.
(iii) This assertion follows from (ii).
(iv) The claim is a direct corollary of (i).

(v) We only need to check the doubling property. For any z € RITHd, the assertion
(iv) of this lemma gives

'_ |Q2r,2cr ()N R%‘+2d| < |§2r,2cr 2|
10rer(2) NRE T 10,/3.0r/3(2) NRET

Since z € R1T+2d, we have

Or/3,er/3(2) C ér/3,cr/3(1) ﬂRlT+2d,

and, hence,

w = N@). 3.1
The claim is proved. O
Denote
fc#fr(zo) = sup ][ 1f @) = (/)0 dz.
r>0,21 R 20€0, 0 (21) Orer(z1)
Corollary 3.2. Letc =2 1,K = 1, p,q,r1,...,rq > 1L benumbers, T € (—00, 00],

and f € Lp ..., rd,q(RlT'ﬂd, w), where w is a weight such that
[w]q,rl,...,rd g K.
Then, the following assertions hold:
(1) (Hardy—-Littlewood type theorem)
IMerfll,, . @2
SNEpogorsra NSy, iy

(ii) (Fefferman—Stein type theorem)

10,

< #
g (REF ) = N, p,q,r1, ..., ra, K)II 77 ”LP,rl,,..,rd‘q(errJFZd,w)'
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Proof. We only present the proof of the assertion in the case when 7 < oo. The
case when T = oo is treated similarly. We extend f to be zero for ¢ > T.

(i) Denote

M7 f (z0) = sup |f(2)]dz,

142 2y
}”>0,Z[€R7~jL d:ZOE Qr,('r(zl)

f:Q\r,cr (z1 )QR’II‘+2{1

where Q\mr (z1) is defined in Lemma 3.1. By Lemma 3.1 (iv), for any » > 0
and z; € R1T+2d,

| §3r 3cr|
[f()ldz = ———— 1. |f(2)|dz
7[Qr,cr (z1) |Qr,cr| Q31 3cr (ZI)ORIT+2d
| §3r 3cr|
S — [ f(z)]dz
|Qr.crl 03r.30r (Zl)ﬂRlTHd
=N() 1. |f(2)|dz,
Q3r.3cr(zl)mR17‘+2d
and by this
Merf(2) € NdMer f(2), VzeRy (32)

We recall that MC,T f is a maximal function on a space of homogeneous type

(R1T+2d, Pe, dz) (see Lemma 3.1 (v)). Then, by the weighted Hardy—Littlewood
theorem (see [3]), for any wp € A, (R1*4),

/ M7 f(2)|Pwo(t, v) dz
R;+2d

< P
< N p. o0l @) /R 1T 0000

By a variant of the Rubio de Francia extrapolation theorem (see, for example,
Theorem 7.11 of [17] and also [29]),

”MC’Tf”Lp.rl,..4,rd,q(R;'+2daw) § N”f”Lp,rl,,..,rd.q(RIT+2d,w)'
Now the assertion follows from (3.2).
(1) Let
7 —
fer(zo) = sup 7{ voan @ = (D5, epnrir2a ] dz,
r>0.21 R 20€ 0 o0 (21) Or.er(z)NRy
fir(zo) = sup ][N 1F@ =N 112 dz.
of Orer(z1 )OR?Qd Orer(z1 )QRT

T+2 =
r>0,z1€R;" :20€ Or.cr (21)

Clearly, fsz is a sharp function defined on the space of homogeneous type

(R1T+2d, Pe, dz). By the generalized Fefferman-Stein theorem for spaces of
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homogeneous type (see Theorem 2.3 of [15]) combined with the extrapolation
argument as above (see Theorem 7.11 of [17]), we get

A< NIFE I
Therefore, it suffices to show that for any z¢ € R1T+2d,
FEr@o) S N@ o). (3.3)
We prove this inequality in two steps.
Step 1 First, we show that
firo) £ N@) o). (34)

We fix any cylinder Q\r,cr (z1) containing zo such that z; € R1T+2d. By Lemma 3.1
(iv) and the doubling property (see (3.1)),

0, /@ = (g 1+24| dz
][Qr,cr (ZI)QRIT-FZd Qr,rr (Zl)ﬂRT

A 1+2d 2
< |Qr,cr(Zl) N RT | 1f(z) — f(Z/)| dzdz’
=0 RI+2d 12 [5 1424 |5 1424

[Qrer (z1) MR J G @R J Oy er (2)NRY,

|ércr(zl)mR%‘+2d|2 ][
< N(d)—== 1f @) = (N 12| dz
|03r30r (1) NRYF212 /5, cppnmlr / 77 Crer @iy

S N@) 1. 1@ = (D5, ey 42, (35)

Orer(@DNREH
which implies (3.4).
Step 2 We claim that
FEr@o) £ N@) fE 7o) (3.6)

For the sake of simplicity, we assume that 7 = 0. Let ér,rc(m) be a cylinder
2

containing zq such that z; € R(])Hd. Note that if £ < —r~, one has

2 R(l)+2d,

~ 2
Or.er(z1) C Qo per(t1 +17, x1 —r7v1,01) C

and then,

If (@)= (Hg 1424 dz
][Fer.cr (Zl)ﬁR(1)+2d Qr.cr (Zl)ﬂRO

= N(d) 1F (@) = (F) 0y ner (1147261 =201 o 42

Q27 pcr (t1+72,x1—r2v1,01)

< N(@d) f*(z0).
Next, if 1; = —r2, then,

Orer(21) C Orer (@) NRYT C 0206, (0, x1 + 11, 7).



Global L, Estimates for Kinetic Kolmogorov—Fokker-Planck Equations 515

By this,

|f(Z)_(f)N 1+2d|dZ
fér‘cr (Z] )ﬂR(l)+2d Qr.cr (Z 1 )ﬁRO

é N(d) |f(z) - (f)QZV,Zcr(nyl‘HlUl,Ul)| dz

02r2¢r (0,x1+1101,01)

< N@) £l (z0).
which proves the claim. Thus, (3.3) holds, and the lemma is proved. 0O

Corollary 3.3. Let p > 1, K 2 1, ¢ 2 1 be numbers, T € (—o0, 0] and w be an

A, weight on the space of homogeneous type (]RIT"’M, 0c, dz) (see Lemma 3.1 (v))

such that its A, constant is bounded by K. Then, for any f € L p(R1T+2d, w),
D) IMe,7 fll, w1240 S N, p, KNSl givad )
) 1N, @42,y S N p KONSE RN, @ieaa

Proof. As we pointed out in the proof of Corollary 3.2, the aforementioned in-
equalities hold with

M, 7 f, ij replaced with ML.,Tf, ij,

respectively. To conclude the validity of the assertions, we invoke (3.2), (3.4), and
(3.6). O

Lemma3.4. Let p € (1,00),r > 0,¢c =2 1, « € (=1, p — 1) be numbers, and
T € (—o00,00]. Then, |x|* is an A, weight on the space of homogeneous type

(]RIT“‘Z , Pe, dz), and, furthermore, for any r > 0, 7o € RlTHd,

J— o
A(r, z0) = ][A WM dz

Qr,cr(ZO)n
x (][A eV dg)" < N, a, p).
Qr,cr (ZO)QR;FZd

Proof. Allowing a constant N in (3.7) to depend on d, we may replace /Q\r,cr (zo)N

(3.7)

RlTHd with ér,cr (zo) N R1T+2d (see the argument in (3.5)). Furthermore, in the case

T < oo, we may assume that 7 = 0 and replace émr (zo) N R(1)+2d with O, ¢r(z0)
in the expression for A(r, zo). This follows from the fact that if 79 < —r2, then

~ 2 2 142d
Qr,cr (z0) C Q2r,20r (to +r=, x0 — r-vg, vo) C R() s
and, otherwise,

Or.er(zo) N R(I)Hd C 02r,2¢r(0, x0 + tov0, Vo).
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We may assume that |xo| 4 |vg| > 0. Denote Xo = r3xq, Vo = r~vg. By the
argument of the previous paragraph and a change of variables, we get

1
A(r.20) £ N(d) / ][ | ddr
0 BC3 (Xo+tVp)

1
X (/ ][ x|~/ (P=1) dxdt)p_l.
0 JB3(Xo+1Vo)

We will consider two cases:
A:|Xo+1tVo| >3, Vie(0,1), B:3re(0,1):|Xo+tVol <3¢
Case A Note that for any t € (0, 1), x € B.3(Xo +tVp), one has

x| < |x — Xo —tVo| + |Xo + Vol = (4/3)| X0 + Vo,
x| = | Xo 4+t Vol — [x — Xo — tVo| 2 (2/3)[ X0 + Vo,

and hence,
1 1 )
A(r,zo)gzv(a,d)/ |X0+tVo|adl</ |Xo + 1 Vol /=D dr)"~
0 0
1 1 ~1
§N(a,d)/ |a)/+ta)|°‘dt(/ o' + tw] 7/ P70 dr)P
0 0

where @ = (|Xo|* + |Vo|) ™12 Vo, ' = (IXol* + Vo) ~/*Xo.
Next, if |@| = 2|w|, we have

%Iw/l < |0 +to] £ 2],
which gives
A(r,z0) £ N, o, p).
If
|o'| < 2Jl,

we decompose 0’ = ' + a)" » where o' is perpendicular to w, and «|, is parallel
to w. Then, for some A € (=2, 2),

A+ 112 o) S0 +to? = |0 P+ A+ 1 o < oG+ A +1]?).
Then, in the case @ € [0, p — 1),

1
A(r, z0) < N(a,d)(/ 417D d)P 7 < N(a, d, p).
0

The case « € (—1, 0) is handled in the same way.
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Case B Observe that for any ¢ € (0, 1), x € B3 (Xo + Vo),
cMx =@ —o)Vol'"P < e = Xo — t Vo' + ¢ Xo 4+ T Vo3 £ 3,
and then,

{(t,x) 11 € (0,1),x € Bs(Xo+1Vp)}
Cltx) it e(@—11+1), Byt — 0)Vo)).

Thus, we may assume X = 0, in addition, by shifting in the time variable, we may
assume 7 = 0.
Next, if |[Vy| < 3¢3, then for any t € (—1, 1), we have

B3 (tVo) C By(0),

which implies (3.7) in view of Remark 2.1. We now consider the case | Vp| > 3¢,
We denote

203
K= —
[Vol

and note that for |¢| < «,
B3 (tVp) C B3.3(0),

while for k < |t| < 1 and x € B (tVp), one has
t
§|V0| < x| = 2t Vol.

Then, in the case @ € [0, p — 1),

1 K
/ ][ |x|%dxdt £ N(d)/ ][ |x|% dxdt
—1 BE3 (tVo) —K BZ(‘3 0)

1
+(2V0)a/1|f|adl < N, @) Vol

1 K
/ ][ |x|—a/(p—l) dxdr < N(d)/ ][ |x|—0l/(p—l) dx
—1JB3(V) i JB,50)

1
+ (IVol/2)~/P=1 / t]7¢/P=Ddr < N(d, a, p)|Vo|~%/ @D,
-1

and, thus, the estimate (3.7) is valid. The case « € (—1, 0) is handled in the same
way. The lemma is proved. O

Corollary 3.5. Let p,ry,...,rqg > 1, ¢c 2 1, € (=1, p — 1) be numbers, T €
(=00, 00), andwj, j =1,...,d, be weights satisfying (2.2). Then,

IMe.7 £l S NIFIL IFIS NIEEFIL
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where

=1 ”Lm,..4,rd<R’T+2d,|x|“ [T wi i)

N=N,p,r1,...,rq, K, @),
and Ly, g RY2 (x| [T wi(vp)) is defined in (2.4).

Proof. First, we claim that for any w € Ap(Rd), the function |x|*w(v) is an

A, weight on the space of homogeneous type (R1T+2d, Pe, dz). This follows from
Lemma 3.4 and the fact that in the A, condition for @ (v)|x|% (cf. (3.7)), the integral
is factored into a product of the integral over 7, x and the integral over v. Then, by

Corollary 3.3,
P o < p o
/Rsz [Me,7 f171x|%w(v) dz :N/Rszlﬂ lx|%w(v) dz,
r T

Py < # P
/Rl+2d|f| %o (v) dz < N/Wm,ﬂ o (v) dz.
T T

The assertion now follows from a variant of the Rubio de Francia extrapolation
theorem (see, for example, Theorem 7.11 of [17] and also [29]). O

Lemma 3.6. Let p € [1,00], T € (—00,00], and u € Sp joc(RE

Z0 € R1T+2d, denote

). For any

T =%t + 19, rPx + x0 — rtvg, rv 4+ vg), 1(z) = u®@),
Y =0; — v - Dy, P= 0 —v- Dy _ai'j(z)Dv;U_/'
Then,
Yi(z) = r2Yu®), Pi(z) = r2(Pu)@®).
Proof. The assertion is a direct consequence of the following calculations:
Qi) = r*@u)@) — r*vo - (Dxu) @),
v Dyii(2) = v (D) @) = r2(rv + o) - (Dau) @) — rPvo - (Dyu) @),
Dy, i(z) = r*(Dy,v,u) @).

The lemma is proved. 0O

4. S>-Estimate for the Model Equation

The goal of this section is to prove Theorem 4.1, which is a version of Theo-
rem 2.6 in the case when p = 2, b = 0, c = 0, w = 1, and the coefficients ai
are independent of x and v. Here is the outline of the proof. First, we prove the a
priori estimate for smooth and compactly supported functions in the x, v variables
by taking the Fourier transform in the x, v variables and reducing the equation to
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a first-order PDE. Furthermore, we use a limiting argument to extend the result
to the space Sz(RlT+2d). Then we prove the denseness of (Py + A)CJ°(R!2) in
L>(R'*24) by using a localized version of the L,-estimate. The above ingredients
yield the desired existence and uniqueness result.

Theorem 4.1. The following assertions hold:

(i) For any number . 2 0, T € (—00, o], and u € SZ(RIT"’M), one has

Mlull + 22 Dyull + 1 DJul + (=40 ul

“4.1)
+ 1Dy (= A0) Y ou) £ N ()8 | Pou + ul,

where || - || = || - ||L2(R1+2d).
T

(i) Forany » > 0, T € (—o00,00], and f € Lz(RlT+2d), Eq. (1.2) has a unique
solution u € S2(R1T+2d).

(iii) For any finite numbers S < T and f € L2((S,T) x R*¥), the Cauchy
problem (2.7) with P = Py, b = 0, and ¢ = 0 has a unique solution u €
$>((S, T) x R2). In addition,

2
lullz, s, myxr2dy + 1 Dot 1y 5,7y xR24) + 1 Dyt 5,7y xR24)
+ (=20 ull 1y 5.7y xm20) + 1Dy (=AUl 1 (5.7 20y
+ 0w — v Dettll (5. 7yxr2dy = N(dy T = )8 fll 05,7y xm24) -

Lemma 4.2. Let . > 0 be finite, T € (—00, 00], and h € Cp(Ry), and f €

Loo((—00, T), Cp(R¥)) N Ly(RY9) be functions satisfying Dgh € Cp(R'F2),

oth € Loo((—00,T), Cb(RZd)) N L2(R1T+2d), and the equation

dh +a"’ (1)&Ejh + ki Dg,h + 1h = f.
Then, one has

)‘”h”LZ(erJer) + | |$|2h”L2(RlT+2d) + | |k|2/3h||L2(R;_+2d)
+ IK1ERI ey < N@BSTHF Il gisaay.

Proof. In this proof, we take N = N (d). By the method of characteristics, we have
h(t,k, &)
t .
_ / =) = [} M OG-0+ K S=DHEN s ¢ kRl — 1) + £) dr'.
—0o0

Note that by the parabolicity condition and the Minkowski inequality,

t

V(e - )l 1y gy < / O £ - ey d

—00

Then, by Young’s inequality, we get

My gty S 1F 1.
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Furthermore, the parabolicity condition gives

t t
/afl<s)<kj(s—t>+s,~>(kz<s—t>+a)ds26/ k(s — 1) + &% ds
t t

=8t —1)(kIPt =) /3— k&G — 1) + &)
> (8/24)(t — (KPPt — )" + €.
By this and the Minkowski inequality, we get
&I Ph(t, k)l gy

4 _ _N\3112
< / k|23~ CROUOTRE (¢ ke, )l gy ey dE -
—00

4.2)

Furthermore, by Young’s inequality, and the change of variables t = 8s°|k|2,

2/3
KPR K sy

> _ 31512
< P ( /0 ORI dS) I (kv

o
< N[ Rk ey

Integrating the above inequality over k € R?, we prove the estimate of |k|*/3h.
Next, by the Cauchy—Schwartz inequality and (4.2),

PG N, < [, @B 8
T

where

t
L(z) = / 62~ G0N 4y < Ns,
—0o0

1
12(2) — / |$|2€_(8/24)(t_t )(‘k‘z(t—t )2‘*‘\5\2)]‘2(1‘/,](, k(t/ _ t) +g) dt/
o0

Furthermore, by the change of variables § — k(¢' — ) + & and the Fubini theorem,
we get

/RIT+2d 12 (Z) dZ

1
) ’ ’
= /R / § — k(' —n)Pem RODUFCOTED 2 k) dr'dz
T —00

o0 T
<2 / ( / <|s|2+|k|2:2>efz<|k|2z3+s|zt>dt>< / fz(t,k,s)dt)dkdé
RM 0 —00

< NS*I/ fz(z) dz.
R;}Zd

Finally, the estimate of |k|'/3&h(z) follows from the estimates of |k|*/3h(z) and
|€|?h(z), and the Cauchy—Schwartz inequality. O
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Corollary 4.3. Let u(z) be a function such that

— there exists some r > 0 such that for any t € (—oo, T), u(t, -, -) is compactly
supported on B, x B,
—u, u, Dyu, Dyu, D2u € Cp(RE?) N Ly(RET),

Then, (4.1) holds.

Proof. Let f = Pou + lu. For a smooth integrable function ¢ (x, v), by Z'(k, &),
we denote its Fourier transform in the x, v variables. Then, one has

& + ' ()&Ei + ki D, + A = £
Combining Lemma 4.2 with Parseval’s identity, we prove the assertion. 0O

To generalize the estimate (4.1) for the class of functions S> (R]T+2d), we prove
the following approximation result.

Lemma 4.4. For anyu € $> (R1T+2d), there exists a sequence of functions u,,n =
1, such that

(a) foranyt € (—oo, T), u,(t, -) is compactly supported on B,,3 X By,
(b) for any j, k,1 € {0,1,2,...}, 8] DXDLu, € CH(RL2) N Ly(REF),
(c) limy, o0 |lup — ul| 1424, = 0.

SZ(]RT )

Proof. Letn € C°((0, 00) x R??) be a function with unit integral. For & > 0 and
h € Li10c(R'29), we denote

hie(t, x,v) = /h(l — & x —e'Px v — e, ¥, V) dx'dvdr’.

Furthermore, let ¢ € C(‘)><> (B> x By) be a function such that ¢ = 1 on By x By and
denote

Gr(2) = d(x/r?,v/r), Uer (D) = U (DPr(X, V), Uy = Uy,

so that @) and b) are clearly satisfied.
We now prove c). Clearly, Au, — Au for A = I, Dy, D% in Lz(RlT+2d) as
n — oo. To prove the convergence of the transport term, we first, note that for any
1+2d
z e R,

@ — v D) g1y — u) = hy + gu, 4.3)
where
hn(2) = (0 — v - Dyu) (,-1(2) — (B — v - Dyu)(2)
and
@) = — n_1/2/u(t —n 2 x —n VX v —nT W

-Dyn(t', x',v") dx’dv'dr’.
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Furthermore, 4, — 0 in LZ(R]TJFM) as n — oo and by the Minkowski inequality,
llgn ”Lz(RlT”d) < Nn—l/2||u||L2(R1T+zd). 4.4)

Therefore, from (4.3) we obtain [[(3; — v - Dy)(ug,-1y — M)||L2(RI+2d) — 0 as
T
n — oo. To prove the desired convergence, we write

(0 —v-Dy)(uy, — u(yrl)) = (¢ — DOu—v- Dxu)(nfl)
+ (¢ — Dgn — Up-1HU - Dy¢, =t Ay + B, + Cy.

We have
ICll 12y S Na~2llull , giiaa),
and by (4.4),
1Ball 2y < Nn™' 2 ull i)
Furthermore, note that
|Anl = N(d)|pp — 1M My My(|13,u — v - Dyul),

where M;, M, and M, are the Hardy-Littlewood maximal function with respect
to the ¢, x, and v variables. Then, by the Hardy-Littlewood inequality and the
dominated convergence theorem,

||An ||L2(R|T+2d) — 0

asn — o0. Thus, (0 —v-Dy)(u, —u) — Oin LZ(RITJ“M) asn — o0. The lemma
is proved. O

Proof of Theorem 4.1 (i). Letuy,,n = 1, be a sequence from Lemma 4.4. Then, by
Corollary 4.3,

Miunll 2y + 221 Dyun l , eisaay + 1DZunll g1,
+ 1240 P unl g2, + 1Dy (= A0 unll g1saa) (4.5)
-1
< N6~ Poutn |, g1a

Passing to the limit in the above inequality as n — oo and using Lemma 4.4, we
prove (4.1) for u, Dyu, and D%u.

Next, we fix any ¢ € C(RL?). Since u, — u in Ly(RLT9), for A =
(—A)'3, Dy(—=A)Y®, we have

‘ /R i (Au)¢ dz

Now the desired estimates for (— A, )'/3u and D, (—A,)/® follow from this, 4.5),
and Lemma 4.4. 0O

é ||¢||L2(R;+2d) nli)rréo ||Alxln ||L2(RIT+2d)'
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Next we prove the existence part by using a density argument. We first show
localized L, estimates.

Lemma 4.5. Let A = 0 and rq, 12, R1, Ry > 0 be numbers such that ri < rp, and
R < Ry. Letu € Sz,z(,c(R(l)Hd) and denote f = Pou + Au. Then, the following
assertions hold:

@) 8722 — r) M1 Dottll a0y, k) + ID7ul| a0, 2))
< N@S S 1120,y ) + N@S (2 — 1) 7> (4.6)
+ r2(Ry = R) )l L0y, 1)
(ii) Denote C, = (—r2,0) x R? x B,. Then, we have
872 (ra — r) M IDotl Laccy,) + 1D Lyccy)
S N@S I fllLace,,) + N@)S™ 2 — r) 2l Ly(c,-

Proof. The method is standard and can be found in Lemma 2.4.4 of [27]. In this
proof, N is a constant depending only on d.

(i) Let ¢ € C2.(R) be a function such that ¢ = 0ifr = 1,and ¢ = 1if r < 0.
Denote 7y = r1, Ry = Ry,

n n
b+ =32, Ry Rt (Ram RSO,
k=1 k=1

M (t,0) = £ (22D (ry — 1) 2 (=77 = ) 2TV (2 — )TN (] = 7)),
and
G (2) = 0 (1, v) (22T (R, — RT3 (x| — RY)).

Note that 1, and ¢, are smooth functions.
Denote

O(n) = Q;n,én

and observe that in R(1)+2d, ¢, vanishes outside Q(n + 1), and ¢, = 1 on Q(n).

Furthermore, in R(1)+2d, we have

(Po+ 1) (uepy) = fébn + u(Pody) — 2(aDypy) - Dyu.
Then by (4.1),
1Dl a0y S 105 dn) Ly om1) = N6~ Lac0ry £y)
+ NS ETI2 (= 1) T2 4+ 272 (Ry — RO ) ull Ly oty
+ N8™22"(ry — r)) I Dot 1y 0(n41))-
By the interpolation inequality,

ID2ull Lycomy) + (14 872(ra — r1) DI Dyt Ly (00
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SN fllLacgyy 5y + NS (2 — 1) 2
+ 2712 (Ry — R )l Lycoms1y + 27 DUl Lyom1)-
We multiply the above inequality by 2~#* and sum up with respectton = 0, 1, 2, .. ..

We get

o0
1Dl Lyc0r, p) + D2 I DUl Loy + 87202 — 1)) 1Dyt Ly(0,, 1))

n=1

S NS f a0y, 5y + N8 (2 = r) 2 + ra(Ry = R) Dl 10, 1)

o
+ Y 27Dl Lycoumy-

n=1

Canceling the same sum on both sides of the above inequality, we prove the lemma.
(i) To prove the claim we substitute R = 2R in (4.6) and pass to the limit as
Ry — oo. This assertion is proved. O

Lemma 4.6. For any number » = 0, the set (Py + A)C(‘)’O(R1+2d) is dense in
LQ(R1+2d).

Proof. Proof by contradiction. If the claim does not hold, then there exists a function
u € Ly(R'2) that is not identically zero and such that for any ¢ € C§°(R!*+29),

/(Pog“ + A8)Hudz = 0.
Hence,
—0iu +v - Dyu — aij(t)Dvinu +Aiu=0

in the sense of distributions. Let w(t, x, v) = u(—t, —x, v). We regularize w
by using a mollification argument from Lemma 4.4. For ¢ > 0 and a function
h € Ly joc(R'24), we denote

hey(z) = /h(t, x — &% v — e ), V) dx'dv’,

where n € C5°(R*¥) and [ndxdv = 1. Then, the function wy, satisfies the
equation

8tw(es) — V- wa(a) - aij(t)Dv,-vj W(e) T AWE) = ge» @7
where
g = —81/2/14(1‘, x —&2x" v —ev )W - Den(x’, V') dx'dv’,
which satisfies

Igell Lymi+aay < N2 ull, gi+2ay. (4.8)
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Furthermore, by Eq. (4.7) and (4.8), d;w() € Lz,IOC(R”zd), and, hence, w() €
82 10c (R'24). Then, by Lemma 4.5, (4.7), and (4.8), for any r > 0,

IDywie)llLsc0,) S N, ) lIgellL2(0a) + 7 wee) l22(0a0))

(4.9)
S NE D) wll @i

Therefore, Dyw € Lz,loc(RéHd

get

), and, passing to the limit as ¢ — 0 in (4.9), we

IDywliLyc0,) < Nrotwlly, gi+2d).

Finally, passing to the limit as » — oo, we conclude that D,w = 0, and hence,
w = 0in R(l)+2d. By a translation in the time coordinate, we see that w and thus
u are identically equal to 0 in R'+2¢, which gives a contradiction. The lemma is
proved. O

Proof of Theorem 4.1 (ii). First, we consider the case when T = oco. The assertion
follows from the a priori estimate (i) and the denseness of (P 4+ 1)C$°(R!2) in
Ly (R'*24) (see Lemma 4.6).

When T' < oo, we note that the uniqueness holds by the a priori estimate of the
assertion (i) of this theorem. To prove the existence, note that the equation

Pou+Au= fl,cr

has a unique solution # € S>(R!*%¢). We conclude that u := 1,7 isa S» (RITH‘I)
solution of Eq. (1.2). O

5. S,-Estimate for the Model Equation

Here we generalize Theorem 4.1 for p € (1, 00). We follow the argument
in Chapter 4 of [27]. To derive an estimate of the sharp functions of (=AY,
Dy(—A)Y0u, and D%u foru € §, (]RIT”‘Z) (see Proposition 5.7), we split u into
the Py-caloric part and the remainder. The latter is estimated in Lemma 5.2 and the
former - in Proposition 5.3. Throughout this section, the matrix-valued function a
is independent of x, v.

Theorem 5.1. Let p > 1 be a number. The following assertions hold:

(1) For any number . 2 O andu € S (RHM), one has
y pURT

Mull + 22Dyl + I DJull + (=40l

(5.1)
+ IDy(=2A)8u|l £ N, p)8 01| Pou + rull,

where = 0(d) >0and || - || = | - IILP(erﬁd).

(ii) Forany » > 0, T € (—oo,00] and f € LP(RIT+2d), Eq. (1.2) has a unique
solutionu € S (R1T+2d).
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(iii) For any finite numbers S < T and f € L,((S,T) x R2), the Cauchy
problem (2.7) with P = Py, b = 0, and ¢ = 0 has a unique solution u €
S,((S, T) x R2). In addition,

2
lullz,(s.myxr2dy + 1 Dvtll L, (s.7)xR2t) + 1Dyl L, (s, 7)xR2)
+ 1(=20ully, (5. 7yxr2) + ||Du(—Ax)l/6u||L,,(R‘T“")
SNW, p, T =8 Il cs.1)xR2):
where 6 = 6(d) > 0.

We note that in the next lemma, f is assumed to be compactly supported only
in the ¢ and v variables. The reason for such a choice will be clear when we estimate
the Py-caloric part. See the proof of Proposition 5.3.

Lemma 5.2. Let R > 1 be a number and f € L,(RYt2) vanish outside (—1, 0) x
R? x By. Letu € Sr((—1, 0) x R*) be the unique solution to the Cauchy problem
(see Definition 2.5 and Theorem 4.1 (iii))

Pou = f, u(-1,-)=0. (5.2)

Then, there exists a number 0 = 0(d) > 0 such that

el + 1Dyl + D70l | Ly((—1.0) % B s x B

o0
SN@§ Y 27 EVART fllLy0, et 00 (5.3)
k=0
2 — 1/2
1 — _ _
(=20 PuP)gl S N@STRZ Y27, Lo (54
k=0
and
1/2 - 1/2
(1D =a0 uP)f}, S N@s Ry 2R
k=0

Proof. Itis possible to obtain the estimates of this lemma by using the fast decay of
the fundamental solution of the operator Py, which can be written down explicitly
(see, for example, [10,12]). Instead of invoking the integral representation of the
solution to Eq. (5.2), we decompose it into a sum of functions supported on dyadic
shells and exploit the global L;-estimate of Theorem 4.1 and the scaling property
of the operator Py.

In this proof, N is a constant depending only on d.

Estimate of u, Dyu, and D%u. Denote

o o
f = fo + Z fk = fl{XEB(ZR/52)3} + Z fl{XEB(2k+lR/52)3\B(2kR/32)3}'
k=1 k=1



Global L, Estimates for Kinetic Kolmogorov—Fokker-Planck Equations 527

By Theorem4.1,fork = 0, 1, 2, .. ., there exists aunique solutionuy € S>((—1, 0)x
R?) to (5.2) with f; in place of f, which satisfies

Nuk| + | Dyur| + |D3Mk|||L2((71,o)xR2d) < N§™! I fell Ly 1,00 xR24)- (5.5)

By the same theorem, for A = I, D,, and Dg, we have
n
lim ZAuk = Au in Ly((—1,0) x R*).
n—oQ
k=0
Now we take a sequence of functions §; = ¢; (x, v) € CG°(Bpj+1 gys2)3 X Bojti g52),
J=0,1,2,... suchthat {; = 1 on Byj+1/2g /523 X Byj+1/2p/52 and

151 £ 1, IDygjl £ N2TTRT!S2,
|D2¢;| < N27YR728%, |Dy¢j| £ N273 R7345.
Fork > land j =0,1,...,k — 1, we set ug,j = u¢;, which satisfies
Pouy,j = up Pogj — 2(aDy&j) - Dyug
because fx¢; = 0. By Theorem 4.1,
otk 51 + 1Dtk j | + 1 D31k 1 1y 1.0yxr24)
< N8~ |ug Pog;| + lall Dyl Dokl 1y ((—1,0)xR2)

which by the properties of ¢; and the fact that |a'/| < §~! implies that

el + 1 Dotei] + 1 DFul Lo((~1.0)x By 2,3 % By y52)
—jp—1
§ N2 'R |||l/lk| + |Dvuk|||L2((71,0)><B(2j+1R/52)3XszJr]R/az)‘ (56)
By an induction argument, (5.5), and (5.6), for k = 1 we get

2
x| + | Dyur] + | Dyukl |y ((—1,0)x B3 x Br)

< Nk k=12 p=kg=l I fiell £y (= 1,0y xR24)
< N2 kk=D/4 p—kg=1 ||f||Lz(Q.,2k+1R/52)' (5.7)

To conclude (5.3), we use (5.5) with k = 0, (5.7), and the triangle inequality.
Estimate of (—Ay)"3u. Note that ugy satisfies

Po(uto) = fgo + u(Polo) — 2(aDylo) - Dyu.
By Theorem 4.1 and (5.3),

||(—Ax)l/3(’4§'0)||L2((_1,0)><R2d) + ||Dv(—Ax)l/6(M§0) ||L2((_1,0)><R2d)

oo
§ N5_1 Z 2—k(k—1)/4R—k”f”Lz(Q]VZk_HR/Bz)' (58)
k=0
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It remains to estimate the commutator term

(=240 W) — ¢o(—A)ullLy (0, 0)- (5.9)

Since §o = 11in B2 52)3 X Baij2g s2, forany z € Qg g, we have
(=240 P wgo) = to(= A1) ul(@)

<N ul(t, x + y, v)|y| =423 dy.
Iy[>@2-1)R?

By Lemma A.1, (5.9) is bounded by

o0
NR™2Y 2770 Rl 5 -
j=0

By (5.3), the above sum is further bounded by

o oo
-1 p—2 —2j—-3dj/2 —k(k—1)/4 1~ ] —k
N§T'R72 Y 27 A IR Y o DB QI R FllLy0, s g0
j=0 k=0

which gives (5.4) by a straightforward computation with a change of order of
summations.

Estimate of Dy (—A)/ou. By (5.8), it suffices to estimate the L, (Q1, g) norm
of

A= (=A)"Dy o) — Co(=A0) " Dyu,
which is bounded above by
A Asy = |(— 1/6 _ 1/6 _ _ 1/6
1+ Az = [(—=Ax) P uDylo)| + [(—=Ax) 7P (o Dyu) — So(—Ayx) "7 Dyul.
Forany z € Q1 g,
Mm@ <N [ ul(.x + y, w413 dy.
ly|>@232—-1)R3

Then, arguing as above, we get

o
1A 200100 S N@RT'SY 273N fllyi0, 40 (5:10)
k=0

Furthermore, by Lemma A.1,

(=AY (o Dyu) — 2o(—= A Dyutllny (0, 2)

o0
SNRTY 2SR Dy, -

By a computation similar to the one for (5.9), we get

o0
142050010 S N@RT'ST Y 27532 flip,0, o,
k=0

Combining this with (5.10), we prove the desired estimate. O
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Proposition 5.3. Let r > 0, v = 2 be numbers, T € (—o0, 0], zg € R1T+2d, and
u e Sz,loc(RlT'de). Assume that Pou = 0 in (to — v2r?, 1) x R? x By, (vg). Then,

there exist constants N(d) > 0 and 0 = 6(d) > 0 such that

1/2
1 1
J1 = (|(—Ax)3u - ((_Ax)3“)Qr(zo)|2>
Qr(ZO)
—1co—0 L2172
é Nv™'$ (|(_AX)3M| )Qur(ZO)’
1 1 2 V2
JZ = <|Dv(_Ax)6u - (Dv(_AX)Eu)Qr(ZO)| )
0 (z0)
1/2

o 1
< N sTID (A0 U g o)

1/2
er,2k vr (z0)

o
+ N6 S 27 ((— A0 5uP)
k=0

12
J3 = (ngu - (Dlz;”)Qr(zo)|2)
0 (20)
o0
—1¢—0,112,,1241/2 —1¢—0 —k L2172
< NoTl8UDGu) gy + N80 Y 27405 u) g -

k=0

5.1. Proof of Proposition 5.3

We follow the scheme of Chapter 4 of [27]. Thanks to the Poincaré inequality,
to handle the Py-caloric function, it suffices to estimate its Holder norm. We do
this by using Caccioppoli type estimate combined with the localized version of
Theorem 4.1. See Lemma 4.5. The proof of Proposition 5.3 is given at the end of
this subsection after a series of lemmas.

The following lemma contains one of the key estimates of the proof.

Lemma 5.4. (Caccioppoli type estimate) Let u € S2 joc (R(1)+2d) be a function such
that

Pou =0 in Q;.
Then, for any numbers 0 <r < R <1,
IDxullLyi,) S N, r, RS [lullLyiop)-

Proof. By modifying u outside Q1, we may certainly assume that u is compactly
supported. By taking the standard mollification with respect to x and then taking
the limit, we may assume without loss of generality that (—A,)Pu € S, (R(l)+2d)
forany 8 =2 0.Letr < r; < ry < R be numbers, ¢ € Cg° (R?) vanish outside B
andn € C(‘)’O(Rl“'d) vanish outside (—1, 1) x By. We set ¢ (¢, v) = n(t/rlz, v/ry),
¢2(x) = ¥ (x/r3) and denote

$(2) = ¢1(t, v)P2(x).
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Throughout the proof, a constant N depends only on d, r, and R.
Note that u¢ satisfies the equation

Po(ugp) = uPodp — 2(aDy¢p) - Dyu (5.11)
on Ré"'zd because ¢ Pou = 0. Then, by Theorem 4.1 applied to (5.11), one has
=20 @), 424,
< N5_l||uP0¢||L2(R(I)+2d) + N8 Y (aDyo) - Duull g i+21-

Applying Lemma 4.5 (i) with ry in place of 71, Ry = r2, and with R in place of r»
and R; and using the fact that |a’/| < §~!, from the above inequality we get

61 (=20 ), g1y = N6 lullLycop)- (5.12)
Furthermore, the function w = (—A,)'/3 (u@) solves the equation

Pow = (=4, Plu(Pop)] — 2(aDu1) - Dy(—A0) P ugn)  (5.13)

on R(1)+2d. Due to Theorem 4.1 (i) applied to (5.13),
1= 20>l rs2ay S NOTH U= A0 @Pod) Il s 514
+ @Dyg1) - Dy(=A0) P )l o) =t i + Ja. '

By (5.12),

J1 £ NS™llullLyop)- (5.15)

Next we consider the term J,. Observe that f = (—A)3 (ug») satisfies the
equation

Pof = —(—A)"3[(v- Dygo)u] on (—1,0) x RY x By.
By Lemma 4.5 (ii) and the assumption |a’/| < §~!,

12 S N67 (= AP )l gy + Nlnvi (= A0 @Dy o)l gpoaa.

Here 7 € C*°(R!"9) is a function of (¢, v) such thatn = 1 on (=73, 73) x By, and
n = 0 outside (—r32, r32) x By, where r, < r3 < R. Then, using (5.12), we get

B S NSl Ly c0p)- (5.16)
By (5.14)—(5.16), we obtain
2/3
I = AP W)l i,

S N@lugl, gre, + N@DI (= A0 @)l g1,

< NS ullzyc0p)-
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We assume that ¢y = 1 on (—r2,7%) x B, and ¢» = 1 on B,3. We conclude the
proof as follows:

”DXMHLZ(Qr) § ”Dx (“¢)||L2(R(1)+2d)
S N@IA = AP @)l ey < N5l Lyop)-
The lemma is proved. 0O

We also need the following nonlocal estimates.

Lemma 5.5. Let r € (0, 1) be a number and u € SQ!IOC(R(I)'FM). We denote f =
Pou and assume that f = 0in (—1,0) x RY x Bi. Then,

o0
. - _ 1/2
() [IDxullLy0,) = NS 422 k(l(_A")l/3M|2)Q/1,zk’
k=0
o0
. - _ 1/2
(i) [ Dxullao) S N6~ 727 (1(=a0uP)g’ o (5.17)
k=0

where N = N(d, r).

Proof. (i) By mollifying u in the x variable, we may assume that u is sufficiently
regular in x. Fix some number R € (r,1). Let n € Cy° (R'*24) be a function
such that » = 1 on Q, and 5 vanishes outside Q. In this proof, we assume that
N =N(,r, R).

We decompose

nszu = anx(—Ax)l/zu = n(Lu + Comm),
where R, = D, (—A,)~ 12 is the Riesz transform,
Lu = Ro(=A0°(n(=A0) ),
Comm = Ry (=A)"?u = Re(=A0)*(n(= 20" w).

Thus, to prove the claim we only need to show that (5.17) holds if we replace the
left-hand side with || Lull1,(0x) + IComml|1,(0z)-
Estimate of Lu. Denote

w = (—A,)"u.
Then, since Pyu = 0in (—1, 0) x RY x Bq, the function nw satisfies the equation
Py(nw) = wPyn — 2(aDyn) - Dyw onR(1)+2d. (5.18)

By the fact that R, is an isometry in L»(R9), the interpolation inequality, and
Theorem 4.1, we have

1Ll gye2ay S N@lnwll, eisaay + N @I (=40 0wl uivaa,
< N6 wllzyc0p) + N8~ I@Dyn) - Dywllzy0p)-
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By the fact that Pyw = Oin (—1, 0) x R4 x By, Lemma4.5 (i), and Assumption 2.2,
the last term is bounded by

N(d,r, RS wllry0)-
Estimate of Comm. Denote
A=Ry(=40"0 = Dy(=4)7"V
and observe that
Comm = nAw — A(nw).
It is well known that for any Schwartz function ¢ on R,
(=40 "¢ = Kx 9,

where
*© dt
K@) =N / RVES
0 t
and
p(t,x) = (4701) U2 XIP/G)

Furthermore, by the change of variables r — # for any x € R \ {0}, we have

* 2 dr
D.K(x) = Nx/ £72/3=d/2 = Ix17/(40)

0 1t
—(d+4/3) ® 23— -1 (41 dr —(d+4/3)
= Nx|x| / / 1723742 ?=Nx|x| /3.
0
Therefore, for any z € R(1)+2d,

|Comm(z)| < N /R (e, x =y, )| 1, x,v) =0, x = y, )] 1y~ dy.

We split the above integral into two parts. The first part, /1, is the integral over
|y| < 2, and the remainder is denoted by I5. First, by the mean-value theorem,

()| SN lw(t, x — y, v)| [y|7*?3dy, z e Ry
lyl<2

Then by the Minkowski inequality,

Il y0p) = N lwC. =y, )acop [y dy
lyl<2

< Nllwlle(Qm)/

- Y7253 dy £ Nlwllzyoy,)-
y<
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Furthermore, since 1 vanishes outside Qg, for any z € Qg,
2@ =N@I [ wlt.x =y |~ dy.
[yI>

By virtue of Lemma A.1,

o0
—k 2.1/2
ILllaom SN Y 27 whg”
k=0

Thus, the commutator term is less than the right-hand side of (5.17).
(ii) The proof is almost the same as of (i). Let us point out some minor differ-
ences. This time, we denote

Lu = Ry (= A0 B ((=40)"0u),
A=Ry(=A)"P = D=7V, W= (=A)"0u,
Comm = nRy(—A) U — Ry (= A0 P(n(—=A0)"0u) = AT — A(ni).

Note that nw satisfies Eq. (5.18) with w replaced with w. Then, by Theorem 4.1
and Lemma 4.5 (i),

||LM||L2(R(1)+2d)
S N@)S™ 1 Ponll g2y + @Dyn) - Dol isaay) < NSl Ly(0))-

Furthermore, as above
| Comm| = N/Rd @, x =y, v)| In(t, x,v) =0, x =y, v)| [y| 7/ dy.

Finally, we repeat the last paragraph of the proof of (i). The lemma is proved. O

Lemma 5.6. Let R € (1/2, 1) be a number and u € SQ’IOC(R(I)J’_Zd) be a function
such that Pou = 0in (—1,0) x RY x By. Then, foranyl,m = {0, 1,2, ...}, there
exists a constant 0 = 0(d, [, m) > 0 such that

(i) sup |DLD™u| + sup |9, DL D™ u| < N(d, 1, m, R)S O |ullyc0p),

012 012
(i) sup (| DL DI (= A0 Oul + 19, DL DI (—A)Oul)
Q12
o0
—60 1/6 —2k 1/3.,2y1/2
S N@. 1 m)3™ (I Dy(=A0) " ullLyc0)) +I§2 (=80 Pubg ).
(iii) sup |DL DI 2u| + sup |3, DLDT u| < N(d, 1, m)é ™ (I D2ull 1,01
012 012
o0
_ 1/2
+ 22 =40 Py’ ).
k=0

Proof. In this proof, N is a constant independent of §.
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(i) Let us fix some number r € (1/2, R). First, we prove that for any

me{0,1,2,...},

1Dy a0, < N r, Rom)3 ™ llullLyor- (5.19)
where 6 = 6(d, m).
Proof by induction. First, for m = 0 the assertion holds due to Lemma 4.5

(1). Form > 0, let @ = (1, . . . o) be a multi-index of order m. Then, by
the product rule, formally we have

Py(D%u) = > cz DYDYy, (5.20)

a:a<a,|a)l=m—1
We fix some numbers 71, rp such thatr < r; < r» < R. By Lemma 4.5 (i),

1Dy ully0,) £ NSIDY ™ DytllLyco,,) + NS 2D ull Ly, (5:21)

Observe that D, u satisfies Po(Dyu) = 01in (—1, 0) x R? x B;.Hence, by
the induction hypothesis and Lemma 5.4,

1D} DeullLyco,,) € N80 Dxutlly(0,,) = N6~%llullLycon)- (522)

To make the argument above rigorous, we need to use the method of finite-
difference quotient. Thus, by induction (5.19) holds.
Next, observe that for any multi-index «, the function D{u satisfies

Po(D%u) =0 in (—1,0) x R? x By.
Then, by (5.19),
1D} Dyull o1 < N~ Dl 100,)-
Iterating the estimate of Lemma 5.4, we get
1D} Dyl o012 < N6~ lull Lo (5.23)

Here again, we need to use the method of finite-difference quotient.
Furthermore, the fact that |a"/ | < s~

du = a"’ Dy, +v - Dyu (5.24)
in Q1 combined with (5.23) yields the estimate
18: Dy Dyt 1012 < N8~ llull Ly
By this, (5.23), and the Sobolev embedding theorem, we prove the inequality

for the sup-norm of D! D" u. The estimate of the second term follows from
(5.24).
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(ii) First, since u — (u) g, satisfies the same equation as u, by the assertion (i)
and the Poincaré inequality,

J = sup(|D. D" u| 4 |8, DL D" u) S N5~ u — () o, 1,00,
012

< N8I DyullLy0,) + IDxullLoco,) + I3iutll Lyc0,))-
Furthermore, by (5.24) and (5.21), we get
1l Lyc0,) < N6~ IDjullLyco,) + Nl Dxttlly(o,)
< N (IDxullyc0g) + 1 Dvttll Lyc0p)-
where R € (r, 1). By the above,
J S N8~ (IDyullLyc0p) + 1Dt Lyc0i)- (5.25)
Finally, note that Po((—A,)/®u) = 0in (-1, 0) x R¢ x Bj. Substituting

(—A,)Y%y in (5.25) and using Lemma 5.5 (ii), we prove the assertion.
(iii) Denote
u1(z) = u(z) — (W), — vi(Dyu)g,
and observe that Pouu; = 0in (—1,0) x R? x Bj. Then, by (i),

sup | DL D™ D2u| + sup |9, DL D" D2u| £ N5~ ||urllry0,). (5.26)
Q12 Q12

Applying the Poincaré inequality twice and using (5.24), we get
luillz, 00
< N(IDxullL,(0,) + 10iull,00,) + 1Dyt — (Dyu) 0, 1 1,(0,))
< NI Dsullyc0,) + 8 IIDul Lyco,) + 1 DuxtellLyc0,) + 13 Dol Ly(0,))-

(5.27)
By (5.22) with m = 2,
| DysttllLy(0,) S N6_0||Dxu”L2(QR)~ (5.28)
Furthermore, by (5.20) with |«| = 1,
10: Dyl 15¢0,) (529)
< N6HID3ullLy(0,) + Nl Duxttllyco,) + NI Dxtll s (0,)-
By (5.21) with m = 2 and (5.28), we have
ID3ullryc0,) < N6~ (IDxttll 1y(0p) + ID2ull 12005))- (5.30)

Combining (5.27)-(5.30), we obtain

luillzac0,) < N6~UID2ul 1,004 + I Dxtll Lo (0)-

Now the assertion follows from (5.26), the above inequality, and Lemma 5.5 (i).
O
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Proof of Proposition 5.3. Let u and Fo be the function and the operator from
Lemma 3.6 defined with vr in place of r. Then, by the aforementioned lemma,
we have

Poii =0 in(—1,0) x R? x By,

and, for any ¢ > 0,

][ (=20 Pul?dz = (vr)*“][ (=232 dz,
er,cvr(ZO)

Ql.e
2
][Q( ) (_AX)1/3'4_((_Ax)l/Su)Qr(zo) dz
r(20
2
_ (vrr“][Q (AT — (—A) Py, | dz.
1/v

Similar identities hold for D,(—A)"%u and D%u. Hence, we may assume that
r=1/vandzy =0.

Next, the fact that Py((—Ax)'/?u) = 0in (—1,0) x R? x Bj combined with
Lemma 5.6 (i) gives

NS sup [(=A0Y2uz) — (=40 Pu(z)]

21,22€Q1)v
172
gN(d)u‘59<][ |(—Ax)1/3u|2dz> )
01

Similarly, by Lemma 5.6 (ii), we prove the estimate of J>. Finally, Lemma 5.6 (iii)
implies the desired estimate of J3. 0O

5.2. Proof of Theorem 5.1

Let us give an outline of the proof. First, we prove a mean oscillation estimate
(see Proposition 5.7), and, as aresult, we obtain Theorem 5.1 (i) with p > 2and A =
0. Then, by using Agmon’s method, we derive the a priori estimate of A [|u|| (R12)

p &

for the same range of p. Furthermore, we show that (Py + )L)Cgo (R'*24) is dense
in L,(R'*2) for p > 2 and » = 0. Thus, we prove the unique solvability of Eq.
(1.2) for p > 2. Theresults for p € (1, 2) are obtained by using the duality method.

Proposition 5.7. Let r > 0, v = 2 be numbers, 7 € R1T+2d, and u € SQ(RIT+2‘1).

Suppose that Pou = f in R1T+2d. Then, there exists constants 0 = 0(d) > 0 and
N = N(d) > 0 such that the following assertions hold.

1/2
(i) ()(—Axﬂ”u - ((—Ax>‘/3u>g,.(zo>|2)

Qr(ZO)
1/2

< N5 (A0 PuP g
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o
142d ¢—6 =2k £241/2
+ Ny 8 ZZ f )sz-,zkﬂur/aZ(ZU)’
k=0
1/2

.. 2
(ii) <|Dv<—Ax)”6u — (Dy(=2)"%u) g, (20) | )

0, (z0)
1/2

s NU_15_9(|Du(_Ax)l/6u|2)Qur(zo)

1/2
Qvn 2kyr (z0)

oo
+ Nv7ls70 Y T2 (= A0 Pul)
k=0

o0
+ Nplt2ds—o ka(fz)lﬂ

Q2vr,2k+l vr/rS2 (z0)?
k=0

1/2
cen 2
(iii) <|D5M - (Dgu)Qr(zo)| )

0y (z0)

o0
e 1/2 “lg— - 1/2
< Nu s D2 )+ N8N 20 Pty
k=0

o0
+ Nyplt2dg—0 Zz—k(fz)lﬂ

QZUr,Zk‘H vr/zS2 (z0)°
k=0

Proof. Here we assume that N depends only on d.

Let ¢ € CO((tg — (2vr)2, tg + (2vr)?) x Bayr(vp)) be a function of (z, v)
such that ¢ = 1 on (t9 — (vr)2, fo) X By, (vo). Then, by Theorem 4.1 there exists
a unique solution g € S>((ty — (2vr)2, 1p) x R ) to the Cauchy problem

Pog = fo, glto— (2vr)%, ) =0,

and, by Lemma 5.2 and the scaling argument (see Lemma 3.6),

00 2

1/3 2 -0 2k, 2172

][ [(—A0'Pgl*dz S Ns (Zz (f )QZM,(HW(ZO)) . (53D
Qv (z0) k=0 )

][ |(—Ax>1/3g|2dz§zvv2+“df (=40 gl dz
0r(z0) Q2vr(20)

00 2
§ NU2+4d8—0<Zz—2k(f2)1/2 > . (5.32)

QZur,Zk'H ur/(i2 (z0)
k=0

Furthermore, note that the function # = u — g € S>((tg — (Qvr)?, o) x R??)
satisfies

Poh = f(1—¢) in (1o — Qvr)?, ) x R*.

Then, by Proposition 5.3 and (5.31),

][Qr (z0)

2
(—A)"Ph — (—=4)"Ph) g, ()| dz
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< N2 (=80 U g, oy + N0 267 1= 40 PP o,
< N 2570 (=20 2u?) 0, (o)

2
—25— —2k( 2y 172
) <ZZ (f Q2W12k+|vr/52(z0)> )

Combining this with (5.32), we prove the assertion (i).
(ii)) By Lemmas 5.2 and 3.6,

1/2
<][ |Dv(_Ax)l/6g|2dZ>
Qvr(z0)

< NgTUN 27k (5.33)
k=0

Q2ur,2k+1 \Jr/&z (z0)?

12
<][ |Dv(_Ax)l/6g|2dZ>
0r(20)

< N§~ -0 l+2d22 k(f2 1/2 ) (5.34)

Q2vr,2k+] Ur/(Sz (z0)
k=0

Furthermore, by Proposition 5.3 and the triangle inequality,

2 1/2
(4 )
0, (z0)

< Nv 150Dy (= A) 0u?) + Nv 181Dy (— a0 0g )

Dy(=A)Y8h — (Dy(=A)Y®h) 0, (z0)

172
0Ovr(z0)

Ny~-ls—? 22—2k(|( A )1/% | )1/2

k=0

o0
o _ 1/2
+ Nvls 922 2k(|(_AX)1/3g|2)Q/w’zk\,,(m)'
k=0

172
Qvr(z0)

ok (20)

By (5.31) and (5.33), we estimate the terms containing g on the right-hand side of
the above inequality. We obtain
2 1/2
dz)

< J[Qr (z0)

1 1
Dy(=Ay)oh — (Dv(_Ax)éh)Qr(zo)

< Nl (D (- A0S gl )
,—lg—0 —2k 2172
+ Nvls™ Zz ((~A03u)y )
k=0

_ 12
vls— 922 z(fz /

Qz‘,,,21+1 wr/s2 (20)

+ Nvfl(sfg Z 272](71(‘](‘2)1/2

Qo k41,52 (20)
k,1=0
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Changing the index of summation / — k + /, we replace the last term with

QZ\Jr,Zl‘H ur/S2 (z0)°

oo
Ny-ls—* Zz—l(fz)lﬂ
1=0

Combining this inequality with (5.34), we prove the assertion (ii).
(iii) This time, by Lemma 5.2 we have

1/2 o0
2e)? -0 K28, ;24172
(7[ IDy gl dz) < N§ Zz (D0, it G0 (5.35)
QUr(Z()) =0 . y
2412 2 0. 1+2d - k2/8, p2:1/2
0 1+ _
( ][Q (ZO)IDUgl dz) < NSOV N oSy )0ty 330)

k=0

Next, by using Proposition 5.3 and (5.35) and arguing as above, we get

2 1/2
(f )
0Or(z0)

—1e— 1/2 —le—
< Nl (D2u) gl ) + NV (D2 )

Dyh — (D3h) g, (o)

1/2
Qv (z0)

+ NN 2K (a0 Puy g a0 P )
k=0

er.2k vr (z0) er,Zk vr (z0)

o
1/2 ) —
Guriay + VY187 Y2740l

k=0

1/2

—15=0 2, 2
S N8 (IDyul?) 0y ok (0)

o0
+ Nvls0 Zz—lz/g(ﬁ)”z

Q2vr.2H’l l)r/é2 (z0)
=0

o0
+ Ny ls? Z 2712/871((](2)1/2

Qo k41,62 (20)
k,1=0

As above, we may replace the double sum with the term

o
Ny-ls—* Zz—k(fz)l/Z

Q2ur.2k+1 vr/S2 (ZO) ’
k=0

As before, this inequality and (5.36) imply the estimate of the mean-square oscil-
lation of D2u. O

Proposition 5.8. For any p € (2,00), T € (—00,00], and u € SP(RIT“"), the
estimate (5.1) holds with A = O.

Proof. By Proposition 5.7, there exist constants N = N(d) and 8 = 6(d) > 0
such that for any z € R1T+2d,

(=40 Pk £ Ml MY (=20 Pul o)
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a 1/2
142d ¢—6 —2k 2
+ NI T2570 % " My 7 (@),
k=0

(Do(=A0) 0wk () < Nv=ls ™0 MY 1Dy (- 40 V0uP (2)

o0
— — 1/2
+ NN o M L P
k=0

oo
1 e— — 1/2
+ N1 Y Ml a0 PuP),

k=0
o0
—1e— 1/2 — - 1/2
(Dff ) £ N8O My DJuP @) + NP0 Y o M @)

k=0

1/2

st (=40 Pl @),

0
+ Nvls—? Z 2~kMm
k=0

We raise the above inequalities to the p-th power, integrate over R1T+2d, and use
the Minkowski inequality. Furthermore, we apply Corollary 3.2 (i) and (ii) with
p/2 > 1. We obtain

B 1/3
I(—Ax) u||Lp(R1T+2d)

< N0 (= a0 Pl gy + NV £ iy,

1Dy (=AY 0ull giiaay S Nv=1870 Dy (=20 Oull, grioa,
+ NvT 870 N(=A0 Pl griaay + NPT f, i,
—1¢— 2
||D§u||Lp(R1T+2d) < Nv7ls 9||Dvu||Lp(R1T+2d)

+ Nv_l(?_e||(—Ax)1/3u||Lp(R1T+zd) + NU1+2d5_0||f||LP(R1T+2d (5.37)

)

By setting v = 2(1 + N5~7), we cancel the term containing (—A,)'/3u on the
right-hand side of (5.37). Using this and our choice of v, we prove the estimates
for Dyy(—A,)!/u and D2u. The theorem is proved. O

Lemma 5.9. Under the assumptions of Proposition 5.8, for any A > 0,
-0
)‘”””LP(RITJer) S NS 7| Pou + )‘””LP(R‘T“d)’
where N = N(d, p) and 0 = 6(d) > 0.

Proof. We use S. Agmon’s method (see, for example, the proof of Lemma 6.3.8 of
[27]).
Denote

iz(xla-”’xdﬁ*l)’ i}:(vla-"7vd+l)7 2=(t5£’i\))’
d+1 d
PoE) =0 — Y 0Dy — Y @Dy, — Duyyug,-
i=1 i,j=1
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Let ¢ be a smooth cutoff function on R such that ¢ # 0 and denote
A(2) = u(2)¢ (ar1) cos(AZvg41).
By direct calculations,
A (2)¢ (Vag1) c08(A2vg41) = =Dy gy 82
+ u(2)(&" (vas1) cosAPvgi1) — 22128 (vag1) sin(A2va40)),
Poii(3) = ¢ (va41) cos(A2vg 1) (Pou(z) + Au(z))
— u(2)(¢" War1) cosAPvgi1) — 2012 (wair) sin( P vg ).

Note that forany p > 0 and A > 1

(5.38)

(5.39)

[ e@reosa! o ar = nip) o
R
This combined with (5.38) gives
Mully vty S NP Dogpyvg il gy + NYA + 22 ull iz
Furthermore, by Proposition 5.8 and (5.39),

1 Dvgirvan il g3ray S N6 Poill, ssaa,

< NS~ Pou + hlly i+ N1 + A1/2)||u||Lp(R1T+24).

Thus, by the above,
Ml 2y S N80 Pot 2l psaay + NS0 (L4 2D ] pioa.

We note that for any A > Ao = 16N2872 41, one has A — N6~ (1 +11/2) > A /2.
This gives the desired estimate for A = Ag. This restriction is removed by using a
scaling argument (see Lemma 3.6). O

Combining Proposition 5.8 with Lemma 5.9, we prove the following result.
Corollary 5.10. Under the assumptions of Proposition 5.8, the estimate (5.1) holds.

To prove the next lemma, we repeat the argument of Lemma 4.5 and replace
Theorem 4.1 with Corollary 5.10.

Lemma 5.11. Let p > 2, A = 0, and r{,r3, R1, Ry > 0 be numbers such that
ry <r,and Ry < Ry. Letu € Sp,loc(Ré"'Zd) and denote f = Pou + Au. Then,
there exist constants N = N(d, p) and 0 = 6(d) > 0 such that the following
assertions hold.

()8~ = r) M IDwttll L0, k) + 1 D2UN L0, 1) S NSNS L, (01, 1))
+ N§%((ra = r) 2 4 r2(Ra = RD )l L, (0, 4,)-
(ii) Denote C, = (—r2,0) x R? x B,. Then we have

52 (ra —r~!

|DyullL, e,y + 1D3ullL, )
SN (I f L pccry) + (2 = 1) Pl c,y)-
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Lemma 5.12. For any ». = 0 and p > 1, the set (Py + A)CSO(R1+2d) is dense in
LP(R1+2d).

Proof. We may assume that p # 2, since the case p = 2 is covered in Lemma 4.6.

Proof by contradiction. Denote ¢ = p/(p — 1). If the claim does not hold, there
exists a functionu € L, (R1T+2d) that is not identically zero and such that for any
e CSO(R1+2d),

/(P()C + Al)Hudz = 0.

Case p € (1,2). Werepeat the argument of Lemma 4.6 with appropriate modifi-
cations. This time, instead of Lemma 4.5, we use Lemma 5.11 G) with Ry =r; = r
and Ry = rp = 2r. By this lemma and (4.8) with 2 replaced with g, we conclude

IDywe) L, 0 < N, 8, @)(rligellL, 0o + 7 lwe) Ly 0a)
< N(gl/Zr + r*1)||w||Lq(R1+2d).
As in the proof of Lemma 4.6, this implies that w = 0, which gives a contradiction.

Case p > 2. Let n. = n.(x) be a standard mollifier. For an integer k = 1,
we denote by w, ; the k-fold mollification of the function w(z) = u(—t, —x, v)
in the x variable with .. The idea of the proof is to, first, show that w,; €
Ly(R'24) 0 8 10 (R1F29) for some large k, and then conclude that w, ; = 0 by

using the localized S;-estimate.
Step 1 For s € (1, o0) and an open set G C R*24_ denote

1fIws @) = IF1+ 18 £+ 1Dy f1 + IDF £l Lyc6)-
Note that w, 1 := w * n, satisfies
dwe,1 — @' Dy we, 1 + Awe,1 = v - Dy, (5.40)
with
v Daweilly, G, S N@e w5,

provided that ¢ € (0, 1/2). Mollifying Eq. (5.40) in the v variable with a standard
mollifier and applying the interior estimate for nondegenerate equations for fixed
x € B(1/4)3 (see, for example, Theorem 5.2.5 of [27]), we get

||w8»1”W,,(Q|/4) g Nd,$,q, 8)||w||Lq(§|)~
By this and the Sobolev embedding theorem for any g1 > ¢ such that
1

1
d+2~q q
we obtain

||wa,l||qu(§1/4) < NWd,$,q,4q1, 8)”w”Lq(§1)'
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Step 2 There exists m = m(d,q) € {1,2,...} and a sequence {qr,k =
0,1,2,...}, such that g0 = ¢, g = 2, and

We set we o = w,
We k = Wek—1 %N, k=1,...,m.
We claim that fork =1, ..., m,
||w8,k||qu(§2_2k) < N@.,$, qk—1, Gk, k, &) lwe k-1 ||qu_1(§zfz(k71))~

To prove this, we repeat the argument of Step 1 with w replaced with w, x—1, g
with gx—1, and g1 with g. Iterating the above estimate, we conclude that

lwe,m ||L2(§272m) é N, $é,q, 8)”w”Lq((~21)'
By this and the argument of Step 1 again,
10t 1@, smir S N @ 8.0l G- (5.41)
Shifting the center of coordinates and using Lemma 3.6 give
1+2d
llwe,m+1 ||L2(§272(m+1)(1)) =NWd,q,3, 8)||w||Lq(§1(z)), Vz e RITH.(5.42)

Next, by the argument of Lemma 21 of [9], there exists a sequence of points
zn € R124 5 > 1, such that

o0 o0
U Or2wnin @) =R 15 . < No(d. m).

n=1 n=1

Then, by this, (5.42), and the inequality

o0 o0 o
Zbgg(Zbk) a1 b >0, k> 1
k=1 k=1

witha = 2/g > 1, we obtain

o0

2 2
/ |w£,m+l| dz g /~ |w8,m+l| dz
RI+2d n=1 Q2—2(m+1) (zn)
> 2/q
SN ([ twidz) T S Nl g < oo
101G A
n= n

Furthermore, generalizing (5.41) for double cylinders é » and é2—2(1n+l ),-» We show
that we m+1 € Sz,loc(R”zd). Therefore, by Lemma 4.5 (i), for any r > 0,

IDywemttllzyc0) S N, 8)r ™ Hwemst Il 1, i+24y-

Passing to the limit as r — oo gives Dyw, m4+1 = 0 in R(1)+2d. Shifting in the ¢
variable, we prove that D,we ;41 = 0 in R'*2¢, and hence, w41 = 0, which
impliesw =0. O
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Proof of Theorem 5.1. We consider three cases:
p>2, pe(1,2),T =00, and p e (1,2), T < o0.

Case I p > 2. Thanks to Corollary 5.10, it remains to prove the assertion (ii).
The latter follows from the a priori estimate in Corollary 5.10 and the denseness
result (see Lemma 5.12).

Case 2 p € (1,2), T = oo. (i) We use the standard duality argument (see,
for example, Theorem 4.3.8 of [27]). Throughout the proof, we assume that N =
N, p).

Let U € CP (R ) and u € S,(R'"29). Denote

f = Pou + Au.

Forh € Ly joc (R!*24) by h, we denote the mollification in the x variable with the
standard mollifier.
Estimate of (—Ax)'3u. It is well known that

(203U, (—a)'P8,U, (=20 P iD,U), (—A)' P D2U
c CI%OC(RI-Q—Zd) N Ll(Rl+2d).

Then, by using duality and integrating by parts, we get
J = /((—Ax)l/%)(—a,U +v; Dy, U — a" Dy, U + AU) dz
- / e(—B, + v Dy, — a1 Dy, + 1) (=AU dz

_ / (=2 PU) Poute + ) dz.

Furthermore, by Holder’s inequality, Corollary 5.10, and the change of variables
t —- —t,x — —x, one has

171 £ 1=AD"PU I, vy | el isaa)
§ N8_9|| — a[U + UliiU — aijDUiij + )\.U”Lq(]RlJer)||f5||Lp(Rl+2d),

where ¢ = p/(p — 1). By Lemma 5.12 and the same change of variables, we
conclude that (—d; — a"/ Dy, + v; Dy, + 2)CG(R'2) is dense in Ly (R'+2),
Thus, we obtain

(=20 Puclly, @is2y N6~ fell , rivaay-

Taking the limit as ¢ — 0, we prove the desired estimate.
Estimate of Dy,(—A,)"/®u. As above, by using duality and integration by parts,
we get

t= /(Du<—Ax)“6ug><—an +v- DU = a” (1) Dy, U +2U) dz

S /(Poug + Aug)Dy(—ANYOU dz
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- /((—Ax)l/ﬁug) DUdz =T, +T».
Furthermore, by Corollary 5.10 with g > 2,
Iy SN = U + viDyU — " Dy, U + AU L, @yl fell L, iy
Next, by Holder’s inequality,
T S NI(=40 " Puelly, @isan Ry (= A0 PU N ivaay =2 To1 Ta o,

where R, = D,(—A,)"1/2 is the Riesz transform. Due to the L p estimate of
(_Ax)l/3us’

Tt £ N800 fellp, ieasy-

By the L, boundedness of the Riesz transform and Corollary 5.10 combined with
the change of variables as before, we get

Ioo < N5_0|| - 0,U+v;Dy,U _aijDviij +)‘U”Lq(R1+2‘1)'

These estimates imply the desired inequality for D, (—A;)/%u.
Estimate of D%u. For any k,1 € {1, ..., d}, we have

I = /kawug(—B,U + 1Dy, U —a" Dyy,U + AU)dz =: I + Iy,
where
I = /kav,U(Poue + Aug) dz,
I =— /(Siva,U +68i1 Dy U)Dy,u, dz.

We only need to show that

I+ |1
§ N(S_eu — 3;U + Uli;U - aijDvinU + )\.U||Lq(R]+2d)||fg||Lp(R]+2d).
(5.43)

The estimate of /1 follows from Corollary 5.10. Furthermore, Holder’s inequality
yields

L] £ 140D U, oy IR (= A0 Puclly ivay =2 b1 D2
By Corollary 5.10,
Ly SN = 8,U +v;Dy,U — a" Dy, U + MUy, mi+2d)y-
Then, by the L ,-boundedness of R and the L, estimate of (—Ax)l/ 34,, we obtain

Lo £ N80 fellp,, rivaay.-
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Combining these estimates, we prove (5.43).
Estimate of u. For A > 0, integration by parts gives

/)\ug(—a,U + v Dy,U — a" Dy, U + AU) dz = /wfg dz.

Now the L, estimate of Au follows from Holder’s inequality and Corollary 5.10.
Thus, the assertion (i) is proved. The claim (ii) now follows from (i) and Lemma 5.12.

Case 3 p € (1,2), T < oo. (i) We fix an arbitrary function ¢ € L (R1T+2d),
where ¢ = p/(p — 1), and extend it by zero for > T. By the assertion (ii) in the
case p > 2 and the change of variables t — —¢, x — —x, the equation

—U +v DU —a’ Dy, U+2U = ¢

has a unique solution U such that U, (—d; + v - D,)U, DU, DgU €L, (R1+2d),
Note that by Lemma 5.9 and the aforementioned change of variables, U = 0 a.e.
on (T, 00) x R,

Furthermore, for a measurable function 4 on R' 724 we denote

Th(z) = h(t,x — vt, v).

By the change of variables x — x — vt and the chain rule for distributions, we have
/u(—B,U +v-DU)dz = —/Tu TOU —-v-DyU)dz
= —/Tu 0(TU)dz.

Since Tu, 8 (Tu) € L,(R'*24), TU, 3,(TU) € L,(R'*?9), we may integrate by
parts and obtain

/u(—a,U +v-DyU)dz = /(8,Tu)TU dz
= /T(atu —v-Dyu)TUdz = /(8,u —v-Dyu)Udz.
By this and integration by parts, we get
J= / updz = / u(=3,U 4+ v - DU —a"’ (t)Dy,y, U + AU) dz
RL2 RI+2d !
= /R;”" U(Pou + Au)dz.

By Holder’s inequality and Lemma 5.9,

13 < Ns 2 —9,U +v-D,U— aij(t)Dviij + )LU||Lq(Rl+2d)
x || Pou + )‘””L,,(R‘T”") = N)L—la—@||¢||Lq(R1T+zd)||Pou + Au||LP(R1T+2d).
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This gives
-6
A||u||Lp(R1T+zd) S NS Pou + /\u||Lp(R1T+zd). (5.44)
Next, by the solvability when 7' = oo, the equation
Pouy + Auy = (Pou + Au)l;<r
has a unique solution u; € S,,(RH‘M). Then, by (5.1) with T = o0,

1/2 2
Ml @ity + 27 IDvut Nl gisaay + IDyuilly givaa,
1 1
+ (=20 Puilly g2y + 1 Do(=A0) Purll g2,

< N Pou + hully gisady.
It follows from (5.44) that u; = u a.e. in R1T+2d. Thus, the desired estimate holds
for u.

(ii) Similar to the proof of Theorem 4.1 (ii), this claim follows from the a priori
estimate in the assertion (i) when p € (1,2), T < oo and the solvability in the
assertion (ii) when p € (1,2), T =o00. O

6. Mixed-Norm Estimate for the Model Equation
In this section, we prove the following theorem, which is Theorem 2.6 for

the operator Py. We follow the argument of Theorem 5.1 and make only minor
adjustments.

Theorem 6.1. Invoke the assumptions of Theorem 2.6 and assume b = 0, c = 0.
Then, for any number . 2 0 andu € Sy r, ..., rd’q(RlTHd, w), one has
Ml + 22 Dyull + D7l + (= A0 Pull + 1Dy (= A Oul|
< N§~Y|| Pou + A, 6.1)

where || - || = || - ||LW1Mrdyq( wy N = N, p,r1,...,¥d,q,K), and 6 =
0, p,ri,...,.rq,q, K) > 0. Furthermore, the part of the Theorem 2.6 (iii) con-
cerning the Sp.r, .. r, (R1T+2d, [x]% ]_[?:1 w; (v;)) estimates is valid with Py in place

of P forany A 2 0.

14+2d
RT

Here is a generalization of Lemma 5.2.

Lemma 6.2. Let p > 1, R 2 1 be numbers and f € L p(R(l)“LZd) vanish outside
(—1,0) x RY x By. Letu € Sp((—1,0) x R24Y be the unique solution to

Pou=f, u(—1,-)=0.

Then, there exist positive constants 6y = 0y(d), 0 = 6(d), and N = N(d, p) such
that for ¢y = 2%/8% k >0,

Il + [Dyte] + [Dyull| L, (1,0 B s x Br)
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oo
< Ns~° Z27k(k7])/4R7k||f||Lp(Ql,2(‘kR)’
k=0

o
. /3 p\1/p -0 p—2 —2k py1/p
(=20 ulh) gl < NGOR k§oz (1)) o

o0
1 _ _ _ 1
(IDy (=20 oul) g < N5/ RS 27k (1p1mg!
k=0

Proof. We repeat the proof of Lemma 5.2. Let us point out two minor modifications
that we make. First, in the definition of cutoff functions &; (x, v), we replace § 2 with
89+ where § = 6. (d) > 11is the constant from the a priori estimate in Theorem 5.1
(i). Second, one needs to use Theorem 5.1 instead of Theorem 4.1. 0O
Proposition 6.3. Let p > 1, r > 0, v = 2 be numbers, 7o € R1T+2d, and u €
Sp,loc(RlTHd) be a function such that Pou = 0 in (t9 — v2r2 1) x RY x By, (vo).
Then, there exist positive constants N (d, p) and 0 = 0(d) such that

I/p
1 o— 1
<|(—Ax)l/3“ - ((_Ax)l/Su)Qr(zoﬂp) S Nv 's e(l(_AX)lﬁulp)Q/li(zo)’
Qr(ZO)
1/6 1/6 e
<|Dv(_Ax) /0y — (Dy(—A4Ay) / M)Qr(zo)|p>
Qr(ZO)
1o 1
< NS (IDy (= A0 ou) 37
o0
1 o— _ 1
SRR DEn(CRRRTV (R
k=0
2 2 Vr —13-0,1n2 1/p
(|Dvu - (DUM)QV(ZO)V))Q (Z ) g NV 5 (|Dvu|p)er(ZO)
r{20

o0
o _ 1
+ NvTls?y "2 "(I(—Ax)”3“'p)Q/,iMZo)'
k=0

6.1. Proof of Proposition 6.3

First, we need a localized L, estimate, which we prove by repeating the argu-
ment of Lemma 4.5 and replacing Theorem 4.1 with Theorem 5.1.

Lemma 6.4. Lemma 5.11 holds for any p € (1, 00).

The next two lemmas are generalizations of Lemmas 5.4 and 5.5 , respectively.
Their proofs go along the same lines as in the lemmas in Section 5. One minor
adjustment one needs to make is to replace Theorem 4.1 and Lemma 4.5 with
Theorem 5.1 and Lemma 6.4, respectively.
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Lemma6.5.Letr 0 < r < R < 1 and p € (1,00) be numbers, and u €
S p,loc(R(l)Hd) be a function such that Pou = 0 in Q1. Then, there exist constants
N =N, p,r,R) and 6 = 6(d) > 0 such that

IDxullL, o) < N8 llull, 0

Lemma 6.6. Let p € (1, 00) and u € Sp,loc(R(])Hd) be a function such that Pyu =
0in(—1,0) x R? x By. Then, for anyr € (0, 1), we have

o0
_ _ 1
IDsullz, 00 £ N8 Y 27H (=40 Puinyg?
k=0

o0
_ _ 1
1Dl 00 < N80 Y2 K- A0 uny?
k=0

where N = N(d, p,r) and 6 = 6(d) > 0.

Lemma 6.7. Under the assumptions of Lemma 6.6, foranyl,m € {0, 1, ...}, there
exists a constant 0 = 6(d, p,l, m) > 0 such that the following assertions hold:
(i) For any R € (1/2, 1],

sup | DL DJ'u| + sup |8, DL Dy'ul < N(d, p,1,m, R)§ llullL, o)
012 012

(ii) sup(IDL D™ (=AY Oul 419, DL DT (= A)Oul)
Q12

SN, p. 1, m)§ (1 Dy(=A) " ullL, o))

o0
_ 1
+ 22 =A0Pun gl ).

k=0
(iii) sup |DLDY+2u| + sup |9, DL DY 2u| < N(d., p.1,m)8~ | DiullL o)
012 012

o
+N@p.lms " 32U A0 g
k=0

Proof. (i) The proof is almost identical to that of Lemma 5.6 (i). By the induction
argument, for any j € {0, 1}, we get

13/ DLD ullL, 01 < N, p. j.l.m, RS ullL,c0p)-

where 6 = 0(d, j,l, m) > 0. Now the assertion follows from the last inequality,
(5.24) and the Sobolev embedding theorem.

(ii), (iii) The proof is almost the same as the one of Lemma 5.6 (ii), (iii). One
merely needs to replace Lemma 5.5 with Lemma 6.6 in this argument. 0O

Proof of Proposition 6.3. The assertion follows from Lemma 6.7 and the scaling
argument (see Lemma 3.6). 0O
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6.2. Proof of Theorem 6.1

Proposition 6.8. Ler p > 1, r > 0, v = 2 be numbers, 7y € ]RlT“LZd, and u €
SP(R]T+2d)o
Then, there exist positive constants N = N(d, p), 6y = 6p(d), and 0 = 0(d, p)

such that for ¢y = 28/8%  k > 0, and any zo € Ry,

l/p
<| (—A0) Pu — ((_AX)1/3M)Qr(Z()) |p>
0Or(z0)

o 1
< Nvls 9(|(_Ax)l/3u|p)Q/£(zo)

o0
+ N\)(4d+2)/p6_9 22_2k(|P0u|p)lQ/2l\7)r2vrc (z0)’
k=0 e
l/p
(|Du(—Ax>1/6u - (Dv<—Ax)”6u>Q,<zo>|”>

0Or(z0)

. 1
< NS Dy (— a0 S P

oo
+ NU_l(s_e 22—2k(|(_Ax)1/3u|p)l/p

er,Zl"ur(ZO)
k=0
o0
4d+2)/p s—0 —k ryl/p
—+ Nv 8 ZZ (|POM| )QZ\/r,Zurck(ZO)’
k=0
) 5 1/ —1¢—6 2 I/p
(|Dju — (DU“)Qr(zo)|p)Q,p(zo) SNv$ (|Dvl/l|”)er(zo)
o0
o _ 1
N (a0 Puing?
k=0
o0
@d+2)/p5—0 N9~k nylp
+ Nv d 22 (|P0M| )Q2vr,2vn:k(20)'

k=0

Proof. The assertion is derived from Lemma 6.2 and Proposition 6.3. See the proof
of Proposition 5.7 in Section 5.1. O

Proof of Theorem 6.1. First, we consider the case when the weight depends on ¢, v
variables only. In this proof, N is a constant depending only ond, p,ri,...,r4,q,
and K.

Step 1: Case A = 0 and u vanishing for large |z| . By Lemma A.2 and the self-
improving property of the A ,-weights (see, for instance, Corollary 7.2.6 of [19]),
there exists a number

po:po(d7p1rl""7rd7Q’K)’ l < pO <min{p7r11""rd’q}7
such that u € Sp, joc(RIT2),

wo € Ag/pyR), wi € Apype(R), i=1,....d. (6.2)
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Denote f = Pou. By what was said above and the fact that u is compactly
supported, we have u € §), (R1T+2d). Then, by Proposition 6.8 with p replaced
RL+2d

T

with po, for any zg € , we get

(—A) Pyt (z0) £ Nv='57 MY P (= 8,0 PulPo (z0)

o
_ — 1
+ NuGHD 050 N o 2p ) £ (z0),
k=0

(Dy(= A0 0uyt (20) £ Nv =180 MY PO IDy(— A ) OulP (20)

o0
—1e— — 1
+ No7'8 70 Y 2 KM (- A0 Pul ™ (z0)
k=0

o0
_ — 1
4 NV g0 S 0kl 1 ),
k=0

and

(D2u)(z0) £ Nv='67 MI/P°| D2u| P (z)

oo
+ NvT1870 S 2T M (— A0 Pul P (20)
k=0

o
_ — 1
+ No P00 N Tk L7 o).
k=0

We take the || - ||-norm on both sides of the above inequalities and use the Minkowski
inequality. After that we apply Corollary 3.2 (i) with p/po, r1/po, - .., ¥4/ Po,
q/po > 1 and (6.2) combined with Corollary 3.2 (ii). We obtain

1 I T 1 _
I(=A03ull £ NvT 1870 (= A 3ull + Nv@IT2/ros=0) £,
1 e 1 1
IDy(—=Ay)sull £ Nv 1870 (| Dy(=Ay)sull + (= Ay)3ull)
+ Nv@dF2/os=0) 7,
e 1 _
ID2ull < Nv= 1670 (I D2ull 4 (= A 3ull) + Nv@dF2/ros=6 £
Takingv =2 + 2N 8§~ we prove the desired estimate.

Step 2: Case . = 0 and arbitrary ue Sp,rl,_._,rd,q(RlT'FZd, w).Let¢ € CSO(RHM)
be a function such that ¢ = 1 on Q1 and denote forn = 1,

$un(2) = (t/n* x/n v/n), Uy = udy.
By the result of Step 1,
IDunll + 1(= A0 Punll + 1 Do(—A0) Oun|l £ N5~ Pounll.  (6.3)
Estimate of Dgu. By (6.3),
ID; S NSTU(I|Poull + Ay + Az + A3),

u ~ >
v ” Lp.rl RN (On HR;-+2d; w) =
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where
Ay = ||Pou(dn — DI, A2 = [[(Pogn)ull, A3z =2|[(aDyu) - Dyl
Since u € Sp ry,...raq (R1F24 ), by the dominated convergence theorem,
Ay — 0 asn — oo. (6.4)
Furthermore,
Ay + A3 SN 'n7 (lul + | Dyul) = 0 as n — oo. (6.5)

Thus, the estimate for D2u holds.

Estimate of (—Ax)l/3u and D, (—Ax)1/6u. We use the duality argument as in the
proof of Theorem 4.1 (i). It follows from (6.3)—(6.5) that

I(=A)Punll + 1Dy (—=A ) Cun | < NS Poull +n~ lul + | Dyull]).

(6.6)

Next, for any n € C§° (R1T+2d), we have
(=400l £ N@ A+ xh~727, ©.7)
and by this (—A,)'3y € L,,*’,iﬂ ,,,,, ,;’q*(]RlTHd, w*) of p,ry,...,rq,q respec-

tively, where p*, r{ ..., r;, g™ are Holder conjugates, and
d
—1/(g—1 —1/(ri—1
w* = w, /4 )(t)l_[wi 10D ).
i=1

1+2d
RT

Then, since u, — uin Ly r . r,.4( , w), we have

_ 1/3
‘ /Ru-zd (=40 "udz
T

This combined with (6.6) implies (6.1) for (—A)Y3u. In the same way, we prove
the estimate for D, (—A,)Yu.

Step 3: Case A > 0. We setry41 = rq and wgy1 = 1. Repeating the proof of
Lemma 5.9 with the spaces L p(R1T+2d) and L, (R3}+2d) replaced with

T 1/3
Sl e LN 40 Pl

Lprrag@®E2 L w) and Ly, oy g BRI w),
respectively, we conclude that for A > 19 = 16N257% +1 > 0,
Mull < NS~ Pou + rul.

To show that the desired estimate holds for A = 0, we use a scaling argument (see
Lemma 3.6) and the fact that the map x — Ax preserves the A, constant. This
combined with (6.1) with A = 0 proves the desired estimate.
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For the estimate in Sy, ., (R]THd, [x]* ]_[;‘!:1 w; (v;)) (see p. 5), the proof
goes along the lines of the above argument. Let us point out one minor modification:

due to (6.7) and the fact that @ € (—1, p — 1), one has

.....

llllll

i=1

forany n € C(‘;"(RIT"'M). o

7. Proof of Theorem 2.6

First, we prove a key lemma analogous to Proposition 6.8, which will imply
the a priori estimate of D%u foru e Sy, ., rd’q(RlTHd, w).

Lemma 7.1. Let yp > 0, v = 2, py € (1,00), « € (1,3/2) be numbers, T €
(=00, 0], Ry be the constant from Assumption 2.3 (yp), and u € Sp, (R1T+2d).
Then, under Assumptions 2.2-2.3 (yyp), there exist positive constants 6y = 6y(d),
0 =0(d, pop), N = N, po, «), and a sequence of positive numbers {ay, k = 0}
such that

o0
Zak <N,
k=0

and for c; = 2/8% and any z € R1T+2d, andr € (0, Ro/(4v)),

1 B P 1
(ID2u — (D2 g, 17§y < Nv='6~0 (I D2ul™) J™

o
o B 1
+ Nvls™? E 2 k(|(—Ax)l/SulpO)Q/:z,ozkur(Z)
k=0

o0
(2+4d)/po s—6 —k poy1/po
+ Nv °8 Zz (|P1/t| )Q2vr.2urck (2)
k=0

(0.¢]
2+4d -6, (@—=1)/(pocr) 2 1/(poa)
+ NU( )/p08 )/0 ’ Zak(lDUu|p0a)Q2vr?2vrck (Z)
k=0

(7.1)

To prove the above lemma we need the following result:

Lemma 7.2. Let yy > 0 be a number and R be the constant from Assumption 2.3
(yo). Let v € (0, Ry/2), ¢ > 0 be numbers. Then, one has

I := ][ la(t, x, v) — (a(t, -, ‘))B,3><Br|dz < N(d)c3yo.

rcr
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Proof. Let X C B be a finite set such that {B,3 ,(x),x € X} is a maximal
family of disjoint balls. Then, since B3 C Uxex B,3 (x), we have

1 § |Qr,cr|_1 Z/ la(z) — (a(t, -, '))Br3 ><B,|dZ

xeX r(0,x,0)

S1Qrerl ™ ) J(BO) + Cx)),

xeX

where
B(x) = / la(z) — (a(t, . ))B5(x)xB,1dz,
0,(0,x,0)
Cx) = / [(a(t, - )Bsx)xB, — (@, -, ))B ;x5 |dz.
0,(0,x,0)

By the facts that D, ((0, x, 0), 1) = B,3(x) x B, and r < Rp, and Assumption 2.3
(y0), we have

B(x) = |Orlyo. (7.2)
Furthermore, forany x € X suchthatx # 0,letx;, j =0, 1,...,m, beasequence
of points such that xo = 0, x,, = x, and |x; — x| = rforj=0,...,m—1,

where m < N(d)c3. Then, by the triangle inequality, we have

m—1
Clx) = Z / [@, - NB 5%, — (@, ))B 5(x)xB,1dz
i—=0 +(0,x,0)
m—1
< Z / @, -, B sxs)xB, — @, ))By 3 (xj)x By, | d2
j=0 0r(0,x,0)
m—1
F X @ Dy — @D |
j=0 +(0,x,0)

It is easy to check that for any two sets A C A’ € RY of positive finite Lebesgue
measure and any f € Lj joc (R9), one has

|A’]
I(F)a—(Hal = A

(f=(Habar.

By this, the fact that 2r < Ry, and Assumption 2.3 (yp),
m—1
C(x) =10/ IN() Z][ la(z) — (a(z, -, '))Bgr3()€j)><32r|dZ
0/ 02,(0.2.0)
< N@)|Qrlmyo < N(d)| 0, yo.

Combining this with (7.2) and using the fact that | X| < N(d)c3?, we prove the
lemma. 0O
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Proof of Lemma 7.1. Clearly, we may assume that for any k > 0,

2
Dyu € Lpoo(Q20r,20r¢,)

because otherwise the sum on the right-hand side of (7.1) is infinite, and the in-
equality holds trivially. Furthermore, by Lemma 3.6, it suffices to prove (7.1) for
z = 0. We denote

C_l(t) = (a(ta *y '))Bv3r3xB,)r and P = 8; — V- Dx — C_lijDUl-Uj.

By Proposition 6.8, there exist positive numbers 6y = 6y(d), 6 = 6(d, p), and
N = N(d, po) such that

1 J P 1
(ID?u — (Dﬁu)Q,wO)Q/r”O < Nv7ls 9(|D5u|P0)Q/£°

vr, 2k vy

o
+ Nv 1570 27k ((— A a7
k=0

(4d+2)/po g~ ok 1/po o
—+ Nv [708 ZZ (|Pu|p0)Q2vr,2vrck
k=0
o
3 _ _ 1
1 NyUdD/pog 922 ¥(la —a|p°|D3“|p°)Q/$,zmk’
k=0

where ¢ = 2% /8%,
Fix any k € {0, 1, 2, ...} and denote &1 = o/(o¢ — 1)(> 3). Then, by Holder’s
inequality,

- 2 1/po
(la — al” | Dyu|")

Q2ur,2urck
- 1 1
< (a—al™ g, D) g, (.4

— A}/(PO“I)Aé/(POU)'

Since a is a bounded function, we have

A1§N5—9][ la — aldz.
QZ\/r,Zvr(‘k

Then, by Lemma 7.2 with r replaced with 2vr and ¢ = 2k /5%,
Ay S N@)2¥ks3% .
By this and (7.4), we conclude that

—k =P 2, 1PN/ PO
2 (la Cll |Dvu| )QZUr,ZUrck
9 1 — 1
é NS 9)/0/(1700[1)2 k+3k/([)00[1)(|D3u|p0a)Q/2(£(’)2¢z:Ck )
With aq; = 2—k+3k/ (Poa1) the series converges since poa; > 3. Now the assertion
follows from this and (7.3). O
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Proof of Theorem 2.6 (i). We will focus on the case when the weight depends only
on ¢t and v. The estimate in Sy, ,, (R1T+2d, [x]* ]_[?:1 w; (v;)) is proved in the
same way by using a partition of unity in the v, variable and the interpolation
inequality in the weighted mixed-norm space to absorb the norm of the gradient on
the right-hand side of the a priori estimate.

First, we consider the case T = oco. We follow the idea of Section 5.1 of [15].
In the first step, we prove a priori estimate for a function u with a sufficiently
small support in the temporal variable. Then, we use partition of unity to handle an
arbitrary function u € S ..., ,d,q(RlTHd, w). Throughout the proof, we assume
that N = N, p,r1,...,rd,q, K, L).

Step 1 We show that there exists § = 8(d, p,ri1,...,rd,q, K) > 0,
Ri=8°Ri(d, p.ri,....ra,q, K)>0, y=8%(d, p.r1,...,ra,q, K)>0,
and 0 =60, p,r1,...,¥qd,q, K) >0, (7.5)

1+2d
such that for any 1p € Rand u € Sy r,,...ry.qg(Rp

(RoR1)?, 19) x R,

, w) vanishing outside (79 —

IDZul|+ 11 (=2 Pul + 11Dy (= A0 VCul N, p,r1, ... ra, g, K)§? || Pul.
By Lemma A.2, there exists a number

po=pold,p,ri,...,1r4,q,K)

such that

1 < po<min{p,ry,...,74,q}

1+2d
RT

and u € Spq,loc( ). Since u is assumed to be compactly supported, this gives

u € Sy, (R1T+2d). By the self-improving property of the A,-weights (see, for in-
stance, Corollary 7.2.6 of [19]), we also fix a number « and p further smaller such
that

. p n ra 4
1<ot<m1n{—,—,—,...,—,—}
2 po po PO Po
and
wpeA g R), wieAr R),i=1,...,d. (7.6)
apg apq

Let v 2 2, ¥, and R| be some numbers which will be chosen later.
If 4vr 2 Ry, then by Holder’s inequality with « and o] = «/(a — 1), for any

zZ € R1T+2d we have

1 1
(1D2u — (D2 g, )17 gy < 21 D2ul™) g,

1/(poe1) ;| 12 1/(poa)
< 2(I(to—(RoR1)2,to)) /r(I;(; 1 (|D”u|p0a)Q/’(pZ(;

< 2(Ry Ror )2 o) a0 D2y 0% ()
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§ NUZ/(])o(xl)R%/(PO“I)M;/(POO‘)|Dgu|p0a (Z)

Inthe case when4vr < Ro, weuse Lemma 7.1 with p replaced with py. Combining
these cases, we get in RITH‘I,

(Dﬁu)’} < N(v‘16_9 + v2/(p0a1)R12/(1700‘1))M;/P0|D12)M|p0
o0
+ NV—I(S—Q Zz—kM;I{PTOK_Ax)]/:iulPO

k=0

o
4d+2 -0, 1/(poar) 1/(poa) | 2
+ Np@dD/pog=0,, /o ZakMzk/agmHDUmPO“
k=0

oo
+ N2 pog=0 3 2_kMi{7§90’T|Pu|p°.
k=0

We take the || - ||-norm of both sides of this inequality, use Corollary 3.2 (ii) with
psT1,...,7d,q > 1 and Corollary 3.2 (i) with

p/(poa), ri/(poa), ..., ra/(poa), q/(poc) > 1
and (7.6). An application of the Minkowski inequality gives

”Dgu” g N(U7]879 + v2/(p()011)R%/([70a1) + v(4d+2)/p0879y01/(p0a1))”Dgu”
+ Nv 1870 (—A0)Bu| + Nv@+D/Pos=0) py. (1.7)

Furthermore, note that u solves the equation
oru —v-Dyu — Ayu = f, (7.8)
where f = Pu + (a" — 8;;) Dy,y;. Then, by Theorem 6.1 applied to (7.8),
(=20 Pull + 1Dy (= A0 Oull < N6~ (| Pull + | DFul).  (7.9)
Combining this with (7.7), we get

— 1 —
| DFull £ N 4 pUdE2 0y 100570 Dy |

+ NUZ/(Poal)Rlz/(Poal)”Dlz)u” + N(U_l + v(4d+2)/170)8—9||pu||_
(7.10)

Furthermore, we set v = 2 + 4N§~?. Then we choose o > 0 and R; > 0 such
that (7.5) holds and

NV(4d+2)/p08_9]/01/(p0a1) § 1/4’ NUZ/(poOll)Rlz/(POal) § 1/4

Thus, we can cancel the term containing D%u on the right-hand side of (7.10). By
(7.9), we also obtain the estimate of (—A,)Y3u and D, (—A,)Y%u.
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Step 2 Let ¢ € Cgo((—(RoRl)z, 0)) be a nonnegative function such that

/g‘f(r)dr =1, [¢/| £N(RoR)™>72/4, (7.11)

Observe that for any ¢ € R,

D3u t, - 4
” v ( )”Lp,r].“,.rd,q(RZdan;d=1 w;)

= D2u(t, )||? 9(t — s)ds.
/R” qu( )”Lp.rl,'u,rd.q(RZd’H?:lwi)§( )

Multiplying the above inequality by wg and integrating over R give
IDu4 = /IR D3 (ug (- — )| ds.

A similar identity holds for (=AY 3u| and || Dy(—Ay)'/0u|. Furthermore, we
fix arbitrary s € R and note that us(z) := u(z)¢(t — s) vanishes outside (s —
(RoR1)?, s) and satisfies the equation

Pug(z) = ¢(t — s)Pu(z) + ul'(t — ).
Then, by the conclusion of Step 1 and (7.11),
IDZus | + 1 (=40 Pugll + 1Dy (=20 Ous
< NS NP (- = )l + N6~ (RoRD) ™2/ Jugp (- — ),
where ¢ € Cgo((—(RoRl)z,O)) is such that ¢ = 1 on the support of ¢ and

[1¢19dt = N(RoR;)*. Raising the above inequality to the g-th power and in-
tegrating with respect to s, we get

ID2ull + (= A0 Pull + | Dy(— A0 Cu|
< N6~ Pul| + N6~ (RoR1) 2 |lul.

Due to (7.5), we may replace the last term with Ns—? RO_2 l#||. By using Agmon’s
method (see the proof of Theorem 6.1), we conclude that, for any A > 1,

Mull + 1D5ull + (=40 Pull + 1Dy (=A:)"u]
< N6~ Pu+ dull + N5~ (R + 1) Ju|.
Setting 19 = 16(N8~? Ro_z)2 + 1 and canceling the term containing ||u#|| on the
right-hand side, we prove the desired a priori estimate.

Finally, in the case when b and ¢ are not identically zero, we use the a priori
estimate that we just proved. We get

Mull + I1D2ull + (= A Pull + | Dy(=A0) oul
é N8_9(||PM +biDU[M + cu —{—)Lu” + ”Dvu” + ||M||)

By using the interpolation inequality in the weighted mixed-norm Sobolev spaces
(see Lemma A.3) and further increasing Ao, we prove the assertion. 0O
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Next, we show the existence part.

Proposition 7.3. Theorem 2.6 holds if p = q =ri,i =1,...,d, and w = 1.

Proof. By the method of continuity, the assertion follows from Theorems 2.6 (i)
and 5.1 (i1)). O

Lemma 7.4. Invoke the assumptions of Theorem 2.6 (ii) and assume, additionally,
that f vanishes outside Qg for some R = 1. Let .y > 1 be the constant from
Theorem 2.6 (i). Fix any A 2 Ay and let u € Sp (RH'Zd) be the unique solution to
Eq. (2.6) (see Proposition 7.3). Then, for any j € {0, 1,2, ...} one has

~ - 1/2 - - 2 - ~
Mull, @01 08,0 T4 NP LG40 0\ Oy ) T IPVNL,3,541 08, )
< N2—iG=D/4 p=J ”f”L,)(]R”Z")’

where N = N(, 6, p).

Proof. We follow the argument of Section 8 of [15], which is somewhat similar to
the one of Lemma 5.2.
First, by Theorem 2.6 (i),
12 2
)\”M”LP(RlJer) + A ||Dvu||Lp(R1+2d) + ||DUM||LP(R1+241)

(7.12)
S NIfllL,@i+edy.-

Furthermor~e, let{n;, j =0,1, 2,;. .} be a sequence of smooth functions such that
nj =0in Q,jp, nj = 1 outside Qyj+1p,

il £1, |Dynjl £N277R™Y, |D2p;| £ N27YR72,

. . (7.13)
|Dynjl < N273R73, |3n;] < N272R72,

Then, since f = 0 outside é R the function u ; = un; satisfies the equation
Puj + biDvl.uj +euj+iuj =u(Pn;+ biDv,—ﬂj) —2(aDynj) - Dyu.

By Theorem 2.6 (i), interpolation inequality, and (7.13), we get

IMul + 221 Dyt + 105l G 0By )
S Mlujllp, wivedy + )‘1/2||Dv“j||L,,(R1+2d) + ||D12)”j”Lp(Rl+2d)
<SN2TTR7Yul + |D“M|”Lp(§2j+l1g\§2j1g)

—jp—1 - - 1/2 - -
S N2TRT Ml 5,00 03 0 A P ID0 LG40 05 )

Iterating this estimate and using (7.12), we prove the assertion. O
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Proof of Theorem 2.6 (ii). We will only consider the case when the weight is a
function of ¢, v because the result in

d
142d
Sp;rl,--.,rd (RT+ > |x|a 1_[ w; (v;))

i=1

is established in the same way. The uniqueness follows from Theorem 2.6 (i).

To prove the existence part, we first consider the case when 7 = oco. By the
reverse Holder inequality for A ,-weights (see, for example, Theorem 7.2.5 of [19])
and the scaling property of A ,-weights (see Proposition 7.1.5 (9) of [19]), there
exist a large constant p; > 1 and small constants ¢; > 0,i =0, ..., d depending
onlyond,é, p,ry,...,74,q,and K such that for any R > 1,

P1 ) P1 14¢

— s = N i:l,...,d,
q &0 ri &

0 | 0 1
(][ wy T dr) T < N(g, K)][ wodt < N(q, K)qu—z/ wo dt,
—R2 —R2 -1

R e R
(][ w; tei dv,-) e < N(r;, K)f w; dv;
—R —-R

1
§N(r,~,K)R”'_1/ widv;, i=1,....,d.
-1

Then, applying Holder’s inequality repeatedly, we prove that, for any R > 1 and
heLpy(Qr),

Wz, o @y S NRENRIL, (G (7.14)
where k = k(d, p,r1,...,¥q4,q, K) > 0and
N=N,§ p,r1,....¥d,q, Wy, Wi, ..., wg) > 0.

Note that (7.14) also holds if we replace Q R with éZR \ é R-

Next, let f, € C° (R'*24) be a sequence of functions such that f, — f in
Lp,,lwrd,q(Rsz, w) as n — 0. Now we fix some n € {I,2,...}. We may
assume that f;, vanishes outside Qg for some R > 1 depending on n. Let us
consider the equation

Puy, + b Dyuy + cun + Aty = fy. (7.15)

By Proposition 7.3, this equation has a unique solution u, € L, (R'+24). Then,
by (7.14), u, € Sp,,l,.__,,d,q,loc(RHZd, w). Furthermore, denote

Xj= Lp,rl,...,rd,q(§2j+1R \ Oyig,w), Jj 0.
Then, by Lemma 7.4 and (7.14) with R replaced with 2J R, we have
Munllx; + 221 Dyunllx; + 1 Djunllx;
S NER(Mlunlly, (5,500,080 F 2 NP0l L, (5,00 05 0
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2 ~ ~
+ ||Dv”"||L,;1(Q2j+1R\Q2jR))
< N2 U0/t ge=iy| £ L, ®i+2d).

Summing up the above inequality with respect to j, we conclude that

142
Up € Sp,r1 ..... rd,q(R + d9 w).
Then, by the a priori estimate of Theorem 2.6 (i), {u,, n = 1} is a Cauchy sequence
in Sy, ra.q (R w). Therefore, this sequence has a limit

R1+2d

ue Sp,rl,...,rd,q( w).

Finally, passing to the limit in (7.15), we prove that u is the solution to Eq. (2.6).
In the case when T < oo, we consider the equation

Pu; + biDviul +cuy +ruy = flior.

By the above, this equation has a unique solution u; € Sp,rlwrd,q(R”z‘i, w),
which is the solution to Eq. (2.6). The theorem is proved. O
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Appendix A

Lemma A.1. Leto > 0, R > 0, p > 1 be numbers, and f € LP,IOC(R‘J). Denote
g() = / O+ Wy dy.
lyl>R3

Then,

oo
1 — — 1
(g1l S N@ RT7 Y 27 n)r
k=0
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Proof. By Hoélder’s inequality for any x € Bys, we have

8] < 2/2 |£10c+ 01y~ dy
k=0

3kR3<|y|<23(k+1)R3

0 1/p
SN@)) 2% R ][ FIPe+y)dy )
23kR3<\y|<23(k+”R3

k=0
Taking the L ,-average of the both sides of the last inequality over Bgs and using
the Minkowski inequality, we prove the assertion of this lemma. 0O

Lemma A.2. Let p > 1 be a number, w € AP(Rd), and f € Lp(Rd, w). Then,
there exists a number po > 1 depending only on d, p, and [w]a, such that f €
Lpo,loc(Rd)-

Proof. By Corollary 7.2.6 of [19], there exists ¢ € (1, p) depending only on p, d,
and ['LU]AP(RJ) such that w € Aq(Rd). Let po = p/q. Then, by this and Holder’s
inequality for any cube C,

1/ (g—1)/
/|f|ﬂ°dx§(/|f|pwdx) q(/w_l/(q_l)dx>q ! < .
C C C

The lemma is proved. 0O

For numbers p1, ..., pg € (1,00),by Ly, . p,(w1, ..., wg) we denote the space
of measurable functions with the finite norm

”f”LpI Pd(wl ,,,,, wq)

P2 1
= | / |...] / | / [F1PV(x) wi (x))dxq |71 .. wg(xg)dxg|7a .
R R JR
Furthermore, by W,%l _____ P (wi, ..., wg) we mean the Sobolev space of all functions
u €Ly, .  p,(wi,..., wy)suchthat Dyu, D%u € Lp,,...pg(Wi, ..., wy).
Lemma A.3. (Interpolation inequality) Let p1, . . ., pa € (1, 00) be arbitrary num-

bers and w; € Ay, (R),i =1, ...,d, such that [w,-]Api(R) <K,i=1,...,d, for

some K 2 1. Then, for any u € W[%l Pd(wl, ..., wyq) and g > 0, we have

IDxull < el D2ull + Ne~ jul,
where | - | =1l L, wi.owp) ard N = N(d, p1,.... pa., K).

Proof. First, by Lemma 3.8 (iii) of [17], forany w € A, (Rd) and ¢ > 0, one has

/IDxul’”w(x)dx §N/|g|’”w(X)dx,
where
g(x) = e|Diul + & ' |u]

and N = N(d, p1, [w] Ap, (rd)- Applying a variant of the Rubio de Francia extrap-
olation theorem (see, for example, Theorem 7.11 of [17] and also [29]), we prove
the lemma. 0O
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