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Abstract:

In six experiments we explored how biphone probability and lexical neighborhood density influence
listeners’ categorization of vowels embedded in nonword sequences. We found independent effects of
each. Listeners shifted categorization of a phonetic continuum to create a higher probability sequence,
even when neighborhood density was controlled. Similarly, listeners shifted categorization to create a
nonword from a denser neighborhood, even when biphone probability was controlled. Next, using a
visual world eye-tracking task, we determined that biphone probability information is used rapidly by
listeners in perception. In contrast, task complexity and irrelevant variability in the stimuli interfere
with neighborhood density effects. These results support a model in which both biphone probability
and neighborhood density independently affect word recognition, but only biphone probability effects

are observed early in processing.
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1. Introduction

Listeners rely on knowledge about the phonological and lexical organization of their language
when they process speech. Two such influences are biphone probability - the probability of two sounds
occurring in sequence, and lexical neighborhood density - the number and frequency of similar sounding
words in the lexicon (Vitevich & Luce, 1999). Both have been shown to influence phonetic
categorization. In a series of experiments, we evaluated the independent contribution and time course of

biphone probability and neighborhood density effects on phonetic categorization.

1.1 Are biphone probability and neighborhood density effects dissociable?

Lexical neighborhood density, defined as the number of known words that are similar to a
string by a given metric, captures top-down (context) effects on the perception of segments.
Commonly, a neighbor is defined in terms of phoneme overlap: a word’s (or non-word’s) neighbors
are words which can be created from substituting, adding or deleting a single phoneme. It is well
established that in speech processing, multiple lexical candidates are activated based on their similarity
to the input, with various consequences for the processing of both words and non-words (see Weber &
Scharenborg, 2012 for a review). Crucially, as a result of competition between lexical candidates, the
recognition of sequences from high density neighborhoods is slower compared to sequences from low
density neighborhoods (e.g., Luce & Pisoni, 1999; Vitevitch, 2002a). Children as well recognize words
from high density neighborhoods more slowly than those from low density neighborhoods (e.g.,
Garlock, Walley, & Metsala, 2001; Munson, Swenson & Manthei, 2005). Perhaps unsurprisingly,
sensitivity to neighborhood density emerges gradually with increasing vocabulary, and is observed
only during the second year of life. Thus, 14-month-olds are sensitive to the details of pronunciation of

familiar words from high as well as low density neighborhoods (Swingley & Aslin, 2002), but by 17-



months infants are more likely to learn novel words from low density neighborhoods compared to
those from high density neighborhoods (Hollich, Jusczyk & Luce, 2002).

Biphone probability effects are also well established in the literature. Adults are more likely to
recognize, name (e.g., Frisch, Large & Pisoni, 2000; Vitevitch, Armbuster & Chu, 2004), recall (Thorn
& Frankish, 2005) and accept as word-like (Pierrehumbert, Needle & Hay, 2018), high probability
sequences, compared to sequences with a lower probability. This advantage for high probability
sequences is evident in children as well who produce nonwords with high probability sequences more
accurately (e.g., Munson, Edwards & Beckman, 2005; Gathercole, Frankish, Pickering & Peaker, 1999).
Additionally, biphone probability effects are evident early in infancy. Whether infants are learning
English (Jusczyk, Luce & Charles-Luce, 1994; Mattys, Jusczyk, Luce & Morgan, 1999), Dutch
(Freiderici & Wessels, 1993) or Catalan (Sebastian-Gallés & Bosch, 2002), 9-month-olds listen longer
to high probability sequences compared to those with a low probability (for a meta-analysis see Sundara,
Zhou, Breiss, Katsuda & Steffman, 2022). At the same age, English-learning infants can use dips in
biphone probability to segment words (Mattys & Jusczyk, 2001); they can also segment nonce words
beginning with high biphone probability sequences but not those with low biphone probabilities (Archer
& Curtin, 2016). In sum, biphone probability effects on speech perception are evident early in acquisition
and persist through adulthood.

It is typically challenging to distinguish effects of neighborhood density from those of biphone
probability because these measures are highly correlated, at least in English (Pitt & McQueen, 1998,
Vitevitch & Luce, 1998; Vitevitch, Luce, Pisoni & Auer, 1999; Landauer & Streeter, 1973), words in
denser lexical neighborhoods tend to be comprised of higher probability sequences. However, there is
some indication that they may be dissociable: 9-month-olds are sensitive to biphone probabilities, but
infants are sensitive to neighborhood density only at 17-months. Crucially, whether neighborhood
density and biphone probability independently affect speech perception is central to the distinction

between theories and models of spoken word recognition with and without a role for feedback.



1.2 Feedback and biphone probability and neighborhood density effects

In this paper we focused on isolating the role of biphone probability and neighborhood density
using a phonetic categorization task. To do so, we built on an experiment by Newman et al., (1997).
Newman et al., tested phonetic processing using a 2AFC task in which listeners categorized a VOT
continua, with two non-word endpoints. They found that listeners categorization of the VOT continua
was biased towards non-words from denser neighborhoods. Newman et al., argue that their results can
only be captured by interactive models where feedback from words (i.e., lexical entries) directly affects
the sensory processing of sound input.

TRACE (McClelland & Elman, 1986) is the classic interactive model where activated lexical
entries provide feedback to a lower, acoustic-phonetic, sensory layer of representation. In TRACE, an
item with an ambiguous segment activates both non-word endpoints, which in turn activate lexical
neighbors. Top-down activation from these neighbors then boosts activation for the denser-
neighborhood non-word to a greater extent, biasing categorization of the ambiguous segment in its
direction. Thus, Newman et al., argue that their results are supportive of a model where activation of
neighbors modulates sensory processing via feedback. Models of spoken word recognition that include
feedback such that words directly affect the sensory processing of sound input have continued to receive
support from empirical findings using other tasks as well (Getz & Toscano 2019; Luthra, Peraza-
Santiago, Beeson, Saltzman, Crinnion & Magnuson, 2021), particularly when speech is presented in
noise (Magnuson, Mirman, Luthra, Strauss & Harris, 2018).

Norris, McQueen & Cutler (2000) have countered that Newman et al.’s results can be explained
without recourse to feedback. One possibility they suggest is that Newman et al.’s neighborhood density
effects may be attributed to underlying differences in biphone probabilities. It has been previously shown

that listeners tend to categorize an ambiguous segment as one that results in a higher probability sequence



given the preceding segment (Pitt & McQueen, 1998). Crucially, if such differences can be explained by
differences in biphone probability alone, this obviates the need for feedback from the lexicon.

However, Norris et al.’s hypothesis has been only partially supported. As Newman et al., argue,
their results cannot be explained by differences in the probabilities between the initial consonant and the
following vowel because they controlled for it. Similarly, Brancazio & Fowler (2000) show that at least
for some continua tested by Newman et al., the neighborhood effects cannot be explained by differences
in the probabilities of the non-adjacent consonants; although Norris et al. provide some evidence that
Newman et al.’s results could be attributed to higher order (triphone) probabilities.

Even if Newman et al.’s results are lexical, Notris et al., (2000) argue that lexical entries influence
categorization at a later post-perceptual decision stage, and are best captured as a response bias. Because
lexical effects at the decision stage do not alter sensory processing, feedback is not necessary to explain
them. Consistent with this hypothesis, Newman et al. report neighborhood density effects only at
intermediate and long, but not short, reaction times (cf. Fox, 1984). These late effects of neighborhood
density could well emerge from the influence of lexical information at the decision stage and therefore
be post-perceptual.

Based on these findings, Pitt & McQueen (1998) argue for autonomous models of spoken word
recognition. In autonomous models, listeners’ expectations about sound sequences, as indexed by
biphone probabilities, alone feed-forward to activate phonemic units, as in Shortlist A, B (Norris, 1994;
Norris & McQueen, 2008) and Merge (Norris, McQueen & Cutler, 2000) or even directly to words as in
exemplar models (e.g., Goldinger, 1998). As suggested by Norris et al. (2000), in an autonomous model
such as Merge, effects of biphone probabilities on speech processing can be captured with a mechanism
that is sensitive to sequential information in sensory encoding, compatible with its general architecture
(though not implemented in simulations by Norris et al.). Importantly, lexical entries do not provide
interactive feedback to sensory processing (Norris, McQueen & Cutler, 2016), but may influence

decisions later due to feed-forward activation of decision nodes. Empirical support for models of word



recognition without a role for feedback is also available from other tasks (McQueen, Jesse & Norris,
2009; Norris et al. 2016), including when speech is presented in noise (Straull, Wu, McQueen,

Scharenborg, & Hintz, 2022).

1.3 The present study

These two sets of findings summarized above offer contrasting views of the role of top-down
effects on perceptual processing. In the view advocated by Newman et al., (1997), neighborhood
activation plays a central role in phonetic processing. As exemplified in TRACE, Newman et al attribute
these neighborhood effects to feedback from the lexicon. Critically, in TRACE, feedback alters the
sensory activation of phones; but there is no independent representation of biphone information. Given
the high correlation between biphone probability and neighborhood density, phonotactic probability
effects on processing in such models are simply a by-product of neighborhood activations. That is, a
higher density neighborhood increases activation for high probability words and non-words. Further,
because feedback introduces a delay, neighborhood density effects are not immediate. However, this
account fails to capture how biphone sensitivity in young infants might correspond to neighborhood
effects seen in the second year of life.

Alternatively, there are models where it is biphone probabilities that play a central role in spoken
word recognition. As exemplified in Shortlist A, B (Norris, 1994; Norris & McQueen, 2008) and Merge
(Norris et al., 2000), such models include architecture compatible with an autonomous representation of
biphone probability information with no independent role for neighborhood density. Because biphone
probability effects are perceptual, they are expected to influence phonetic processing with little to no
delay.

Finally, Norris et al. (2000), outline a third possibility where both biphone probability and
neighborhood density independently influence processing. In this proposal as well, biphone probability

influences are perceptual and early. In addition, neighbors are activated and feed-forward activation to



decision nodes. Thus, unlike biphone probability, neighborhood density does not affect the sensory
activation of phones. Instead, it acts as a bias at the decision stage. In this account, neighborhood density
effects are delayed relative to biphone probability effects, though not as late as might be expected from
a feedback account.

As is clear from the preceding discussion, answers to two questions are critical in teasing apart
these accounts. First, are biphone probability and neighborhood density effects independent? Second,
what is the time course for biphone probability and neighborhood density effects? In six experiments,
we used phonetic categorization of non-words to disentangle the contribution of biphone probability and
neighborhood density. Following Newman et al. (1997), and Pitt and McQueen (1998) we used non-
words because this allowed us to test listeners’ use of information which does not directly depend on
word-hood, word frequency, semantic associations with words, and so on. First, we tested whether
biphone probability and neighborhood density independently influence phonetic categorization when the
other variable is controlled. Next, we used eye-tracking to determine the time course of each of these
effects. Together, these results address how and when listeners use lexical and phonological information

in speech processing, and thus inform models of spoken word recognition.

2. Experiment I and 2: testing independence of BP and ND effects

In Experiment 1 & 2, we created two vowel-to-vowel formant continua, which listeners
categorized as one of two vowel phonemes. In Experiment 1 the vowel contrast was /uv/~/A/. In
Experiment 2 the contrast was /e/~/a/. These vowel pairs were selected because they were close in
formant space and had minimal intrinsic vowel duration differences (Erickson, 2000; Hillenbrand, Getty,
Clark, & Wheeler, 1995). Therefore, in both continua listeners were expected to rely solely on a
combination of formant information that was ambiguous, alongside any BP or ND cues available in the

consonant frame.



In Experiment 1, we manipulated BP by changing the consonant preceding the vowel. Crucially,
ND biases were matched such that any difference in categorization across consonant frames could not
be attributed to ND. In Experiment 2, ND was manipulated and BP was matched. If BP and ND
independently affect phonetic categorization, we expected listeners’ responses to favor the vowel that
resulted in sequence with a high biphone probability (Experiment 1) or high neighborhood density

(Experiment 2).

2.1. Calculation of biphone frequency and neighborhood density

Neighborhood density and biphone probability measurements for all stimuli were made using the
KU Phonotactic Probability Calculator and KU Neighborhood Density Calculator (Vitevich & Luce
2004), which provides frequency-weighted positional estimates for individual phones in a sequence, as
well as biphone co-occurrence probabilities. The lexicon used in the calculators is based on the Merriam
Webster Pocket Dictionary, with frequency measures from Kucera & Francis (1967). Neighborhood
density was calculated using the same formula as in Newman et al. (1997), where each neighbor’s
contribution was frequency weighted. Each neighbor’s frequency contribution was calculated by taking
the logarithm (base 10) of the raw frequency times 10. This value was then summed for all neighbors
for a given word, to provide a frequency-weighted neighborhood density. To ensure that the words
entered into the calculation were likely known by our participants, we used only words that have
previously been rated as familiar (Nusbaum, Pisoni & Davis 1984), using a familiarity index of 5.0 or
higher as a cut-off (on a 7-point scale, see Nusbaum et al. 1984). We also made the same calculations
including all (even less familiar) words, this did not change the direction of any predicted effects.

To ensure that our results were robust and not dependent on the specific corpus used, we used a
second metric to compute BP. We used the UCI Phonotactic probability calculator (Mayer, Kondur &
Sundara, 2022), which can be accessed and used online. We computed these measures using the

Carnegie Mellon University Pronouncing Dictionary corpus (Weide 1998), employing the version of the



dictionary which includes words with frequencies of at least 1 in the CELEX database (Baayen,
Piepenbrock & Gulikers, 1995). Positional biphone probabilities were computed using the same method
as KU phonotactic probability calculator. This allows us to be sure the BP measures we are interested in
are generalizable across corpora/calculators. The KU Phonotactic probability calculator and the UCI
phonotactic probability calculator agreed in terms of the directionality of bias differences across
consonant frames, with one exception in Experiment 4, described below. We take the general alignment

of the measures as indication that the BP effects described here are robust.

2.2. BP and ND for the stimuli in Experiment I and 2

In this section we outline the relevant differences in BP and ND used in Experiment 1 and 2. In
Experiment 1, continuum endpoints were selected to control for neighborhood density biases, while
varying BP biases. In Experiment 2, continuum endpoints were selected to control for neighborhood
density biases, while varying ND biases.

In Experiment 1, The consonant frames were selected such that neither endpoint was a word in
English, and both initial consonants /t/ and /s/ contained coronal constrictions so formant trajectories at
the offset of the vowel are expected to be similar, allowing for identical continuum steps to be used with
each frame. Table 1 shows the biphone-probabilities and frequency-weighted neighborhood densities for
the endpoints of the continua used in Experiment 1 and 2. First consider the non-words used in the two
continua in Experiment 1: /tovip/~/tavip/, and /suvip/~/savip/, shown in the first four rows of the table.
Consider neighborhood density for the full CVCVC sequence of the two continua used in Experiment 1.
All four non-words have a matched neighborhood density of zero (no phonological neighbors). Given
the constraints on the creation of the continuum this approach to controlling for ND was the most
straightforward, though we note here that Experiment 3 tests for BP effect with matched, but non-zero

differences in ND.



For BP, the relevant metric is the continuum bias, that is, the BP of one endpoint of the continuum
subtracted from the other. These were calculated in Experiment 1 by subtracting the BP for the critical
biphone in the /u/ endpoint from the BP in the /A/ endpoint, with a positive value indicating that BP
favors /a/. As shown in Table 1, using the Vitevitch & Luce Metrics (KU Phonotactic probability
calculator), the CiV2 portion of the /tovip/~/tavip/ continuum exhibited an /A/ bias (0.0009). The
/suvip/~/savip/ continuum has an /A/ bias as well (0.0056). When considering the effect of manipulating
BP via the initial consonant, the relevant metric is the difference in biases for the two continua. This
value (0.0045) predicts the following: the stronger /A/ bias in the /suvip/~/savip/ continuum favors
perception of /a/ with an initial /s/; the relatively smaller /A/ bias in the /tuvip/~/tavip/ predicts that an
initial /t/ should favor perception of /u/ (relative to initial /s/). The metrics computed using the UCI
Calculator for the full CVCVC sequence are also consistent with this conclusion: an initial /s/ biases
listeners towards /A/.

Next consider the stimuli in Experiment 2. The non-words in Experiment 2 controlled for
differences in BP, while varying ND to the largest extent possible subject to the aforementioned
constraints in stimulus selection. The two continua are essentially matched for BP according both BP
computations. Conversely, they vary in ND, for which the biases can be considered in the same way as
the BP biases in Experiment 1. /tfeso-/ has a frequency-weighted neighborhood density of 7.2 as
compared to 0 zero for the /tfaso-/ endpoint of the continuum (no phonological neighbors). We indexed
the magnitude of this bias by subtracting the frequency-weighted neighborhood density of /tfeso-/ from
that of /tfase+/. The /tfeso-/~/tfaso-/ continuum therefore has a neighborhood density bias that is negative,
i.e., biased towards /e/. Following Newman et al., listeners should be biased towards a denser-
neighborhood non-word when exposed to an ambiguous stimulus. This predicts that ND biases favor
perception of /¢/ in this continuum. The ND bias for the /[eso-/~/[asa-/ continuum goes in the opposite
direction, whereby the /faso-/ endpoint has greater ND than the /[esa-/ endpoint, predicting that an initial

/7 should favor /A/ responses.



Table 1: Lexical statistics and biases for the continuum endpoints used in the Experiments 1 and 2. See
section 2 for details on calculation of biphone probability (BP) and neighborhood density (ND). Endpoint
biases are calculated with /a/ as reference; thus, positive numbers favor greater /a/ responses. The
absolute difference between endpoint responses is given below each endpoint pair in bold. Two different
BP calculations are reported in two separate columns (see text). Note that all words have initial stress.

Experiment 1 BP (Vitevich & Luce) BP (UCI) ND (Vitevich & Luce)
Ci V2 CvVCvC CvCcvce
/tovip / 0.0005 0.0021 0
/tavip / 0.0014 0.0065 0
bias (positive = /A/) 0.0009 0.0044 0
/suvip/ 0.0003 0.0020 0
/savip/ 0.0059 0.0160 0
bias (positive =/a/) 0.0056 0.0140 0
bias difference 0.0045 0.0096 matched
/sl favors /A/ based on BP
/t/ favors /o/ based on BP
Experiment 2 BP (Vitevich & Luce) BP (UCI) ND (Vitevich & Luce)
Ci V2 CvCcvC cvcve
/ tJesa-/ 0.0010 0.009 7.20
/ tJAso+/ 0.0005 0.010 0
bias (positive = /A/) -0.00005 -0.001 -7.20
/[esa~/ 0.0009 0.009 1
/fAso+/ 0.0005 0.010 34
bias (positive = /A/) -0.00004 -0.001 2.39
bias difference matched matched 9.59

/f/ favors /a/ based on ND
/t]7 favors /¢/ based on ND

2.3. Stimuli

For the stimuli in all experiments reported here we created a vowel quality continuum in which

each endpoint was a clear rendition of a particular vowel. The continuum was synthesized in Praat via

LPC decomposition and resynthesis of F1, F2 and F3 using a Praat script (Winn, 2016). The stimuli for



Experiment 1 and 2 were recorded by a female speaker of American English. The speaker was recorded
in a sound-attenuated booth using a Shure SM81 Condenser Handheld Microphone and Pop Filter, with

a sampling rate of 44.1 kHz (32 bit).

2.3.1. Experiment 1 stimuli

The stimuli in Experiment 1 were constructed based on speaker's natural productions of /savip/
and /suvip/. /suvip/ served as the base file from which the continuum was created. The frication of the
initial /s/ was spliced out of the frame, and the first three formants were varied a long a 10-step continuum
interpolating in evenly Bark-spaced steps between the formant values for the /u/ base and the speaker’s
production of /A/ in /savip/. Higher frequency energy and pitch contour were preserved during
resynthesis such that they matched that of the original /uv/ token. The resulting 10-step continuum
therefore varied only in the frequencies of the first three formants. The BP-manipulating initial consonant
was next spliced preceding the continuum creating 20 unique stimuli (10 continuum steps in each of two
frames). The initial /t/ was spliced from the speaker’s production of /tavip/, which was chosen in case
any traces of the following vowel were present in the production of the stop (though none were
perceived). In the case that any biasing information is present in the initial consonant, it would
accordingly bias towards /a/, the opposite of the predicted BP effect. The initial /s/ spliced was spliced

from the speakers’ production of /suvip/ for the same reason.

2.3.2. Experiment 2 stimuli

The procedure for creating stimuli in Experiment 2 was similar to that in Experiment 1. The
speaker’s productions of /tfeso- / and /tfase-/ were used. /tfeso- / served as the base file from which the
continuum was created, with the initial consonant spliced out, with the continuum created by Bark-
spaced interpolation in F1, F2 and F3 to the values from the /tfaso- / endpoint. /f/ was then spliced from

a production of /feso- /, which was chosen in case any potentially biasing information about the vowel



was present in the initial consonant, in which case it would favor /¢/ responses, predicting the opposite
of the ND effect. Unlike in Experiment 1, we directly manipulated the initial /[/ in order to create /ﬁ“/.
The duration of frication is a strong cue for the distinction between these two phonemes, which when
manipulated causes perception to shift from one to the other (Howell & Rosen, 1983; Kluender & Walsh,
1992). Kluender & Walsh (1992) show that shorter fricative duration is perceived as /ﬂ"/, while longer
duration is perceived as /[/. The original duration of /f/ was 170 ms in duration, which was reduced to
70 ms, by excising the central 100 ms of fricative noise; this also decreased the amplitude rise time,
another cue to the contrast (Howell & Rosen, 1983). The shortened initial fricative was perceived clearly
to be /tf/, and this manipulation has the advantage of ensuring that the spectral acoustic traits of the
consonant preceding the vowel are highly similar, while still conveying a clear distinction between /tf/
and /[/. The stimuli for all experiments, as well as categorization data, model code and analysis scripts

are accessible through the OSF at https://osf.io/eba2v/.

2.4. Procedure

Data for Experiment 1 and 2 were collected remotely (due to the COVID-19 pandemic). All
participants were instructed to take part in the experiment in a quiet space, and to use headphones. The
task was a simple two-alternative forced choice (2AFC) task, in which an auditory stimulus was
categorized by listeners as one of two non-words. They were told that they would hear a speaker of
English say nonce words, and that their task was simply to select which word they heard. We opted to
present only the crucial vowel as a visual choice for participants so that the visual display from trial to
trial was the same and there was no orthographic influence in a presentation of the (varying) initial
consonant. During a trial, participants were presented visually with two buttons placed on either side of
the computer screen: labelled with ‘OO’ and ‘U’ in Experiment 1. Prior to the test trials, participants
were instructed that they should select ‘OO’ if they heard the sound /v/, and ‘U’ if they heard the sound

/a/. This was conveyed in the task instructions by giving examples of real words that contained these


https://osf.io/eba2v/

vowels and the same orthographic representation for the vowels (“book™/ “buck”, “took”/“tuck”).
Participants indicated their response by keypress, where an ‘t” key-press indicated the button on the left
side of the screen and a ‘j” keypress indicated a letter on the right side of the screen. The side of the
screen on which each button appeared was counterbalanced across participants, but for a given
participant the side of the screen on which each button was always the same. Participants completed 8
practice trials in which they heard each continuum end point of the stimuli two times. During test trials
participants heard each unique stimulus 10 times for a total of 200 trials. Stimuli were completely
randomized. Testing took about 15 minutes. The procedure for Experiment 4 was identical to that in
Experiment 3, except that ‘E’ and ‘U’ were used as orthographic representations of /¢/ and /a/

respectively.

2.5. Statistical modeling

Results were analyzed using Bayesian mixed-effects logistic regression, with the brms package
(Biirkner, 2018) in R. All models run in brms here were set to draw 4,000 samples in each of four Markov
chains from the distribution of over parameter values, using a no U-turn sampler. Each chain was set to
have a burn-in period of 1,000 samples, such that we retained the latter 75% of samples from each chain
for inference. In all of the models we report here, we inspected the adequacy of the model fit in
examining the R'values for each estimate, which serves as a convergence diagnostic in comparing within-
and between-chain estimates. R'was within 0.01 of the value of 1 in all models reported here, indicating
convergence.! Models of the categorization data (in this and subsequent experiments) predicted the log

odds of selecting a given vowel response as a function of the step of the continuum, the consonantal

! We additionally examined bulk and tail ESS (effective sample size) values for each parameter
in the model, which is recommended to exceed 100 times the number of chains in the model, 400 in our

case. All ESS values were in excess of 1000, indicating efficient sampling.



frame (manipulating BP or ND), and the interaction of these Results were analyzed using Bayesian
mixed-effects logistic regression, with the brms package (Biirkner, 2018) in R. In each experiment, the
continuum step variable was treated as continuous, and scaled and centered, and the frame variable was
contrast coded (described for each experiment below). We additionally included a quadratic term for
continuum step in the model, which allows us to model the potentially larger effect of frame in the middle
region of the continuum when interacted with the frame variable. Random effects in the model included
by-participant intercepts with maximally specified random slopes including both fixed effects and their
interaction.

We employed weak normally distributed priors for both the intercept and for fixed effects, in
both cases normal(0,1.5) (in log-odds space). In describing the results, we report the model estimates of
effects and their distribution using the p_direction (“probability of direction’) function in the package
bayestestR (Makowski et al., 2019). This measure indexes the percentage of the posterior for an effect
which shows a given sign, and ranges between 50% and 100%, if 99% of a given posterior is estimated
to be positive, this would constitute strong evidence for an effect with that directionality. We would
report the above case as pd= 99%. We take pd > 95% to represent robust evidence for an effect. We
additionally report the 95% credible intervals (Crl) into which the posterior estimates for an effect fall.
This gives an estimate of the breadth of the distribution and when the interval excludes zero this can be
taken as further evidence for a robust effect. The pd metric and CrlI are directly related (both are measures
of a posterior distribution’s location in terms of positive/negative estimates). A pd value of 97.5%, or
greater, corresponds to 95% Crl which exclude zero, though pd > 95 is another threshold used to assess
effect existence. The advantage of reporting both metrics is that the pd values are more easily interpreted
as an index of strength of evidence for effect existence, than the binary assessment of whether or not Crl

include the value of zero.

2.6. Participants



In all experiments, we excluded participants who did not respond to the acoustics of the
continuum. Employing a similar method as that described in Buschong & Jaeger (2019), we identified
these participants by running an individual regression analyses for each participant in brms. In each
participants’ individual model, we predicted their categorization responses as a function of continuum
step only (with no random effects). A participant who showed no evidence for an effect of continuum
step in the model is one who did not shift categorization as a function of changing vowel formants in the
experiment. We reasoned that these participants should be excluded from analysis, as they did not show
sensitivity to vowel acoustics, suggesting inattention to the task, or a misunderstanding of the task.
Sensitivity to the acoustics of the continuum was defined using the pd metric described in section 2.5.
Participants were included when pd > 80. Thus, only participants who did not show any reliable evidence
for an effect of vowel acoustics on categorization were excluded. The code implementing this exclusion
process is included in full in the supplementary materials for the paper on the OSF (as are the sample
categorization functions for included and excluded participants).

We recruited thirty-five participants for Experiment 1 and thirty-four participants for Experiment
2. Three participants were excluded from Experiment 1 and two were excluded from Experiment 2 by
the criterion described above, leaving thirty-two participants in each experiment. Participants were
students at a North American University and received course credit for participation. For all experiments

reported here, no participant took place in more than one experiment.

2.7. Results: Experiment 1
The model Experiment 1 predicted the log odds of an /v/ response (/A/ mapped to 0 and /v/
mapped to 1). The main effect of step was credible, as expected (f = 2.21, Crl = [1.83, 2.60]; pd =
100%), confirming that listeners’ /u/ responses increased along the continuum, as continuum step
increased numerically towards the /o/ endpoint. The main effect of consonantal frame, which was coded

with /s/ mapped to -0.5, and /t/ mapped to 0.5, was also credible (B = 0.44, Cr[ =[0.05, 0.84]; pd = 99%).
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Figure 1: Experiment 1 categorization responses along the continuum (x axis, where step 1 is the most /
a/-like), split by consonant frame. The proportion of /u/ responses is plotted on the y axis. Points are the
empirical data and lines are the model fit with 80% credible intervals from the model fit plotted.

The effect of frame indicates that, consistent with biphone probability effects, participants
showed an overall bias to categorize the target as /u/ in the /tV/ frame compared to the /sV/ frame (i.e.,
more /u/ responses in the /tV/ frame, more /a/ responses in the /sV/ frame). This is shown in Figure 1,
where the model fit also indicates a generally larger separation in categorization in the middle region of
the continuum. The interaction between consonant frame and the quadratic term for step was found to
be robust (pd = 98) in line with this larger separation in the middle of the continuum. The interaction
between consonant frame and the linear term was less robust (pd =93), suggesting that the effect was not
particularly stronger at either end of the continuum, though somewhat larger at numerically lower steps.

The results of Experiment 1 indicate that biphone probability can indeed modulate listeners’
categorization of phonetic continua, as described by Pitt & McQueen (1998). Crucially, these results
cannot be attributed to differences in neighborhood densities because we controlled for them during the

stimulus selection. Additionally, these differences in categorization were restricted to the more



ambiguous steps on the continuum, as indicated by the interaction of frame with the quadratic step term,
expected if biphone probabilities directly modify input sensory representations (e.g., Massaro, 1989;
Massaro & Cowan, 1993). In contrast, effects of decision bias involve vertical shifts in categorization
functions, which are not localized to ambiguous stimuli (e.g., Massaro & Cowan, 1993; Norris et al.,

2000).

2.8. Results: Experiment 2

Experiment 1 showed a clear effect of biphone probability in phonetic categorization of a non-
word continuum, which was independent of neighborhood density. In Experiment 2 we tested if we could
obtain evidence for an independent effect of neighborhood density.

In the model for Experiment 2, the model predicted the log odds of an /¢/ response (/a/ mapped
to 0 and /e/ mapped to 1). As expected, there was a credible effect of continuum step in Experiment 2 (3
= 3.05, Crl = [2.58, 3.52]; pd = 100%), showing that /¢/ responses increased along the continuum as
continuum step increased numerically towards the /e/ endpoint of the continuum. The main effect of
consonantal frame, which was coded with / tf/ mapped to -0.5, and /f/ mapped to 0.5, was also credible
(B=-0.43, Crl =[-0.76, -0.11]; pd = 99%), showing that, consistent with precited ND effects, an initial
/tf/ favors perception of /e/, with more /e/ responses in that frame, and /f/ favoring perception of /a/,
with fewer /e/ responses in that frame. There was additionally weaker evidence for a credible interaction
between the consonant frame and linear term for continuum step (pd = 94), indicating a larger frame
effect at the numerically higher steps of the continuum. Notably though, unlike in Experiment 1, there
was no evidence for an interaction with the frame variable and the quadratic term for continuum step (pd
= 81), indicating that there was not a larger effect in the middle of the continuum. These results replicate
Newman et al.’s findings that neighborhood density affects phonetic categorization, and they preclude a

biphone probability difference as a possible confound.
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Figure 2: Experiment 2 /¢/ categorization responses along the continuum (where step 1 is the most /a/-
like), split by consonant frame.

3. Experiments 3 & 4: Replicating the effects with highly controlled stimuli

Experiment 1 and 2 have provided us with some first evidence for independent BP and ND
effects, showing that each respective influence occurs with the other controlled. In the experiments that
follow, we seek to replicate these effects using different frames and continua. In the following
experiments we sought to control our materials more tightly, using the same exact acoustic continuum
for both BP (Experiment 3) and ND (Experiment 4) manipulations. Converging evidence for these
effects across different continua will strengthen the evidence for the existence of independent BP and

ND effects.

3.1. Experiment 3



The goal of Experiment 3 was to test whether differences in biphone probability influenced
listeners’ categorization of a continuum, when neighborhood density was controlled. To this end, we
created a continuum from the English vowels /¢/ to /&/ by manipulating F1, F2 and F3 as in Experiments
1 and 2. This vowel contrast is the one that is tested in all subsequent experiments here. The continuum
was presented in one of two CVC frames and listeners were asked to categorize the vowel as /e/ or /&/.
The two frames in Experiment 3were: /meb/~/mab/ and /mev/~/maev/. As with Experiment 1, The
consonant frames were selected such that neither endpoint was a word in English, and both coda
consonants /b/ and /v/ involved labial constrictions so formant trajectories at the offset of the vowel
could be expected to be similar, allowing for identical continuum steps to be used with each frame. Table

2 shows the relevant BP and ND statistics for Experiment 3 and 4, with the same layout as Table 1.



Table 2: Lexical statistics and biases for the continuum endpoints used in the Experiments 3 and 4. See
section 2 for details on calculation of biphone probability (BP) and neighborhood density (ND). Endpoint
biases are calculated with /¢/ as reference; thus, positive numbers favor greater /e/ responses.

Experiment 3 BP (Vitevich & Luce) BP (UCI) ND (Vitevich & Luce)
Ci V2 V2Cs CVC CVvC

/maeb/ 0.0101 0.0026 0.0104 29.54

/meb/ 0.0059 0.0007 0.0063 17.96

bias (positive =/¢/)  -0.0042 -0.0019 -0.0041 -11.58

/maev/ 0.0101 0.0019 0.0100 30.25

/mev/ 0.0059 0.0026 0.0084 17.37

bias (positive =/¢/)  -0.0042 0.007 -0.0016 -12.88

bias difference matched 0.0026 0.0025 matched

/m_v/ favors /e/ based on BP
/m_b/ favors /z/ based on BP

Experiment 4 BP (Vitevich & Luce) BP (UCI) ND (Vitevich & Luce)
Ci 'V V2GCs CvC cvcC

/baeb/ 0.0059 0.0026 0.0078 41.11

/beb/ 0.0032 0.0007 0.0045 21.26

bias (positive =/¢/)  -0.0027 -0.0019 -0.0033 -19.85

/baep/ 0.0059 0.0048 0.0090 44.42

/bep/ 0.0032 0.0029 0.0066 14.46

bias (positive =/¢/)  -0.0027 -0.0019 -0.0024 -29.96

bias difference matched matched 0.0009 10.11

/b_b/ favors /¢/ based on ND
/b_p/ favors /2/ based on ND

3.2. BP and ND metrics in Experiment 3 and 4

First consider neighborhood density for the full CVC sequence of the two continua used in

Experiment 3, shown in Table 2: the non-word /meb/ has a frequency-weighted neighborhood density of

17.96. The other endpoint of the continuum, /mab/ has a frequency-weighted neighborhood density of

29.54. In this case, a denser neighborhood for /mab/ would bias listeners to respond /a&/ when exposed

to ambiguous items on a /meb/~/mab/ continuum. The bias in the /meb/~/mab/ continuum is -11.58

(17.96-29.54). The /mev/~/mav/ continuum also has a neighborhood density bias for /&/ of (-12.88).



Comparing the biases for the two continua, we see that although both have an /&/ bias, the /mev/~/mev/
continuum has a slightly larger one. This would predict that if listeners are sensitive to neighborhood
density alone, they should show increased /&/ responses to the /mev/~/mav/ continuum compared to
/meb/~/maeb/ continuum. However, it should be noted that the difference in ND bias across continua
here is much smaller than reported for the continua used by Newman et al. (1997). For example, their
velar place of articulation continuum showed a bias difference 14.5, and their labial place of articulation
continuum showed a bias difference of 8.7, as compared to our difference of 1.3, suggesting the influence
of ND here may be minimal.

Using the Vitevitch & Luce Metrics (KU Phonotactic probability calculator), the V2Cs portion of
the /meb/~/maeb/ continuum exhibited an /&/ bias (-0.0019), while the V>C; portion of the /mev/~/mav/
continuum exhibited an /e/ bias (0.0007). This differential predicts that a coda /b/ should bias listeners
towards /&/ responses, such that they prefer a relatively higher probability sequence /maeb/ (as compared
to /meb/), and vice versa for coda /v/. The metrics computed using the UCI Calculator for the full CVC
sequence are also consistent with this conclusion: a coda /v/ biases listeners towards /¢/ in Experiment
3. If listeners are sensitive to biphone probability information, they should thus show increased /e/
responses for the /mev/~/mav/ continuum compared to the /meb/~/mab/ continuum, with coda /v/
biasing towards /¢/. Note that the bias based on biphone probability is in the opposite direction than the
bias predicted by neighborhood density, making this a fairly conservative test for biphone probability
effects (though density biases are minimally different).

In Experiment 4, two new continua were created: /bep/ ~/bap/ and /beb/ ~ /baeb/. V2Cs biphone
probability was matched for these two pairs (see Table 2), such that they both exhibited an equal /¢/ bias
(-0.0019). Unlike Experiment 3 however, the neighborhood density bias for these continua differed: both
exhibited an /&/ bias, with the bias for the /bep/ ~/baep/ continuum (-29.35) stronger than that for the
/beb/ ~ /baeb/ continuum (-19.85). A denser neighborhood should bias listeners towards /e&/ responses,

predicting more /a&/ responses for the /bep/ ~/bap/ continuum. Such a finding could not be explained by



differences in biphone probability, which are matched (see Table 2). The empirical prediction is thus
that a coda /b/ frame should show increased /¢/ responses (decreased /a&/ responses), as ND differences
favor /&/ more strongly in the frame with coda /p/. Here we note that the UCI phonotactic probability
calculator differs slightly from the KU phonotactic probability calculator, in showing a small bias
difference with coda /p/ slightly favoring /¢/, the opposite of the predicted ND effect.

The two frames used in Experiment 4, /b/ and /p/, differ in voicing of the coda consonants. We
know from previous research that consonant voicing has an effect on vowel formants, such that the
presence of voicing generally lowers F1 (e.g., Hillenbrand et al., 2001). Thus, listeners might expect F1
lowering (or, vowel raising in the vowel space given that higher vowels have lower F1) with a coda /b/.
If this is the case, lower (more /¢/-like) F1 values should be categorized as /a&/ when /b/ follows (as
compared to /p/), thereby increasing /&/ responses in the context of a coda /b/. This voicing effect runs
counter to the predicted effect of neighborhood density making this a conservative test for the

neighborhood density effect.

3.3. Materials

Stimuli for Experiment 3, 4, 5 and 6 were created by resynthesizing the speech of an adult male
speaker of American English. The stimuli were first recorded at 44.1 kHz (32 bit) in a sound-attenuated
booth, using an SM10A Shure™ microphone and headset (note that the speaker for these stimuli is
different than the speaker for Experiment 1 and 2 due to the interval of time between them).

The creation of the stimuli followed the same approach as in Experiment 1 and 2. The starting
point for the creation of stimuli in Experiment 3 was the speaker’s natural production of two CVC
nonwords: /mev/ and /mav/. The vocalic portion of both of these nonwords was excised from the CVC
frame. Resynthesis used /¢/ as a base and interpolated F1, F2, and F3 in even, Bark-spaced 12 steps to
their respective values for the /e&/ token. The higher frequency energy and pitch contour were preserved

during resynthesis such that they matched that of the original /¢/ token. The resulting 12-step continuum



therefore varied only in the frequencies of the first three formants. The onset /m/ from the original
production of /mev/ was then re-spliced onto each continuum. The coda /b/ and /v/ were cross-spliced
from productions of /meb/ and /maev/ respectively. As with Experiment 1 and 2, this was done to remove
any possible acoustic traces of co-articulatory information from the preceding vowel cuing these
consonants; though note it is unlikely that the cross-spliced stop closure/release and fricative noise
contained cues to identify the original preceding vowel. Specifically, given that we predicted a following
/v/ should bias listeners towards /e/ categorization, as outlined above, the cross-spliced /v/ came from a
post -/&/ context, ensuring any possible acoustic information from the preceding vowel would predict
the opposite adjustment in categorization. For the same reason /b/ was cross-spliced from a post-/e/
context. These manipulations created 24 unique stimuli (12 continuum steps x 2 consonant frames). We
note here that both coda consonants /b/ and /v/ are phonologically voiced (and realized as voiced in the
stimuli), this is pertinent given that voicing has been shown to influence vowel formants in speech
production (a point we return to in discussing Experiment 4). Both consonants are in similar places of
articulation (labial and labio-dental) such that we would not expect place of articulation effects on vowel
formants (Hillenbrand, Clark & Nearey, 2001).

We used the same vowel continuum in Experiment 4 and Experiment 3, however, we presented
them in different frames. The new frame consonants were cross-spliced from the same speakers’
productions. The initial /b/ was cross-spliced from a production of /beb/. The coda /b/ was cross-spliced
from a production of /bab/, and the coda /p/ was cross-spliced from a production of /bep/. As with
Experiment 3, this method of cross splicing was chosen to remove any possible acoustic traces of the
preceding vowel on cross-spliced coda consonants. Specifically, because we predicted that the
/baep/~/bep/ continuum should bias categorization towards /&/ (as compared to /baeb/~/beb/), the coda
/p/ was cross-spliced from an original /ep/ sequence. Likewise, the coda /b/ was cross-spliced from an

original /&b/ sequence. Because the consonants used in Experiment 3 also involved labial constrictions,



formant transitions at the onset and offset of the vowel continuum were judged to sound natural in these

new frames.

3.4. Participants in Experiment 3 and 4
For both Experiment 3 and 4, thirty-five (different) self-identified native speakers of American
English with normal hearing were recruited. In both experiments, four participants were excluded by the
process described in Section 2.4, retaining thirty-one for analysis. Participants were students at a North

American University and received course credit for participation.

3.5. Procedure

These experiments were completed in person, unlike Experiment 1 and 2. Participants completed
the task seated in front of a desktop computer, in a sound-attenuated booth in the lab. Stimuli were
presented binaurally via a 3M™ Peltor™ listen-only headset. They were told that they would hear a
speaker of English say nonce words, and that their task was simply to select which word they heard.
During a trial, participants were presented visually with two letters placed on either side of the computer
screen: ‘E” and ‘A’. Prior to the trials beginning, participants were instructed that they should select ‘E’
if they heard the sound /¢/, and ‘A’ if they heard the sound /@/. As with Experiment 1 and 2, This was
conveyed by giving examples of real words that rhymed with the non-word continuum endpoints in the
task instructions. Participants indicated their response by keypress, where an ‘f” key-press indicated the
letter on the left side of the screen and a ‘j” keypress indicated a letter on the right side of the screen. The
side of the screen on which each letter appeared was counterbalanced across participants. Participants
completed 8 practice trials in which they heard each continuum end point in each CVC frame two times.
During test trials participants heard each unique stimulus 8 times for a total of 192 trials. Stimuli were
completely randomized. Testing took about 15 minutes. The procedure for Experiment 4 was identical

to that in Experiment 3, and took about 15 minutes.
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Figure 3: Experiment 3 categorization responses along the continuum (x axis, where step 1 is the most
/&/-like), split by consonant frame. The proportion of /¢/ responses is plotted on the y axis

3.6. Results: Experiment 3

In the model for Experiment 3, the main effect of step was credible as expected (f = 2.80, Crl =
[2.23, 3.37]; pd = 100%). confirming that listeners’ /¢/ responses increased along the continuum. The
main effect of consonantal frame was also credible (B = 0.33, CrI =[0.07, 0.59]; pd = 99%). The effect
of frame indicates that, consistent with biphone probability effects, participants showed an overall bias
to categorize the target as /e/ in the /mVv/ frame compared to the /mVb/ frame. This is shown in Figure
3, wherein the model fit also indicates a generally larger separation in categorization in the middle region
of the continuum. The interaction between consonant frame and the quadratic term for step was found

to be robust (pd = 96) in line with this larger separation in the middle of the continuum, as was also



found for the BP effect in Experiment 1. The interaction between consonant frame and the linear term
was not robust (pd = 80), suggesting the effect was not larger at either end of the continuum.

The results of Experiment 3, replicate those in Experiment 1, and provide further confirmation
that BP influences phonetic categorization. In Experiment 5 we directly test the time course of the
biphone probability effect. We can further compare the effect we see here to two previous studies in
which biphone probability effects were manipulated.

To compare BP differences from our Experiment 1 and 3 to those in Pitt & McQueen (1998), we
computed BP metrics for the set of stimuli which differed on BP (their Experiment 4). According to the
KU phonotactic probability calculator, the bias difference in Pitt & McQueen’s experiment was 0.0008,
compared to 0.0045 (Experiment 1) and 0.0026 (Experiment 3) in our case. This suggests that listeners
are sensitive to even smaller bias differences than the one we tested here. We can also make a comparison
to the stimuli used by Kingston et al. (2016), described in detail in Section 4 below. The BP bias in their
Experiment 4 is comparable to the BP bias in Experiment 3 based on the KU phonotactic metric (0.0024
compared to our 0.0026), though their effect size, comparable to ours in being modeled via logistic
regression is much larger in magnitude. This is likely due to the denser sampling of the ambiguous

regions of the acoustic continuum in Kingston et al (2016).
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Figure 4: Experiment 4 categorization responses along the continuum, split by consonant frame.

3.7. Results: Experiment 4.

The model specifications and model fitting procedure were identical to that in Experiment 3.
Results are plotted in Figure 4. In contrast coding consonant frame, /bVp/ was mapped to -0.5 and /bVb/
was mapped to 0.5. As in Experiment 3, the expected main effect of step was credible (f = 3.92, CI =
[3.36, 4.50]; pd = 100%). The main effect of consonant frame was also present, though smaller in
magnitude with 95% Crl only narrowly including zero (B = 0.24, CI=[-0.03, 0.53]; pd = 96%). In Figure
4 we can see the effect of consonant frame: consistent with predicted neighborhood density effects,
listeners showed increased /¢/ responses with the /bVb/ frame, shifting categorization in accordance with
neighborhood density. The interactions between continuum step were not credible either for the linear

(pd = 86) or quadratic term (pd = 64). The weak evidence for an interaction with the linear term derives



from the slightly larger separation between frames at higher continuum steps, which would be consistent
with a decision bias.

Experiment 2 and 4 together provide fairly convincing evidence for the existence of independent
ND effects, though the strength of evidence for an effect is notably weaker in Experiment 4, and the
effect is smaller, though ND differences are similar. Several possible explanations for this difference can
be considered. First, as described above, a possible competing effect exists in Experiment 4: the influence
of coda voicing differences in the ND manipulating consonant, which renders the experiment a
conservative test for the effect. It is possible that this countervailing influence weakened the ND effect.
Second, the location of the ND-manipulating material was different across experiments. In Experiment
2, the initial consonant in a CVCV word varied to manipulate ND, while in Experiment 4, the final
consonant in a CVC word varied. As discussed above, ND effects are hypothesized to be post-lexical
and based on feedback, occurring later in processing, as shown in part by Newman et al.’s (1997) finding
that their ND effects were larger at slower reaction times. The additional time that listeners have to
accumulate unfolding ND information in Experiment 2 (as compared to Experiment 4) may have led to
stronger ND effects. Especially, if listeners categorize the stimuli in Experiment 4 quickly, it is possible
that this decreased the strength of the ND effect. The explanations proposed here are somewhat
speculative, however the lack of an interaction between the quadratic term for continuum step and the
frame variable is consistent with a later-stage decision bias effect for ND. This notably contrasts with

the presence of this interaction for both BP effects in Experiment 1 and Experiment 3.

4. Experiment 5: Time course of biphone probability and neighborhood density effects

Taking Experiments 1-4 together, we have evidence for the independent influence of both
biphone probability and neighborhood density as indexed by listeners’ categorization responses.
However, categorization performance only provides a measure of the endpoint of the speech recognition

process. To obtain precise timing information about when BP and ND effect recognition, we need



evidence from online tasks. Previous research, outlined below, offers some relevant time course
comparisons.

Using brain imaging, Pylkkédnen, Stringfellow, & Marantz (2002) provide some evidence that
biphone probability effects are consistently observed between 300 and 400ms post stimulus onset. In an
MEG experiment, they administered a lexical decision task to listeners who were presented with CVC
sequences that were either high probability and high density or low probability and low density. They
investigated an MEG response component - M350 - which peaks between 300 and 400 ms post stimulus
onset. Because the M350 was facilitated in response to the manipulated probability, and not inhibited as
expected for a density manipulation, Pylkkénen et al argue that the M350 is sensitive to biphone
probability. They did not find a clear correlate of the density effect in later MEG components. Thus, the
MEQG results present an estimate of the timeline for probability effects, and indirect support that this may
be different from the effect of neighborhood density (see also Pylkkénen & Marantz, 2003),

More recently, Kingston and colleagues (Kingston, Levy, Rysling, & Staub, 2016) report on two
experiments where they evaluated the time course of lexical effects on phonetic processing. In Kingston
et al.,’s experiments, listeners were asked to categorize a word to nonword phonetic continuum. They
reasoned that if lexical effects are driven by feedback, they should be delayed as demonstrated in TRACE
simulations (McClelland & Elman, 1986). However, a rapid use of lexical information in categorization
would constitute evidence against feedback, and be more consistent with a feed-forward account. Based
on results from two eye-tracking experiments Kingston et al., claim that lexical effects influence phonetic
processing between 300 and 400 ms after stimulus onset; and thus, are too early to be consistent with
feedback.

A closer look at Kingston et al.’s experiments, however, offers an alternative explanation for
their findings. First, in Kingston et al.’s Experiment 4a — the lexical effect is confounded with a biphone
probability effect. In this experiment, listeners were presented with a continuum ranging between the

vowels /e/ and /a/ in a CVC(C) frame; whether the end point was a word or non-word was determined



by the final consonant. The continuum was placed in one of four frames: (1) /b _nk/ forming the word
“bunk” with /a/, (2) /d _ nk/ forming the word “dunk” with /A/, (3) /b [/ and (4) /d _ J/ (both resulting
in nonwords). The initial consonant was varied to manipulate spectral context, and will not be discussed
here; its inclusion does not alter the conclusions based on biphone probability differences discussed
below. Because a coda /mk/ creates words with the vowel /A/, but not /¢/, Kingston et al. predicted that
/mk/ should increase looks to an orthographic representation of /a/ (“U”), as compared to a following /[7.
This is what the authors found, with the influence of the coda consonant(s) emerging within 300-400 ms
of stimulus onset.

A different interpretation of these finding emerges if we compare the biphone probabilities for
the vowel and following consonant sequence. In the /[/ context, the biphone probabilities are essentially
matched with a very slight /a/ bias: 0.0002 for /Cef/ and 0.0004 /CA[/. However, the biphone probability
for the vowel and following consonant /1)/, reveals an asymmetry: a following /1/ engenders a stronger
/a/ bias: 0.0003 for /Cen/ and 0.0027 for /Cay/. The magnitude of this /A/ bias is comparable to our own
biphone probability manipulation in Experiment 3. Thus, an alternate explanation for Kingston et al.’s
results is that the time course from Experiment 4a reflects a difference in biphone probability between
the sequences, and therefore, like in Pylkkdnen et al.’s MEG experiment, is observed between 300 and
400 ms post stimulus onset.

In the other eye tracking experiment reported by Kingston et al. (Experiment 3a), listeners
categorized a continuum of fricative noise that ranged from /s/ to /f/. The continuum was followed by
one of three frames: (1) /_ a1l /, creating a word with /f/ “file”, but not with /s/, (2) /_aid /, creating a
word with /s/ “side”, but not with /f/, and (3) control frame / armm / for which both continuum endpoints
were non-words. The online effect was significant only in the /a1l / frame, with increased looks to a
visual ‘F’ target on the screen, in comparison to the control frame. This effect cannot be explained by
biphone probability differences; the summed biphone probability of “file”” (0.0043) is slightly lower than

that of “sile” (0.0058). However, there was no significant difference in looks between the / aim / frame



and the control frame / aid /, where we would expect to see more looks to a visual ‘S’ target when the
lexical context “side” reinforces /s/. This asymmetry in online processing between the two experimental
frames makes it difficult to interpret the results from Kingston et al.’s Experiment 3a.

In Experiment 5 we used Kingston et al.’s experimental design with the stimuli used in
Experiments 3 and 4, where the effects of biphone probability and neighborhood density were
orthogonally manipulated. Specifically, we were interested in how these effects unfold online using a
visual world eye-tracking task. Combining categorization with eye-tracking data allowed us to
investigate the online integration of information as speech unfolds (unlike reaction times), as discussed
in e.g., Norris et al. (2000). The eye movement response to the vowel spectra served as our baseline
because it indexes a (rapid) response to the signal. Given the independence of biphone probability and
neighborhood density effects documented in Experiments 1 and 2 respectively, we expected to see an
independent influence of each variable in the online task as well. If biphone probability affects the
sensory activation of phones, we expected them to emerge soon after the spectral response (once listeners
have heard the coda consonant), about 300-400ms post stimulus onset consistent with Pylkkénen et al
(2002). Of crucial interest was the relative timing of each effect. If neighborhood density effects originate
from a feedback loop between the lexicon and prelexical information, because feedback takes time as
shown in TRACE simulations (McClelland and Ellman 1986), the influence of ND should be delayed in
comparison to a spectral response. Recall that Newman et al. (1997) reported reliable ND effects only at

slow and intermediate reaction times, suggesting a later influence in processing.

4.1 Materials

The materials used in Experiment 5 were a subset of those used in Experiments 3 and 4. In order
to present listeners with relatively ambiguous stimulus tokens (following e.g., Mitterer & Reinisch 2013,
Reinisch & Sjerps, 2013), we presented listeners the most ambiguous region of each continuum. This

was identified as the 4-step window centered around the 50% crossover points in the interpolated



categorization functions derived from Experiment 3 and 2. In both experiments, this method selected
steps 4 through 7. Participants heard all four continua (/mVb/, /mVv/, /bVb/, /bVp/) at these four steps.

There were thus 16 unique stimuli used in Experiment 5 (4 continuum steps X 4 consonant frames).

4.2 Participants

Sixty-eight self-identified native speakers of American English with normal or corrected to
normal vision participated in Experiment 3. We subsequently excluded three participants whose gaze
data was not recorded consistently due to technical issues. Eight additional participants were excluded
because their categorization did not differ based on the acoustics of the continuum as described in section
2.6, retaining fifty-seven for analysis. Participants were students at a North American University and

received course credit for participation.

4.3 Procedure

In Experiment 5, we used a visual world eye-tracking task, with a similar design to that used by
Kingston et al., (2016). Participants were seated in front of an arm-mounted SR Eyelink 1000 (SR
Research, Mississauga, Canada), which was set to track the left eye remotely, at a sampling rate of 500
Hz, and at a distance of approximately 550 mm. The visual display was presented to participants on a
1920 x 1080 ASUS HDMI monitor. Participants were tested in a sound-attenuated room in the lab.
Participants’ gaze was calibrated using a 5-point calibration procedure at the start of each experiment.

During an experimental trial, participants were presented with orthographic E and A on the target
screen (Kingston et al. 2016) and were instructed to click on the letter corresponding to sound they heard.
As in Experiments 1 and 2, examples of real English words that rhymed with the nonwords were given
to convey the intended letter-to-sound mapping. Participants’ eye movements were monitored while they
performed the task. The orthographic targets were arranged vertically in the visual display, with each

letter centered horizontally, and positioned 270 pixels above and below the midpoint of the display. Each



letter was presented in 60pt black Arial font. The location of each letter was counterbalanced across
participants. Each trial began with the appearance of a black fixation cross in the center of the visual
display (60 px by 60 px). Following Kingston et al., (2016), stimulus onset was look-contingent, such
that the audio stimulus played only after a look was registered on the fixation cross. Eye-movements
were recorded from the first appearance of the fixation cross until a click response was registered by
participants. After a click response was provided, the location of the mouse cursor was re-centered on
the screen. Each trial was separated by a 1 second interval.

During the experiment, participants heard 8 repetitions of the 16 unique stimuli in a random
order, for a total of 128 trials. Participants additionally completed 8 training trials prior to test trials in
which they heard step 4 and step 7 for each frame, to give them practice with the experimental paradigm.

The experiment took approximately 20 minutes to complete.

4.4. Analysis

We report several analyses of the data collected in Experiment 5. First, we analyzed listeners’
click responses; we used Bayesian mixed-effects to model the log odds of selecting an /¢/ response as a
function of frames (/mVb/, /mVv/, /bVb/, /bVp/), as in Experiments 1 and 2. The model was fit with the
same fixed effects and random effect structure as previous models.

We additionally carried out two complementary eyetracking analyses. For both, the analysis
window was 0 to 1200 ms after the onset of the target vowel; listeners typically made a categorization
click response within this time period after which there was a substantial drop in recorded eye-
movements.

First, like in Kingston et al., (2016), we report on an analysis of the likelihood of initiating a
look to a given target (a saccade) at a given time point in a moving window. This analysis method differs
from a more traditional moving window analysis in which the presence of, or proportion of, fixations to

a given target (or a transformation of this data) is modeled over a moving window. In the saccadic



analysis, only the initiation of a fixation is modeled, that is, whether or not in a given time bin. As shown
by Kingston et al., this metric can diverge from the more traditional analysis especially with respect to
when an effect ends, or diminishes in magnitude. For example, if a fixation is initiated to a given target
at 200 ms from target onset and persists for 1s (see e.g., Staud, Abbot & Bogartz, 2012 for data on the
duration of fixations), the traditional analysis will model the fixation as occurring from 200ms onwards,
with its presence in subsequent time bins resulting from its initiation at 200ms. In contrast, the saccadic
analysis will only record the first time-bin at which the fixation was initiated (200ms). Kingston et al.
suggest this analysis provides a clearer picture of when precisely a given stimuli property impacts eye
movements by excluding carry-over effects from continued fixation to a target.

Following Kingston et al., we binned the data binned into 100ms intervals, and coded for each
time bin the presence/absence of an initiated fixation as a binary variable (1 = initiation of a fixation, 0
= no initiation). For a given bin, we also excluded any fixations to a target following an earlier fixation
to the same target in the trial. In other words, if a participant initiated a fixation to a target between 200-
300ms, then looked away from the target, then initiated another fixation to the same target at 700-800m:s,
only the former of these was counted. Following Kingston et al., we modeled looks to just one target, in
our case the /¢/ (orthographic “E”) target. In each 100 ms time bin, a logistic mixed effects regression
was run, again using brms, fit with weak normal priors. In each binned regression, the dependent measure
was predicted as a function of continuum step (scaled), and frame, which in this case we contrast coded.
We subsequently extracted two estimates of pairwise frame differences of interest, using emmeans
(Lenth, 2020). These were: /mVDb/ versus /mVv/ (indexing the BP effect), and /bVb/ versus /bVp/
(indexing the ND effect). The estimate and distribution for each marginal comparison was then
computed, in addition to the effect of continuum step. We note here that we carried out a more traditional
moving window analysis as well, modeling listeners Elog-transformed fixation preference (described
below) over 100ms time bins. The code and model results for this additional analysis are included in full

in the open access repository (https://osf.io/eba2v/).



https://osf.io/eba2v/

As described above, in the saccadic analysis, looks to target in each bin are treated as
independent. However looking behavior is correlated across adjacent time bins (especially in fixation-
based analyses), which is sometimes offered as a critique of moving window analyses. We accordingly
report a complementary time-series analyses. This additional analysis was carried out using a
Generalized Additive Mixed Model (GAMM), which offers a powerful tool for analyzing time-series
data from visual world experiments (Nixon, van Rij, Mok, Baayen & Chen, 2016; Zahner, Kutscheid &
Braun, 2019; Steffman, 2021). GAMMs have recently been advocated for use in modeling eye
movement data, as they (1) easily fit non-linear trajectory shapes, and (2) provide for an intuitive
assessment of when eyetracking trajectories diverge (see Zahner et al., 2019 for similar discussion
advocating for GAMMs). The dependent variable for the GAMM analysis was a “preference” measure
computed as listeners’ log-transformed fixations on /¢/ subtracted from their log-transformed fixations
on /&/ (see e.g., Reinisch & Sjerps, 2013). Measures were transformed using the empirical logit (Elog)
transformation, as described in Barr (2008). The GAMM model was implemented with the mgcv and
itsadug packages in R (van Rij, Wieling, Baayen, & van Rijn, 2020; Wood, 2011). We implemented an
AR1 error model, following procedures described in Séskuthy (2017), which reduces residual
autocorrelation common in timeseries data (see open access model code for implementation). The
numerical model output is fairly uninformative for understanding the timing questions asked here
(Wood, 2011; Zahner et al., 2019), as such the model summary is available in the scripts included on the
open access repository, and we rely on visual inspection of the model fit in what follows. Inthe GAMM
analysis the fixation data was binned in 20 ms intervals (as in Zahner et al., 2019; Steffman, 2021) and
thus provides a more fine-grained comparison of timing. To model the relationship between continuum
step (with four levels) and consonant frame (with four levels), we created a combined variable of each
frame and step combination, with sixteen levels total (e.g., a level for /m_b/ at step 4, a level for /m_v/

at step 4, and so on). Modeling these frame/step combinations as separate trajectories allows us to capture



non-linear differences based on both continuum step and frame. By-participant random smooths over
time (factor smooths), as well as factor smooths by the combined frame/step variable, analogous to by-
participant intercepts and slopes in mixed models were included (see e.g., Soskuthy 2021). For both of
the random effect (factor smooth) terms, the m parameter was set to 1 (Baayen, van Rij, de Cat, & Wood,
2018). In another version of the model, included in the supplementary materials, we treated continuum
step as a continuous parameter and modeled the interaction between step and frame using a tensor
production interaction term (cf. Nixon et al., 2016). This alternative model structure led us to the same

conclusions about the data.
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Figure 5: Experiment 5 categorization (click) responses along the continuum, split by consonant frame.



4.5 Results & Discussion
4.5.1 Click responses

Overall, in Experiment 5, the continuum steps we used (4-7) were perceived as more /&/-like as
evidenced by the credibly negative intercept estimate for the reference level which was set to be /mVb/
(B =-0.37, CI = [-0.65,-0.10]; pd = 100%). This /&/ bias was stronger than in Experiments 3 and 4,
despite selecting the most ambiguous regions based on 50% crossover points in the categorization
functions in those same experiments. We can only conclude that listeners recalibrated categorization
because of the absence of steps from the endpoints of the continua. Continuum step showed a credible
effect, as listeners increased /e/-responses (f = 1.48, CI =[1.23, 1.74]; pd = 100%) progressively from
Step 4 towards Step 7 where formants were more /¢/-like.

The first comparison of interest was between the frames manipulating biphone probability:
/mVDb/ versus /mVv/; with /mVb/, as the reference level in the model, the estimate for the /mVv/ frame
was credibly positive (B = 0.47, CI = [-0.01, 0.89]; pd = 97%), replicating the observed difference
between these two frames in Experiment 3. There was also evidence for an interaction between
continuum step and the /mVv/ frame: (f = 0.29, CI =[0.02, 0.57]; pd = 98%), showing that the effect of
biphone probability was larger at higher continuum steps, as is visible in Figure 5. None of the other
interactions between either linear or quadratic step terms and consonant frame were credible.

The model estimates showed further that both /bVb/ and /bVp/ frames evidenced credibly
decreased /¢/ responses relative to the /mVb/ (/bVb/:  =-1.20, Crl = [-1.59, -0.81]; pd = 100%; /bVp/:
B=-1.34,CI=[-1.76,-0.92]; pd = 100%). This difference in /&/ responses between the /m/- vs /b/-initial
frames was even larger than the biphone probability effect across the /m/-initial frames. Pairwise
comparisons between /mVv/ and both /b/-initial frames were examined using emmeans (Lenth, 2020),
and as expected based on the Figure 5, were each credibly different from one another.

Before we turn to the comparison between /b/-initial frames, let us consider the difference we see

here based on initial consonant. This effect emerged in Experiment 5 because we used a within-subject



design in contrast to the between-subjects design in Experiments 3 and 4 where the effects of the /m/-
initial and /b/-initial frames were investigated separately. We can rule out that this effect was driven by
the differences in biphone probabilities of the /m/-initial and /b/-initial frames. From Table 2 (using the
Vitevitch & Luce metrics) we see that the biphone sequence /mV/ has a stronger /a/ bias (-0.0042)
compared to /bV/ (-0.0027); this difference in biphone probability would predict the opposite of the
effect observed here. Even considering the summed biphone probability of the whole CVC sequence,
we see the following gradation in the strength of /&/ biases, from largest to smallest: /m_b/ (-0.0061) >
/b_p/and /b_b/ (-0.0046) > /m_v/ (-0.0035). This too cannot explain the difference we see between /m/-
and /b/-initial frames, because based on this rank ordering the most /&/ responses are expected for /m_b/,
which is clearly not the case.

The direction of difference in /e/ responses between the /m/- and /b/-initial frames is more
consistent with a difference in neighborhood density, with the latter having a stronger /&/ bias (Table 2).
However, there is also reason to be skeptical that neighborhood density differences are driving the
difference between /m/- and /b/-initial frames. The difference in neighborhood density between the two
/b/-initial frames was at least as large, if not larger in magnitude than the neighborhood density difference
between the /m/- and the /b/-initial frames. Yet, the effect between /m/- and /b/-initial frames was
credible, whereas the neighborhood density effect indexed by the difference between the two /b/-initial
frames was not (reported below).

Instead, we speculate that by introducing different initial consonants in our frames, we may have
introduced a new variable that influenced listeners’ perception of the target vowel. A change in initial-
consonant from /b/ to /m/ is a switch between an oral and a nasal onset. Although our vowel didn’t vary
in terms of nasality across frames (being originally produced in /m/ initial frames), listeners’ perception
of F1 and/or F2 is likely to have been modulated because they were compensating for the typical
coarticulatory effects of nasals on vowel formants. Nasalization of vowels adjacent to nasal consonants

is well-attested in American English (e.g., Chen, Slifka & Stevens 2007; Cohn 1990). Nasalization



typically lowers perceived F1 for low vowels (Diehl, Kleunder & Walsh, 1990), directly impacting
listeners’ perception of vowel height adjacent to nasal consonants (Beddor, 1993; Ohala, Beddor,
Krakow & Goldstein 1986; Wright 1980). Ohala et al. (1986) present a test case that offers a close
comparison to the present stimuli. They found that when a vowel on an /e/ ~ /&/ continuum was adjacent
to a nasal consonant, but had only very weak nasalization (comparable to the present stimuli where
vowels were originally produced in /m/-initial carryover contexts) listeners “overcompensated” for the
expected effect of vowel nasalization. An adjacent nasal consonant accordingly led to decreased /e&/
responses, i.e. perception of a higher vowel, /¢/. Thus, it is quite likely that the difference between /m/-
and /b/-initial frames is due to the listener’s compensation for the nasal context, and not attributable to
either biphone probability or neighborhood density differences. We addressed this issue directly in
Experiment 6.

The second comparison of interest was between the frames manipulating neighborhood density:
/bVb/ versus /bVp/, also extracted using emmeans. Unlike in Experiment 4, there was no credible
difference between these two frames used to manipulate neighborhood density (f = 0.14, CI = [-0.25,
0.54], pd = 76). As we can see from Figure 5, these frames did not induce any reliable shift in
categorization. Thus, we did not replicate the neighborhood density effect observed in Experiment 4.
Perhaps including all ambiguous steps (4 through 9) instead of just the ones around the 50% cross-over
points may have allowed ND effects to emerge in Experiment 3. We return to this point in discussing

the eye movement data below.
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Figure 6: Experiment 5 eye movement data, split by consonant frame (panel A), by continuum step

(panel B), and by frame, split by continuum step (panel C). The proportion of looks to /e/ over time are

plotted, with 95% confidence intervals computed from the raw data. The dashed vertical line indicates
the vowel offset (260 ms).



4.5.2 Eye Movement data

In Figure 6, we plot listeners’ proportion of looks to /e/ over time (not the log transformed
preference measure used in modeling) for ease of visual inspection. In this figure the time course of
looks to /¢/, split by consonant frame (panel A), continuum step (panel B), and frame faceted by step
(panel C) are presented. First, confirming what we saw in the categorization responses, the eye
movement data show a bias towards /a&/, that is, listeners’ fixations to /e/ are overall fairly low.
Qualitatively, we can note that the frame effects shown in Figure 6 panel A mirror the categorization
responses described in section 4.5.1: there is a clear separation between the BP-manipulating frames,
with /mVv/ favoring looks to /¢/, in contrast to the ND-manipulating frames, which are generally
overlapping. As with the categorization results, we additionally see a robust effect of initial consonant,

with /m/-initial frames favoring looks to /¢/.

In panel B, we can see that continuum step exerted an expected influence in online processing:
higher values (more /e/-like steps) favor looks to /¢/. Finally, in panel C we can see that there are
differences in the timing and magnitude of the frame effects based on continuum step. Each of these

results is discussed below.

4.5.2.1. Moving window saccade analysis

In reporting the results of the saccade-based moving window analysis, we focus on summary
statistics for each of the estimates of interest over (binned) time (Figure 7). We plot estimates, with 95%
credible intervals, for the influence of continuum step, the pairwise comparison between /mVb/ to /mVv/
frames — the biphone effect, and that of the /bVb/ to /bVp/ frames — the neighborhood density effect.
When we observe that the estimate is credibly non-zero (when 95% CrI exclude zero, or when pd > 95)

we can take this as convincing evidence for an effect.
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As shown in Figure 7, we can see that estimates for continuum step reliably exclude zero for the 400-
500 millisecond bin in the time series. That is, listeners reliably responded to the vowel continuum within
400-500ms after the target vowel onset. This is slightly slower than previous reports for the use of
intrinsic spectral cues; for example, Kingston et al. found a reliable effect of vowel acoustics in the 300-
400ms time bin window in their analysis (cf. Reinisch & Sjerps, 2013). We attribute this delay to
listeners’ possible reliance on vowel duration as a cue to the /e/-/&/ contrast. In our experiment the
duration of the vowel was also longer (260ms) compared to that in previous studies (approximately
170ms in the case of Kingston et al.). The delay could also be driven in part by the biased nature of the
continuum. Regardless of the reasons for the discrepancy, the timing for use of vowel-intrinsic spectral

cues provides a baseline for evaluating the effects for frames of interest. We can additionally see that the



effect of step in generating new saccades persists throughout the analysis window (in similar fashion to
Kingston et al.’s step effect).

Turning to the effect of BP-manipulating frames /mVb/ versus /mVv/, we can see that
evidence for an effect of BP emerges at the same time as that of continuum step: 400-500ms. The effect
weakens in the 500-600ms time bin but is robust again in the 600-700ms time bin. BP information only
impacts new fixations at these time points, unlike the effect of continuum step. Consider again that
because the vowel is 260ms in duration, information about the coda consonant is available only at that
point. Given that it takes approximately 200ms to initiate a saccade (Dahan, Magnuson, Tanenhaus &
Hogan, 2001; Matin, Shao & Boff 1993), this effect’s timing suggests listeners rapidly integrated coda
consonant information with their perception of the vowel. The 400-500ms time bin represents the earliest
point at which we would expect to see a BP effect (the earliest possible time being 460 ms). Note that
the absolute value of the timing of the effect in this experiment is about 100 ms longer than that reported
in Kingston et al., (2016), which is consistent with the difference in vowel duration between our stimuli
and theirs (260ms here versus 170ms in Kingston et al., Experiment 4a).

Finally, turning to the effect of ND-manipulating frames /bVb/ versus /bVp/, we see there is only
one time bin in which the ND manipulation impacts new fixations, the 900-1000ms time bin. In looking
at Figure 7A, this time window is the one with the most separation between b_b and b_p frames in line
with the ND effect, though the separation is still very slight. This gives some evidence for a temporal
asymmetry: the BP effects is rapid, while the ND effect is weaker (smaller and noisier), and delayed in
time. This delay is consistent with Newman et al.’s reaction time findings described above.

Though not a focus of interest here, we can note that the effect of initial consonant was also
robust and early, as assessed in the moving window analysis. The pairwise difference between /m/- and
/b/-initial frames were credible even in the 200-300ms and 300-400ms windows, that is, even before the
effect of continuum step, as might be expected for effects relating to the initial consonant. Such early

effects are unlikely to be related to neighborhood density.



We note here that the traditional moving window analysis (contained in the online OSF
repository) largely comported with these results: continuum step had an effect from 400-500ms until the
end of the analysis window; BP manipulating frames differed from one another at one time bin later in
the moving window: from 500-600ms until the end of the analysis window. The difference between the
ND manipulating frames was credible with pd > 95 from 1000-1100ms to the end of the analysis window,

lining up with the delayed saccadic effect described above.
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Figure 8: Difference smooths for consonant frame pairs (Panel A: /mVb/ versus /mVv/; Panel B: /bVb/
versus /bVp/). The point at each trajectory indicates when it has diverged from zero (see text). Step 4:
703 ms, Step 5: 618 ms, Step 6: 484 ms, Step 7: 582 ms). The dashed vertical line indicates the vowel
offset (260 ms).

4.5.1.2. GAMM analysis

Because the GAMM analysis provides more fine-grained information about the time course of
an effect (bins are 20ms not 100ms) and takes into account the relationship between adjacent time bins,
we used it to evaluate the interaction between continuum step and the BP and ND effects. We expected

only early effects on sensory processing to interact with the bottom-up information in the signal as



exemplified by the continuum steps. To assess the extent to which continuum step and consonant frame
interacted in our GAMM analysis, we compared our model fit with the combined frame and step term
to one in which step and frame each had separate smooths which did not interact, using the
compare_ML() function in itsadug. The model allowing for an interaction between continuum step and
consonant frame provided a better fit to the data (x*(53) =299, p < 0.001; see the open access repository
for the full code for model comparison).

In Figure 8 we plot the difference smooths between consonant frames of interest, that is,
comparing /mVb/ to /mVv/ - the BP effect, and /bVb/ to /bVp/ - the ND effect, at each continuum step.
These model estimates represent the difference between two smooths, with confidence intervals. The
time when this estimated difference reliably becomes different than zero, i.e., when the confidence
intervals for the estimate exclude zero, is when an effect is taken to be reliable (see e.g., Zahner et al,
2019; Steffman, 2021). As shown in panel A of Figure 8, we see a robust divergence from zero at all
continuum steps for the BP effect arising from the comparison between the /mVb/ and /mVv/ frames.
There was a relationship between continuum step (vowel acoustics) and the timing of the effect.
Specifically, the biphone probability information was more rapidly integrated when vowel information
was more /¢/-like (Step 6 & 7), than when it was /&/-like (Step 4 & 5), though Step 6 showed an earlier
effect than Step 7. This sensitivity of the BP effect to fine-grained differences in vowel acoustics is
consistent with the claim that it is an early influence on sensory processing. In the context of an /a/
biased experiment, acoustic evidence for /e/ would support listeners’ integration of /¢/ with the coda
consonant favoring a high biphone probability sequence: in other words, when both the vowel acoustics
and consonant frame favor /e/, divergence based on consonant frame occurs more quickly. The
relationship between vowel acoustics and the timing of the BP effect may also offer an explanation for
the two time-bins (400-500, and 600-700) in which the BP effect led to new fixations on the target, where

the earlier time is primarily for the more /¢/-like continuum steps.



This BP effect was as early as 484 ms from target vowel onset. In contrast, the neighborhood
density effect represented by the difference smooth comparing /b b/ and /b_p/ frames in Figure 8, panel
B did not diverge from 0 at any point in the analysis window. That is, we did not observe an ND effect
online, lining up with listeners’ click responses, though conflicting with the moving window models.

In summary, the GAMM analysis allows us to confirm (1) a robust and rapid influence of biphone
probability in online processing, and (2) a lack of a robust influence of neighborhood density, suggesting
that the effects for ND in the moving window analysis are very weak and transitory. We further saw that
vowel acoustics were integrated with BP information, that is, more acoustic support for /¢/ (in an overall
- /&/-biased experiment) led to an earlier influence of biphone probability.

In Experiment 6, we probed the unexpected difference between the /m/- and /b/-initial frames further,

to confirm that this effect is not attributable to BP or ND differences.

5. Experiment 6

Recall that the stronger /a&/ bias for /b/-initial frames observed in Experiment 5 was consistent
with the small neighborhood density difference favoring /b/-initial compared to /m/-initial frames.
However, its early timing as well as the difference in magnitude of the effect compared to the
neighborhood density effect observed in Experiment 4 led us to hypothesize that this effect was not
driven by the neighborhood density differences. Instead, we conjectured that the frame effect was driven
by perceptual adjustments related to nasal consonants and their effects on judgements of vowel height.
Experiment 6 was designed to confirm that the difference between /m/- and /b/-initial frames seen in
Experiment 5 was unrelated to neighborhood density and biphone probability. In Experiment 6 we
presented listeners with another /m/-initial and /b/-initial frame where both biphone probability and
neighborhood density predicted the opposite of the observed difference between /m/- and /b/-initial
frames seen in Experiment 5. If we replicate the nasal vs oral frame effect from Experiment 5 here, we

can be sure that it was not driven by either biphone probability or neighborhood density differences.



5.1 Materials

The frames used in Experiment 6 were /m_v/ (used in Experiment 3 and 5) and /b_v/. To create
the new /b_v/ frames, the initial /b/ from the continua used in Experiment 4 was cross spliced, replacing
the /m/ in the /m_v/ frames. As shown in Table 3, both biphone probability and neighborhood density
predict that an /b_v/ should show increased /e/ responses relative to the /m_v/ frame. This is the opposite
of the effect seen in Experiment 3 (where the /b/-initial frames showed decreased /¢/ responses), and

accordingly, we can test if the effect observed there is independent of both biphone probability and

neighborhood density.

Table 3: Lexical statistics and biases for the continuum endpoints used in the Experiment 4. See section

2 for details on calculation of biphone probability (BP) and neighborhood density (ND).

ND (Vitevich & Luce)

Experiment 4 BP (Vitevich & Luce)
Ci V2

/mav/ 0.0101

/mev/ 0.0059

bias (positive =/¢/)  -0.0042

/baev/ 0.0059
/bev/ 0.0032

bias (positive =/¢/)  -0.0027

bias difference 0.0015

/b v/ favors /¢/ based on BP & ND

CvC

30.25

17.37
-12.88

24.74

15.19
-9.55

3.33

5.2 Participants and procedure

Thirty-two self-identified monolingual English-speaking participants were recruited to
participate in Experiment 6. One participant was excluded by the metric described in section 2.6,

retaining thirty-one for analysis. Unlike previous experiments, these participants were recruited online,



via the platform Prolific, and completed the experiment over the internet. Participants were instructed to
complete the experiment seated in a quiet room with a pair of headphones. Participants were paid 4$ for
this experiment which took 15-20 minutes to complete. The experimental procedure was otherwise

identical to that in Experiments 1-4.
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Figure 9: Experiment 6 categorization responses along the continuum, split by consonant frame.

5.3 Results and discussion

Listeners’ categorization responses were assessed by the same method and model structure as
used in previous experiments. In contrast coding the frames, /m_v/ was mapped to -0.5 and /b_v/ was
mapped to 0.5. Continuum step had a credible effect on responses, as seen in all previous experiments
(B=3.88, CI=1[3.26,4.50]; pd = 100%). Additionally, consonant frame had a credible effect (f =-0.51,
CI = [-0.94,-0.06]; pd = 99%). Replicating the effect observed in Experiment 5, listeners showed

decreased /e/ responses for the /b_v/ frame, as shown in Figure 9. As with Experiment 5, there was some



evidence for an interaction between consonant frame and the quadratic term for continuum step (pd =
94); evident in the larger separation based on frame in the middle region of the continuum. The
interaction between the linear term for step and frame was not credible (pd = 63).

The direction of the effect of consonant frame in this experiment, despite opposing neighborhood
density and biphone probability effects, confirms that the robust difference between /m/-initial and /b/-
initial frames in Experiment 5 was not driven by differences in neighborhood density (or biphone

probability).

7 General discussion

In six experiments, we tested how differences in biphone probability and neighborhood density
influence listeners’ categorization of a vowel continuum embedded in nonwords. Listeners in
Experiments 1 and 3 shifted categorization to form a high probability sequence even when stimuli were
controlled for neighborhood density. Listeners in Experiment 2 and 4 shifted categorization to favor a
denser neighborhood even when stimuli were controlled for biphone probability (though the effect was
weak in Experiment 4). Finally, in Experiment 5, we used eye-tracking and found evidence for a robust
and early influence of biphone probability. In contrast, density effects did not affect categorization and
showed only very weak, and delayed effects on looking behavior (in the moving window analyses, but
not in the GAMM analysis). In one additional experiment, we probed an unexpected influence uncovered
in Experiment 5. This effect resulted from mixing the stimuli from Experiments 3 and 4, and was not
driven by either biphone probability or neighborhood density; instead, it was due to the influence of the
initial nasal consonant.

Our results provide both direct and indirect evidence for a dissociation between biphone
probability and neighborhood density effects. In Experiments 1-4 we showed that both biphone
probability and neighborhood density exert an independent influence on offline categorization. That is,

despite the correlation between biphone probability and neighborhood density in English, biphone



probability effects on phonetic processing cannot be explained by differences in neighborhood activation
alone as we show in Experiment 1 and 3. Similarly, neighborhood density effects on phonetic processing
can also not be explained by differences in biphone probabilities alone, as we show in Experiment 2 and
4.

Categorization data from Experiment 5 also provided evidence for a dissociation, albeit
indirectly. In Experiment 5, the mixing of stimuli from Experiments 3 and 4 increased the variability of
frames (which had a clear effect on responses as confirmed in Experiment 6). Despite the inclusion of
more variable frames in Experiment 5, the biphone probability effect on categorization was replicated
from Experiment 3 where there were fewer frames. However, neighborhood density influences, which
were small in magnitude in Experiment 4, disappeared when an irrelevant dimension of variation (in the
initial consonant) was introduced into Experiment 5. That is, biphone probability effects were robust
across online and offline tasks, and not affected by the increased variability in Experiment 5. In
comparison, the increased variability in frames and task complexity in Experiment 5 led listeners to
largely disregard neighborhood density differences in the stimuli. Together, these categorization results
are consistent only with accounts where both biphone probability and neighborhood density
independently influence processing, albeit in qualitatively distinct ways.

Independent contributions of BP and ND effects seen here provide clear constraints on existing
models of spoken word recognition. This is problematic for models like TRACE that do not
independently represent biphone probability information (cf. Pitt & McQueen, 1996). This is also
incompatible with Norris et al.’s (2000) proposal that neighborhood density effects are rooted in biphone
probability differences. Instead, to account for our results models like Merge (Norris, 1999, Norris et al.,
2000) and Shortlist (Norris, 1994) must incorporate information from the lexicon to capture effects of
ND on phonetic processing.

Additionally, the categorization results from Experiment 5 suggest that biphone probability and

neighborhood density affect processing at different times. A general consensus in the literature is that



early influences in processing are not impacted by task factors (e.g., Miller & Dexter 1988), including
the presence of orthogonal variation in stimuli of the kind introduced in Experiment 5 (Green, Tomiak
& Kuhl, 1997), as well as cognitive load (Bosker et al., 2017). Thus, based on robustness across tasks
and stimulus variability, it is likely that biphone probability, but not neighborhood density, affects
processing early.

The eye-tracking data from Experiment 5 directly confirmed that biphone probability effects are
indeed early; biphone probability information was incorporated as early as 400-500ms after the onset of
the vowel, in the same time window as the vowel formant influence (according to the GAMM). Further,
when the vowel formants were more /¢/-like (steps 6 and 7 on the continuum), biphone probability
information was integrated earlier in processing.

The time course of the biphone probability effect in our experiments is similar to the timing of
the effect in Kingston et al.,’s (2016) findings. In their experiments as well as in Experiment 5, biphone
probability effects emerged less than 50ms into the coda consonant (accounting for the time needed to
program a saccade). Given that our biphone probability results cannot be attributed to lexical influences
because our continuum endpoints were non-words, and neighborhood density was matched, we take
these converging time course results to strengthen our argument that biphone probability differences are
responsible for Kingston et al.’s findings in Experiment 4a.

The independence of the biphone probability effect, and its early timing, both preclude biphone
probability effects from being an epiphenomenon of lexical feedback (cf. Newman et al. 1997). Instead,
the rapid, independent biphone probability effects observed here are consistent with proposals that
biphone probability affects the sensory activation of phones, and its influence varies as a function of the
robustness of the speech signal (Pitt & McQueen, 1998; Pylkkénen, Stringfellow, & Marantz, 2002;
Norris et al., 2000).

In addition to dissociating biphone probability and neighborhood density effects on offline

categorization performance, we also found robust evidence for an early biphone probability effect on



online processing. What was less compelling was the evidence for a late neighborhood density effect
during online processing. Recall that neighborhood density effects in Experiment 5 were not present in
the categorization data, nor in the GAMM analysis, though they were observed late in both the saccadic
and traditional moving window analysis. Future eye-tracking experiments will be required to confirm if
neighborhood density effects are truly as delayed as might be expected if they are a result of feedback
(Newman et al., 1997; Luthra et al., 2021), or only moderately so as expected if they feedforward to
decision nodes (Norris et al., 2018). Note that in this paper, we use feedback to reference lexical
influences on online processing only; this is distinct from some current proposals where feedback may
be used to learn speech sound categories during acquisition (Nixon & Tomaschek, 2021; Nixon, 2020)
and other perceptual learning (Norris, McQueen & Cutler, 2003; Norris et al. 2016).

In the aggregate, based on the lack of robustness of neighborhood density effects, we can rule
out the possibility that it affects processing as early as biphone probability. Early biphone probability
effects that are independent of neighborhood density, as we demonstrated in our experiments, are
compatible with several proposals about the representation and acquisition of sound categories. Biphone
probabilities could be learned purely from the clustering of acoustic tokens without access to word level
information (Maye, Werker & Gerken, 2002; Feldman, Griffiths, Goldwater & Morgan, 2013) as has
been demonstrated computationally (Norris, 1993; Cairns, Shillcock, Chater & Levy, 1995). They can
be learned when sound categories and words are learned jointly as well (Feldman et al., 2013) as Norris
(1993) shows. Similarly, independent, and early biphone probability effects are also compatible with
exemplar model architectures (Nosofsky, 1986; Shi, Griffiths, Feldman & Sanborn, 2010) and a
discriminative lexicon (Baayen, Chuang, Shafaei-Bajestan & Blevins, 2019). They are able to do so
because the input in all these proposals is a long enough acoustic signal that encompasses biphone
probability information.

In both exemplar and discriminative approaches, neighborhood density effects can be captured

by competition, in a sense, among to-be-recognized items. Exemplars in denser neighborhoods may be



presumed to be in a more densely populated exemplar cloud, though to our knowledge, possible metrics
capturing this property have not been used in the literature to make explicit time-course predictions. In
a discriminative lexicon “activation diversity”” has been proposed as a metric to capture the extent of the
input’s contact with multiple items in the lexicon, and thus, represent uncertainty (Arnold, Tomaschek,
Sering, Lopez & Baayen, 2017; Tomaschek, Plag, Ernestus & Baayen, 2021). To the extent that
“uncertainty”, operationalized in some fashion, is correlated with slower processing, activation diversity
in a discriminative approach may offer another lens into understanding what we have described in terms
of activation and competition dynamics among lexical candidates. However, it is not clear what explicit
time course predictions may arise from this approach. Additionally, because activation diversity as a
metric has been used to explain segmental durations in speech production (Tucker, Sims & Baayen 2019;
Tomaschek et al., 2021), it is unclear how neighborhood density effects in perception, as explored in the
present study, may be captured in these models (Arnold et al., 2017). In any case, exemplar models as
well as discriminative learners are feedforward models. Thus, if neighborhood density effects stem from
feedback instead of feedforward activation, this poses a problem for both.

In conclusion, we present new evidence for the dissociation of biphone probability and
neighborhood density effects using a combination of categorization and online processing measured with
eye-tracking. Our results offer support for the claim that biphone probability influences in perception are
independent from that of neighborhood density, such that only biphone probability affects early, sensory
processing of phones. Based on these results we argue in favor of models that encode both biphone
probability and neighborhood density, albeit with asynchronous timing effects on early processing.
Further research will be needed to establish a precise time course for neighborhood density effects, and

to determine how they combine with other known influences, such as word-hood and word frequency.
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