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ABSTRACT: There are several classes of short peptide molecules, known as antimicrobial peptides (AMPs), which are produced
during the immune responses of living organisms against various infections. In recent years, substantial progress has been achieved in
applying machine-learning methods to predict the activities of AMPs against bacteria. In most investigated cases, however, the
outcome is not bacterium-specific since the specific features of bacteria, such as chemical composition and structure of membranes,
are not considered. To overcome this problem, we developed a new computational approach that allowed us to train several
supervised machine-learning models using a specific set of data associated with peptides targeting E. coli bacteria. LASSO regression
and Support Vector Machine techniques have been utilized to select, among more than 1500 physicochemical descriptors, the most
important features that can be used to classify a peptide as antimicrobial or ineffective against E. coli. We then performed the
classification of active versus inactive AMPs using the Support Vector classifiers, Logistic Regression, and Random Forest methods.
This computational study allows us to make recommendations of how to design more efficient antibacterial drug therapies.

■ INTRODUCTION
Antimicrobial peptides (AMPs), which can be produced by
both eukaryotic and prokaryotic organisms, play an important
role in the immune systems of mammals and plants.1−3 It is
well-known that AMPs have a net positive charge and are in
general amphipathic, i.e., they have both hydrophobic and
hydrophilic spatially separated segments. These characteristics
allow them to attach to anionic (negatively charged) bacterial
membranes and exhibit their antibacterial activity. Thus, the
antimicrobial functioning is primarily dependent on the
specific interactions between AMPs, particularly the N-
terminus of these molecules,4 and bacterial membranes,5

such that a certain peptide can disrupt the membrane of a
specific bacterium while it might not be active against other
bacteria.6 This is confirmed by the observations that larger
fractions of anionic lipids in bacterial membranes result in
increased membrane disruption and permeabilization by
cationic AMPs.7

Machine-learning methods have been widely employed in
studying AMPs, and they primarily aim at predicting the
antimicrobial activity of an arbitrary peptide from its amino-
acid sequence.8,9 The performance and reliability of such
approaches are mainly dependent on the training data, so many
prediction tools have been developed in conjunction with
AMP databases.10−14 These tools can in turn be used to

classify newly discovered peptides as antimicrobial or active
against another target such as cancer or fungi,15 but the
predictions are not bacterium-specific. Previous machine-
learning models were mainly trained based on a data set
composed of AMP activity data targeting mixed species of
bacteria.8 Recently, a new machine-learning pipeline approach
was developed that predicts the antimicrobial activity of
peptides targeting separately Gram-positive and Gram-negative
bacteria.16 Since each group of bacteria (Gram-negative and
Gram-positive) have different membrane architectures, choos-
ing two different data sets for each group would partially take
the role of the bacterial membrane into account. However,
within the broad categories of Gram-positive or Gram-negative
bacterial species, there are significant differences in physio-
logical and biochemical properties. In the Gram-negative
bacteria, for example, greater genetic plasticity in non-
fermenting Gram-negative bacilli can lead to greater resistance
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to antimicrobial agents compared to another Gram-negative
bacterium, Enterobacteriaceae.17

The efficacy of an AMP in inhibiting a specific bacterium
depends on the unique features of interactions between the
AMP molecules and the bacterium. As predicted in ref 8 from a
machine learning study of AMP features contributing to
antimicrobial activity, the most important characteristic of the
peptide that makes it effective against bacteria is the molecular
net charge. However, recent studies have also shown that some
other features of AMPs are important in their antimicrobial
activity and that these features may be specific to the bacterial
target.18,19 Thus, a machine learning analysis of AMP
characteristics associated with bacterium-specific efficacy
could reveal new features of AMPs that are important against
specific bacterium, creating opportunities for a better under-
standing of microscopic mechanisms of AMP function as well
as for developing of new antimicrobial drugs.
Although the probability of development of resistance

against AMPs is typically low, it is still possible.20 Given the
possibility of AMP resistance, it is crucial to identify the
features that make bacteria susceptible to AMPs.
The aim of the current study is to apply a bacterium-specific

machine-learning approach using a recently developed feature
selection method.21 This should contrast with previous
machine-learning models that included different species of
bacteria in the same data set.16,21 In this study, we focus on
investigating the properties of AMPs targeting the specific
bacterium E. coli, and similar analysis was also performed for
other species including Acinetobacter baumannii and Pseudo-
monas aeruginosa. Using machine-learning prediction algo-
rithms, specifically Logistic Regression and Support Vector
Machine (SVM), we demonstrate that a small proportion of
the AMPs’ physicochemical features is sufficient to predict
whether an unknown peptide will be effective against E. coli.
We identify the most important features using LASSO- and
SVM-based feature selection methods and show that some
features have a positive effect on antimicrobial activity against
E. coli while others have a negative effect. Accordingly, we
argue that the selected features can be incorporated in the
rational design of more effective AMPs targeting E. coli. It is
also argued that this method can be applied toward the design
of AMPs for other bacterial targets.

■ METHODS
Data Set and Data Preprocessing. The schematic

overview of our procedures is presented in Figure 1. We
considered E. coli bacterium because it is listed as an urgent
threat in the World Health Organization (WHO) priority list
of the most dangerous health issues22 and it is a common
model organism for investigations of antimicrobial activities.23

This is also one of the most studied bacterial species from
biochemical and pharmacological points of view, providing us
with the abundant data needed for our analysis.
A DBAASP database24 has been utilized to generate a list of

peptide sequences (at least 11 amino acids long and without
N- or C-terminal modifications), that were tested on the
bacterium of interest, E. coli. It also included minimum
inhibitory concentration (MIC) values, which define the
minimum concentration of an antimicrobial agent required
to completely inhibit the bacterial growth25 (all MICs in our
study are considered in units of μg/mL). To reduce the
influence of experimental error on our results, AMPs were not
included if there were multiple conflicting MIC values in

relation to the same bacterium. Our data set for E. coli includes
183 AMP (active against bacteria) and 214 non-AMP
(ineffective against bacteria) peptides. For A. baumannii, our
data set includes 35 non-AMP (ineffective) and 87 AMP
(active) peptides. We selected MIC values that were collected
under the same experimental conditions: same solutions in
which bacteria were cultured and at standard pH, ionic
conditions, buffers, and other physicochemical properties.

Generation of AMP Physicochemical Descriptors.
From the amino-acid sequence, one can extract the
physicochemical descriptors (net charge, hydrophobicity,
etc.) and amino-acid composition patterns. We utilized a
propy package to generate full descriptors for each peptide.26

There were 1537 descriptors that broadly could be classified as
having different basic character (e.g., charge), residue
compositions (e.g., dipeptide composition), autocorrelations,
chemical compositions, and sequence order features. Since the
propy package only identifies natural amino acids, we did not
include peptides with non-natural amino acids in our data set.

Supervised Machine Learning Algorithms. Predicting
AMP activity from its sequence is a supervised learning

Figure 1. An overview of the bacteria-specific feature selection
method for antimicrobial peptide activity prediction.
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problem. Supervised learning algorithms, which use training
data sets to train themselves to predict the desired output, can
be divided into two types, namely, regression and classification
algorithms. In our data set, a given peptide i is characterized by
two entries. First, the peptide activity index, yi, is 1 if the
peptide acts as an AMP and 0 if it does not act as an AMP.
Second is the feature vector xi = {xi,1, xi,2, ..., xi,n}, whose
elements describe different properties of the peptide i.
Therefore, our response variable (the peptide activity index)
is a categorical variable. Following standard cutoff points for
antimicrobial activity,16 the AMPs were labeled as inactive
against E. coli if the MIC was greater than 100 μg/mL and as
active if the MIC was less than or equal to 25 μg/mL. We
considered predicting the MIC values instead of classifying
activity, but no significant correlations were found between any
propy descriptors and the MIC, in line with the finding from ref
21.
Predicting a categorical response for a peptide is a

classification problem. Thus, we focus on the classification
problem, which uses an algorithm to assign test data to certain
classes. It is important to note that logistic regression is indeed
a classification technique. There are different classification
methods, including Support Vector Machine (SVM), Decision
Tree, Random Forest, and Logistic Regression, to predict
active vs inactive AMPs. In the following, we briefly discuss
these techniques to understand their advantages and
disadvantages. Let us start with the simplest supervised
machine-learning method, which is the Linear Regression
approach.
Linear Regression. The simplest technique for supervised

learning is a Linear Regression, which is a useful method for
predicting the relationship between a target variable yi and a set
of independent variables xi,1, xi,2, ..., xi,n,

= + = + + + +y b b w x w x w xwx ...i i i i n i n1 ,1 2 ,2 , (1)

The unknown parameters are vectors w = {w1, w2, ..., wn} and
parameters b which represent the slopes and intercepts,
respectively, of the hyperplane defined by eq 1 with the axis
of the multidimensional space. They are chosen in such a way
so that they minimize the residual sum of squares (RSS), also
known as the least-squares function,
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where l is the number of training data.
Logistic Regression. Logistic regression methods consider

the problem of predicting a binary categorical response from
the multiple features. The main relation of this approach is
formulated as
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This is a more convenient method for predicting antimicrobial
activity of a peptide.

Support Vector Machine (SVM). In the Support Vector
Machine (SVM), each data point is projected into an n-
dimensional feature space in which each coordinate is
associated with a physicochemical feature. We can think also
of an (n − 1)-dimensional hyperplane that separates the data
into two distinct volume spaces, corresponding to different
classes of AMPs. The hyperplane equation is given by

+ =bwx 0i (4)

It is important to note that positive values of wi correspond to
the features that increase the AMP activity, while negative
values indicate that these features negatively affect the
antimicrobial activity. The SVM uses training data to learn
the parameters w1, w2, ..., wn, which, in turn, specify a
classification rule for the data,8

= = +y F bx wx( ) sign( )i i i (5)

where the sign function is defined as

=
<

l
moo
noo
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a

a
sign( )

1, 0

1, 0 (6)

For linearly separable data, one can select two parallel
hyperplanes that distinguish two classes of data, so that the
distance between them is as large as possible. The SVM
method only uses several data points (support vectors) to
determine the normal vector of the separating hyperplane. The
two hyperplanes are defined as wxi − b = 1 and wxi − b = −1.
The distance between these parallel hyperplanes is

w
2 . Here

∥w∥ is defined as ∥w∥ = ∑i=1
n wi. To define the most robust

separating hyperplane, we must maximize the distance
w
2 . It

is important to note that, for mathematical convenience, we
minimize w1

2 2 instead of ∥w∥, where ∥w∥2 = (∑i = 1
n wi

2)1/2.
Thus, one needs to evaluate

i
k
jjj y

{
zzzwmin

1
2bw,

2 (7)

subject to a condition yi(wxi + b) − 1 ≥ 0 for i = 1, ..., l. The
corresponding Lagrangian for specific minimization calcula-
tions reads as

= [ + ]
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L b y bw w wx( , , )
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2

( ) 1
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l
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where constants αi are Lagrange multipliers. All the parameters
w, b, and α can be estimated by minimizing the Lagrangian.
However, there are situations when a single hyperplane

(defined in eq 4) is not able to properly separate two classes of
data. To circumvent this problem, it is convenient to define a
soft margin formulation that almost separates the two classes
by introducing the variable ξi, as explained in ref 27. The
corresponding optimization problem now reads as

+
=

i
k
jjjjjj

y
{
zzzzzzCwmin

1
2b

i

l

i
w, ,

2
1 (9)

subject to a condition yi(wxi + b) − 1 ≥ 1 − ξi for i = 1, ..., l.
The sum over ξi, which measures the total amount of
misclassifications of training data, is controlled by a hyper-
parameter C. This optimization problem can be solved using
the corresponding Lagrangian,
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Ensemble Learning. An alternative way to build a more
accurate method is to combine two or more independent
models. This technique is known as an Ensemble Learning,
and it can be implemented using two methods: bootstrap
aggregation (bagging) and boosting.
Bagging involves segmentation of the data into bootstrap

samples and applying a prediction model to each of them. The
final predictions are selected by taking the majority vote for
each predicted class across models (e.g., 1 if most models
predicted 1) if the goal is classification or the averaged
predicted values across all models if the goal is regression.28

Boosting is an adaptation of bagging that calculates a
weighted average such that incorrect predictions are weighted
higher and the procedure is repeated until accuracy is highest
with the appropriate corresponding weights.29 Boosting is used
for prediction models that are too simple to perform
accurately, called weak learners, such as the Decision Tree
method with only two nodes.28

For feature classification and predictions based on the
feature-classifications method, we implemented bagging with
the data split into 15 stratified shuffled samples (E. coli), as was
also done in ref 21. For our final set of features, we selected the
features that were consistent across the samples,21 and for
classification we averaged the model accuracy across the
samples for a robust estimate of each model’s performance. We
also used 15 stratified shuffled samples to tune hyper-
parameters with grid search, a method that tests and compares
accuracy for one value at a time from a specified “grid”, or
vector of values. We selected the hyperparameter values that
led to the highest model accuracy when averaged across the 15
samples.
Feature Selection Methods. When we deal with a high-

dimensional features space, as for the AMP descriptors, it is
extremely useful to find a small subset of the most predictive
features. Mathematically, this corresponds to assigning zero
weights to the most irrelevant or redundant features in the
regression and the SVM methods [see eqs 1, 3, and 4]. Two
common techniques for shrinkage and feature selection are
LASSO (The Least Absolute Shrinkage and Selection
Operator) regression and the Support Vector Machine.30

LASSO regression is similar to the least-squares approach,
except that one has to minimize the square error subject to the
constraint ∑j=1

n |wj| ≤ t. Thus, the corresponding error function
takes the form31

+ | |
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where λ ≥ 0 is a tuning parameter, and a constant t is a
function of λ. For the least-squares approach (when λ = 0), we
have t0 = ∑j=1

n |wj
(ls)|. When λ is nonzero but t > t0, the

coefficients remain the same as in the linear regression.
However, for t = f t0 with 0 ≤ f ≤ 1, the least-squares
coefficients are shrunk by about 100f%. Since both λ and t are
interrelated tuning parameters, when λ is known, t must be
adaptively estimated to minimize the expected prediction error

[eq 11]. As shown in ref 32, the estimated weights from the
LASSO method are given by
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where ŵj
(lasso) and ŵj

(ls) are estimated weights from the Lasso
and the least-squares methods, respectively. Equation 12
determines whether for a feature j, the corresponding
coefficient wj does satisfy the constraint ∑j=1

n |wj| ≤ t, and if
so, it shrinks it by λ. Thus, the LASSO method shrinks the
coefficients toward zero, removing the irrelevant and
redundant descriptors.
Alternatively, one can use the Support Vector Machine for

feature selection. The main idea here is to choose a proper
norm of w in the optimization process, such that the estimated
w becomes more sparse (most of the components of w shrink
to 0). A simple way is to consider the first norm of w (∥w∥ =
∑i=1

n wi). The corresponding optimization problem reads,
then,33

+
=

i
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jjjjjj
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zzzzzzCwmin

b
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i
w, ,

1 (13)

with zi ≥ wi, zi ≥ −wi for i = 1, ..., l. However, because the
absolute values are not differentiable, it is convenient to rewrite
the norm in the following form:

+
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jjjjjj
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zzzzzzz Cmin

z b
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i
i

n

i
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1 1 (14)

subject to yi(wx + b) ≥ 1 − ξi, ξi ≥ 0, and zi ≥ wi, zi ≥ −wi for i
= 1, ..., l. The solution of this optimization problem gives a set
of estimated parameters (w*T, b*, ξ*, z*), among which we
select the elements of w*T, which satisfy eq 14.

Evaluating Models. The performance of any machine-
learning algorithm can be characterized by the ratio of the
correctly predicted samples, true positives (TP) and true
negatives (TN), to the total number of samples,

= +
+ + +

Accuracy
TP TN

TP TN FP FN (15)

where FP and FN represent the number of false positives and
false negatives, respectively. This ratio was utilized as a
measure of accuracy in our theoretical analysis, and the average
across stratified shuffled cross-validation sets was calculated,
providing the score for each model’s performance. Alter-
natively the model performance can be evaluated using a recall
function, which is defined as34

=
+

Recall
TP

TP FN (16)

However, since our data set for A. baumannii is imbalanced
(the number of AMPs is greater than the number of
nonAMPs), it is also advantageous to use a Matthews’s
correlation coefficient (MCC), which is a more reliable
statistical tool for more complex situations:35,36
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= × ×
+ + + +

MCC
TP TN FP FN

(TP FP)(TP FN)(TN FP)(TN FN)
(17)

■ RESULTS AND DISCUSSION
Results of feature selection using LASSO regression and linear
SVM methods for bacteria E. coli and A. baumannii are
presented in Figure 2 and Figure 3, respectively. The acronyms
and their descriptions are defined in Figure 4. Features with
negative scores have a negative effect on antimicrobial activity,
while features with positive scores support the antimicrobial
activity of a peptide.
Feature Importance Ranking for E. coli. As one can see

in Figure 2, the composition frequency of amino acid valine
(V) is selected by both methods as the most important feature
with a negative impact on antimicrobial activity against E. coli.
It is important to note that valine has very high hydro-
phobicity. Moreover, in the data set for E. coli, 87% of the
peptides contain at least one valine and 22% of the peptides
contain at least one dipeptide VV. Thus, the abundance of
amino acid valine in the peptides targeting E. coli increases the
hydrophobicity of those peptides. As was shown before,37 a
very high hydrophobicity can lead to self-association of
peptides, and consequently it can significantly slow down the

breaking of the bacterial cell membranes and the translocation
through the membranes. In addition, one can see that both
pseudo-amino acid composition (PAAC)38 and amphiphilic
pseudo-amino acid composition (APAAC),39 which describe
sequence order or specific pattern of amino acids, have
negative effect on antimicrobial activity against E. coli.
Other selected features are related to the distribution of

particular physicochemical properties along the peptide
backbone. The corresponding features are hydrophobicity,
van der Waals volume, polarity, polarizability, charge,
secondary structure, and solvent accessibility.40 As shown in
Table 2 in ref 40, all 20 amino acids are categorized into three
groups based on these features. The distribution descriptor
(Di) for each group (i) has five components, which are defined
in the following way. The fractional segment of the peptide
sequence that accommodates the first residue, 25%, 50%, 75%,
and 100% of the residues belonging to the group i (i = 1, 2, 3)
are denoted as Di001, Di025, Di050, Di075, and Di100,
respectively. Thus, these values lie between 0 and 100.
As one can see from Figure 2, among all physicochemical

features, the solvent accessibility pattern of a peptide is
predicted to have a strong negative effect on the antimicrobial
activity against E. coli. Solvent accessibility of a peptide is
simply defined as the total surface area of the peptide

Figure 2. Relative importance of different physicochemical features in determining the antimicrobial activity against E. coli using (a) LASSO
regression method and (b) the support vector machine. In computations, we utilized the following values for the hyperparameters: For LASSO, the
Lagrange multiplier in eq 11 was set to be λ = 0.01. For SVM, the hyperparameter C (in eq 13), which is calculated via the grid search optimization,
is equal to C = 0.1. In both methods, the number of stratified shuffled cross-validation sets is n = 15.

Figure 3. Relative importance of different physicochemical features in determining the antimicrobial activity against A. baumannii using (a) LASSO
regression method and (b) the support vector machine. In computations, we utilized the following values for the hyperparameters: For LASSO, the
Lagrange multiplier in eq 11 was set to be λ = 0.01. For SVM, the hyperparameter C (in eq 13), which is calculated by the grid search optimization,
is equal to C = 0.1. In both methods, the number of stratified shuffled cross validation sets was n = 5.
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accessible to water molecules. Because the net (positive)
charge of a peptide is essential for binding to the bacterial
membrane, peptides that have a higher surface area are
shielded with water molecules that leads to an effectively lower
positive charge. Both methods predict that SolventAccessibili-
tyD1025 and SolventAccessibilityD1050, which quantify the
distribution of the amino acids of group 1 (buried by the
solvent), negatively affect the antimicrobial activity. Thus, the
uniform distribution of two or four (out of eight) buried
residues along the peptide sequence can lessen the
antimicrobial activity. However, the localized presence of
buried amino acids in a compact segment of the peptide would
alleviate their impact on antimicrobial activity.
Moreover, the two methods predict that PolarizabilityD1075

and NormalizedVDWVD2025 have positive effects on the
antimicrobial activity. This suggests that the uniform
distribution of a small number of residues with high van der
Waals volume along the peptide sequence can enhance
interaction of the peptide with the cell membrane. The same
description applies to polarizability, which is proportional to
the van der Waals volume. Likewise, the uniform distribution
of large number of residues with intermediate van der Waals
volume along peptide sequence (NormalizedVDWVD3100)
reduces the antimicrobial activity.

Last but not least, one can see that the uniform distribution
of a small number of residues with positive charge
(Charge1025) along the peptide sequence does not support
antimicrobial activity. In other words, concentration of positive
charge in one part of the sequence can better sustain the
association of peptides to the membrane.

Feature Importance Ranking for A. baumannii. For A.
baumannii, both methods predict that ChargeD1075, which
quantifies the distribution of 75% amino acids with positive
charge, increases the antimicrobial activity (see Figure 3). On
the other hand, Charge3100, which quantifies the distribution
of all amino acids with negative charge (group 3) in the entire
sequence, reduces the peptide association with membranes.
However, it can be seen that other selected features have
different effects on antimicrobial activity. For example,
NormalizedVDWVD2025,in contrast to E. coli, has a negative
effect on the antimicrobial activity against A. baumannii.
Notably, A. baumanii, in contrast to E. coli, has more
multidrug-resistant strains.41,42 The differences in selected
features between the two species may clarify the molecular
picture of how AMPs interact differently with the membranes
of A. baumanii species, suggesting the possibility to bypass A.
baumannii’s resistance mechanisms to traditional antibiotics.

Figure 4. Description of the selected features in Figures 2 and 3
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Comparison of Different Machine-Learning Algo-
rithms. Having extracted important physicochemical features,
we now aim at comparing different machine-learning
algorithms in successfully predicting whether an AMP was
active against a specific bacterium. Using all features or only
the features selected from the LASSO regression or only those
selected from the SVM classification as the input, the accuracy,
recall, and MCC of the SVM and the Logistic Regression in
correctly classifying AMPs as active or inactive against bacteria
E. coli and A. baumannii have been quantitatively compared
(see Figures 5 and 6). Since our data for E. coli is slightly

imbalanced, accuracy and recall are very close (Figure 5). For
A. baumannii, however, the data are actually quite imbalanced
(number of non-AMPs is less than half of AMPs) and thus
recall is a bit different from accuracy (see Figure 6). As one can
see in Figures 5 and 6, when all features are included, the MCC
is higher for logistic regression in contrast to SVM. However,
when only selected features are included, for E. coli the MCC is
similar for SVM and logistic regression (Figure 5), while for A.
baumannii the MCC is much higher for SVM in contrast to
logistic regression (Figure 6). In ref 43, a systematic
comparison of various metrics between SVM and logistic

Figure 5. Results of bacteria-specific feature selection for E. coli. (a) Comparison of the accuracy for the trained baseline models (SVM and logistic
regression) using all features (red bars) with the models trained using selected features from SVM (green bars) and LASSO (orange bars). (b)
Comparison of the recall for the trained baseline models (SVM and logistic regression) using all features (red bars) with the models trained using
selected features from SVM (green bars) and LASSO (orange bars). (c) Comparison of the Matthews’s correlation coefficient for the trained
baseline models (SVM and logistic regression) using all features (red bars) with the models trained using selected features from SVM (green bars)
LASSO (orange bars). Each metric reflects the average value among 15 test cross-fold validation sets. A standard splitting of 80/20 (training/test)
was applied for each fold.
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regression suggested that in comparison to logistic regression,
SVM may be a better method to evaluate unbalanced data sets
similar to A. baumannii.

■ SUMMARY AND CONCLUSIONS
In this study, we utilized supervised machine-learning methods
to predict the activity of antimicrobial peptides against specific
bacterial species. The baseline models were logistic regression
and support vector classifiers for all physicochemical features of
AMPs that have been used as input. We aimed to test the same
models with the features that emerged from the feature-

selection analysis. Specifically, we employed the LASSO
Regression and the Support Vector techniques to select the
most important set of physicochemical features, which have a
positive or negative effect on antimicrobial activity against
specific targets, E. coli and A. baumannii. The results indicate
that for each bacterium there is a distinct set of
physicochemical features related to antimicrobial activity, and
it is important to consider each physicochemical feature in the
context of other relevant properties of the system. For example,
the results suggest that for more than one bacterium, solvent
accessibility and the secondary structures are important

Figure 6. Results of bacteria-specific feature selection for A. baumannii. (a) Comparison of the accuracy for the trained baseline models (SVM and
logistic regression) using all features (red bars) with the models trained using selected features from SVM (green bars) and LASSO (orange bars).
(b) Comparison of the recall for the trained baseline models (SVM and logistic regression) using all features (red bars) with the models trained
using selected features from SVM (green bars) and LASSO (orange bars). (c) Comparison of the Matthews’s correlation coefficient for the trained
baseline models (SVM and logistic regression) using all features (red bars) with the models trained using selected features from SVM (green bars)
and LASSO (orange bars). Each metric reflects the average value among 5 test cross-fold validation sets. A standard splitting of 80/20 (training/
test) was applied for each fold.
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physicochemical characteristics, so when evaluating the
relationship between antimicrobial activity of a peptide and
specific secondary structure (e.g., α helix) for these bacteria,
one must consider the degree of the peptide’s solvent
accessibility (buried or exposed).
It is also critical to compare our feature selections analysis

with current investigations on this subject. In comparison to
previous studies, the prediction accuracy for the SVM and
logistic regression models that we explored was slightly lower,
but this could be the result of our definition of accuracy that
might differ from other studies. Our correlation matrix showed
a greater number of correctly classified AMPs relative to a
lower number of correctly classified non-AMPs because some
AMPs were classified as non-AMPs. The results suggest that
the model can accurately identify most but not all peptides
with antimicrobial activity against E. coli, so that the cost of
high accuracy is a conservative classification. Such conservative
classification could be due to the non-AMP class showing
antimicrobial activity against bacteria other than E. coli.
Therefore, while these non-AMPs were not active against E.
coli, they were still antimicrobial against other bacterial targets
and, accordingly, had similarities to the AMP class active
against E. coli. The non-AMP class in ref 21 consisted of
peptides that were not active against any bacterial targets, so
these peptides were likely more dissimilar to the AMP class. In
other studies, the data sets were larger, so that the differences
between AMP and non-AMP distributions of features would
be clearer because the data were more likely to be normally
distributed.16,44 Additionally, the data are subject to exper-
imental errors. Previous studies could have averaged across a
large range of reported MIC values, which affected the
classification of the peptide as AMP or non-AMP in the
training data set. Finally, tuning of the hyperparameters in the
feature-selection models could be improved, and it is suggested
that future studies could use alternative hyperparameter tuning
methods. Proper tuning of hyperparameters may increase the
prediction accuracy. Finally, our approach was simple enough
to enable comparison with the original implementation of the
feature-selection method; it increased interpretability and
decreased the likelihood of overfitting. As was shown before,45

a combination of models can be explored to include the
integrated random forest and SVM scores to linear regression
to increase prediction accuracy. In ref 46, 30 baseline models
were combined, including the logistic regression, random
forest, and SVM. It is still notable that in our study a small
proportion of features was able to satisfactorily predict the class
of antimicrobial activity, and the prediction accuracy is
expected to improve with additional data and greater reliability
of the overall data set. Future studies can build on our
approach with multiple combined models to increase the
prediction accuracy.
It is important to note that the SVM and the LASSO feature

selection methods are designed to identify the optimal set of
features for prediction, while other methods such as Mann−
Whitney U or z-test identify features that can independently
discriminate between classes. Simply selecting all the features
that independently discriminate between classes may not lead
to a successful prediction algorithm, as indicated by some
recent studies,47 because it would not account for correlations
between the features. In contrast, the SVM and LASSO
methods will not include features that independently predict
AMP vs non-AMP because their correlations with other

features will not improve the predictions of the overall feature
subset.
Our feature selection methods might not have captured all

relevant correlations between the features, even if the
independent contributions of the correlating features were
high. However, it provides important microscopic insights on
the relationship between peptide physicochemical properties
and antimicrobial activity. Specifically, it was predicted that the
abundance of amino acid valine makes a peptide too
hydrophobic and thus reduces its activity against E. coli.
Moreover, our feature selection methods suggest that not only
the magnitude of physicochemical features but also the
distribution of these quantities along the peptide chain can
influence the antimicrobial activity. For example, the net
charge was found to be the most important feature in ref 8, but
here for a specific bacterium, E. coli, we found that the
distribution of residues with positive charge in a small localized
segment of the peptide backbone was among the selected
features. Accordingly, our results show that it is important to
consider the role of bacterial species in AMP interactions with
bacteria membranes.
A major drawback in previous machine-learning predictions

of antimicrobial peptide activity is that those models are not
bacteria specific. A recent study tried to circumvent this
problem by predicting the antimicrobial activity against Gram-
negative and Gram-positive bacteria and utilized data sets for
peptide activity against three Gram-negative bacteria, E. coli
and A. baumannii, and P. aeruginosa.16 Although these species
share some common membrane architecture, there are key
differences between them that might affect antimicrobial
activity against them.48 Vishnepolsky et al. were able to design
an accurate clustering model trained on various Gram-negative
bacteria, and the inputs to the model were nine physicochem-
ical features of AMPs.44 In contrast, our feature-selection
approach (with inputs of over 1500 features) requires bacteria-
specific training because different features of AMPs might be
relevant to different bacteria. Accordingly, the features
identified as important for E. coli might be different from the
features found in ref 21 because they utilized peptides that
target different species of bacteria. Future studies should
investigate further how the AMP features are related to
successful membrane interactions in specific multidrug-
resistant bacteria strains compared to other bacteria strains.
It will help to elucidate why certain species of bacteria are
more likely to evolve resistant strains than others. Moreover,
similar feature extraction methods can be used for antibiotics
to perform feature selection, and the same approach can be
used to extract features for antibiotics and AMPs to compare
which features of each are associated with high antimicrobial
activity.
The rational design of AMP-based therapies requires

simultaneous tackling of multiple factors that include toxicity,
stability, and bacterial resistance.49 For this purpose, it is
critical to identify the most important characteristics that make
a peptide effective against different species of bacteria. This
study, to the best of our knowledge, provides a bacteria-specif ic
feature selection that can be utilized in the rational design of
antimicrobial peptides targeting specific bacteria. However, the
major pitfall of the current study is insufficient data. It will be
important to test the predictions of this study with larger data
sets, combining across databases,50 and more advanced
machine-learning and deep-learning techniques. Specifically,
future studies could explore predicting other important
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features of AMPs like cytotoxicity51 based on the feature
selection, extending the current approach with ensemble
methods to combine models for better prediction,52 and
developing models to predict specific MIC values50 using the
regression-based feature selection.
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