
Reports on Progress in Physics

REVIEW

Key aspects of the past 30 years of protein design
To cite this article: Giulia Magi Meconi et al 2022 Rep. Prog. Phys. 85 086601

 

View the article online for updates and enhancements.

You may also like
The Regularities of Electrolytic
Dissociation of 1,1-Cyclopentanediacetic
and 1,1-Cyclohexanediacetic Acids
Elene Kvaratskhelia and Rusudan
Kurtanidze

-

Nanomaterials science
Heinrich Rohrer

-

Some reflections on the EIT Conference
(London, UK, 22–24 June 2005)
Theo J C Faes, Huib R van Genderingen
and Anton Vonk Noordegraaf

-

This content was downloaded from IP address 168.5.27.78 on 30/05/2023 at 19:35

https://doi.org/10.1088/1361-6633/ac78ef
/article/10.1149/MA2016-01/33/1633
/article/10.1149/MA2016-01/33/1633
/article/10.1149/MA2016-01/33/1633
/article/10.1088/1468-6996/11/5/050301
/article/10.1088/0967-3334/27/5/E02
/article/10.1088/0967-3334/27/5/E02


Reports on Progress in Physics

Rep. Prog. Phys. 85 (2022) 086601 (24pp) https://doi.org/10.1088/1361-6633/ac78ef

Review

Key aspects of the past 30 years of protein
design

Giulia Magi Meconi1, Ivan R Sasselli1 , Valentino Bianco2 ,
Jose N Onuchic3 and Ivan Coluzza4,5,∗

1 Computational Biophysics Lab, Center for Cooperative Research in Biomaterials (CIC biomaGUNE),
Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia-San
Sebastián, Spain
2 Onena Medicines, San Sebastian, Spain
3 Center for Theoretical Biological Physics, Department of Physics & Astronomy, Department of
Chemistry, Department of Biosciences, Rice University, Houston, TX 77251, United States of America
4 BCMaterials, Basque Center for Materials, Applications and Nanostructures, Bld. Martina Casiano,
UPV/EHU Science Park, Barrio Sarriena s/n, 48940 Leioa, Spain
5 Basque Foundation for Science, Ikerbasque, 48009, Bilbao, Spain

E-mail: ivan.coluzza@bcmaterials.net

Received 3 September 2021, revised 21 March 2022
Accepted for publication 15 June 2022
Published 6 July 2022

Abstract
Proteins are the workhorse of life. They are the building infrastructure of living systems; they
are the most efficient molecular machines known, and their enzymatic activity is still
unmatched in versatility by any artificial system. Perhaps proteins’ most remarkable feature is
their modularity. The large amount of information required to specify each protein’s function
is analogically encoded with an alphabet of just ∼20 letters. The protein folding problem is
how to encode all such information in a sequence of 20 letters. In this review, we go through
the last 30 years of research to summarize the state of the art and highlight some applications
related to fundamental problems of protein evolution.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Proteins are one of the most versatile modular assembling sys-
tems in nature. A remarkable feature of proteins is their alpha-
bet of just ∼20 letters [1–4]. The use of such a limited set
has the advantage that new target structures can be designed
(e.g., through evolution) by just changing the orders of the ele-
ments along the chain. Moreover, by degrading chains that do
not fulfil their purpose, waste in the form of isolated residues
can be efficiently recycled for new chains. Incidentally, this
is why living organisms can eat each other and use their

∗ Author to whom any correspondence should be addressed.
Corresponding editor: Dr Erwin Frey.

building blocks for themselves. Encoding the protein function
and structure in the sequence is known as protein design.

Protein design is a scientific problem that has been one
of the most interdisciplinary research fields of the past 30
years. Unfortunately, protein design remains one of the major
challenges across biology, physics, and chemistry disciplines.
The implications of solving such a problem are enormous
and branch into material science, drug design, evolution and
even cryptography. For instance, in drug design, an effec-
tive computational method to design protein-based ligands for
biological targets, such as viruses bacterial or tumour cells,
could significantly boost the development of new therapies
with reduced side effects. In material science, self-assembly
is a highly desired property, and, soon, artificial proteins could
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represent a new class of designable self-assembling materials.
The scope of this review is to describe the state of the art in
computational protein design methods and give the reader the
information necessary to outline what to expect from this field
in the near future.

The design of proteins belongs to the so-called ‘inverse
folding problems’ (IFPs). IFPs consist in the search for amino
acid sequences whose lowest free energy state (i.e., the native
structure) coincides with a given target conformation. Pro-
tein design theory has roots in the statistical models of het-
eropolymers freezing transition [5–10]. Currently, there are
several computational methodologies that, in some cases, give
remarkable successful results in solving the IFPs. The advent
of computational protein evolution (another name for protein
design) [6, 11–25] opens the possibility to address funda-
mental questions about the nature of the amino acid alphabet
[26–29]. Protein design searches for protein sequences capa-
ble of folding into a given backbone conformation. The search
is usually done by point mutationswhile keeping the backbone
structure fixed. In addition to several applications to medicine
[13, 15, 30–32] and material science [33–36], protein design
offers the possibility to explore fundamental problems of pro-
tein evolution.

2. State of the art in protein design: Rosetta

There are many protein design software available [37–44].
Among the freely useable for academic use, the Rosetta pack-
age is one of the most recognised and has shown the largest
variety of successful applications. Finally, Rosetta offers both
design and structure prediction that allows testing the consis-
tency of the prediction within the same package. That is why
in this review, we will focus on Rosetta.

Rosetta is a biomolecular modelling software package orig-
inally developed for protein structure prediction and protein
folding [37–41]. However, over the last two decades, the mod-
elling suite extended its applications to different tasks such
as protein–protein docking [45, 46], protein–ligand dock-
ing [47–55], protein design, loop modelling [15, 56–59] and
the incorporation of nuclear magnetic resonance spectroscopy
data [60–67]. Additionally, several protocols have been devel-
oped for the interpretation of a wide range of chemical and
biological macromolecular systems. This group includes the
modelling of interactions with peptides [58, 68–77] and
nucleic acids [78–86], the antibody modelling [80, 87–94]
and design [32, 95–98], the modelling of membrane proteins
[99–102], carbohydrates [103, 104] and metalloproteins [49].

The computational protein design consists of searching for
amino acid sequences that adopt predefined folded structures
and functions. The design methods have two fundamental
components: a sampling algorithm to explore the extensive
amino acid sequence and conformational space accessible
to the protein [95] and a score energy function to rank the
solutions [105].

Rosetta design’s exploration of the vast space of possi-
ble sequences is guided by using the Monte Carlo simu-
lated annealing algorithm. The heuristic method finds the
solution space randomly: every residue mutation to another

one is done at a random position. The sampled solutions are
accepted/rejected using the Metropolis criterion: the solution
is accepted if its energy decreases with respect to the orig-
inal conformation; whenever the energy increases, the new
conformation has a small probability to be accepted (P =
e∧(−(Enew − Eorig)/T)) [106, 107].

The all-atom Rosetta energy function [108] is the potential
employed for the energy estimation of the design solutions and
it was originally created for the protein design [107, 109].

ΔEtotal = EvdW + Ehbond + Eelec

+ Edisulf + Esolv + EBBtorsion + Erotamer + Eref.

(1)

The potential is a weighted linear combination of physics-
based and statistical energy terms: (a) EvdW a 6-12 Lennard-
Jones potential for van der Waals forces that favours the
close-packed residues; (b) Ehbond an explicit orientation-
dependence hydrogen-bonding potential; (c) Eelec an elec-
trostatic potential between charged residues that includes an
additional term representing the probability of observing two
amino acids close to each other in the protein structure; (d)
Edisulf disulfide bond energy; (e) Esolv a solvation approxima-
tion that favours the hydrophobic amino acids to pack in the
interior of the proteins and the polar amino acids to point
outward; (f) EBBtorsion backbone torsional angle potential; (g)
Erotamer sidechain rotamer energy; (h) Eref unfolded-state refer-
ence energy. A comprehensive overview of the full-atomistic
score function is contained in the article of Alford et al [108],
where are all the mathematical and physical energy-function
details are documented. This potential is essential because all
energy terms are pairwise decomposable. Instead of estimat-
ing all the interactions among the atoms, the total number of
energy contributions is restricted to 1

2N(N − 1), whereN is the
number of atoms in the systems. In that way, the approxima-
tion considers only the pairwise terms involving the targeted
residue, subjected to a mutation or a conformational change
during the protein design. Thus, it allows a fast-computational
implementation of the energy contributions, which is funda-
mental for the rapid performance of the Metropolis Monte
Carlo (MCM) sampling simulations used by Rosetta during
the protein design.

The search of the enormous conformational sequence space
guided by the MCM algorithm is typically restricted by reduc-
ing the degrees of freedom during the design simulations.

As a first approximation, the flag ‘fixbb’ is a Rosetta fixed
backbone design application [49, 107, 109] in which the back-
bone is maintained fixed. At the same time, side-chain identi-
ties and conformations are allowed to vary during the sequence
design [11, 110]. The number of residues side-chain confor-
mations is discretised through the Dunbrack rotamer library
[111–113]. The rotamer is a side chain conformationdescribed
by its values of internal dihedral angles. The rotamers libraries
gather, for each residue, a discrete number of values for these
torsional angles. These collected rotamers are usually the most
frequent and the most energetically favourable. The torsional
angle side chains can be backbone independent, f and y back-
bone angles dependent, or secondary structure-dependent (the
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rotamer frequencies change considering a-helix or b-sheet
motifs). The fixed backbone design is helpful for computa-
tional efficiency but is not adequate to sample the sequence
space because it does not sample the backbone conformational
space. Therefore, it limits the chance to optimize the func-
tional interactions. Hence, the mutation is highly constrained
and cannot guarantee that the new sequence will fold into the
desired backbone conformation.

The backbone flexibility is a crucial feature for the charac-
terization of natural proteins and the backbone adjustment to
accommodate sidechainmutations occurring during the design
[114, 115]. Rosetta software used several strategies to deal
with the backbone flexibility.

(a) The first strategy consists of generating large backbone
conformations using short backbone fragments taken
from previously solved protein. The fragment-based
approach has been used for de novo protein design
(design without a template structure) and de novo back-
bone folds or function design. SEWING [116] proto-
col generates de novo backbones by assembling large
sub-structures of protein (typical helical building blocks).
During the backbone design, the method allows the user
to incorporate particular features, such as ligand binding
sites for the ligand-binding protein design and functional
motifs like protein-binding peptides for protein interface
design [117].

RosettaRemodel [118] is a versatile approach for protein
design, in which the new protein structure is built by sticking
together protein fragments or small segments of native protein
structures. The secondary structure of the desired protein is
specified in a blueprint file. The executable consists of three
main steps: backbone remodel, sequence design and a final
minimization step. RosettaRemodel has been employed as a
tool to solve different design problems, such as de novo back-
bone modelling, sequence design in a fixed backbone, loop
modelling, disulfide design, motif grafting and motif deletion
and remodelling of proteins. Huang et al used the RosettaRe-
model application to design a four-fold repeat and symmetrical
TIM-barrel protein. The capability to design the TIM-barrel
catalyst is of great interest because the fold of this protein is
one of the most common enzyme topologies and has opened
new possibilities for the de novo design of functional enzymes
[119]. Parmeggiani andHuang [31] developed a computational
method for repeat protein design, taking sequence and struc-
tural information from the repeat protein families. On that
paper, sets of sequences were designed for six protein families
with different secondary structures: tetratricopeptide repeat,
ankyrin (ank), armadillo (arm), HEAT,WD40 and leucine-rich
repeats [120, 121]. A similar design protocolwas used later for
de novo design of repeat proteins with open [122] and closed
[123] structural architectures.

(b) A second strategy involves a flexible design approach
based on the iteration between a fixed backbone sequence
optimization via Monte Carlo search and flexible back-
bone minimization to adjust the designed sequences
[109, 124].

FastDesign is a Rosetta design protocol that integrates the
sequence design in the FastRelax method for the backbone
minimization [125–128]. The algorithm proceeds in two main
steps. In the first step (fixed-backbone sequence design), the
backbone is kept fixed, but the side chains’ mutation and the
rotameric conformations’ optimisation are allowed. In the sec-
ond step (fixed-sequence backbone minimization), a gradient-
based minimization of torsional degrees of freedom is applied
to relax the entire structure while the sequence is maintained
fixed. Themain principle of the FastDesign protocol is the iter-
ation of these two steps. A single FastDesign cycle consists of
distinct rounds (default is 4) of design and repacking of the
side chains follow by backbone and side-chain minimization.
At each round, the repulsive part of the van der Walls energy
contribution is progressively scaled from 2% to 100% of its
total value to avoid clashes due to the amino acid mutations.
The protocol runs different cycles (usually 5), and the best
scoring pose, among all the cycles performed, is selected rep-
resenting the output structure. The FastDesign method found
many applications for the design of new protein functions
[14, 129, 130].

(c) BackrubEnsemble [131–135] is a method of flexible
backbone design that leads to a structural ensemble of the
main chain by rotating backbone segments through the
application of the Backrub algorithm [136]. The proto-
col works in two steps. The first step generates random
backbone ensembles after applying the Backrub motion.
This algorithm rotates as a rigid body, a backbone protein
segment around the axis defined by the segment’s starting
and ending Ca atoms. The moves are accepted or rejected
using a Metropolis criterion. The second step carries out
a fixed-backbone sequence design. The sampling of the
side chains conformational space depends on the prob-
ability distributions described by the Dunbrack rotamer
library, and the Metropolis criterion selects the proposed
solutions.

The BackrubEnsemble was shown to reproduce better the
experimental observed sequence conformational fluctuations
[134, 137, 138] and sequence variations in protein–protein
[132, 133, 135] interface compared with the fixed-backbone
sequence design applications. The algorithm also found its
application for the design of protein with recognition function-
ality [139].

(d) CoupleMoves [140] is a Rosetta application that ‘couples’
in a single Monte Carlo step, backbone and sidechains
movements. In this way, the backbone can react at once
to the conformational and identity changes of the side
chains, enabling sampling of backbone and amino acid
sequences movements, which may be previously rejected
for the noncouple FastDesign and BackrubEnsemble
methods due to sidechain clashes.

Mutations of side chains to shorter lengths are more
favourable, as they reduce the likelihood of collisions between
side chains. However, this can cause the backbone to col-
lapse to accommodate the amino acid replacement. To min-
imise the possibility that mutations occur with smaller side
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chains, the CoupleMoves application uses a different strategy
for the sampling of side chains: at each side chain move, all
the possible rotamers are considered, and the mutation and tor-
sional angle with the highest probability is selected, according
to the Boltzmann-weighted Rosetta score. The CoupleMoves
method has also been used for designing small ligand bind-
ing sites, combining ligand translation and rotations with the
switching of ligand conformers. The original CoupleMoves
uses the Backrub algorithm to sample the backbone move,
but recently the kinematic closure algorithm [141] has been
introduced to perform the backbone moves.

The ability to design sequences is not only limited to the
creation of a protein with a specific function and increased
thermodynamic stability but also aim to greater ambition.
For example the multi-specificity design [142], generates pro-
tein sequences with low energy affinity to multiple binding
partners.

RECON [12] is a Rosetta multi-specificity design method
that designs proteins with the ability to bind with multiple dif-
ferent partners. The algorithm allows each protein-energy state
to explore their local sequence and conformational space to
reach its energetic minimum. Then, sequence constraints are
iteratively applied such that the corresponding positions in the
different states converge to the same amino acid. RECON can
be helpful for the antibody design to recognise a new variant
of the virus [143].

Interestingly, Rosetta design algorithms produce a solu-
tion space that is quite distinct from one of the natural pro-
tein sequences [144]. Of course, considering the astronomical
size of the protein solution space, it is likely that computer-
generated sequenceswill have a low chance of finding a natural
solution. However, it has to be noted that typically Rosetta
tends to diverge from natural sequences imposed as initial
conditions to the design simulation [144].

Hence, it might be possible that there is space for the devel-
opment of design algorithms capable of exploring sequences
closer to the natural ones.

3. What makes protein designable

The protein design success strengthens the interest in a fun-
damental question about proteins: ‘what makes a protein
designable?’. In other words, what is so exceptional about the
proteins compared to the other members of the large class of
heteropolymers.

3.1. Fundamental aspect of design

In this section, we summarize the essential aspects that con-
nect the folding of a generalized protein with the design of
its sequence. To this end, we will follow the derivation and
analysis of the pioneers in the field [7, 145–148].

Although the derivation is valid only in a mean-field
approximation, the final result will give a clear and simple
physical explanation of what it means to design a protein.
The random energy model (REM) [145] is a powerful theory
that inspired the mean-field description of the freezing tran-
sition of heteropolymers [7, 146]. The equivalence between

REM and random heteropolymers (RHP), hypothesized by
Bryngelson and Wolynes [7], was proven valid in the mean-
field limit and for an alphabet size larger than the number of
residues by Shakhnovich and Gutin [147]. An RHP protein
is represented as a collection of beads connected by a back-
bone, interacting with others. Each bead is a residue, and the
residue–residue interaction depends on the amino acids’ par-
ticular identity. Hence, a REM protein is defined by a con-
formation, the specific arrangement of the backbone, and a
sequence that is the ordered list of amino acids along the back-
bone. Since we are in a mean-field approximation, we can
assume we can thread any possible sequence on each confor-
mation. This hypothesis might appear as an oversimplification
because of the excluded volume of the amino acid side chains.
However, if small backbone fluctuations are allowed, the num-
ber of possible threads (or capacity) of know protein structures
are astronomical [149].

In other words, the probability P(EA, EB) of observing a
protein in conformation A with energy EA and a second one
with energyEB is simply the product of the probabilitiesP(EA,
EB) = P(EA)P(EB).

In REM, the total free energy F (T) of a RHP is:

F (T) = 〈Fseq(T)〉 = −T〈lnFseq(T)〉 , (2)

where Fseq(Zseq) is the free energy (partition function) for
a possible random sequence and T is the temperature. The
averages 〈. . .〉 are done over all possible sequences. The free
energy per monomer is defined as:

F(T)/N =

⎧⎪⎪⎨
⎪⎪⎩
L
[
E − σ2

B

2T

]
− Tω if T > Tg

L
[
E − σ2

B

2Tg

]
− Tgω if T � Tg,

(3)

where E and σ2
B are the average and variance of the interaction

matrix, respectively, L is the valence of each residue, and ω
is the conformational entropy per monomer defined such that
M = eωN is the number of states. The meaning of ω is cru-
cial to answering the initial question about the designability
of the proteins. Still, its definition is not practical because it
depends on the arbitrary definition of the number of states or
‘compact’ states as in the original REM. We propose that a
more viable parameter is the folding resolution. Section 3.3
will demonstrate this argumentusingmodels beyond the lattice
protein approximation. But in the meantime, we keep deriving
the theory of heteropolymer freezing.

In REM there is the temperature Tg =
σBL

1
2

(2ω)1/2
below which

the distribution of states become discrete and the entropy per
monomer vanishes:

S (T) = −dF (T)
dT

∣∣∣∣
T=Tg

= ω − L σ2
B

Tg2
= 0. (4)

The temperature Tg is called glass temperature because
below it the system is trapped in one of the conformations that
belong to the discrete region of the density of states. Above
the glass temperature Tg, the random-energy heteropolymer
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explores many states practically independent of the particu-
lar sequence of amino acids. However, as the temperature is
lowered, the equilibrium is dominated by a few discrete states
of low energy highly dependent on the specific sequence. The
transition at T = Tg is called the freezing transition [147, 150].

Initially, it was suggested that the random-energy model
might provide a valuable model for protein folding, as it yields
a unique ground state with a probability independent of the
system size. However, the energy differences between struc-
turally distinct states in the discrete region of the energy spec-
trum are only of the order of

√
N, which does not allow for a

robust equilibrium state. The question is then if it is possible
to design particular sequences that freeze into a stable ground
state.

For such an approach to work, the energy of the target state
must be well separated from the boundaries of the continuous
distribution of states, where the glassy states accumulate (at
typical distances of order

√
N). Using mean-field arguments

similar to the ones used above, we can derive an expression
for the average energy of the designed state Ed as a function
of the temperature of the canonical ensemble of sequences Td.
We start by choosing a target conformationCd as our tentative
native state. This conformation is characterized by the energy
Ed = H (Sd,Cd) that depends on the sequence Sd. The partition
function obtained by summing over all possible sequences is
denoted by W, and it defines a free energy FW per monomer
through:

FW

N
≡ −Td ln W (Td) = −Td ln

[〈
exp [−H (Sd,Cd)]

Td

〉]

	 〈H〉 − 1
2Td

[
〈H2〉 − 〈H〉2

]
= L

[
E − σ2

B

2Td

]
,

(5)
where Td represents the design temperature. In terms of FW

we canwrite an approximate expression for the average energy

of the designed sequence
〈Ed〉
N

= −∂ ln W
∂
(
1
T

) |T→Td , which does

not depend on the target conformation, but instead shows
that the energy per monomer is linear in the inverse design
temperature

〈Ed〉
N

= L
[
E − σ2

B

Td

]
. (6)

For a target conformation Cd to be the global energy mini-
mum, it must be the equilibrium configuration at a temperature
Tf > Tg. In the protein folding funnel picture [7], this condi-
tion also means that the folding follows a downhill dynamic.
Equation (6) translate into the equality F (Tf) = Ed or

L
[
E − σ2

B

2Tf

]
− Tfω = L

[
E − σ2

B

Td

]
(7)

that rewritten in terms of Tg

L
[
E − σ2

B

2Tf

(
1+

T2
f

T2
g

)]
= L

[
E − σ2

B

Td

]
(8)

Figure 1. Phase diagram of the freezing transition in globular
heteropolymers with a designed sequence at rescaled temperature
Tdesign/Tg versus the rescaled temperature T /Tg at which folding is
performed. We can identify three phases: (1) frozen phase in the
region T /Tg < 1 and Tdesign/Tg > 1, in which the folding dynamics is
glassy. (2) Unfolded phase for T /Tg> phase line and Tdesign/Tg > 1
where the design and folding explore random sequences and
conformations respectively. (3) Folded phase for Tdesign/Tg< phase
liens where the design can successfully optimize sequences for a
target structure that is then dynamically accessible. For T /Tg < 1 the
kinetics is slow.

which leads to a simple expression

1
T2
f

+
1
T2
g
=

2
TfTd

(9)

which depends on the variance σB, but is independent of the
mean value of the interaction.

T2
g

T2
f

+ 1 =
2T2

g

TfTd
. (10)

Using such relation is possible to construct a phase diagram
that describes the general link between design and folding
in heteropolymers (see figure 1). The phase diagram entirely
depends on the glass temperature Tg. The larger Tg the more
prominent will be the folded region or more effortless it will
be to find solutions to the design problems.

For example, maximising the alphabet size q would
undoubtedly do the trick as it reduces frustration. The limit
of q→∞ guarantees the lowest possible frustration.

An analogous phase diagram to the one plotted in figure 1
can be done following the pioneering paper of Bryngelson
and Wolynes [7]. In figure 1 of [7] the freezing phase dia-
gram is plotted as a function of the distribution width of the
non-native states ΔL

T , a measure of the frustration versus the
gap between the native energies L and the average non-native
ones L

(
L− L

)
/T. For large gaps, the proteins fold, indicat-

ing again that the solutions to the design problems should be
located by minimizing the energy of the native state, reduc-
ing the frustration to the minimum. A particular solution is
to create a set of interactions so that the native state is by
construction the lowest energy state. Such models are gen-
erally referred to as Gō-models [3, 7, 151–173]. According
to the ‘minimum frustration principle’ introduced by Wolynes
and Onuchic [7], evolution optimized natural sequences, and
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Gō-proteins share a folding energy landscape with a single
global minimum and folding proceeds as a downhill process.
Hence, in a Gō-protein, the glass transition is suppressed by
construction.

In nature and formost practical applications, it is difficult to
reach high values of q, so an alternative approach to increase
designability is to control the configuration entropy ω.

3.2. Designability and configurational entropy ω

A formidable prediction of REM is identifying the con-
dition for which a solution to the design problem exists
[146, 148, 174].

We can start by taking the entropy in sequence space for
a given target conformation C of the design process to define
such requirements. From the

SC =

∂ − Td ln
∑
seq
exp

[
H(seq,C)/Td

]
∂Td

, (11)

where the sum is performed over all possible sequences Nseq

that might be generated with the NC residues of the conforma-
tion C and an alphabet of q amino acid types. Nseq and q are
connected via the effective number of amino acid types qeff
used during the design:

Nseq = qNCeff ; lnqeff = −
q∑
i=1

pi ln pi � ln q, (12)

where pi is the fraction of each residue used. qeff has its max-
imum in q when the composition is perfectly heterogeneous
(pi = 1/q).

Hence,

SC = ln Nseq −
Lσ2

B

2T2
d

= ln qeff − ω
T2
g

T2
d

(13)

which in terms of the number of solutions to the design
problem Nsol

Nsol (Td) = qeff e
−ω

T2g
T2d = e

ln qeff−ω
T2g
T2d . (14)

Designed sequences are obtained when Td/Tg � 1, hence
for the design to have a chance of successNsol

(
Tg
)
� 1, which

requires the condition ln qeff > ω or the simple and power-
ful prediction of REM q > eω introduced by Finkelstein et al
[174] in 1993.

The prediction defines the intuitive condition that the alpha-
bet used must be larger than the encoding space of the
structure.

In the original formulation of REM, ω was defined as ω =
ln M
N and M is the number of accessible, compact conforma-

tions per monomer [146, 175]. It is important to stress that the
compact polymer conformations are less than the total possi-
ble ones, hence ω < s where s is the entropy of the backbone.
An operative definition of compact for off-lattice polymers is
not given in the REM, making it difficult to establish a general
methodology to estimate ω and, in turn, the designability of a
heteropolymer.

Figure 2. Scheme of the contributions to total conformation entropy
ssaw|N=3 of a self-avoiding trimer including considering a resolution
a = σ

2 .There are then 43 backbone configurations (A) and 48
rotational degrees of freedom of each bead (B). [176] John Wiley &
Sons.© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

3.3. Role of folding resolution and directionality of the
interactions

Ultimately, a successful design should produce a protein that
folds into the original target structure. The folding success is
usually measured as the structural difference between the tar-
get and the refolded structures. That difference is the refold-
ing resolution of the model. The resolution has a profound
meaning on the understanding of protein design. The reason
is the connection between resolution and space of compact
structures ω.

ω represents the space of all possible target structures,
which is an arbitrary definition depending on how conforma-
tions are classified (figure 2).

A solution is to consider the desired folding resolution.
Such resolution is defined through the characteristic length
a that defines minimum separation to distinguish two atoms
in two backbone conformations. Recently Cardelli et al [176]
reformulate the definition of ω as the number of accessible
configurations partitioned by a, effectively introducing the
resolution back into the protein folding theory.

The higher the desired resolution, the larger the confor-
mational space ω, involving a more extensive alphabet q to
design successfully. That is why the entire description of pro-
tein design must depend on the definition of the resolution a
used. In the original formulation of the theory, such parameter
was not essential because the reference model systems were
proteins on the lattice with a discrete conformational space.

To prove the necessity of the resolution a, Cardelli et al
introduced a designable heteropolymer model of which ω is
computed as a function of a.

Cardelli’s new approach allows testing the predictions of
the REM that a system is designable whenever q = eω. More-
over, the procedure allows assessing the importance of direc-
tional interactions to the alphabet size. The latter is done by
introducing patches on the surface of the beads, reminiscent
of the protein backbone hydrogen bonds.

To compute ω, the authors connected the entropy of a pro-
tein chain to a system for which the entropy can be computed
analytically.

First, we need to compute the absolute entropy of a self-
avoiding polymer ssaw = ln (Nsaw) where Nsaw is the number
of conformations of a self-avoiding chain.

To correctly compute ssaw, it is necessary to know the
number of conformations of a reference state.
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Figure 3. Dependence of the chain entropy ssaw as a function of the
chain length N. Different curves depend on different resolutions a.
[176] John Wiley & Sons.© 2019 WILEY-VCH Verlag GmbH &
Co. KGaA, Weinheim.

The chosen reference state is a trimer of self-avoiding
bonded beads, whose conformations can be enumerated ana-
lytically as a function of resolution a.

Introducing the resolution a = σ
2 , with σ the hard-core bead

radius, the number of conformations ssaw|N=3 = 12.9 can be
computed analytically.

Starting from the trimer as the reference system, the total
entropy for a self-avoiding polymer of length N = 50 is cal-
culated with a potent particle insertion method [177, 178]
that computes the variation in the partition function upon the
particle addition.

ssaw|N=50 = ssaw|N=3 −
[
ssimul
saw |N=3 + 3 ln

(
12
(σ
a

)2
)]

+ ssimul
saw |N=50 + 50 ln

(
12
(σ
a

)2)
= 368,

(15)

where the authors have considered the rotational degrees of
freedomof the particles. Using the expression in equation (15),
it is possible to compute the entropy variation for different
values of a confirming that the number of configurations, and
hence ω increase with the resolution.

In fact, for a = σ
10 (which in protein would correspond to

0.4 Å resolution [179]) ssaw|N=50 = 377, while for a = 1.5σ,
ssaw|N=50 = 359, corresponding to a 2% increase (see figure 3).

The study offered three major conclusions. First, the rela-
tion between alphabet and designability works only once a
target resolution is defined. Secondly, directional interactions
are imperative for any practical application of polymer design
as few patches quickly reduce theminimumalphabet size from
q = 1500 to just q = 7 (see figure 4). This is a massive reduc-
tion with profound implications on the evolution of life that
ultimately depends on the possibility of optimizing and storing
structures using a code of 20 letters. The third key result pre-
dicts that any polymer with 2–8 directional interactions should
be designable with tiny alphabets of three, four letters (see
figure 4). It is again confirming the importance of directional
interactions. Proteins are a particular case of the two-patches
scenario, and we confirmed the prediction of the phase dia-
gram in figure 4 in a recent publication [180]. The study of the

Figure 4. The line represents the alphabet size q = eω at which the
transition between not designable and designable occurs.
Accordingly, two areas are defined: yellow area (not designable) and
blue area (designable). The circles are the designable cases, i.e.
where the polymer designed with the indicated alphabet has been
tested to fold into the target structure, while the crosses the ones
where it does not (not designable) [179]. For two directional
interactions, like in proteins, the minimum alphabet size for design
is predicted to four letters, a prediction that has been verified
computationally [180]. [176] John Wiley & Sons.© 2019
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

origin of the 20-amino acid alphabet is a fascinating problem
that has been extensively studied in the past 30 years. We will
discuss it in section 5.

4. Coarse graining

The introduction of the REM theory for protein folding and
design paved the way for a new protein coarse-graining
approach.

As for any computational molecular model, the system is
fully characterized by the Hamiltonian that describes the inter-
action between the different atoms. A coarse-grainedmodel is
no different in this respect, but effective interactions between
groups of atoms replace the atomic interactions. A carefully
constructed coarse-grained model retains the full description
of the phenomena under study at a fraction of the computa-
tional cost. We will present coarse-grained models that have
proven to be designable or have the potential to be, although
they have not been tested. Hence, our primary requirement for
a coarse-grained model to be a viable protein representation is
that it satisfies the REM requirements.

4.1. Lattice proteins

The success of the REM in describing the relation between
folding and freezing has been proved by many studies per-
formed using lattice models of proteins [1, 5, 159, 181–187].
In this section, we focus on applying lattice models to under-
stand the fundamental properties of protein folding. How-
ever, it is essential to mention that lattice models have been
extended to accurately describe protein folding structure pre-
diction [188–193]. They are simple enough to allow for exten-
sive screening of protein sequences and structures aiming at
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the fundamental mechanism of proteins function. An exhaus-
tive overview of the applications of lattice proteins is beyond
the scope of this review.

However, we think it is instructive to list exciting examples.
It is important to note that such simple models often cannot
provide a quantitative description but instead offer the possibil-
ity to test the hypothesis against large protein populations. In
particular, the possibility of quickly performing protein design
allows studying complex problems related to protein evolu-
tion [5, 194–197], protein aggregation [198–202], and even
intricate protein knotting [187, 203, 204].

Protein–protein interaction (PPI) is a fascinating applica-
tion of lattice proteins. Lattice proteins models represent a
powerful tool to reach problems at large time and size scales.
They allow for efficient design of molecule-substrate binding
specificity [1, 4, 184].

One of the critical properties of biological molecules is that
they can bind strongly to specific substrates yet interact only
weakly with the many other molecules they encounter in the
cellular environment.

After the synthesis at the ribosome, polypeptide chains are
exposed to a highly crowded cellular environment. Despite
many non-specific interactions, the chain can select a sub-
set of amino acid contacts that funnel the free energy land-
scape towards a unique native/folded state. For instance, it
was observed that proteins designed to interact strongly with
each other are unlikely to bind non-specifically to other sub-
strates [184, 205]. This result has also been verified off-lattice
by Nerattini et al [206]. Therefore, the conflict between spe-
cific interactions and weak non-specific interaction among
small numbers of biomolecules need not be a severe design
constraint.

However, protein aggregation and denaturation are mostly
unavoidable when proteins are over-expressed at concentra-
tions higher than the physiological ones. That is why protein
expression is highly regulated in cells. The concentration of
each protein is kept below a critical value. In 2008 Zhang et al
[202] presented a statistical analysis to rationalize the rela-
tive concentrations ofmonomeric, complex andmisbound pro-
teins. The authors concluded that in addition to strong specific
interactions, the presence of compartments and reduced PPIs
could be beneficial in solving the mis-interaction problem.

However, protein expression levels are linearly anti-
correlated with their aggregation propensity [207]. This obser-
vation suggests that the simple arguments of weaker non-
specific interactions are not enough because in a high protein
concentration soup, eventually, they should dominate. Still,
cells regulate each protein independently of the overall protein
concentration. Hence, there is more to the story.

Recently Bianco et al [200] showed that in protein mix-
tures, each component could maintain its folded state at den-
sities more significant than the one they would precipitate in
single-species solutions (see figure 5). The authors demon-
strate the generality of their observation over many different
proteins using computer simulations capable of fully charac-
terizing all the mixtures’ cross-aggregation phase diagrams.

Figure 5. Aggregation phase diagram for two designed proteins.
The folded regions are orthogonal to each other proving that
cross-aggregation is not a major problem for evolution.

Dynamic light scattering experiments were performed to eval-
uate the aggregation of two proteins, bovine serum albumin
and consensus tetratricopeptide repeat, in solutions of one or
both proteins. The experiments confirm their hypothesis and
simulations. These findings demonstrate that below the aggre-
gation concentration, a protein folds unperturbed by the pres-
ence of other proteins. Thanks to this property, cells can just
regulate the expression of each protein regardless of the con-
centration of the others, enormously simplifying the entire
problem.

PPIs can also be tuned to induce folding to a specific con-
figuration upon binding [4, 184, 185]. Moreover, the disor-
dered state does not affect the protein’s binding selectivity but
reduces the affinity in a controllable fashion.

In figure 6, we plot the dependence of the binding affinity
of a protein designed to bind to a given substrate as a func-
tion of the degree of disorder (‘randomness’) induced in the
protein. The disorder is added during the design procedure by
allowing the identity of a few residues to fluctuate freely hence
creating random spots along the protein chain. When the num-
ber of random residues becomes too large, the protein cannot
fold when unbound, and the binding affinity is significantly
reduced (see figure 6). The behaviour of such randomised pro-
teins is reminiscent of the well-known intrinsically disordered
proteins (IDPs) [198], and the design protocol could be used
to produce artificial IDPs.

4.2. Caterpillar

In what follows, wewill givemore details about the Caterpillar
protein model.

Recently, inspired by the tube model of Maritan and
co-workers [209–211], the Caterpillar protein model
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Figure 6. The binding strength of a protein is determined by the
ratio Qb/Qf (where Qb as the partition sum of all protein
conformations that have at least one contact to the substrate, and Qf
is the partition sum of a ‘free’ protein in the bulk). When the protein
is frozen in its native state (diamonds), the conformational entropy
does not change upon unbinding. At a fixed (reduced) temperature,
proteins that fold upon binding (circles) are less strongly bound than
ordered proteins (diamonds) with the same binding strength Eb
(plotted in the inset). Reprinted from [184], Copyright (2007), with
permission from Elsevier. Copyright © 2007 The Biophysical
Society. Published by Elsevier Inc. All rights reserved.

Figure 7. Real-space representation of the backbone of the
Caterpillar model. The large blue sphere represents the
self-avoidance volume RHC = 2.0 Å of the Cα atoms. The H and O
atoms interact through a 10-12 Lennard-Jones potential tuned with a
quadratic orientation term that selects for alignment of the C, H, O,
and N atoms involved in a bond. The backbone fluctuates only
around the torsional angles φ and ψ.

approximates a typical protein with the full-atomistic back-
bone but without the side chains that define each amino acid
[22, 24]. Instead, the chemical differences are represented by
an effective spherically symmetric potential centred on the Cα

atoms (see figure 7). The sphere’s zig-zag arrangement that
follows the backbone reminds of a Caterpillar worm, hence
the name ‘Caterpillar’.

The model has two key ingredients, the backbone hydrogen
bond interactions and the heterogenous 20 letter amino acid
alphabet.

The first element sets in the directional interactions. The
presence of the hydrogen bonds was a necessary condition
to induce a local protein-like secondary structure and, at the
same time, recovered the designability properties [22] with a
20 letter alphabet. The results show that the Caterpillar model
describes a systemwith designable folding behaviour strength-
ening the importance of directional interactions highlighted in
section 3.

The 20 letters instead represent the chemical variability of
the amino acids, and their accuracy defines how quantitative
the model will be. The interactions were obtained by com-
bining the maximum entropy principle [212–214] with the
design algorithm developed for the Caterpillar model. Fol-
lowing the REM protein design described in section 3, two
sequences are optimal solutions to the folding protein if they
have the same energy. To this end, the Caterpillar algorithm
optimizes the energy function by simultaneously designing
over 120 test proteins and comparing the designed and the nat-
ural sequences. The simulation convergeswhen the design and
the natural sequences have matching Caterpillar energies and
hydrophilic/phobic profiles.

Given that the native sequence is nature’s solution, the
Caterpillar interaction matrix can be viewed as the one by
which the natural and designed sequences are equivalent solu-
tions to the IFP.

The uniqueness of such an approach is that it uses pro-
tein design instead of protein folding to predict the structural
properties of proteins quantitatively.

It is important to stress that the same methodology can be
used to fit a larger spectrumof available experimental data (e.g.
iso-electric point, physiological pH) or even other force fields
such as Rosetta described in section 2.

4.2.1. Description of the interaction optimization algorithm.
Given a set of NProt single-domain proteins, for each protein,
an ensemble of Nseq sequences are generated. Hence the prob-
ability P(Si,Γ j) of having a sequence Si on a structure Γ j is
given by the Boltzmann weight:

P(Si,Γ j) =
e−βH(Si,Γ j)∑Nseq
i e−βH(Si,Γ j)

, (16)

where H is the Caterpillar force field Hamiltonian.
The objective is to determine the parameters of the force

fields by simultaneously designing the NProt proteins and com-
paring the Nseq generated sequences with the natural one and
select the parameters that give the best match. According to
the maximum entropy principle, the optimal values for the
parameters are found by maximizing the entropy S

S = −
NProt∑
j

Nseq∑
i

P(Si,Γ j) ln P(Si,Γ j) (17)
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associated with the distribution P(Si,Γ j). The maximiza-
tion procedure can the constrained by using the method of
Lagrange multipliers, each associated with a given fitness
function. The optimal matrix corresponds then to the extremal
of the function Λ defined as follows:

Λ = S+
NProt∑
j

N j∑
k

λ jk

⎛
⎝Nseq∑

i

P(Si,Γ j)α
i
jk − αreal

jk

⎞
⎠

+

NProt∑
j

N j∑
k

λ′
jk

⎛
⎝Nseq∑

i

P(Si,Γ j)E
i
jk − Ereal

jk

⎞
⎠

+

NProt∑
j

γ j (Zj − 1) (18)

Here, λ jk, λ′
jk and γ j are the Lagrange multipliers associ-

ated with the HP nature of the amino acidsα jk, the total energy
of the sequences Ejk and the normalization condition

Zj =

Nseq∑
i

P(Si,Γ j) = 1.

According to the Euler–Lagrangemethod, the maximumof
the functionΛ will correspond to the maximum of the entropy
S under the constraints imposed on the system. Hence, we can
perform the derivative of Λ with respect to P

(
Si,Γ j

)
keep-

ing the Lagrangemultiplier constant and equate the derivative
with 0.

dΛ
dP(Si,Γ j)

= 0 . (19)

From the maximization, we collect independent relation-
ships for all the Lagrange multipliers. For instance, for the α
parameters. We get:

∂Λ

∂λ jk
=

1
Z′

j

∂Z′
j

∂λ jk
− αreal

jk

=
1
Z′

j

Nseq∑
i

αijk e
∑N j

k λ jkα
i
jk − αreal

jk = 0 (20)

Equation (20) implies that the distribution generated by
the Lagrange multiplier that makes the average hydropho-
bic/hydrophilic profile equal to the natural one also maximizes
the entropy.

Hence, the best model is the one with the parameters that
make the natural and artificial sequences have the energy and
the hydrophobic/hydrophilic profiles as similar as possible.

4.3. Tube models

In 2000, Maritan and co-workers [209–211] introduced the
‘tube’ protein model, where a typical protein is represented as
a flexible self-avoiding tube with a radius of∼2.5 Å and effec-
tive hydrogen bonds interactions along the tube. The configu-
rations of the tubemodel are controlled by just two parameters,
the total hydrophobicity and the bending rigidity. The model
then reproduced all secondary and many known protein ter-
tiary structures by local changes in the two model parameters.

Hence, the results obtained with the tube model strongly sug-
gest that the typical protein structures are inherent in the geo-
metrical constraints of the backbone, as the latter are the main
features of the tube model. To put in the words of the authors,
the tube ‘pre-sculpts’ the free energy landscape. Recently their
findings have been further expanded by Kukic et al [208], who
demonstrated how their ‘CamTube’ model could map the pro-
tein structural space. More recently, Škrbić et al have shown
how the symmetry breaking created by the side chain along
a polymer backbone can also induce a collapse of the con-
figurational space into sub-space with helices and beta sheets
[215, 216].

4.4. Martini

The Martini force field has gained popularity for its appli-
cations in protein simulations and materials science [217,
218, 220, 221]. This force field, developed by the Marrink
group [213, 214], provides an effective way of simulating the
behaviour of a wide range of molecules [221]. Their lipid and
protein parameterizations have given the opportunity of sim-
ulating membrane proteins in large simulations [222, 223].
The scale of these simulations, almost reaching 100 nm, has
granted the term of computational microscopy and has offered
a unique view of the dynamic behaviour of membranes and
the proteins embedded in them [224, 225]. As well as lipids
and proteins, the force field currently includes parameters for
other molecules present in membranes such as sterols [226],
carbohydrates [227], glycolipids [228], and photosynthesis
cofactors [229], in addition to molecules that display inter-
esting behaviours in membranes, with numerous contributions
from other groups that have helped to extend the parameter
library [230–232]. DNA and RNA complete the list of avail-
able biomolecular parameters, allowing for studying complex
biological systems [233, 234]. The Martini scope has been
expanded into materials science with excellent results in pep-
tide self-assembly [235–237], peptoids mesoscale behaviour
[238], polymers dynamics [239, 240], organic semiconduc-
tor layers formation [241], and ionic liquids phase studies
[242, 243].

Although the coarse-grained resolution, with a bead repre-
senting two to five heavy atoms, has been vital for the effi-
ciency of Martini to afford such simulation size and times, the
development of the polarized version has helped in increasing
the accuracy to represent specific interactions, such as cation-
π, of great interest for proteins [244–246]. Martini has also
been employed in mixed resolution methodologies combined
with all-atoms to gain accuracy of the interactions in lipid
bilayers [247]. Additionally, this force field has been com-
bined with highly coarse-grained bilayers using dynamically
triangulated surfaces to achieve the semi-atomistic resolution
of Martini in a whole mitochondria simulation [248].

However, on its website, Martini’s team explicitly states
that this force field cannot be used to model protein folding,
despite its success with small peptide self-assembly. The map-
ping of proteins into Martini resolution, or Martinizing of pro-
teins, requires the input of the secondary structure tuning the
bonded and non-bonded parameters to preserve it. To main-
tain the 3D structure of proteins, Martini often needs to be
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combined with elastic potentials between Cα within a thresh-
old called the ElNeDyn model [249]. Therefore, the input
structure is too rigid to reproduce unfolding events. In 2017,
Poma et al overcame this limitation by substituting the har-
monic potentials with Lennard-Jones interactions using the
contact map of the native state in protein, similarly to Go-
models [250]. The Martini team seems to have adopted this
idea for its version 3, stating in its open beta version documen-
tation that they improve protein flexibility using Go-models.
Although it is still unclear to which extent these new interac-
tions will improve the model towards studying protein unfold-
ing, the latest version has already shown some advances in
protein structure and protein–ligand events. The beta version
has been employed for high throughput protein–ligand bind-
ing, improving the modelling of protein cavities and binding
pathways to assess the effects of mutations on the binding
of different small drugs [251]. They claim that their coarse-
grained approach is similarly effective and more efficient than
the corresponding atomistic approaches. In addition to this,
Grunewald et al have recently published the Martini approach
for constant pH simulations, with excellent results reproducing
experimental pKas [252].

5. Application of coarse-grained models

This section highlights applications of coarse-grained models
trying to answer fundamental questions related to protein evo-
lution. Due to the timescale and size of the protein sequence
space, coarse-grained models represent an ideal investigation
tool.

5.1. Role of the alphabet

The amino acids are the building blocks of proteins, whose
chemical diversity in a sequence is responsible for many three-
dimensional structures and biological functions, playing a
crucial role in the protein sequence evolution.

The protein sequence is typically noted as a string of letters
to represent each amino acid. The protein alphabet contains
20 different characters for the amino acids, unlike DNA and
RNA, consisting of four letters.

An important issue that attracts the interest of the scien-
tific community is the nature of the amino acid alphabet [1,
7, 26–29, 183–185, 253–280] and, in particular, the effects
of a reduced alphabet size on protein folding. Previous studies
applied different computationalmethods for the protein design
at different alphabet sizes. Using lattice proteinmodels, a large
variety of protein-like heteropolymerswere designed at differ-
ent alphabets [1, 7, 183–185, 254–258]. From those studies
emerged that a minimum number of residue types is required
to get target configurations [259]. It was also possible to inves-
tigate the effect of a minimalistic alphabet on PPIs [260–263].
Also, experimental works were conducted by designing pro-
teins with simplified amino acid sequences [264–268]. Sta-
tistical analysis of protein databases also showed that a large
part of the information [253, 269–274], encoded in natural
proteins, could be enclosed into a small alphabet of only five
residues types [253, 264, 266, 275, 276, 280].

Nerattini et al devise a computational protein design strat-
egy that consists of a competition for available amino acids
between a protein and an artificial interaction partner. No pre-
vious studies have considered the possibility of competition
for the availability of amino acids. However, lack of materials
may have played an essential role in the evolution of protein
alphabets. Hence, it is interesting to estimate the effect of such
competition.

Nerattini’s scheme spontaneously drives the protein design
to the generation of sequences with a reduced number of
residue types. Moreover, the reduced alphabets chosen during
the design process allows for the folding stability of the pro-
tein. The investigation results show that for the folding of a
protein, the minimum size of the amino-acid alphabet is just
four letters. The results have interesting parallelism with the
four-letter alphabet of RNA, which is considered the precur-
sor of proteins during the early stage of life. However, the
precision of the folding increases with the alphabet size: six
letters are the minimum alphabet necessary to maintain the
structure of the protein with the same accuracy commonly
obtained with 20 letter alphabets. The observation is consis-
tent with the experimental studies confirming that six letters
are essential for maintaining protein folding and functionality
[253, 264, 266, 275, 276, 280].

Besides having a binary system, the authors investigate
how the alphabet reduction affects the heterogeneity of PPI
[1, 184, 261–263], observing a strong tendency of the designed
protein to absorb and aggregate on a potential binding site.
The four letters alphabet of the designed sequences has an
average intra-protein residue interaction higher than the inter-
protein interaction energy.This affinitymakes it impossible for
the folded state of the protein to be stable in contact with the
artificial partner; hence, to avoid the absorption. Conversely,
increasing the alphabet size to six letters, the intra-protein
residue interaction stabilizes the folded structure upon bind-
ing due to its lower value with respect to the inter protein one.
Living systems are under constant pressure for using the least
variety of amino acids to reduce the resources necessary to
construct specialised tRNA molecules for the translation pro-
cess [281]. It is reasonable to assume that it could be advan-
tageous to design proteins with a smaller alphabet during the
early stages of life. Thus, it suggests that the optimization of
the specificity of PPIs could have been the driving force for the
evolution of the large protein alphabet.

5.2. Protein design as a tool to test evolution constraints

The rate of protein sequence evolution varies from protein to
protein, and several factors such as the processing of the pro-
tein in the cell (e.g., translation time) [282, 283], or molecu-
lar characteristics specific to each protein [197, 284, 285], as
well as from interactions with other proteins [286]. In con-
trast, the nature and rate of protein structural evolution are
much less well understood. Viksna et al [287] presented an
estimate of the rate of structural changes based on the measure
of topological distances between proteins structures. Meyer-
guz et al [288] grouped all known proteins into basins corre-
sponding to the common native structures. The authors have
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then built a network of sequences from the collected data and
considered the frequency of ‘transition’ sequences (separated
by a single point mutation from a different basin). Structural
evolution has also been studied in the context of the lattice
protein model by Deeds et al [196], where the structural sim-
ilarities among all possible 103 346 distinct structures of
a 3 × 3 × 3 lattice polymer have been mapped. Other work
has concentrated on structural topologies connected by a rela-
tively small set of structural evolutionary moves (e.g. domain
swapping or duplications) [154, 197, 284].

Coluzza et al [289] considered the entire evolutionary pro-
cess without focussing on a detailed description of cell phys-
iology. In that case, the evolutionary process is equivalent
to screening a large number of different sequences under
the constraint that only a few structures are acceptable. The
full evolutionary path can then be represented as a transi-
tion sequence between the allowed structures (steppingstones).
Such steppingstones represent the possible structures that are
still allowed by the selection function and are not identical to
the initial and final target structure. The number of interme-
diate structures reflects the degree of restriction applied to the
evolutionary process. Hence the larger the number of stepping-
stones, themore closely the evolutionaryprocess approximates
a free drift in protein space. The entire evolutionary trajectory
between two targets is then represented as a path connect-
ing the steppingstones, where each jump is weighted by its
probability of occurrence. Accordingly, the main objective of
Coluzza’s work is to measure the rate of each elementary jump
and identify the analytic dependence of such rates from a small
set of structural differences.

The first point it is vital to realize is that the number of
sequences that can fold into a structure is an astronomically
large number [149].

The objective is to sample the rate at which an ensemble of
sequences defined by the design procedure with target struc-
ture A will evolve to an equivalent ensemble defined by the
design of structure B.

First, the overlap between the most probable sequences of
A andB is minimal, independently of the structural differences
between A and B. In other words, provided that the structures
are not identical, the Hamming distance between the ensem-
ble of the folding sequences is always sizeable. This gap does
not necessarily mean that the evolutionary process must pro-
ceed with large jumpswith many concurrentmutations. Still, it
means that the folding sequences in ‘common’ (so with small
Hamming distance) between the two distributions are pretty
rare. Hence the evolutionary rate is highly dependent on the
probability of finding such sequences that are still able to fold
but are separated by a small number of mutations. For this
reason, the neutral evolution inside each island is assumed to
occur at a higher rate than it does between islands.

According to such a hypothesis, the evolution rate is defined
as the rate of crossing the point at which a sequence goes from
having lower total energy in structureA to having lower energy
inB. This choice can be justified as a measure of the propensity
of those sequences to fold into B instead of A because of the
entropic contribution to the free energy of the native structure
is assumed to be the same across all steppingstones, then the

only relevant pressure is the energetic contribution. The proba-
bility of observing such a sequence can then bemeasured using
the Boltzmann distribution function in the space of all possible
proteins (all sequences on all structures);

RA→B = 〈θ[ΔEAB]〉A =
〈eβEBθ [ΔEAB]〉AB

〈eβEB〉AB
, (21)

where the ensemble average 〈·..〉AB is performed over the AB
joined ensemble. Alternatively, the equation can be interpreted
as a simulation in the ensemble of sequences that fold into
structure A but in the presence of a bias towards sequences
that fold into structure B.

Each rate is then sampled by applying the design procedure
described above to the joined AB ensemble for each A, B pair
with the following acceptance rule

Pacc = min

⎧⎨
⎩1, exp

⎡
⎣−

(
ΔEA+B − Ep ln

Nnew
P
Nold
P

)
kBT

⎤
⎦
⎫⎬
⎭ . (22)

Such an acceptance rule also guarantees that homopolymers
sequences are not included in the rate calculations that might
significantly alter the results towards non-physical solutions
with their significant enthalpic weight.

Hence the jumping rate from the island associated with
structure A to B is going to be equal to the rate of accumu-
lating enough mutations for each sequence of the island of A
to become equal to one of the sequences in the island of B, as
the evolutionary process will spontaneously continue towards
the optimal sequences of B at a much faster rate.

Such a rate can be calculated efficiently and allows for a large-
scale study of jumps across many structures.

By putting together all RA→B measured for 490× 490 struc-
ture pairs, the rate is well described as a function of three
structural parameters that measure the difference between
structures A and B: the difference in the number of hydrogen
bonds ΔHAB, the difference in the number of residue-residue
parameters ΔQAB and the difference in the number of native
contacts QN.

ln RA→B = 151 ln

(
1

1+ e0.005(7.2ΔHAB−ΔQAB)

)

+ 222 ln

(
1

1+ e−20.5(0.5−QN )

)
(23)

In particular, this expression demonstrates that it is much
easier to jump towards a compact structure with many hydro-
gen bonds than evolve towards a configuration that is either
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compact with few hydrogen bonds or non-compact with many
hydrogen bonds.

A result that comes naturally from our analysis is the
probability of occurrence of a structure, which can also be
interpreted as the designability of a protein structure.

Pi =
e−A2A0(A1Hi−Qi)∑
e−A2A0(A1Hi−Qi)

. (24)

That is a crucial result of this study. The designability of a pro-
tein does not depend just on how compact it is but mainly on
the optimization of both the number of hydrogen bonds and
the number of contacts between the residues.

This result again highlights the vital role those direc-
tional interactions play in the designability of proteins and
heteropolymers in general.

5.3. Protein–protein interactions

Protein–protein recognition is one of the multiple types of
molecular recognition tools that nature employs and, as it is
involved in countless physiological processes, is crucial for
living beings [290, 291]. Synthetic systems, such as poly-
mers, have also copied this mechanism, giving rise to artificial
molecular recognition [292–300].

Molecular recognition requires highly specific bindingwith
a high discriminatory resolution. In other words, the molecules
must bind strongly to a minimum number of possible partners
and weakly, if anything, with the rest. The design of bind-
ing sites introduces constraints to ensure a strong and specific
interaction. Protein binding sites are in the range of 75–150 nm
[301], and often fit the ligand tightly. Therefore, the selectivity
of protein–ligand recognition lies in both steric compatibility
and chemical patterning of the pocket surface. Coluzza et al
designed patterned surfaces to bind a reduced number of part-
ners selectively using a lattice model [1, 184]. They showed
that by designing the ligands in the bound state, the selectiv-
ity of the binding to the target surface is boosted. This result
is based on the probability (P) of non-specific interactions for
having a binding energy (E):

P (E) =
(
2πNσ2

)− 1
2 e

−
[

E2

2Nσ2

]
, (25)

where N is the number of interaction sites to account for the
size of the binding. The Boltzmann factor exp(−βE) gives the
probability of an interaction energy E in the bound state. Con-
sequently, to be selective, surfaces must have a binding energy
lower than the random average Boltzmann factor, 〈exp (−)〉 =
exp

(
Nσ2β2/2

)
. Additionally, random binding sites are not

strictly inert as theywill still have a relevant probability to bind
if they are sufficiently large (great N).

Nerattini et al [206] employed the Caterpillar proteinmodel
[22, 24] to explore pockets’ precision and binding selectivity
with optimal shape and poor steric selectivity. They conducted
this study attending to hot spots at the protein–protein inter-
face, which are currently recognized as a critical component
for PPI [302]. They did not aim to reproduce PPI quantita-
tively and could afford to use a coarse-grained model with
implicit solvent, which is inappropriate to identify hot spots.

Figure 8. Schematic representation of the parameters used to
generate the pocket moulds. Reprinted with permission from [206].
Copyright (2019) American Chemical Society.

Instead, they did examine the steric effect of certain features of
the binding sites, such as depth and surface area. They carried
out the design of a given protein with a second target pro-
tein by modelling the binding region of the latter on a plane.
The explicit protein partner was here modelled with the men-
tioned Caterpillar model, as described in a previous section.
The protein-like surface was constructed as a mould by push-
ing the protein on a dense flat mesh of self-avoiding beads,
which mimic the portion of interest of the protein surface.
This approach allows controlling the direction of the interac-
tion. Binding site interactions were modelled using only the
Cα of the Caterpillar. A certain number of beads scattered
within the mesh mimicking the protein surface are conferred
Caterpillar Cα character. The model is based on three param-
eters (figure 8): ζ, the height of the centre of mass (CM) with
respect to the flat mesh plane; μ, minimum Cα protein–Cα

surface distance; and δ, the distance between beads with Cα

character in the binding site. Binding sites were generated
by setting the last two parameters to typical natural values
in globular proteins (both to 5 Å) and varying ζ. Firstly, the
maximum CM–Cα distance, corresponding to the entire pro-
tein radius (rMAX) was determined to normalize the rest of
the CM–surface distances. Thus, being z the CM–surface dis-
tance, ζ = z

rmax
. For each value of ζ, the flat mesh was tuned to

represent each protein orientation to find the orientation that
gives a binding site with maximum surface area. It must be
noticed that the surface area of the binding site is inversely
proportional to ζ .

The distance rootmean square displacement (DRMSD)was
used as an order parameter for the bias potential,measuring the
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deviation from the target structure:

DRMSD =

√
1
C

∑
i j

(
|Δ−→ri j | − |Δ−→ri jT | ,

)2
, (26)

where DRMSD it is calculated as the sum over the ij con-
tact pairs in the structure between residues in the same
(DRMSDintra) or different (DRMSDinter) proteins. Δ−→ri j is
the distance between the pairs, while Δ−→ri jT is the cor-
responding distance in the target structure. This differs
from most protein approaches where the RMSD is used
instead, using the atom positions rather than distances. The
system conformational space was projected over the col-
lective variables DRMSDintra and DRMSDinter generating
the free energy landscape F [DRMSDintra, DRMSDinter].
F [DRMSDintra, DRMSDinter] can qualitatively show the rel-
ative stability between folded and unfolded in bound and
unbound states. The profiles show that although the size of
the binding site affects the strength of the binding, all the pro-
teins can bind in their folded state to their target binding site,
including the small ones.

To quantify the binding affinity and selectivity, the authors
measured the free energy difference ΔF between the bound
and unbound of the folded. This free energy difference is
defined by:

ΔF = −kBT ln(
Qb

Qf
). (27)

Qb accounts for the bound protein conformations and Qf

for the unbound, free in the bulk. exp
(
−ΔF

kBT

)
defines the bind-

ing strength, leading to an association constant that follows the
expression:

Ka = exp

(
−ΔF
kBT

)
Vbulk

n
. (28)

Being n the number of binding sites, which was set to 2 in
the example and Vbulk the volume of the bulk.

Figure 9 shows the van’t Hoff plot [303, 304] of the binding
affinity Ka for the different pocket sizes.

The results showed that binding site surfaces decreased
with ζ, the topologymatching between the protein and the sur-
face creates an effective pattern of steric repulsion, key for the
binding site selectivity.

The specificity of the binding sites towards their target was
tested for the artificial binding sites employing different sce-
narios. Firstly, by crossing proteins and surfaces resulting from
different ζ values, we tested the selectivity among proteins
with different sequences but identical structures. Secondly, the
folding and binding of a protein with different structures but
similar sizes were tested. The first scenario showed the dif-
ferences between small and large binding sites. The former
showed negligible binding to large proteins, while the wider
binding sites showed stronger binding and a disruptive effect in
protein structure, leading to denaturation. The second scenario
confirmed the lower specificity of large binding.

Therefore, this work presented an attractive approach for
designing PPIs. Nerattini et al designed specific sequences for
target binding sites. The fact that the folded bound state is
favoured in the resulting sequences and their binding energy

Figure 9. Van’t Hoff plot of the binding affinity Ka (l mol−1) as a
function of the inverse of reduced temperature 1/T for the
investigated systems. The grey dashed line shows the folding
temperature T /TF = 1. The red dashed line is the reference ambient
temperature T/TA = 1 in reduced units. The curves’ colour scheme
refers to the pockets’ size ζ going from large to small: purple, green,
yellow and light blue. Reprinted with permission from [206].
Copyright (2019) American Chemical Society.

increases with the size of the pocket is evidence of the
approach’s success to design PPIs. Additionally, the results
shine a light on the specificity of the pockets, showing that
large binding pockets have higher binding affinities, they also
show lower specificity. The upper limit determined by the
model matches with the size range of binding sites of natu-
ral proteins. Therefore, this method is an efficient approach
to designing PPIs and provides fundamental information for
understanding natural proteins and how specific parameters
may have affected their evolution.

5.4. Compare artificial and natural sequences

Protein sequence maintains a delicate balance between struc-
tural stability and biological function, making it difficult to
untangle the two contributions. It has been proved that a pro-
tein function, such as the catalytic activity of an enzyme,
depends on the interaction between specific sequence posi-
tions and exhibits a balance between structural stability and
flexibility. Also, it is challenging to classify residues as strictly
functional or structural due to a correspondence between these
two categories; their mutual correlation is essential for the
protein activity [305, 306]. It is meant by strictly structural
residues such as amino acids responsible for protein stability.
The loss of the folded structure can affect the functionality of
the protein.

On the other hand, strictly functional residues can mutate
without altering the structure’s stability. An accurate char-
acterization of structural and functional protein residues is
fundamental for developing proteome mapping, protein engi-
neering, and new pharmaceutical applications based on the
design of target protein [307–311]. The experimental identifi-
cation of residues is a time-consuming and expensive process:
a high-throughput tool requires a large scale mutation assay
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[306, 307], whereas in silico screening has a lower cost. Sev-
eral computational methods [313–318] have been developed
for studying protein evolution. Most of them are based on the
search for sequence conservation and co-evolution.

The residues co-evolution assumes that mutations of inter-
acting amino acids are correlated. Co-evolution allows pro-
teins to change residue identities while maintaining specific
residue–residue interactions [19, 319]. The residues involved
in co-evolution events can be fundamental for the protein activ-
ity (e.g., catalytic site residues) and for the structure stability
(e.g., hydrophobic core residues), or, in some instances, for
both, when there is an interdependence between functional
and structural residues. The direct coupling analysis (DCA)
[320–328] is one of the most promising computational tools
for estimating residues pairs with direct reciprocal constraints
in the evolution. The method for protein contact prediction
is based purely on sequence information and can analyse a
large number of protein domains. However, from DCA alone
is not possible to distinguish between structural and functional
residues due to the same signal given by the two types of coe-
volving residues during the analysis. Some information can be
deduced from comparing the DCA and the distance between
residues in the contact map [317, 328–330]. But functional
residues do not have always have long-range co-evolution
signals.

Searching for amino acid sites of a protein sequence that
preserve their identity in the evolutionary residue conserva-
tion (or site entropy) analysis is another method for identi-
fying functionally essential protein regions. The evolutionary
site conservation can be measured using Casari et al tech-
nique [331], based on the principal component analysis of the
sequence alignments.

Nerattini et al [332] introduced a methodology to rank
the residues according to their functional (F) or structural (S)
nature within the ones that are involved in both events (OFSR,
overlapping functional, structural residue [305]).

Their methodology hypothesises is that an artificial evolu-
tion process only results in a co-evolutionary structural residue
due to the absence of any functional constraints.

Thus, to identify residue and further categorize them into
structural, functional or OFSR, it is necessary to generate an
artificial protein family that, by construction, contains only
structural information. Any protein design method can gen-
erate artificial sequences with a specific target conformation
[5, 6, 17, 20, 21, 25, 108, 333–336]. The design does not need
to generate lab folding proteins. The only requirement is that
the artificial sequences fold computationally into the target
structure.

After selecting the protein family to analyse, single-site
conservation and co-evolution analysis are carried out on artifi-
cial and natural alignments. Protein design generates artificial
sequences, whereas natural sequences are found in the Pfam
database [314].

The analysis of artificial sequences identifies residues
essential for structural stability; on the other hand, signals
from natural sequence analysis encode structural and func-
tional information. Residues with high co-evolution signals
only in the natural alignments are residues with a functional

role in the protein if a similar signal is not present in the
analysis of the artificial set. Conversely, structural signals are
strongly conserved and co-evolved in the artificial evolution
but poorly in natural ones. Residues that display comparable
signals between natural and artificial analysis are classified
as overlapping-functional-structural residues OFSR, whose
mutation would lead to the loss of both functionality and
tertiary structure.

DiPA methodology has demonstrated the validity to detect
functional residues in protein families without requiring prior
knowledge of the biological role of the analysed protein.
Hence, in the study of a whole proteome, the DiPA algorithm
could give a crucial contribution to the identification of the
functional protein regions. By analysing the artificial evolution
of protein dimers, the approach can also classify functional
residues for the implication of PPIs, confirming the annota-
tionmentioned above on the direct importance of the structural
residues on the protein’s function.

6. Conclusions

Computational protein design is one of the most promising
tools in protein engineering. The long-term objective is to
autonomously design new artificial enzymes and drugs with
sequences tailored to specific functions and perform better
than their natural contour parts. Additionally, protein design
offers an ideal benchmark tool to test fundamental hypotheses
about the evolution of life’s basic building blocks.

In this review, we tried to overview both basic and applied
protein designs. The challenges ahead are still many. Although
successful in many applications, it is still tough to systemati-
cally design proteins with high expression yields that vary a lot
from application to application. The reason for such difficul-
ties can be found both at the algorithm level (e.g. sampling),
modelling (e.g. accuracy), and fundamental understanding of
the central ingredients for successful design.

In terms of algorithms, essential developments are coming
from multi-scale approaches mixing coarse-graining and full-
atomistic representations and the introduction of deep learning
methods like the recent AlphaFold [337]. On the modelling
side, it is essential to stress the emerging importance of con-
stant pH simulations that take into account the charge fluctu-
ations that occur on the protonable end of polar amino acids.
Constant pH simulations are still growing, and there is not yet
a single established method to perform them. However, many
studies indicate that they are strategic in understanding PPI
phenomena [338] and hence for design [339].

Furthermore, protein design has the potential to push the
development of parallel fields such as supramolecular pep-
tide polymers. These materials exploit the tendency of small
peptides to self-assemble into protein-like structures driven
by similar rules to proteins themselves. Some efforts have
been carried out in modelling the behaviour of these materials
using molecular dynamics simulations. Tuttle et al screened
short peptides using the Martini force field to find new self-
assembling sequences [235, 340]. However, these had comput-
ing limitations that drove them to combine this with machine
learning to screen peptide sequences consisting of up to eight
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amino acids [341]. Ferguson et al also employed this approach
on a hybrid system [342]. Although machine learning has
significantly reduced the computational effort of these pro-
cedures, these methods are far from the level of validations
and efficiency of protein design. We believe that using a
modular approach like the one employed for repeat proteins
[122], protein design methodologies could be applied to self-
assembling peptides, which would boost the development of
these synthetic materials.

Finally, on the fundamental understanding of the relation
between protein folding and protein design, we have stressed
the physical role of directional interaction in sculping the con-
formational landscape. A landscape that can only be defined
if a proper length scale is introduced to discriminate between
conformations. Such length scale is nothing else than the
target folding resolution. With such knowledge, it is possi-
ble to extend protein design beyond the biological kingdom
to venture into the unknown, mimicking life, fully synthetic
materials. That will be the era of bionic proteins.
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