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DEGENERATE LINEAR PARABOLIC EQUATIONS IN
DIVERGENCE FORM ON THE UPPER HALF SPACE

HONGJIE DONG, TUOC PHAN, AND HUNG VINH TRAN

ABSTRACT. We study a class of second-order degenerate linear parabolic equa-
tions in divergence form in (—oo,T") X Ri with homogeneous Dirichlet bound-
ary condition on (—oo,T) X ()Ri, where Ri = {z € R? : 24 > 0} and
T € (—o0, 0] is given. The coefficient matrices of the equations are the prod-
uct of p(z4) and bounded uniformly elliptic matrices, where p(z4) behaves like
x§ for some given a € (0,2), which are degenerate on the boundary {z4 = 0}
of the domain. Our main motivation comes from the analysis of degenerate
viscous Hamilton-Jacobi equations. Under a partially VMO assumption on
the coefficients, we obtain the well-posedness and regularity of solutions in
weighted Sobolev spaces. Our results can be readily extended to systems.

1. INTRODUCTION

1.1. Setting. Let T € (—o00,00], d € N, and Q7 = (—00,T) x R%, where R? =
R4 x Ry with Ry = (0,00). Let (a;;) : Q7 — R¥*? be measurable and satisfy
the uniform ellipticity and boundedness conditions with the ellipticity constant
ve(0,1)

(1.1) V€ < aiy(2)6i&s,  lai(2) <vTh Yz e Qr,

for all & = (&1,62,...,&4) € R4 Also, let ¢g : @ — Rand g : R, — R be
measurable functions satisfying
(1.2) co(2), % evl, VaseRy, VzeQr,

d
where o € (0,2) is a fixed constant. For A > 0, let .Z be the second-order linear
operator with degenerate coefficients defined by

Lu=up + Aeo(2)u — p(xa)Diaij(z)Dju), 2z = (t,2',2q4) € Q.
We study a class of equations in the form

(1.3) ZLu = ulxq)D;F+ f in Qr,
' u = 0 on (—o00,T) x ORY.
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4422 H. DONG, T. PHAN, AND H. V. TRAN

Here, in (1.3), f: Qr — Rand F = (F}, Fy, ..., Fy) : Qr — R? are given measur-
able functions, and u : Q7 — R is an unknown function.
It is important to note that (1.3) has a natural scaling

(t,x) = (s, s2), s>0.

Moreover, the PDE in (1.3) can be written into the following one in which the
coefficients become singular on the boundary {zs = 0} of the domain

(1.4) (za) " (ue + Aco(2)u) — Di(aij(2)Dju+ Fy) = p(zq) ' f in Q.

The PDE (1.4) will be used in our definition of weak solutions of (1.3), in which
the integration by parts is applied to the terms z(zq) ~tu; and D;(a;;(2)Dju+ Fy).
Also, note that in (1.4), the coefficients u(z4) =" and u(zq) teo(2) are not locally
integrable near {xy = 0} when a € [1,2).

The aim of this paper is to show that for any p € (1, 00), under certain regularity
assumption on (a;;),

—a/2
IDull, 0z + VA27 *ulls, @) < N(1F L, @) + 9]z, @)

where N = N(v,d,a,p) > 0, and A > 0 is sufficiently large, and g = =}~ *|f1| +
A‘l/Qx;a/z\fﬂ for f = fi1 + f2. See Theorem 2.3 for the precise statements. We
also obtain a similar but more general weighted estimate (see Theorem 2.4). To the
best of our knowledge, this paper is the first one in which the well-posedness and
regularity of solutions to the general degenerate linear parabolic equation (1.3) is
studied. The above weighted Wr}-estimate is also new in the literature. A specific
case where p(zq) = x4 was studied recently in our unpublished paper [30].

1.2. Related literature. The literature on regularity theory for degenerate el-
liptic and parabolic equations is vast, and we will only describe results that are
related to (1.3). The Holder regularity estimates for solutions to elliptic equations
with singular and degenerate coefficients, which are As-Muckenhoupt weights, were
obtained in [13,14]. See also the books [16,29] and [18,22,26-28,32-34] and the
references therein for other results on the well-posedness, Holder, and Schauder
regularity estimates for various classes of degenerate equations.

The following equation, which is closely related to (1.3), was studied much in
the literature

(1.5) ur(2) + Au(z) — zgAu — BDgu = f(z) in Qrp,

where A > 0 and S > 0 are given constants. Note that the requirement that
B > 0 is essential in the analysis of (1.5), which is an important prototype equation
appearing in the study of porous media equations and parabolic Heston equations.
The Schauder a priori estimates in weighted Holder spaces for solutions to (1.5)
and more general equations of this type were obtained in [6,15]; and the weighted
W?2P_estimates for solutions were obtained in [21]. Thanks to its special features,
the boundary condition of (1.5) on {4 = 0} may be omitted. For us, we impose
the homogeneous Dirichlet boundary condition v = 0 on {z4 = 0} in (1.3), which
is natural in our setting (see [30, Theorem 2.1]). Because of the different natures
of the equations, our methods and the obtained Wz}—estimates are rather different
from those in [6,15,21] with different weights, and to the best of our knowledge,
they are new in the literature.
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DEGENERATE PARABOLIC EQUATIONS 4423

Our main motivation to study (1.3) comes from the analysis of degenerate viscous
Hamilton-Jacobi equations. A model equation of this kind is

(1.6) ue(2) + Mu(z) + H(z, Du) —zfAu=0 in Qp,

where H : Qpr x R? — R is a given smooth Hamiltonian. Here, A > 0 and a € (0, 2)
are given. If H(z,n) does not depend on 7 for (z,1) € Qr xR?, then (1.5) becomes a
special case of (1.3). For typical initial-value problems of viscous Hamilton-Jacobi
equations with possibly degenerate and bounded diffusions, we often have well-
posedness of viscosity solutions, and such solutions are often Lipschitz in z (see
[1,5] and the references therein). However, finer regularity of solutions is not very
well understood in the literature, and in particular, optimal regularity of solutions
to (1.6) near {z4 = 0} has not been investigated. Besides, the growth of z§ in the
diffusion coefficients at infinity has to be treated carefully. As mentioned, a specific
case of (1.3) where pu(xy) = x4 was studied recently in our unpublished paper
[30]. In this case, the equation also has a connection to the Wright-Fisher equation
arising in population biology, for which the fundamental solution was studied in [2].
See also [12] and the references therein. We will study the regularity of solutions
o (1.6) and related PDEs in the future.

It is worth noting that similar results on the well-posedness and regularity esti-
mates in weighted Sobolev spaces for equations with singular-degenerate coeflicients
were established in a series of papers [9-11]. The weights of singular/degenerate
coefficients of u; and D?u in these papers appear in a balanced way, which plays
a crucial role in the analysis and functional space settings. In fact, Harnack’s in-
equalities were proved to be false in certain cases if the balance is lost in [3,4]. Of
course, (1.3) does not have this balance structure, and our analysis is quite different
from those in [9-11].

1.3. Ideas of the proof. Our proof is based on a unified kernel-free approach
and is inspired by [23], which studied linear nondegenerate elliptic and parabolic
equations with coefficients in the class of VMO with respect to the space vari-
ables and merely measurable in the time variable. A key step of our proof is to
estimate the Holder semi-norm of the derivatives of solutions to the correspond-
ing homogeneous equations. We then obtain mean oscillation estimates, and use
the Hardy—Littlewood maximal function theorem and the Fefferman—Stein sharp
function theorem. See [7,8,19,20,24] and the references therein for related work
in this direction. Particularly, in [8], a generalized Fefferman—Stein theorem was
established in weighted mixed-norm Lebesgue spaces. The underlying space is a
space of homogeneous type, which is equipped with a quasi-metric and a doubling
measure.

To prove the main theorems, we construct a quasi-metric as well as a filtration
of partitions (dyadic decompositions) on €, which are suitable to (1.3). In par-
ticular, after using a proper scaling argument, they allow us to apply the interior
Hélder estimates for nondegenerate equations proved in [7]. The boundary Hélder
estimates are more involved especially when « € (1,2). To this end, we use an
energy method, the weighted Sobolev embedding, and a delicate bootstrap argu-
ment. We consider the quantities D,/u and U = ag4;D;ju instead of the full gradient
Du. See the proof of Proposition 4.5. Such boundary estimates seem to be new
even when the coefficients are constant. It is worth noting that for scalar equations
with negative «, boundary Schauder type estimates were established recently in
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4424 H. DONG, T. PHAN, AND H. V. TRAN

[18], which were essential in the derivation of optimal boundary regularity for fast
diffusion equations. Since we do not use the maximum principle or the DeGiorgi-
Nash-Moser estimate, our results can be readily extended to the corresponding
systems.

Organization of the paper. The paper is organized as follows. In Section 2, we
introduce the needed functional spaces, give the definition of weak solutions to (1.3),
and state the main results. Preliminary analysis and Ls-solutions are discussed in
Section 3. In Section 4, we study the case when the coefficients of (1.3) depend
only on the z4-variable. Finally, the proofs of the main results (Theorems 2.3 and
2.4) are given in Section 5.

2. WEAK SOLUTIONS AND MAIN RESULTS

2.1. Functional spaces and definition of weak solutions. For p € [1,00),
—00 < 8§ < T < +o0, and for a given domain D C R%, let L,((S,T) x D) be the
usual Lebesgue space consisting of measurable functions v on (S,T") x D such that

the norm
1/p
lullz,(s,ryxD) = (/ lu(t, z)P dwdt) < oo.
(S,T)xD

Also, for a given weight w on (S,T) x D, we define L,((S,T) x D,w) to be the
weighted Lebesgue space on (S,T) x D equipped with the norm

1/p
||uHLp((S,T)><D,w) = (/ \u(t,x)\pw(t,x) dl’dt) < Q.
(S, T)xD

Because of the structure of (1.3), the following weighted Sobolev spaces are
needed. For a fixed o € (0,2) and a given weight @ on D, we define

Wpl(D,UJ) = {u : ux;a/2,Du € Lp(D,Uu)},

which is equipped with the norm

/2
lullws o) = luzg |2, + | Dull, (0.2)-

We note that Wpl(D, w) depends on «, and it is different from the usual weighted
Sobolev space.
We denote by 7/1,1 (D,w) the closure in T/V]D1 (D,w) of all compactly supported

functions in C*°(D) vanishing near DN {z4 = 0} if DN {x4 = 0} is not empty. The
space Vﬂpl (D, ) is equipped with the same norm
lullwp o) = llullwi )
We define W((S,T) x D,w) and #,'((S,T) x D,w) in a similar way, and for
uwe #}H(S,T) x D,w),
lullwr(smyxpw) = lullwismxpw
= ||W;a/2\|L,,((s,T)xD,w) + |1 Dull L, (($,1)xDw)-

We emphasize that for functions in #,'(D,@) or W}((S,T) x D,w), we require
the functions in the defining sequences to vanish only near the flat boundary
DN {:L‘d = 0}
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Next, we define
-1
H, " ((S,T) x D,w)
= {u cu = p(zq)DiF; + fr + f2, where flxclfo‘,fgx;am € L,((S,T) x D,w)
and F = (Fy,...,Fy) € L,((S,T) x D,w)?}
that is equipped with the norm
H“”H;l((&T)xD,w)
= tnf {|Fll1, ((s.1)xp) + 1fa 1+ | fog Pl s x e
uw=p(xq)DiF; + f1+ fa}.
Then, we define the solution space
H(S,T) x D,w) = {u:ue # ((S,T) x D,w)),u, € Hy'((S,T) x D,w)},
which is equipped with the norm

—a/2
lullse1((s,m)xDw) = lluzy o/ Iz, ((s,7)xDw) + DUl ((5,7)xDw)
+ ||Ut||H;1((S,T)xD,w)'

If w = 1, we simply write #,((S,T) x D,w)), ' ((S,T) x D,w) as #,'((S,T) x
D)), 7, ((S,T) x D), respectively. Now, we give the definition of weak solutions to
equation (1.3).

Definition 2.1. Let p € (1,00), F € L,((S,T) x D,w)? and f = f1 + f2, where
fizle, fgﬂ?;a/2 € Ly((S,T) x D,w). We say that u € 7' ((S,T) x D,w) is a weak
solution to (1.3) in (S,T) x D with the boundary condition u = 0 on DN {z4 = 0}
when DN {zg =0} # 0 if

/ w(xq) " H(—udsp + Aeo(2)ugp) dz + / (ai;Dju+ F;)Dip dz
(S,T)xD (S,T)xD

- / n(za) " f(2)p(2) d
(S, T)xD

for any ¢ € C§°((S,T) x D).

2.2. Balls, cylinders, and partial mean oscillations of coefficients. For zy =
(2',204) € R x Ry and p > 0, we write B,(xo) the ball in R? with radius p and
centered at xg. Also

B (z0) = B,(20) NRY,

and Bj(z() is the ball in R?~! with radius p and centered at z{ € R?!.
Recall that the PDE in (1.3) is invariant under the scaling

(t,x) = (s*7 %, sz), s> 0.

Moreover, for zq ~ xoq > 1 and a;; = d;5,¢co = 1,F =0, A =0, the PDE in (1.3) is
approximated by a nonhomogeneous heat equation

up — xogAu = f,
which can be reduced to the heat equation with unit heat constant under the scaling

(t,z) — (52_°‘t,sl_°‘/2xada/2x), s> 0.
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Due to these facts, throughout the paper, the following notation on parabolic cylin-
ders in Qr are used. For each zy = (tg,zg) € (—00,T) X R‘i with zo = (2, Toq) €
RI~! x R, and p > 0, we write

Qp(20) = (to — p°~ %, t0) X By(pmea) (T0),

2.1
2y Q7 (20) = Qu(20) N {xa > 0},
where
(2.2) r(p, woa) = max{p, woa}*/?p' /2.

Note that Q,(z0) = Q}f (20) C (=00, T) x R for p € (0, xoa).
We impose Assumption 2.2 on the partial mean oscillations of the coefficients
(ai;) and ¢o, which is an adaptation of the same concept introduced in [19,20].

Assumption 2.2 (pg,d). For every p € (0,p) and for each z = (2/,24) € Qr,
there exist [ai;],,2r, [colp2r + ((®g — r(p,®a))+,xqa + r(p,xq4)) — R such that (1.1)
and (1.2) hold on ((xq —r(p, a))+, xa +r(p,zq)) with [a;;], . in place of (a;;) and
[colp,~ in place of ¢y. Moreover,

max f 0 (7, ) — [a55) 2+ (va)| i dyac
4JQ} (2

+ ][ lco(T, 9", ya) — [colp,= (ya)| dy' dyadT < 6.
Q4 (2)

2.3. Main results. We now state the main results of the paper.

Theorem 2.3. For given v € (0,1),a € (0,2) and p € (1,00), there are a suffi-
ciently large number A\g = Ao(d,v,a,p) > 0 and a sufficiently small number 6 =
0(d,v,a,p) > 0 such that the following assertions hold. Assume (1.1), (1.2), and
Assumption 2.2 (pg, ) are satisfied with some pg > 0. Then for any F € L,(Qr)?,
A> )\op8‘72, and f = f1+ fo such that :v}fafl and x;aﬂfg € L,(Qr), there exists
a unique weak solution u € 7, (Qr) of (1.3). Moreover,

—a/2
(2.3) |Dullz, ) + VAlzE " ullz, @) < N(IFllL, @) + 9]z, @)

where N = N(v,d,a,p) > 0 and g(2) = x| f1(2)] + A’1/2x;a/2|f2(z)| for z =
(2, zq) € Qp.

Our second result is about the estimate and solvability in weighted Sobolev
spaces. For p € (1,00), we write w € Ap(RiH) if w is a weight on Riﬂ such that

p—1
(W] 4 (ga+1y = sup ][ w(z)dz ][ w™ VPV () dz < 0.
P >0 ( Q7 (20) ) ( Q7 (20) )

2€RTT p
Theorem 2.4. Let v € (0,1),a € (0,2), p € (1,00) be fized, and M > 1. Assume
that w € A,(RUT) with [w]Ap(Rd+1) < M. There are a sufficiently large number
+
Xo = No(d,v,a,p, M) > 0 and a sufficiently small number § = §(d,v,a,p, M) > 0
such that the following assertions hold. Assume (1.1), (1.2), and Assumption 2.2
(po,d) are satisfied with some py > 0. Then for any F € L,(Qp, w)?, A\ > Aop§ 2,

and f = f1 + fo such that x(lifo‘fl and x(;aﬂfg € L,(Qr,w), there exists a unique
weak solution u € 7, (Qr,w) of (1.3). Moreover,

—a/2
(24) | Dullp,(rw) + VI|z / ullp, @rw) < NIF| L, @) + 19, @)
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DEGENERATE PARABOLIC EQUATIONS 4427

where N = N(v,d,a,p, M) > 0 and g(z) = x| f1(z)| + )\—1/2x;a/2\f2(z)\ for
z=(7,xzq) € Qr.

Remark 2.5. We note that since the cylinders under consideration are not the
usual parabolic cylinders, the A, class defined above is not exactly the same as
the classical A, class generated by the usual parabolic cylinders. We can similarly
define A,(R%) and A,(R?) with half balls Bf (x0) and balls B,(zo) in place of
@/ (20), respectively. It is easily seen that if w; € Ap(R) and wy € Ap(R%), then
w = w(t,z) = w; (Hwe(z) € Ap(RT™) and

[w]Ap(Ri-H) < [wl]Ap(R) [w2]AP(]Ri) .

Consequently, by using the Rubio de Francia extrapolation theorem (see, for in-
stance, [31] or [8, Theorem 2.5]), from Theorem 2.4, we also derive the correspond-
ing weighted mixed-norm estimate and solvability. We also mention that a typical
example of such A, weight ws is given by x for any v € (=1,p —1).

Remark 2.6. Theorems 2.3 and 2.4 can be extended to equations with lower-order
terms in the form
up + Aeo(2)u — p(xa)Di(aij(2)Dju) + biDiu+ cu = f + p(xq)DiF; in Qp,
where b and ¢ are bounded and measurable, and b = 0 when « € [1,2). To see this,
we write the equation into
ug + Aeo(2)u — pu(xq) D; (ai;(2)Dju) = f + p(zg) DiF; in Qr,
where
f=h+F, f=h-bDulscr, fo=fo—bDiuly>, —cu.

By the theorems above, we have

| Dull +VAllz5*u]

SN(IF] + gl + llzy b Divlay<r | + A2z (b Dittl 5 + cu))

< N(IF] -+ lgl) + N 4 A7) [bDul| 4+ NAT |zl

where |- || is either the L, norm or the weighted L, norm and N is independent of 7.
By taking 7 sufficiently small and then A sufficiently large, we can absorb the second
and last terms on the right-hand side to the left-hand side. The solvability then
follows from the method of continuity. Finally, we can also deduce the corresponding
results for elliptic equations of the form

—D;(aij(2)Dju) + p(zq) " (biDsu + cu + Aco(2)u) = p(xa) ' f + D;F; in R

with the Dirichlet boundary condition v = 0 on {zq = 0}, by viewing solutions
to the elliptic equations as steady state solutions to the corresponding parabolic
equations. We refer the reader to the proof of [23, Theorem 2.6]. It is worth noting
that here the lower-order coefficients u(z4)~1b and u(z4) tc do not even belong
to Lq and Lgyo, respectively, when o € [2/d,2), which are usually required in the
classical L, theory. See, for instance, [25] and the references therein.

Remark 2.7. We note that W (R%) = #,}(R%) if p > 2/a. Moreover, the estimate
(2.3) also implies that

|27 ullz, @) < NIFlL, @0 + 19z, @)
due to Hardy’s inequality.
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4428 H. DONG, T. PHAN, AND H. V. TRAN

3. PRELIMINARY ANALYSIS AND Lo-SOLUTIONS

3.1. A filtration of partitions and a quasi-metric. We construct a filtration of
partitions {C, } ez (dyadic decompositions) of R x R%, which satisfies the following
three basic conditions (see [24]):

(i) The elements of partitions are “large” for big negative n’s and “small” for
big positive n’s: for any f € L1 joc,

Clélén |C] = 00 asn — —oo, nh_)ngo(f)cn(z) = f(z) (ae.),

where Cy,(z) € C,, is such that z € Cy(2).
(ii) The partitions are nested: for each n € Z, and C' € C,,, there exists a unique
C’ € C,,_1 such that C c C".
(iii) Moreover, the following regularity property holds: For n,C,C" as in (ii), we
have
|C'] < No|C,
where N is independent of n, C, and C".
For any s € R, denote | s] to be the integer part of s, i.e., the largest integer which
is less than or equal to s. For a fixed @ € (0,2) and n € Z, let kg = [-n/(2 — o) ].
We construct C,, as follows: it contains boundary cubes in the form

((j—1)27™,5277] x (512", (i3 4+ 1)2%0] x - -+ x (ig_12%0, (ig—1 4+ 1)2%] x (0, 2%0],

where j,i1,...,iq_1 € Z, and interior cubes in the form
(5 —1)27™, 527" x (i12%2, (iy 4+ 1)272] x - x (14272, (iq + 1)2F2],
where j,11,...,1q € Z and

(3.1) ig2%2 € 2k 2MF1) for some integer k1 > ko, ko = [(—n + k1) /2] — 1.
Note that ko is increasing with respect to k1 and decreasing with respect to n.
Because k1 > kg > —n/(2 — a) — 1, we have (—n + k1a)/2 — 1 < ky, which implies
that ky < ki and (ig + 1)2%F2 < 2M+1 Tt is easily seen that all three conditions
above are satisfied. Furthermore, according to (3.1) we also have
(2k2 /2k1)2 ~ 2—71/(21@1)2—04’

which allows us to apply the interior estimates after a scaling.

Next we define a function g : Qo X Qoo — [0, 00):
o((t,2), (s,9)) = |t = 5[/~ + min {|z - y|, [& — y[*/ ®~ ) min{zg, ya} >/~ }.

It is easily seen that p is a quasi-metric on ., i.e., there exists a constant K; =
K, (d, o) > 0 such that

o((t,x), (s,)) < Ki(ol(t, ), (£, 2)) + o((t, 2), (5,9)))
for any (1,), (5, ), (i, ) € Due, and o((t,2), (5,9)) = 0 if and only if (£, 2) = (5,).
Moreover, the cylinder @ (20) defined in (2.1) is comparable to
{(t,z) € Q:t < ty,0((t,x), (to,x0)) < p}-
Therefore, (1, 0) equipped with the Lebesgue measure is a space of homogeneous

type and we have a dyadic decomposition, which is given above.
For a locally integrable function f defined on a domain Q C R¥*! we write

(No = ]é F(s,y) dyds.
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DEGENERATE PARABOLIC EQUATIONS 4429

We define the dyadic maximal function and sharp function of a locally integrable
function f in Q. by

May f(2) = sup ][ £ (s,)| dyds,
Cn(2)€C,

n<oo

FE(2) = sup ][C oo o) = (Dol s

n<oo
We also define the maximal function and sharp function over cylinders by

MiG = s fe)ldyds,

2€Q7 (20),20€000

= swp /ém 65 = (s

ZEQ;—(Z()),ZOEE
It is easily seen that for any z € Q.,, we have
Mayf(2) S NMF(2), f1(2) < Nf#(2),
where N = N(d, o).

3.2. Lo-solutions. We begin with Lemma 3.1 on the energy estimate for (1.3).

Lemma 3.1. Suppose that (1.1) and (1.2) are satisfied, F € La(Qr)?, and A > 0.
Also let f = f1 + fo such that x}l_afl and zga/Qfg are in Lo(Qr). If u € 751 (Qr)
is a weak solution of (1.3), then

—a/2
(32)  IDulliyr + VAIzg Pl iy@r) < N{IFlzy@p + I9llzaon]

where N = N(v,d) and g(z) = =} %|f1(2)] + Afl/Qz;a/2|f2(z)| for z = (2, xq) €
Qr.

Proof. By using the Steklov averages, we can formally take u as the test function
in Definition 2.1. Then, it follows from (1.1) and (1.2) that

d
— u(xd)_1|u\2dx+)\/ x;o‘|u|2d:ﬂ+/ | Du|? da
dt Jra R R

(33) <Nwd) [ (ullflaz” +1FIIDu) de

+

Now, we control the right-hand side of (3.3). By using Young’s inequality and
Hardy’s inequality for terms on the right-hand side, we see that

N(wd) [ (Julflez™ + Fl|Du) de

+

< N(v,d) / (lw/zall fulal™® + NV 2a,Pu|| A= 222 | + | FI| D) da
R+

1
< —/ (|Dul? + Az;*u?) dx
2 R4
¢
#N(w) [ [l AP A Al B de
R4

+
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It then follows from (3.3) that

4 u(xd)71|u\2d:17+)\/ a:ga|u|2dx—|—/ | Du|? dx
dt Jrg RY RY

< N(v.d) / AP AT 2T R R 4 [ FPP) da
R+

Now, by integrating the above inequality with respect to the time variable, we
obtain (3.2). The lemma is proved. O

We prove the following simple but important result in this subsection.

Theorem 3.2. Let v € (0,1),a € (0,2), A > 0, and F € Ly(Qr)?. Also let

f = fi+ fo and assume that z'~*f; and x;a/zfg are in La(Qr). If (1.1) and

1.2) are satisfied, then there exists a unique weak solution v € J(Qr) of (1.3).
2

Moreover,

—a/2
(34)  IDullssr + VAlg Pulliy@r) < N]IFlzs@r) + I9llzaon)

where N = N(v,d) and g(2) = =} *|f1(2)| + )\_1/237;0‘/2|f2(z)| for z= (7, zq) €
Q.

Proof. \Ye approximate the domain Qr by a sequence of increasing bounded do-
mains {Qy }r given by
Qr = (—k,min{k, T}) x Bf, keN.
For each fixed k € N, we consider the equation of u in @k
(3.5) uy + Aeo(2)u — p(xa)D;(aij(z)Dju + F;) = f(z) in Qr

with the boundary condition u = 0 on (—k, min{k,T}) x OB, and zero initial data
at {—k} x B,‘:. Then, using the energy estimates as in the proof of Lemma 3.1, if
ug € 41 (Qy) is a weak solution of (3.5), we have the following a priori estimate

—a/2

o /
[ uk||Loo((7k,min{k,T}),L2(B;:)) + \/Xde uk”@(@k) + ||DukHL2(@k)

—« — —a/2
< NPl Ly + ™ ill gy + A7 120 ol s

for N = N(d,v) > 0. From this and the Galerkin method, we see that for each
k € N, there exists a unique weak solution uy, € 74 (Qy) of (3.5). By taking uy = 0
in Q7 \ Qk, we see that uy is a function defined in Qr satisfying

_ —«a/2
g aukHLoc((foo,T),LQ(Ri)) + \/XHId o/ U || Lor) + 1Dkl Lo 27
—a _ —a/2
< N|IF o) + 25 fillaor) + 272123 ™ foll ooy |-

From this, and by taking a subsequence still denoted by {uy}, we can find u €
5 (Q7) such that

up —=u in Lo(Qp,z;%) as k — oo,

Dup — Du in L2(Qr) as k— oo.

Then, using the weak formulation in Definition 2.1 and passing to the limit, we
see that u € /4! (Qr) is a weak solution of (1.3) and satisfies (3.4). Note that the
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uniqueness of u € 4! (Qr) also follows from this estimate, and therefore the proof
of the theorem is completed. ([l

4. EQUATIONS WITH COEFFICIENTS DEPENDING ONLY ON THE Z4-VARIABLE

Let ¢y : R4 — R, be measurable satisfying

(4.1) v <l(zg) <vt forzg € Ry

for a given constant v € (0,1). Also, let (Eij)gjzl : Ry — R4 be a matrix of

measurable functions satisfying the following ellipticity and boundedness conditions
(4.2) VIE? S ai(za)&i&y, ai(za)l vt for zg € Ry
and ¢ = (&;,&,...,&4) € R For a fixed number A > 0, let us denote
Lou = uy + Neo(wa)u — p(za)D;i (@ (xq) Dju),
where p satisfies (1.2). We study the following equation

(4 3) zou = ,U,(:Ed)DiFi + f in QT,
’ u = 0 on {zq =0},

which is a simple form of (1.3) as the coefficients only depend on z,.
The main result of this section is Theorem 4.1, which is a special case of Theorem
2.3.

Theorem 4.1. Let v € (0,1), o € (0,2), A > 0, and suppose that (1.2), (4.1),
and (4.2) are satisfied. Also, let F = (F1, Fa,...,Fy) € Ly(Q7)%, f = fi + fo
such that x(lifo‘fl and xga/zfg are in Ly(Qr), where p € (1,00). Then, there

exists a unique weak solution u € %1(QT) of (4.3). Moreover, there is a constant
N = N(v,d,a,p) >0 such that

— 2
IDullz, ) + VAlleg **ull L, r
—« — —a/2
< N[IFl s @) + Ik il o) + A2 ol 00

The rest of the section is to prove Theorem 4.1. Our idea is to first establish mean
oscillation estimates and then use the Fefferman-Stein theorem on sharp functions
and the Hardy-Littlewood maximal function theorem in spaces of homogeneous
type. It is therefore important to derive regularity estimates for homogeneous
equations. In the next two subsections (Subsections 4.1 and 4.2), we derive the
boundary Holder estimates and interior Holder estimates for solutions to homo-
geneous equations. The mean oscillation estimates of solutions and the proof of
Theorem 4.1 are given in Subsection 4.3.

4.1. Boundary Holder estimates for homogeneous equations. In this sub-
section, we consider the following homogeneous equation

You = 0 in Q+7
(4.5) { Ou = 0 on Qllﬁ{deO}.

Our goal is to prove Proposition 4.5 below on Hoélder estimates for weak solutions.
We begin with the following local energy estimate.
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Lemma 4.2 (Energy inequality). Suppose that (1.2), (4.1), and (4.2) are satisfied
in QY. Ifu € J4Q7) is a weak solution of (4.5) in Q7 , then

(4.6) sup / u? (s, )z, " dv + / (M + |Dul?)dz < N u? dz,
se(-1/2,0) B}, Qf, QY
where N = N(d,v,«) > 0.

Proof. Let n € Cg°((—1,1)) and ¢ € C§°(B1) be nonnegative functions such that
n=1on (-1/2,1/2) and ( =1 on By 5. We test (4.5) by up='n?(t)¢*(z), where
B =2/(2 — «), and integrate by parts. We then get

sup / u® (s, 2)ag 0’ (s)¢*(2) d$+/ (23 + | Dul*)n¢* dz
se(-1,0) B}, Qf

(47 <N [ gt + D10
1

Here we used the lower bound of ¢y and both the lower and upper bounds of u. To
estimate the first term on the right-hand side, we use Holder’s inequality to get

N/ Wz 0" ni|¢? d
Qf

a/2 1—a/2
< N(/ uzx(fnﬁ@ dz) (/ u?¢? dz)
Qf Qf

a/2 1—a/2
< N(/ (|Dgu|?¢? + u?|DaC*)n” dz) (/ u?¢? dz)
Qf Qf

1
(4.8) < - / |Dul>¢?nf dz + N u? dz,

3 Jor Qf
where we used 8 —1 = /2 in the first inequality, Hardy’s inequality in the second
inequality, and Young’s inequality in the last inequality. By Young’s inequality, the
second term on the right-hand side of (4.7) is bounded by

1
(4.9) N/ | Dul|uln®¢|D¢| dz < —/ \Du|?n?¢?dz + N u?dz.
Qr 3 Jar

Qf
Combining (4.7), (4.8), and (4.9), we get (4.6). The lemma is proved. O
Lemma 4.3. Under the conditions of Lemma 4.2, we have
(4.10) / uiz;*dz < N u? dz,
Qs Qf

where N = N(d,v,a) > 0.

Proof. We test the equation with wu;u~'n?(t)(?(x), integrate by parts, and use
Lemma 4.2 by noting that u; satisfies the same equation as v with the same bound-
ary condition on {zs = 0} and a standard iteration argument. We note that here
both the lower and upper bounds of ¢y and p are needed. O

Recall that for each 8 € (0, 1), the 5-Holder semi-norm in the spatial variable of
a function u on an open set Q C R4 is defined by

u(t, z) —u(t,y)|

[n i@ = s { 20— 5 e £y, (60),(by) € Q)
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For k,l € NU {0}, we denote

k
lullcrigy =Y Y 19 Diull1 @)

i=0 || <1
Moreover, the following notation for the Holder norm of w on @ is used
k

lullor.s @) = lullcroq) + Y [0iulcos q)-
i=0
Corollary 4.4. Under the conditions of Lemma 4.2, for any integer k > 0, we
have

411 Nullerarzgr,) < Nllulp,@fy,  IPeullce2qr,) < NliDaull, o),
where N = N(d,v,a,k) > 0
Proof. From Lemmas 4.2 and 4.3, by induction we have
(4.12) / |0k D?, Diu|? dz < N(d, v, o, k j,l)/ u? dz
QY Qf

for any integers k,j > 0 and [ = 0,1. Then the first inequality in (4.11) follows
from the Sobolev embedding theorem. The second inequality follows from the first
one by noting that D, u satisfies the same equation as u with the same boundary
condition on {z4 = 0}. O

Next, we show higher regularity of u.

Proposition 4.5. Under the conditions of Lemma 4.2, we have

(4.13) ||UHCL1(Q1+/2) + |‘D$'UH01«1(Q1+/2) + HU||CM(Q1+/2) < N||Du||L2(Q1+)
and

—a/2
(4.14) VuzgPllen-arsiap,) < NIDulL o)

where N = N(d,v,a) > 0, v = min{2 — o, 1}, and U(z) = aqj(zq)D;u(z) for
z=(2,1q4) € QF.
Proof. Let = 2(ac — 1)+ € [0,2). Using (4.12), we have

(4.15) / 05D, U? dz < N(d, v, o, k g)/ u? dz
Q1/2 ;r
for any integers k, j > 0. From equation (4.5),
d—1 d
(4.16) DyU = p(zq) ™  (us + Meou) — ZG (za)Diju
=1 j=1

Therefore, for r € (1/2,1),

/ \DdU\ng dz < N/ (Jug| + )\|u|)2x520‘+'8 + |DDI/u|2xg dz

r

< N/ (Jue) + Mul)?z;? + |[DDyrul? dz

< N/ |Dagu¢|* + M| Dgu|? + |DDyul? dz < N/ lul? dz,
Qf Qf
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4434 H. DONG, T. PHAN, AND H. V. TRAN

where we used Hardy’s inequality to bound the integral of |ut|2x;2 by that of
\Ddu_t|2 in the third inequality, and (4.6) and (4.12) in the last inequality. Since
8fDi,u satisfies the same equation with the same boundary condition, similarly we
have

(4.17) / 0F DI, D4U 25 dz < N(d, V,a,k',j,r)/ lu|? dz
QF Qf

for any integers k,7 > 0 and r € (1/2,1). Now if a@ < 3/2 so that 8 < 1, by (4.17)
and Holder’s inequality,

. 1/2
6"D],Ddb dz < N d,V7Oz,k5,j77’ u2dz ;
t T
x Qf

r

which, together with (4.15) and the Sobolev embedding theorem, implies that
(4.18) 1UNL_ @iy < Nllullp, gt

Using the definition of U, (4.11), (4.18), and the Poincaré inequality, we get
(4.19) ||UHcl,1(Q1+/2) < NH”HL;;(QT) < N||DdUHL2(Q1+)-

If « € [3/2,2), we employ a bootstrap argument. By the (weighted) Sobolev
embedding (see, for instance, [17, Theorem 6] or [9, Lemma 3.1]) in the x4-variable
and the standard Sobolev embedding in the other variables, we get from (4.17) that
for any p € (2, 00) satisfying 1/p; > 1/2 —1/(1+ 3),

(4.20) HU”Lpl(Q;f,zg dz) < N”U”Lz(QT)'

Using the definition of U, (4.11), and (4.20), we get

(4.21) 1Dullp, (@i 2 azy < Nllullp, o)

As before, since 8fDi,u satisfies the same equation, from (4.21) and (4.12), we
obtain

(422) ”afDi’Du”Lpl (Q;",mg dz) S N||UHL2(Q1+)

Since 8 < 2, we may take p; > 6. Let 51 :=0+ (a—1)p1 = (a—1)(2+p1) > 5.
Using (4.16) again, we have

/ |DaUPr 2l dz < N [ (Jug| + Nul)Pra, PP 4 |DDyufPral dz
+ +

T r

<N [ (Gl + Alul) ) 5 + | DDyl d
Q'V‘

(4.23) < N/Q+(Ddut|+>\Ddu)p1x§+ |DDyrulPraf dz,

where we used the weighted Hardy inequality in the last inequality to bound the
integral of ((Ju] +)\|u\)/xd)p1xg by that of (|Dguy| +)\|Ddu|)p1x§, which holds true
because

(B+1)/p1 <3/6<1.
See, for instance, [10, Lemma 3.1]. Since u; and D, u satisfy the same equation as
u, by (4.23), (4.22), (4.6), and (4.10), we further obtain

p1 .01 2 p1/2
|DqU|Pra)t dz < N |u|® dz .
Qf Qf
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Similar to (4.17), from the above inequality we deduce
. p1/2
(4.24) / |08 DY, DU 2 dz < N(/ |u|2dz) '
Qi Qf

for any integers k,j > 0 and r € (1/2,1). Now if p; > 81 + 1, as before we conclude
(4.18) and thus (4.19) by using (4.24) and Hélder’s inequality. Otherwise, we find
p2 € (p1,00) such that 1/ps = 1/p1 —1/(1+ f1) + €1, where &1 > 0 is a sufficiently
small number to be chosen later, and let o = 81 + (o — 1)pa. We repeat this
procedure and define py and (j recursively for k > 3 by
pk =1/pr—1 —1/(1 + Br—1) + ek—1,  Br = Br—1 + (o — L)py,

where €5 > 0 is a sufficiently small number to be chosen later, until py, > B + 1 for
some k. Since

1= (Brer +1)/pry1=2—a— (Br +1)/prs1
=2—a+1—(Be+1)/pr — (B + 1)ex

and a < 2, the procedure indeed stops in finite steps, i.e.,

1= (Be+1)/pr >0
for a finite k € N provided that e < (2 — a)/(2(Bk + 1)). Note that to apply the

weighted Hardy inequality in each step, we require

(Br +1)/pry1 < 1,

which is guaranteed because

(Be +1)/pes1 = (Br +1)/pr — 1+ (B + e
=(Br—1+1)/pu+a =2+ (B + ek
< (Br_1+1)/pr<1/2< 1.
Therefore, (4.18) and thus (4.19) hold for any « € (0, 2).
Next, since D,/u and u; satisfy the same equation as u, from (4.19) and (4.12),

we get
(4.25) ||Dr’“||C1=1(Q;r/2) < N||Dm’u||L2(Q;f), Hut||c1=1(Qj/2) < N||UHL2(Q;)-
Since

U, = Edj(l‘d)Djut, DU = [ (xd)Dij/u,
using (4.25) and the Poincaré inequality, we get
(4.26) HUt||LQO(Q1+/2) + ||Dm’U||LOO(Qj/2) < N||DU||L2(Q1+)-

Furthermore, in view of (4.16), (4.19), (4.25), (4.6), and the zero Dirichlet boundary
condition, we have

(4.27) I1DaUl,__ < N|Dull, o)

Q)2
when o € (0,1]. When a € (1,2),
|DaU| < NHDUHLQ(Qj)x}z_a in Qf 5,
which implies that
U(t,",wa) - U(t,a', o)l < NIDull op o3 — 2]

(4.28) < N[ Dullp, gt lza = yal*~*
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for any (¢,2',24), (t,2',y4) € QY/Q. Combining (4.19), (4.25), (4.26), (4.27), and
(4.28) gives (4.13).

Finally, we show (4.14). In view of (4.25) and because a < 2, it suffices to bound
the Holder semi-norm of \/Xux;a/z in 4. For any (t,2',z4), (t,2',yaq) € QT/T let

I:= \/X|u(t,x',xd)x;a/2 — u(t,x',yd)yd_aﬂ\.
Without loss of generality, we may assume that 0 < z4 < yq < 1/2. When |z4 —
yal > |yal/4, by (4.13) and (4.6) we have,
1—a/2 1—a/2
1< VXIDull ;) (@ """ +uy~")

1—a/2

SNHU||L2(Q1+)yd < N||Du||L2(Q1+)|xd_yd|lia/2,

where in the last inequality we used the Poincaré inequality. When |z4 — yq| <
lyal/4, we have x4 € [3yq/4,yq). By the mean value theorem, (4.13), and (4.6),
there exists s € (x4, yq) such that
I = Vg — yal|Dau(t, z', s)s™% — (a/2)u(t, z’, s)s~ 17/
—a/2 —
< NV|zq — vallDullr o1 ,,)%a = N|[Dull ol — yal =%
This completes the proof of (4.14). The proposition is proved. O

4.2. Interior Holder estimates for homogeneous equations. We fix a point
20 = (to,z0) € Qr, where xg = (x),704) € R¥™! x R,. Suppose that p € (0, z04),
and 8 € (0,1), we define the weighted 5-Hélder semi-norm of a function u on @ ,(z2o)
by

|U(S,J)) —’U,(t,y)|
. ) t?
Igda/2|x - y| + |t _ 5|1/2)6 (3 x) #* ( y)

[ulcsr2oq, (z)) = SUP { (

and (5,), (t,) € Qp(x0) }-
As usual, we denote the corresponding weighted norm by

ulloor22@ ey = Il @o(z0p) + [l 720 g 2oy

The following result on the interior Holder estimates of solutions to the homoge-
neous equation (4.3) is needed in the paper.

Proposition 4.6. Let zg = (to, xo) € Qr and p € (0,x04/4), where xy = (x(, Toa) €
R4 x R,. Suppose that (1.2), (4.1), and (4.2) are satisfied on

(xoa — 1(2p, Tod), Tod + 7(2p, Tod))-
If u € 51 (Q2,(20)) is a weak solution of
Lu=0 in Q2(20),
then we have

—a/2 —a/2)/27,.—a/2
g Pl @y + PN g Pl i g )
1/2
<N ][ |x;a/2u|2dz
Q20(Z0)
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and
[ Darull 2o (@ (z0)) T UL (@ (20))

+p(lfa/z)/Q([[Dx/u]]ci/4,1/2 + [[U]]Ci/“*l/?

(Qp(20)) (Qp(Zo)))

1/2
<N <][ |Du|2dz> :
Q25(20)

where N = N(v,d,a) > 0 and U = ag;(xq)D;u.
Proof. By (2.1) and as 4p < xpq, we have
r(2p, w0a) = max{2p, woa}*/?(2p) 1 71? = (2p)' /2’
and
Qap(20) = (to = (29)*~10) X Byyps-zyeys ()
Let us denote the standard parabolic cylinder centered at zg with radius p by
Qp(20) = (to = p*,t0) X By(xo) and  Q, = Q,(0).
Also, let

(t .’IZ‘)_U( > at+t 7p1 a/2 /JT—F.’L‘O) (t,.’IZ‘)EQg.

We then see that v is a weak solution of

(4.29) fi(za)ve + Ap* & (24)v — Diaij(xa)Djv) =0 in Qo
where
Gij(wa) = aij (p' =235y w4 + T04),
170‘/25’30(1/ T4 + Toa) [/L(Pka/%gff’?d + de)] 71’

o(za) = 2gaCo(p
i) = 20y [1nlp" =225 wa + woa)]

Due to this and the lower and upper bounds in (1.2) and as p/xoq < 1/4, we see
that
p(pt™ Q/Q:cgé Ta+ Toq) ~ z8y[(p/m0a) " g +1]% ~ gy for all |z4| < 2.
Therefore, there is a constant Ng = Ny(v, a) € (0,1) such that
No < fi(za),éo(xa) < Ng ', ¥z = (t,2',24) € Q2.

Consequently, the coefficients in (4.29) are uniformly elliptic and bounded in Q.
Then, adapting the proof of Holder estimates in [7, Lemma 3.5] to (4.29), we obtain

12 1/2
Il < ¥, a:) :N(J[ '“2‘”)
Q2 Q25 (20)
1/2
<Naca/2 ][ |x;a/2u|2dz ;
Q2,(%0)

where in the last step, we use the fact that x4 ~ zoq for all z = (2/,24) € Q2,(20).
Now, for (s,z) and (7,y) € Q1 with (s,z) # (7,y), we have
o(s.2) —v(ry)l  _ pUTD (s @) —u(r' §)]

(e =l +Is = 7[112) ' (o Pla — ] + |sr = 12)
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where

1-a/2, a/2 1-a/2, /

T=0p T4z, Y=p Yy + o,
SIZPQ a5+t0, 7_/:p2—0¢7__‘_t07
which implies that

(1 Ot/Q)/Q[[uﬂcuz; 1/2(Q (20)) [['U]]Cl/‘1 1/2(Q1)"

Therefore,

(1—e/2)/2 [u]

[ull 2o (@, (z0)) T CYAV2(Q,(20))

(4.30) /2
< ngf ][ |x;°‘/2u|2dz .
Q2,(20)

Now, for (t,z),(s,y) € Q2,(20) with z = (2/,24) and y = (¥, ya), by the triangle
inequality, we have

—a/2 —a/2
;P ult, ) — y; (s, y)

—a/2 «/2
2 ey =y (s, y)|

—a/2 —
< N(a)zoy? (Jult, ) — uls,y)| + |24 — yalzs lullzo(@pz0))
< N% a/2 (370da/2|$ —yl+ |t - s|1/2)1/2

a/d4—1
122804 Nl @, (20)))

< |u(t,z) — u(57y)|$d

! ([[u]]cl/‘lsl/?(Q (20)) + |:I:d —Yd

< N% a/2 (370da/2|$ —yl+ |t - s|1/2)1/2

1 plimar2)/2g0/2m1

. ([[U]]Cé/4,1/2(Qp(zO)) ”uHLoo(Qp(ZO)))’

where we used the fact that z4,yq ~ xoq in the second inequality and |z4 — yq| <
Npl=o/2g a/ in the last inequality. Therefore, as p/xoq < 1/4 and (4.30), we obtain

—a/2 — —a/2
g 2l ey + PO 7D [

1/po
<N ][ |x(;a/2u|p“dz
Q2p(20)

and this proves the first assertion of the proposition.
Next, we prove the second assertion. Again, adapting the proof of [7, Lemma
3.5] to equation (4.29), we see that

ulcari1r2(g, (z0))

1/2
|mem“m@ﬁWVme@ﬂ3Nw@(f|mfm) ,
2

where V' = agj(xq)D;jv. Then, by scaling back as before, we obtain the second
assertion of the proposition. The proof is completed. (Il

4.3. Mean oscillation estimates and proof of Theorem 4.1. We next prove
the following mean oscillation estimates of weak solutions to homogeneous equa-
tions.
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Lemma 4.7. Let 29 = (2),704) € Qr and p > 0. Assume that u € %I(Qﬂp(zo))
is a weak solution of
Zou=0 in Qﬁp(zo)

with the boundary condition u =0 on {xq = 0} N Q14p(20) if {xa = 0} N Q14,(20)
is not empty. Then, for every k € (0,1),

1/2 1/2
(l'U - ('U)Q;rp(zo)DQtp(ZO) < N {(‘U‘Z)Qﬂp(zo) + (|Du|2)QT4p(ZO)i|

forv= \/Xx;a/Qu, and
(102t = (Dart) g, o)) gt (o) T 1V = Wt (o) o, 20
1/2
< N,ﬂo(|Du\2)Ql+4p(zo),
where v = min{1,2 — a}/4, U = agjD;u, and N = N(d,v,a) > 0.

Proof. By a scaling argument, without loss of generality, we can assume that p = 1.
We consider two cases.

Case 1 (xgq < 4). Let 29 = (2(,0), and it follows from (2.1) that
Q1 (20) € Q3 (%) € Qfy(%0) C Qy(20)-
Then, it follows from the mean value theorem and Proposition 4.5 that
(|Dr’u - (Dz/u)Q:(zo) ‘)Qi(zo)
< N(d)’f[HDDI’UHLOO(QT(ZD)) + HDr’ut||Loo(Q1+(zO))]

1/2
< NalDartllgia gy 20y < NE(DUP) g (2
1/2
< Nm(|Du|2)Ql+4(ZO).

Recall that v = min{1,2 — a}. By a similar argument,
2—a
(U= @at ol ot o) < V& 10U N2 (@ oy + 57 0] 0@t o)

1/2
< N (1D) g, o)

Finally, we write v = \/Xx;a/ 2. Applying the mean value theorem and Proposition
4.5, we get
(v - (U)QI(ZO)l)Qi(ZO) S N’{lia/QHUHCM*H/%Q;(%))

Lo/ o\ 1/2 1—a/2 2)1/2
< N TE(Du) o ) < NET(IDUP) o -

Then, the desired inequalities follow as x € (0, 1).
Case 2 (xzgq > 4). The proof is similar to Case 1, instead we apply Proposition 4.6.
For example, for v = \/Xm;a/ 2u, we have

B 1/2—a/4
(lo = gt ) g ) < N5 [lcarar g oy

1/2 1/2
< Ngt/2-a/4 <][ v(z)|2dz> < Ngt/2-a/4 <][ v(z)|2dz> ,
Q3 (20) Qli(0)

where we used the doubling properties of the measure. The oscillation estimates of
D,v and U can be proved in the same way. ([l

Licensed to Brown Univ. Prepared on Tue May 30 14:33:19 EDT 2023 for download from IP 128.148.254.57.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4440 H. DONG, T. PHAN, AND H. V. TRAN

Next, we prove Proposition 4.8 on the oscillation estimates for weak solution of
the nonhomogeneous equation (4.3).

Proposition 4.8 (Mean oscillation estimates). Assume that F € Laoc(Qr)? and
f = f1+ fa such that :E}fafl and x;a/Qfg are in Lo joc(Qr). Ifu € %%IOC(QT) 18
a weak solution of (4.3), then for every zo € Qr, p € (0,00), and x € (0,1),

1/2 1/2
(lv— (U)Qip(m)DQ (z0) S Ne[(Jof? ) ,(20) + (| Dul ) )]

+ Nk [(|F? )”2 + (g )”2 (ZO]

Z

and

1/2
(25 (U)Qip(z())‘)@:p(zo) < Nk (| Dul ) 1y (20)

+ NeT [(1F? )1/2 PR (0

where v = \/Xx;“mu, U = (Dpu,U) with U = @gi(zq)Diu, g = ) *|f1] +
)\*l/zfcga/z\fﬂ, Yo =min{l,2—a}/4, 1 = (d+2—a)/2, and N = N(d,v,a) > 0.

Proof. Let w € 54 (Qr) be a weak solution of
Low = /L(Id)Di(FiXQﬂp(zo)( z)) + fXQmp zo)(z) in Qp

with the boundary condition w = 0 on {z4 = 0}. The existence of such solution is
guaranteed by Theorem 3.2. By the same theorem, we have

(4.31)
—a/2
| Dwllzacr) + Vg wllra@r) < NIFl 08, o + V190 oot o

Next, note that h = u — w € 2} (Qﬂp(zo)) is a weak solution of
Zh=0 1in Qﬁp(zo)
with the boundary condition 2 = 0 on {4 = 0} N Q14(20). Denote
W= (Dyw,aqu;D;w) and H = (Dyh,aqD;h).

Then, applying Lemma 4.7, we obtain

1/2
(4.32) (1% - (H)Qtp(z()ﬂ)@:p(m) < Nmo(|Dh|2)Q1+4p(zo).
Moreover,
~ ~ 9y 1/2 1/2
(433) (|h - (h)Q;rp(zo)DQip(zo) < Nk [('th)Qtlp(z (|Dh| ) 14p(z0)]
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with h = )\1/2x;a/2h. By the triangle inequality, Holder’s inequality, and (4.32),

we have
(et — (U)Qip(zw')cgip(m)
< (11 = oz, e Dty T (Y = Mg, ) oz, a0
_ -7 2\1/2
< (11 = (W, o) gy oy + VDR OVRE
o 2\1/2 -7 2\1/2
S Nk 0(|Dh| )Qtlp(zg) + N(d)K (‘Dw| )Qtlp(zf))
Vi 2 1/2 — 2 1/2
(4.34) S N[ (1Dul)gp, ) + 87 UDWP) g1 (o))
where we used x € (0,1) and the following fact from (2.1) and (2.2) that
N E 14 d
(4.35) Lljp( ol _ N(d)x—2+e [—r( L de)} < N(d)x—27
|Qrp(20)] r(Kp; Toa)
with 71 = (d 4+ 2 — a)/2. Then, by using (4.31) and (4.34), we obtain the desired

estimate for . The oscillation estimate for v = A!/ 2x(;a/ %4 can be proved similarly
using (4.31) and (4.33). O

Proof of Theorem 4.1. We consider the cases when p > 2 and p € (1, 2) as the case
when p = 2 was proved in Theorem 3.2.

Case 1 (p > 2). We prove the a priori estimate (4.4) assuming that u € ' (Qr).
Let v and U be defined as in Proposition 4.8. Using Proposition 4.8, we have

U#* < N[O M(|Dul*)/? + 5= M(|IF[))Y2 + k7 M(|g]*) 2]
and

v# < NE© (M(J0*)2 + M(IDul)/?) + N7 (M(IFP)Y2 + M(lg1*)?)

in Qr, where g = 2" *|f1| + )\*1/2;3;“/2“”2\, U# and v# are the Fefferman-Stein
sharp functions of U and v, respectively, and M is the Hardy-Littlewood maximal
operator defined by using the quasi-metric constructed in Section 3.1. Recall that U
and |Du| are comparable. We now apply the Fefferman-Stein theorem and Hardy-
Littlewood maximal function theorem (see, for instance, [24, Sec. 3.1-3.2]) to obtain

—a/2 —a/2
1Dullz, r) + VAllzg?ull L, r) < N["JW(\/XH% *ull, @) + 1Dull L)

+ 5 F L o) + 5 gl o]

where N = N(d,v,a,p) > 0 and we used p > 2. From this, and by choosing
k € (0,1) sufficiently small, we obtain

—a/2
|Dulz, ) + VAllzg 2 ulls, ) < N [IF N1 00 + 192,000 |

Then, (4.4) is proved.

Note that (4.4) implies the uniqueness of solutions in ' (Qr). Therefore, it
remains to show the existence of solutions. We first consider the special case when
F, f1,f2 € C5°(2r). In this case, by Theorem 3.2, there is a unique solution
u € ' (Q7) to (4.3). Since F and f are smooth and compactly supported, we can
modify the proof of Proposition 4.5 to get

(436)  IDull_ o7 ,on T 19100t p 200 < NP L, (0 (20)) + CFur(20)
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4442 H. DONG, T. PHAN, AND H. V. TRAN

for any zp € 00 N{t < T}, where the constant Cr ¢(29) vanishes when |z| is
sufficiently large. A similar estimate holds in the interior of the domain:

1Dl @t on T 10t 00
—ad/4 —a/2
(4.37) < Nag || |Du| + gy [ulll Lyt (zoy) + Crusr(20)

for any zg € Qr satisfying |zoq| > 1/2. From (4.36) and (4.37), we see that Du and
v are bounded in Q7, which together with equation (4.3) implies that u € 7' (Qr).

Finally, for general F and f, we take sequences of functions {F(™}, { fl(n)}, and
{fQ(")} in C§°(2r) such that

FO = B Y = aif a PEY sa

in L,(Qr). From the proof above, for each n € N there is a unique solution
u™ € A} (Qr) to equation (4.3) with F(), fl("), and fén) in place of F, f; and fs.
By using the a priori estimate (4.4), we see that {Du(™} and {\/Xx;a/Qu(”)} are
Cauchy sequences in L,(Qr). After passing to the limit, we then obtain a solution
u e ) (Qr) to (4.3).

Case 2 (p € (1,2)). As before, we first prove (4.4). We follow the standard duality
argument. Let ¢ = p/(p — 1) € (2,00), G = (G1,Ga,...,Gq) € Ly (Qr)? and
h = hy + hy such that h = x5~ %|hy| + Afl/zxga/z\hg\ € Ly(Qr). We consider the
“adjoint” problem

(4.38) —Uy + Aeolt — u(zq)D; (aji(l‘d)Dj’l] + GiX(foo,T)) = hX(foo,T)

in Riﬂ with the boundary condition v = 0 on aRiﬂ. By Case 1 and a change of

the time variable ¢ — —t, there exists a unique weak solution u € %‘jll(R x R%) of
(4.38) and

(4.39) /Rd+1 (|Du(z)|? + /\q/2‘x;a/2a(z)|‘1) dz <N o (IG(2)]* + |fz(z)\q) dz.

Note also @ = 0 for ¢ > T because of the uniqueness of solutions to (4.38). Then,

as in Definition 2.1, we test (4.3) with u~'v and test (4.38) with u~'u. We then
obtain

/Q (G(2) - Du(z) — p(za) "' h(2)u(z)) dz
(4.40) = [ (G- Do) - plaa) 1)) d

We next control the terms on the right-hand side of (4.40). By Holder’s inequality,
and (4.39), the first term on the right-hand side of (4.40) can be bounded as

/Q F(z)- Du(z)dz| < N|Fz,0p) |Cllz,@r) + [RlL,@n)]-
T

Licensed to Brown Univ. Prepared on Tue May 30 14:33:19 EDT 2023 for download from IP 128.148.254.57.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DEGENERATE PARABOLIC EQUATIONS 4443

To bound the second term on the right-hand side of (4.40), we use the condition
on u in (1.2), Holder’s inequality, and Hardy’s inequality to obtain

/ n(za) " f(2)i(z)dz
Qr

<Nw) | (e R/l + b ke )
< N [I25* Aill @ l5/2al g0 + 22 Falln, o 7 2l o) |
< N, d, gz, @ | 1Dl 1, 0r) + X225 %l 00 |
< Nlgle,@n [IG] L@ + Wl
where (4.39) is used in the last inequality and we recall
g =y LAl + A2 ).

In summary, it follows from (4.40) that

/Q (G(2) - Du(z) — p(za)~h(z)u(z)) dz

< N(IFl L, + gl @0 ) (1G], @0 + 1Bz, 0r) ).

Because of the last estimate, the condition (1.2) for x4, and as G and h are arbitrary,
we obtain the a priori estimate (4.4).

Now we prove the existence of solutions. As in Case 1, we only need to consider
the case when F, f1, fo € C§°(Qr). By Theorem 3.2, there is a unique solution
u € 5 (Qr) to (4.3). Now we take G, f1, f2 € C5°(Qr). Let w € 4 (Qr) be
the unique solution to (4.38). According to the proof in Case 1, we know that
w € ' (Qr). By the duality argument above, we infer that Du,v € L,(Qr) and
(4.4) holds. Therefore, from the equation, we conclude that v € ' (Qr). The
theorem is proved.

O

5. PROOFS OF THEOREMS 2.3 AND 2.4

In this section, we prove Theorems 2.3 and 2.4. Recall the definitions of
[aij]14p,26(') and [00]14/),26(')

in Assumption 2.2 (pg, ). We first prove Lemma 5.1 on the oscillation estimates of
solutions of (1.3).

Lemma 5.1. Let v € (0,1), a € (0,2), po > 0, 6 > 0, and assume that (1.1),
(1.2), and Assumption 2.2 (po,d) are satisfied. Let q € (2,00) and suppose that

u € %’le,loc(QT) is a weak solution of (1.3) with F € La1oc(Qr) and f = f1 + fo

such that g = x}[o‘\fﬂ + )\_1/2x;a/2|f2| € Lojoc(2r). Then, there is a constant
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4444 H. DONG, T. PHAN, AND H. V. TRAN
N = N(v,a,d,q) > 0 such that
(It - (U)Qtp@o)')czt,,(z()) +(lv—- (“)Qip(ZO)DQt,,(zD)
< N (K00 4 5~ §Y/271/a) [(|U|q)g£p(%) + (D)l ]

QD,)(ZO)
+Nn_71{(|F|2)1/2 + (lg)? )1/2 }

Q1+4p(20) 14,)(20)
for every zo € Qr, p € (0,po/14), and k € (0,1), where U = (Dggfu,UQ;r4 () With
P

Ugt, ooy = [0 ]14p.2y (@) Dy, and v = AV/2a; /. Here, 70 = min{1,2 — a}/4
and 1 = (d+2—a)/2.

Proof. We write z{, = (to, z(). Let F= (Fl,ﬁg, ..., Fy) with
Fy = [(ai; — [aij]14p,2 (za)) D; u—i—F]XQ (ZO)(z), i=1,2,...,d,
so that u € ) (Qﬂp(zo)) is a weak solution of
ug + A[col1ap, 2w — ﬂ(xd)Di([aijhzlp,z() (rq)Dju + Fz) =fi+f in Qﬂp(zo)
with the boundary condition u = 0 on {z4 = 0}, where
fi= f1XQ;r4p(ZO)(2)7 fo= [A(lcolap,z; (za) — co)u + fQ]XQDP(ZO)(z)'

Then, applying Proposition 4.8, we have

1/2
(ju - (L{)Qip(%)l) - Nk (U2 ) o
+ N&— [(\F\ JEAARE (/o EA ¢

where § = 27| fi] + Afl/zxga/2|f~2| and N = N(d,v,a) > 0. Now, by Holder’s
inequality,

1/2
- 1/2 1/2
(F1) ot oo < (FP) g, oy + <][ ( )|%‘ - [aij]14p,zg($d)|2|Du2dz>
14p 20

14p

2
1/2 1/q 2% Vet
(\F\) +(IDul) ¢ ) ( )|aij—[aij]14p,zg($d)! dz :
14p 20

Then it follows from the boundedness of (a;;) in (1.1) and Assumption 2.2 (po, )
that

(FP) g5 oy < (FP)GE )+ N2 (1Duf?) o

Similarly, with the condition (1.2), we also have

1/2
(\5\2)22/;4 (20 < (\ | )1/2 () + A1/2 <][ |[co]l4p7z0(xd) —co‘ |x_a/2 |2>
’ Qitlp(zo)

1/2 _ —a/2 1/
(| | )Q+ " +N(u7q)51/2 1/q)\1/2(|xd /u|<1)Q1f4p(z0).
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In conclusion, we obtain
(= @z, 0Dz, o0

< N["Q%(W‘Z)gf (20) + 5_7151/2_1/(1((‘1/” )gf (20) + (‘U‘q);/ip(zo)ﬂ
_ 1/2 1/2
+ Ng™m {(|F| ) o) + (l9%) 14P(ZO)}.

From this, Holder’s inequahty as ¢ > 2, and |U| < N|Du|, the mean oscillation
estimates of U is proved. The mean oscillation estimate for v = )\1/2:10;0‘/211 can be
obtained similarly. The proof of the lemma is completed. |

The next result gives an oscillation estimate of solutions to (1.3), each of which
is supported in a small time interval.

Lemma 5.2. Let v € (0,1), a € (0,2), po,d > 0 be fixzed numbers, and assume
that (1.1), (1.2), and Assumption 2.2 (po,d) are satisfied. Assume also that F €

Lajoc(Qr) and f = fi + fo such that g = x| fo] + A~/ | fo] € Lajoc(Qr).
Assume further that uw € ), (Qr) is a weak solution to (1.3) with ¢ € (2,00),

and spt(u) C (t1 — (pop1)*~ o st + (pop1)*=®) for some ty € R and py > 0. Then,
(1 = Wt D ot o) + (0= o, Doz, o)
—y1 51/2—-1 —2m ,(1-1/¢)(2—a Vi
SN[H’YO + K 715/ /q—|—H ’Ylp a)( }[(| | ) tlp(zo)
B 1/2 1/2
+ Nk “[(\F\ ) ot o T (197) g1, (Zo}

for every zo € Qp, p > 0, and k € (0,1), where N = N(v,a,d,q) > 0 and
U= (D;c/u, U) with U = [adj}14p,z(’) (fEd)Dj’U,, and v = )\l/zI;a/Qu,

+ (1Dul?) g ? ]

14p(ZO)

Proof. Note that if p < po/14, the assertion of the lemma follows directly from
Lemma 5.1. It then remains to consider the case p > po/14. We write I' =
(t1 — (pop1)?>~ % t1 + (pop1)?~). Tt follows from (4.35), the triangle inequality, and
Hoélder’s inequality that

(1 = g,z o, (o) < 20U g1 (20

1/q 1-1/q
< N(d)w™2m <][ 1Zik dz) <][ xr(z) dz)
Qt;p(zo) Q14p(z0)

(1-1/9)(2-a)
SNK7271 (,00,01) (|Z/{‘ )1/‘1
p »(20)
—2y1  (1=1/@)(2—a) (17 11q\ /2
< Ni2mpf (1) s, ooy
Therefore, the oscillation estimate for ¢ follows. The oscillation estimate for v can
be proved similarly. The proof of the lemma is completed. O

We now give a corollary of Lemma 5.2, which proves the a priori estimate (2.3)
when p > 2 and u has a small support in time variable.

Corollary 5.3. Let v,pp € (0,1), o € (0,2), and p € (2,00). There exist suf-
ficiently small numbers 6 = 6(d,v,a,p) > 0 and p1 = p1(d,v,a,p) > 0 such
that the following assertions hold. Suppose that (1.1), (1.2), and Assumption 2.2
(po,8) are satisfied, and suppose that F € L,(Qr)¢ and f = f1 + fo such that
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g = 2 A+ A2 P fa] € Ly(Qr) with X > 0. Then if u € Q) is
weak solution of (1.3) satisfying spt(u) C (t1 — (p1p0)?~%, t1 + (p1po)>~%) for some
t1 € R, we have

—a/2
61 IDul @ + VAl ul @ < N[IFlz @ + 9l @)
where N = N(v,d,a,p) > 0.

Proof. Let q € (2,p). Recall that || is comparable to Du. By the mean oscillation
estimates in Lemma 5.2, we follow the standard argument using the Fefferman-Stein
sharp function theorem and the Hardy-Littlewood maximal function theorem (see,
for instance, [24, Sec. 3.1-3.2] and [8, Corollary 2.6, 2.7, and Sec. 7]) to obtain

— 2
1Dull 1, () + A2z, **ull 1, @)
< N [W0 4 r g 2 g 2 YOC D] Du) o) + A2l Pl o)

+ Nk [HFHL,,(QT) + HQHLP(QT)}a

where N = N(v,d,p,a) > 0. We choose sufficiently small x, then sufficiently small
6 and p; so that

N [0 4 561210 2 pHDEO] .
From this, (5.1) follows. O

In Lemma 5.4, we prove the a priori estimate (2.3) with p € (1,00) and no
restriction on the support of solution wu.

Lemma 5.4. Let v,py € (0,1),a € (0,2) and p € (1,00). There exist a suffi-
ciently small number 6 = 6(d,v,a,p) > 0 and a sufficiently large number \g =
Ao(d, v, a,p) > 0 such that the following assertions hold. Suppose that (1.1), (1.2)
and Assumption 2.2 (po,d) hold, X > Xopy %, F € L,(Qr)?, and f = f1 + fo
such that g = x5~ f1] + A‘l/zx;a/z\fﬂ € Ly(Qr). Then if u € S (Qr) is weak
solution of (1.3), we have

—a/2
IDull 1, ) + VAleg **ull, @) < N|IF |, 00 + ||g||Lp(QT>},
where N = N(v,d, o, p) > 0.

Proof. By Theorem 3.2, the assertion of the lemma holds when p = 2. It then
remains to consider the cases when p € (2,00) and p € (1,2).

Case 1 (p € (2,00)). We only need to remove the restriction on the support of the
solution u assumed in Corollary 5.3. We use a partition of unity argument in the
time variable. Let 6 > 0 and p; > 0 be as in Corollary 5.3 and let

£ =£&(t) € C3°(—(pop1)*~*, (pop1)*~®)
be a nonnegative cut-off function satisfying
N

(5.2) /R E(s)Pds=1 and /R P ds <

For fixed s € (—00,00), let u(®)(2) = u(2)&(t — s) for z = (t, ) € Qp. We see that
ul®) € ! (Qr) is a weak solution of

ugs) + )\co(z)u(s) — w(zq)D; (aiiju(S) — Fi(s)) = f(s)

Licensed to Brown Univ. Prepared on Tue May 30 14:33:19 EDT 2023 for download from IP 128.148.254.57.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DEGENERATE PARABOLIC EQUATIONS 4447

in Q7 with the boundary condition u(®) = 0 on {4 = 0}, where

FO)=¢t—9)F(2), () =&t —9)f(2) + €t = s)ul(2).
As spt(u®) C (s = (pop1)2~, s+ (pop1)?~*) x R?, we apply Corollary 5.3 to get

s —a/2 (s
| D )”L Qr) T \/XH% /2 )HL (Qr)

s —a/2
< N(HF( I, @) + 1991 L, @) + A 2|2y Pug'(- - L, @r)
where
99 (=) = (e 1) + A2 fa(2) )6t = 5), = = (2" 2a) € Q.
Then, by integrating the p-power of this estimate with respect to s, we get

S - 2 s
/]R(HDU( N2 gy + A2l 2 )ds

<N / (IFO12, py + 1671 0y

(5.3) + A2y g (- - S)II’L’p(QT>)

Now, by the Fubini theorem and (5.2), it follows that

LU, o,y ds= [ [ 1DuCPEr — 8) dsds = Dl

and similarly

—a 2 —a/2
[ 1z PN ds = gl o

A e Ly N R s

Moreover,

ds.

a/2 a—2 a/2
[z g = ) s < Nl

where (5.2) is used and N = N(d,v,a,p) > 0. Then, by combining the estimates
we just derived, we infer from (5.3) that

|Dul, @)+ VAllzg *ull 1, )
a—2\ — —a/2
< N(IF I Ly@r) + 19z, @) + 23722722y ullz, o))

with N = N(d, v, a,p). Now we choose A\g = 2N. Then, with A\ > \op5 2, we have
Np§ 22712 < y/)\/2, and consequently

—a/2
|Dull,2r) + \/XH"Ed / ullz, )

VA a2
< NIFllzy @) + Nlgle, @0 + 5 ez ulz,@)-
This estimate yields (2.3).

Case 2 (p € (1,2)). We apply the duality argument. This can be done exactly the
same as that of the proof of Theorem 4.1. We skip the details.

O
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Proof of Theorem 2.3. Let § and Ay be defined in Lemma 5.4. Then from Lemma
5.4, we see that (2.3) holds for every weak solution w of (1.3). The existence of
the solution u € %ﬁ,l(QT) can be obtained by the method of continuity using the
solvability in Theorem 4.1. The proof of the theorem is completed. |

In order to prove Theorem 2.4, we need an additional lemma, which is a gener-
alization of Proposition 4.5.

Lemma 5.5. Let py € (1,2) and suppose that (1.2), (4.1), and (4.2) are satisfied
in QF. Ifu € 5 (QF) is a weak solution of (4.5) in QF, then we have

||’U,HC1,1(Q-1F/2) + HDWUHCIJ(QT&) + HU”CI’W(QT/z)
—a/2
(5.4) + V|uz, lora-arzar,,) < NIDulL, @)
where N = N(d,v,a,pp) > 0, v = min{2 — o, 1}, and U(z) = @q;(zq)Dju(z) for
z=(2,zq4) €QF.
Proof. Let my € C§°((0,1/4)) and n2 € C§°(B]) be nonnegative functions with unit
integral. For € > 0, let

u(e)(t7 x) = /d u(t — s, 2’ — ey, xa)m (s)n2(y) dy' ds
R

be the mollification of u with respect to ¢ and z’. Then we have 8fDi,Dﬁlu(€) €
LpO(Q;FM) for any k,I > 0, [ = 0,1, and any suﬂiciently small € > 0. By the
Sobolev embedding theorem, we get u(®), Dy u(®) € (Q;/ 4)- Following the proof
of (4.18), we also have U®) := @y;(v4)D;jul®) € Lo (Q3/4) In particular, we get
Du'®) € Ly( 3/4) which also implies that u(%)z da/Q € LQ(Q3/4) by using Hardy’s
inequality. Therefore, u(®) € ! (Q;M). Now by Proposition 4.5, we have

Hu(e)HclJ(QJr + ||D:c’u(€)Hcl,1 Q+ 2) + HU(E)Hclw(Q+ )
() €)
+ VA [u® ||Cn °12(Q7 ) < N||Du' Iz, Q)"
By using a standard iteration argument, we obtain
||u(€)||cl,1 (@1 2) + ”DI’U(E)”CL1(Q+ + HU(E)”CLW(QLZ)
+ \/_||u(5 HCl 1=a/2(Qf ) < NHDU ||LPO(Q3+/4)a
which implies (5.4) after passing to the limit as ¢ — 0. The lemma is proved. O
We are now ready to give the proof of Theorem 2.4.

Proof of Theorem 2.4. We give a sketch of the proof. By using Theorem 4.1 and
Lemma 5.5, we have the following mean oscillation estimate analogous to the one
in Lemma 5.1. Let 1 < pg < p1 < 2, A > 0, and u € 2} |_.(Q7) be a weak

p1,loc

solution of (1.3) with F' € Ly, 10c(2r) and f = f1 + f2 such that g = :C}fa|f1\ +
)\_1/2x;a/2\f2| € Ly 10c(Qr). Then there is a constant N = N (v, «,d,p1,p2) > 0
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such that
(U = @z, e at, 20 + (v = ot oz, o
< N(/ﬂo + H—%(;l/po—l/m) [(|v|p1)1/P1 + (|Du‘p1)1/1’1 }

Q4 (20) Qi (20)
_ 1/po 1/po
+ Ng™m [(|F|po)th(ZO) + (|g|pO)QLp(zO)}

for every zg € Qr, p € (0,p0/14), and x € (0,1), where U and v are defined as
in Lemma 5.1, 79 = min{1,2 — a}/4, and v, = (d + 2 — ) /po. With this mean
oscillation estimate in hand, we can derive the weighted a priori estimate (2.4) as
in the proof of Theorem 2.3 by using the weighted Fefferman-Stein sharp function
theorem and the Hardy-Littlewood maximal function theorem (see, for instance,
[8, Corollary 2.6, 2.7, and Sec. 7]) as well as a partition of unity in the time
variable as in the proof of Lemma 5.4. Finally, to show the solvability, we use the
solvability in unweighted Sobolev spaces in Theorem 2.3 and follow the argument
in [8, Sec. 8]. The theorem is proved. O
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