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Abstract

Evolution is the main feature of all biological systems that allows populations to change their
characteristics over successive generations. A powerful approach to understand evolutionary
dynamics is to investigate fixation probabilities and fixation times of novel mutations on networks
that mimic biological populations. It is now well established that the structure of such networks
can have dramatic effects on evolutionary dynamics. In particular, there are population structures
that might amplify the fixation probabilities while simultaneously delaying the fixation events.
However, the microscopic origins of such complex evolutionary dynamics remain not well
understood. We present here a theoretical investigation of the microscopic mechanisms of
mutation fixation processes on inhomogeneous networks. It views evolutionary dynamics as a set
of stochastic transitions between discrete states specified by different numbers of mutated cells. By
specifically considering star networks, we obtain a comprehensive description of evolutionary
dynamics. Our approach allows us to employ physics-inspired free-energy landscape arguments to
explain the observed trends in fixation times and fixation probabilities, providing a better
microscopic understanding of evolutionary dynamics in complex systems.

1. Introduction

The most unique property of all biological systems
is their ability to evolve over time by preferentially
selecting randomly appearing features that benefit
them most [8, 16]. While the main trends of evolution
are now reasonably well understood, many aspects of
evolutionary dynamics remain unclarified [8, 20]. In
recent years, it was proposed to explore evolution-
ary dynamics on graphs as a way to mimic evolution-
ary processes for populations that possess complex
structures, for example, as typically found in biolo-
gical tissues [15, 34]. This approach has been widely
utilized for investigating a variety of phenomena ran-
ging from cancer initiation and evolution to social
cooperativity and ecological dynamics, providing

© 2023 IOP Publishing Ltd

new insights into mechanisms of these processes
[9, 13, 23, 24, 27-29, 31, 37]. There have been mul-
tiple observations confirming that spatial structure of
populations might have a strong effect on evolution-
ary dynamics [2, 4, 9, 14, 17, 21], but there is still no
clear understanding of why it is happening.

It is widely accepted that populations evolve fol-
lowing a specific sequence of events [20]. After a ran-
dom mutation appears in one of the individuals in
the population, it might proliferate in the system via
selection and random drift, eventually spreading to
the whole population in a process known as fixation.
But the fixation is not guaranteed, and the muta-
tion might also disappear since the birth-death events
in the successive generations are random. Then the
most crucial properties to characterize these processes
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are a fixation probability, which is defined as the
probability for the given mutation to fully occupy
the population, and a fixation time, which is defined
as the mean time between the first appearance of
the given mutation and its final fixation [1, 12, 26,
31, 32, 34, 36]. Because biological systems are typ-
ically very inhomogeneous, the fixation processes
in these systems have been frequently investigated
by exploring methods of evolutionary dynamics on
graphs, which led to several remarkable observations
[15, 31, 32, 34]. For example, while it was naively
expected that homogeneous well-mixed populations
exhibit the highest fixation probabilities, several net-
work topologies have been identified expressing even
higher fixation probabilities [15, 32, 34]. These sys-
tems have been labeled as amplifiers, and it has been
suggested that they might accelerate the evolution
[15]. However, all these networks amplify the selec-
tion of mutations at the cost of significantly slow-
ing down the fixation dynamics, i.e. the fixation
times in these systems are always larger than the fix-
ation times for similar-size homogeneous well-mixed
populations [33]. Although the fixation processes for
inhomogeneous populations have been intensively
studied in recent years [3, 5, 6, 18, 19, 25, 32, 34], there
is still no clear understanding on the microscopic ori-
gin of selection amplifications, the connections to the
underlying network topology, and the correlations
between the fixation probabilities and the fixation
times.

In this paper, we present a theoretical invest-
igation of evolutionary dynamics on inhomogen-
eous populations by applying a method of stochastic
mapping [31], as an alternative to the discrete-
time Markov chain method [5]. Our method does
not depend on the time update in the system.
The main idea is that all evolutionary processes
can be viewed as stochastic transitions between dis-
crete states. The time updates only specify how
these transitions are taking place. The method works
equally well for both continuum-time and discrete-
time updates. We chose to utilize a continuous-
time description since it provides a more realistic
description of natural processes. In our approach,
evolutionary changes in the system can be viewed
as stochastic transitions between specific discrete
states that are identified with different numbers
of mutated individuals in the populations. To be
more specific, we explicitly analyze evolutionary
dynamics on star networks that are known to
be selection amplifiers for Birth-Death updating
rule [10, 11, 22]. Explicit expressions for fixation
probabilities and fixation times are obtained using
first-passage probabilities calculations and physically
consistent approximations. Similar expressions for
fixation probabilities have been derived in [5] using a
discrete-time Markov chain description of the under-
lying dynamics. However, we employ a continuous-
time description of stochastic transitions that is more
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realistic for biological processes. Theoretical calcula-
tions are supported by extensive Monte Carlo com-
puter simulations. It is argued that the overall evol-
utionary process in the system can be viewed as a
motion in the effective free-energy landscape, allow-
ing us to explain the microscopic origin of amplifica-
tion and the observations of larger fixation probabil-
ities together with slower fixation times.

2. Theoretical method

2.1. Evolutionary dynamics on graphs

Let us investigate a specific biological population that
can evolve following random mutations and sequen-
tial selection processes. To be specific, we consider
an originally healthy tissue with N wild-type stem
cells (i.e. those cells that can replicate). At some time
(assumed to be #=0), a mutation appears in one
of the cells [7, 35]. The tissue cells can replicate,
although the rates are different for normal (wild-
type) and mutated cells. It is assumed that the division
rate for normal cells is equal to b, while the mutated
cells dive with a rate r x b. The parameter r is defined
here as a fitness parameter that specifies how faster
is the replication rate for the mutated cells in com-
parison with the wild-type cells. It plays a critical role
in dynamic processes, since it assists the evolution in
choosing the specific mutations to take over the whole
tissue [20, 31]. For r > 1, the mutations are viewed
as advantageous, while for r <1 the mutations are
disadvantageous. In addition, r =1 specifies neutral
mutations. For convenience, we assume here that the
replication rate of normal cells is b = 1.

Another crucial factor that drives the evolution
is a requirement to have the total number of cells
N to be constant [31]. For biological tissues, it is
a consequence of homeostasis when the most relev-
ant physiological properties of organisms tend to be
constant [16]. Although the specific mechanisms of
how the number of cells in the tissues is kept constant
at the microscopic level are not yet fully understood,
the popular approach to mimic the processes that
support homeostasis is to utilize a so-called Moran
procedure [20]. Here we adapt a Birth-death updat-
ing rule, which is a two-step process in which a new
cell is born and then the extra cell is removed. Thus,
in Birth-death updating selection is based on birth.
First, one of N cells is randomly chosen to replic-
ate proportionally to its fitness (‘Birth’). This tem-
porarily increases the number of cells in the tissue
to N+ 1. Then one of N+1 cells is chosen to be
instantaneously removed (‘Death’) to return to the
original number of cells in the tissue. Alternatively,
one can use a death-Birth update rule, in which selec-
tion occurs after death [10, 11]. Itis interesting to note
that the quantitative results for both updates differ: a
Birth-death update makes the star graph an amplifier
of natural selection, while a death-Birth update makes
the star graph a suppressor of natural selection [10].
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Figure 1. Schematic view of evolutionary dynamics on networks. Arrows indicate allowed changes after the replications. Green
cells are normal and red cells are mutated. (a) A homogeneous well-mixed model of size N where the replications at any node can
lead to the removal of any other (N — 1) cells with equal probability 1/(N — 1). (b) An inhomogeneous network where the
replication at one special star node can affect any other (N — 1) cells with probability 1/(N — 1), while the replications at any of
the (N — 1) branched cells can only change the star node with unit probability.

One should also notice that our two-step proced-
ure of obtaining transition rates is very convenient
to emphasize the differences between two updates in
evolutionary dynamics.

To better understand the complex dynamic pro-
cesses in biological systems, it has been proposed to
investigate the evolutionary dynamics on networks
[15, 34]. This is schematically illustrated in figure 1.
The idea here is that networks efficiently reflect spa-
tial inhomogeneity and variations in activity in the
biological tissues. In this approach, each node cor-
responds to one cell, and connections between nodes
specify the direction of selection processes after the
replication. The advantage of analyzing the dynamics
on graphs is that both homogeneous (figure 1(a)) and
inhomogeneous networks (figure 1(b)) can be invest-
igated in one framework, allowing for better under-
standing of the role of population structures in evol-
utionary dynamics.

To explain evolutionary processes on graphs, let
us first consider the homogeneous network presen-
ted in figure 1(a). In this model, there are N identical
cells, and the Moran procedure here is the follow-
ing. After the randomly selected cell replicates, tem-
porary increasing the number of cells to N + 1, with
the probability 1/(N — 1) any other of (N — 1) cells is
substituted by the newly created cell, bringing down
the number of cells again to N. This is a well-mixed
homogeneous system for which the fixation dynamics
has been fully investigated [ 15, 20, 31]. More specific-
ally, the fixation probability for this system is equal to

(hom) 1—1/r
= 1—1/rN’ N

while the fixation time is given by [28],

N—1

=Y

n=1
-1 PN-n_1
X . 2
(r—l)(rN—1> 2)
The sub-index ‘1’ in these expressions corresponds to
the fact that the evolutionary process starts with just

3

one mutated cell, while the super-index hom reflects
that the system is homogeneous. In the limit of r —
1 (neutral mutations), the fixation probabilities and
fixations times simplify into

H(hom) _ l

1 _N7

Y
:M. (3)

hom
o™ <

Another important limiting and more realistic case is
when N — oo for r > 1. In this case, it can be shown
that

™ ~ 1 —1/r, ™ ~InN. (4)

2.2. Evolutionary dynamics on star networks

Now let us consider the evolutionary dynamics for
inhomogeneous populations. More specifically, we
concentrate on the star network as presented in
figure 1(b). This is the system where the fixation prob-
ability amplifications has been observed [15, 33]. In
this model, there are two types of cells: one central
node and (N — 1) branched nodes. After the replica-
tion takes place in the central cell, the selection can
substitute any of the branched cells with the probab-
ility 1/(N — 1). However, if the replication occurs at
the branched cells, then only the central cell will be
substituted with the unit probability.

To investigate the fixation dynamics in the star
network, we explore a method of stochastic mapping
that has been already successfully utilized for under-
standing cancer initiation processes [27-29, 31]. The
main idea of this approach is to view the evolutionary
processes as a set of stochastic transitions between dif-
ferent states. These states are specified by the number
of mutated cells. For the star model, this approach is
illustrated in figure 2. We define the state n(?) as the
one that has n mutated cells, but only in the branched
nodes and not in the center, while the state n defines
the situation with n mutated cells that includes the
central node. Arrows in figure 2 identify possible
transitions between the states. There are four types
of transition rates. The rate aff” describes the trans-
itions from the state n(®) to the state n+ 1, and the
rate a, describes the transition from the state n to
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Figure 2. (a) Evolutionary dynamics on the star network as a set of stochastic transitions. Green nodes correspond to normal cells
while red nodes describe the mutated cells. Arrows correspond to allowed transitions. (b) Corresponding discrete-state stochastic
scheme of evolutionary dynamics for the star-model. State 0 describes the full elimination of all mutations, while state N
corresponds to fixation. (c) An approximate model that neglects the reverse transition from the state #(%) to the state (n — 1)(©)

for n > 1—see text for more details.

the state n+1 (figure 2(b)). It corresponds to the
increase in the number of mutated cells in the sys-
tem. The decrease in the number of mutated cells
are given by the rates b\ (n® — (n—1)®) and
the rates b, (n — (n — 1)(9): see figure 2(b). Import-
antly, one can see two types of states between the state
without mutations (n = 0) and the fully mutated state
(n=N): see figure 2. But effectively only one of them
leads to the fixation.

As explained in the supporting information, the
specific expressions for the transition rates are given

by
N—n
an—r<N_1); (5)

b, =N—n. (6)

0) — g
al® =nr;

b(O) -
N-1’

This allows us to fully evaluate the fixation dynamics
on the star networks. For this purpose, we utilize a
method of first-passage probabilities that has been
successful in analyzing the mechanisms of cancer

initiation [28, 29, 31]. We define functions F,(¢)
[F ()] as the probability densities of reaching the
fixation state n = N at time ¢ if at t = 0 the system star-
ted in the state n [n(?)]. The time evolution of these
probability density functions is governed by the fol-
lowing set of backward master equations,

drl?

de =a{"Fyy + b FY | —

() + B,
(7)

dF,
dt

:anFnJrl +an£,(21 - (an+bn)Fn7 (8)

with initial condition Fy(#) = §(¢), which means that
if the system starts in the state n =N the fixation is
immediately accomplished.

From the first-passage probabilities, the details of
evolutionary dynamics on star networks can be fully
identified. More speciﬁcally, one can calculate the fix-
ation probabilities 7, = fo t)dt and the fixation
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times T, = [ tF,(t)dt/m,. As shown in the sup-
porting information, the fixation probabilities start-
ing from the states 7 or n(%) are given by,

L+ i~ (+ + )

I = : 9)
{1 1 } [1 1 ( 1452 )N_z]
+ r(N=1) T2\ 1+(N=D)

n

and
1 ()
2 \ 14+r(N—1
I, — (N-1) —
P_l(wxl) ]
2 \ 14+r(N—1)

Interestingly, it can be shown that generally for all val-
ues of nwe have I\ > TI,,. If starting from the single-
mutation states (n = 1), the fixation probabilities are

equal to

(10)

Aot \N-2 ;
[+ ] |14 (sinew) ]

(11)
1- 4

B N— 141 \ N2
[1+71] [l_rlz (I—H(N—l)) }

To better understand the microscopic picture of
fixation processes, it is useful to consider limiting
situations. If the replication rates of mutated cells are
the same as for the normal cells (r = 1, neutral muta-
tions), from equation (11) we obtain

(12)

N-1 _
N+ (N—=1)(N-2)’
1
T N+(N-D(N—-2)

) =

1T (13)

which for large number of cells (N > 1) simplify into

HEO) ~ I, ~ —. (14)

N’ N2
Another important limit is when r > 1 and N — oc.
In this case, it can be shown that

1- 4 1
0 21
Y = =1 o
l— % r
1— o 1
IT, = L ~]1— . 15

Starting from the single-mutation states (n = 1), these
calculations yield

1—1
V=T ~1- 5, I =

H Teimouri et al

It is important to note that the asymptotic result for
HEO) was originally derived in [15] as an approximate
form for fixation probability for large N. When the
mutation appears first in one of the branched cells
(starting in the state 1(°)) our limiting results fully
agree with previous calculations for the fixation prob-
ability in star networks [15]. But starting in the center
of the network (the state 1) does not essentially lead
to the fixation at all for the large N.

The results of our calculations are presented
in figure 3. As it was shown in [28] (see also
equation (4)), for very large N, the fixation prob-
ability for the well-mixed Moran model behaves
as thom) ~ 1711/r. Then, using equation (16), the
asymptotic value of the ratio of fixation probabilities
(green curve in figure 3(a)) is given by

n 1ol

thom) - 1— i

1
~1+-, (17)
r

which in the limit of r — 1 approaches 2, as illus-
trated in figure 3(b). The most interesting observation
here is that the fixation probability strongly depends
on which initial cell is mutated. The mutation in one
of the branched states leads to the amplification of
fixation probabilities, while the mutation in the cen-
ter node of the network significantly decreases the
probability of fixation: see figure 3. Our theoretical
approach allows us to clearly understand these obser-
vations. From the discrete-state stochastic scheme in
figure 2(b), one might conclude that the main path-
way of eliminating the mutation from the state 1(*)
to go directly to the state 0, and its probability is
given by

b\ 1

b + a4l T 1+r(N-1)
(18)

P, (o) (elimination) =

which in the limit N — oo approaches zero. It is
important to notice here that we consider here only
neutral or beneficiary mutations (r > 1). The prob-
ability of eliminating the mutation from the state 1 is
equal to

b N-1
by+a; r+(N—1)

Pj (elimination) = (19)
which in the limit N — oo approaches unity. Since
the fixation is opposite to the mutation elimination
(II; ~ 1 — P;(elimination) in this limit], one can see
that it is more probable to remove the mutation from
the central cell, while it is much less probable to elim-
inate the mutation from the branched cell. This is the
origin of the fixation amplification phenomenon in
the star networks.

The results presented in figure 3(b) also sug-
gest that the highest degree of amplification
(Hgo) / Hihom)) generally cannot be larger than two,
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Figure 3. Ratio of fixation probabilities for the star network and the well-mixed homogeneous system: (a) as a function of the
system size for r = 1.1, and (b) as a function of the fitness parameter r for N = 250.

and it can be achieved only for the fitness paramet-
ers that are only slightly larger than one. This is one
of the main results of our investigation. Interest-
ingly, for neutral mutations (r =1), the theoretical
calculations predict that there will be no amplific-
ation at all (I /I1"™™ = 1), and this has been
also observed before. This is a consequence of the
behavior of fixation probabilities at r =1 and large
N, namely HEO) ~ thom) ~ 1/N. Thus, the fixation
amplification works well only for slightly advantage-
ous mutations.

Another interesting observation from our theor-
etical analysis is the dependence of the degree of amp-
lification on the system size (figure 3(a)) and the fit-
ness parameter r (figure 3(b)). Increasing the number
of cells in the tissue makes the amplification stronger.
This is because the probability of mutation elimina-
tion from the state 1(%) behaves as 1/N. Surprisingly,
making the mutation more advantageous (larger r)
lowers the degree of amplification—see figure 3(b).
It can be shown that Hgo)/ﬂ(hom) ~ 1+ 1/rfor large
number of cells. This can be explained by arguing
that there are more pathways to reach the fixation in
the well-mixed homogeneous system, while it is only
one pathway in the star-network model. Then, lar-
ger fitness parameters r increase the fixation probab-
ility more for the homogeneous system than for the
inhomogeneous system.

While we were not able to obtain explicit expres-
sions for the fixation times, they can be evaluated
numerically by solving the corresponding backward
master equations, as shown in the supporting inform-
ation. In addition, we also run Monte Carlo com-
puter simulations to evaluate the fixation dynamics
in the star networks. The results of our numerical cal-
culations and computer simulations are presented in
figure 4 and compared with the homogeneous well-
mixed model. Only the fixation times from the state
1(9) are presented there because they are essentially
the same as the fixation times starting from the state 1.

One can see that the ratio of fixation times grows lin-
early with the size of the system (figure 4(a)), suggest-
ing that for N >> 1 the fixation time on the star net-
work scales as Tj@) ~ NInN. This can be explained
in terms of our method of stochastic mapping. In the
inhomogeneous star model there is one pathway that
leads to the fixation—the one when the center cell is
always mutated. However, in the well-mixed homo-
geneous system there are N such pathways that lead to
the fixation since there are no topological constraints
there. Figure 4(b) shows that increasing the fitness
advantage of the mutated cells accelerates the fixa-
tion dynamics in the star network, but the effect is
rather modest. We also found that the slowest fixa-
tion dynamics is observed for very slightly advantage-
ous mutations where the fixation amplification is the
strongest.

Our discrete-state stochastic description allows us
to better understand the microscopic mechanisms of
evolutionary processes on star networks. It shows that
the amplification of the fixation probability is tak-
ing place not due to increased number of pathways to
reach the fixation state but by lowering the probabil-
ity of mutation elimination from the branched cells.
However, it cannot lead to faster fixation dynam-
ics because the system is frequently trapped in the
states where the central node is not mutated (see
figure 2(a)), slowing the overall fixation dynamics. In
addition, the topology of the network dictates that
there is only one pathway to reach the fixation state,
while there are many more opportunities in the well-
mixed homogeneous systems of the same size to reach
the fixation state.

2.3. Approximate model to describe evolutionary
dynamics on star networks

To better illustrate the idea of slowing the fixation
dynamics in the star network due to trapping the sys-
tem in the unproductive states, we propose consider-
ing an approximate model that captures main features
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Figure 4. Ratio of fixation times for the star network and the well-mixed homogeneous system: (a) as a function of the system size
for r = 1.1, and (b) as a function of the fitness parameter r for N = 100.

of the evolutionary dynamics on star networks and
allows us to obtain the explicit expressions for the fix-
ation probabilities and fixation times. Our idea here is
based on the observation that the probability to move
from the state n(%) to the state (n — 1)(®) is given by

0
p[n? = (n—1)) = m
an’ +by
1

= 71’(N— ES —0, (20)

for N >> 1. Then it seems reasonable to neglect such
transitions and to consider an effective discrete-state
stochastic scheme as shown in figure 2(c). Thus, we
assume that bf,o) ~ 0 for n > 2, and only the backward
transition from the state 1(9) is assumed to be non-
zero (b9 #0).

The fixation dynamics in the approximate model
can be explicitly analyzed as shown in the supporting
information. More specifically, for fixation probabil-
ities, it is found that

1
H(?E)pm) = 1 = T 1)
! I+2+tmn 1+=
(approx) 1
14 X
_1
Hgapprox) . 1+ r(N—1) N 1 (23)

- 1 1 - 1°
1+72+7(Ni—1) 1+72

In addition, Hf,ap prox) _ 1forn>3and Hf;g’)p rox) _ 1
for n > 2. Figure 5 compares the predictions for the
fixation probabilities for the approximate model of
evolutionary dynamics. One can see that our approx-
imation works quite well when r* > 1, and increasing
the size of the system only slightly improves the agree-
ment (figure 5(a)). But in all situations, the differ-
ence is only few percents between exact and approx-
imate estimates of the fixation probabilities. At the
same time, increasing the fitness parameter of the
mutated cells has a much stronger effect (figure 5(b)).

7

This is because the relation on which our approxim-
ation is based, equation (20), works even better for
larger fitness parameters r. In all cases, we overes-
timate the fixation probabilities in comparison with
exact expressions. This can be easily understood by
again exploring the stochastic schemes in figures 2(b)
and (c). One can clearly see that our approximate
model neglects the occasional backward steps in the
upper chain of states that should only lower the fix-
ation probability, in agreement with our predictions.
These observations also suggest that our approxima-
tion works only qualitatively in the regime of maximal
amplification when r is very close to unity, but still it
allows us to clarify better some general microscopic
aspects of evolutionary dynamics.

As shown in the supporting information, we can
obtain the explicit expressions for the fixation times
of the approximate model. It is found that

N—n—1 (0)
Gy 1+k + b”+k

(0) ’
k=0  Gntk@y g

Tpprox) _ (24)

for n > 3. In the limit N — oo, it can be shown that

Tg?f)p ")~ T49PP™%) that eventually leads to the follow-

ing estimate of the fixation time,

N-—2 N—-2
(approv) _ (N—1) 1 r
T1<0) - Zﬁ+ZN_k_1
k=2 k=2
1
~ (rt ) NInN. (25)
T

Thus, the approximate model correctly reproduces
the scaling dependence of the fixation time [34].
Theoretical predictions for the fixation dynamics
in the approximate and full models of evolutionary
dynamics on star networks are presented in figure 6.
One can see from figure 6(a) that approximating the
fixation times is reasonable, although not as good as
approximating the fixation probabilities: deviation of
~20% for times in comparison with ~5% for the
probabilities for r =2 case. The increasing the size of
the system also does not have much effect. At the same
time, increasing the advantage of the mutated cells
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Figure 5. Comparison of fixation probabilities for the approximate and full models of evolutionary dynamics on star networks.
Ratio of fixation probabilities (a) as a function of the system size for r =2, and (b) as a function of the fitness parameter r for

N =100.
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Figure 6. Comparison of fixation times for the approximate and full models of evolutionary dynamics on star networks. Ratio of
fixation times (a) as a function of the system size for r =2, and (b) as a function of the fitness parameter r for N = 100.

(larger values of ) significantly improves the approx-
imation: see figure 6(b). As before, these observa-
tions can be understood by utilizing the discrete-state
stochastic schemes from figure 2. Because the approx-
imate model neglects the backward transitions from
the states n(9), it underestimates the fixation times
by neglecting the backward and loop trajectories that
should significantly slow down the overall dynamics
in the system.

Although the approximate model does not per-
fectly describe the fixation dynamics on the star net-
work, it is valuable because it emphasizes better the
main features of the evolutionary processes in these
complex systems. The fixation amplification occurs
only because the topological features of the system
prevent the mutation elimination, while the fixation
dynamics is quite slow because the system is fre-
quently trapped in the unproductive states that are
not on the pathway to the fixation. It is important to
point out that this clear microscopic picture emerges
as the result of mapping the evolutionary dynamics
into the set of stochastic transitions between states
specified by different numbers of mutated cells.

Another advantage of our discrete-state stochastic
approach is that looking at the evolutionary processes
as a motion in the effective free-energy landscape

8

allows us to describe better the microscopic mech-
anisms of underlying processes and to discuss pos-
sible ways to optimize the evolution. This is schem-
atically shown in figure 7. The fixation probability
might be associated with the ‘free-energy’ difference
between the final state (fixation) and the initial state
(one mutated cell), while the fixation times are given
by the highest barrier on the pathway from the initial
to the final states. For the well-mixed homogeneous
system, the advantage of reaching the fixation state is
relatively modest, but the dynamics is also relatively
fast. The situation is completely different for the evol-
utionary dynamics on the star network: see figure 7.
Here, the advantage of reaching the fixation state is
significant, but the ‘free-energy’ barrier to accomplish
this task is also quite large. As was discussed above,
it is the consequence of the topological properties of
the star network. Thus, to accelerate the evolution,
changes must be made to decrease these barriers and
not in trying to increase the amplification of fixation
probabilities. Our theoretical method suggests that
one can concentrate on specific discrete states where
such changes will be the most effective.

To be more specific, one can utilize a quantit-
ative approach that we recently developed to con-
nect effective free energies and transitional rates [30].
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Figure 7. The effective free energy landscape for comparing evolutionary dynamics of full Moran model and star network.

According to this method, one can assume that the
effective free energy at the state j is connected with
the residence time at the state j, 7},

Geff’j ~ 1n(1/7'j), (26)
where

1 1
(0) — I = — 27
I a7

This means that the shorter the residence time, the
higher the effective free energy at the given state.
Then, using the explicit expressions for transition
rates from equations (5) and (6), one might conclude
that the highest free energy on the pathway to the fix-
ation is in the state n = 2. Thus, our analysis suggests
that the biggest barrier in the evolutionary dynamics
is to move from the state 1() to the state 7 = 3 via the
state n=2. This knowledge might help in designing
networks with more efficient fixation dynamics.

3. Summary and conclusions

In this paper, we developed a theoretical framework
to investigate the role of inhomogeneity in evolu-
tionary dynamics of structured populations. By ana-
lyzing the mutation fixation processes on the star
network, we constructed a discrete-state stochastic
model that provides a comprehensive description
of the dynamics. Using the method of first-passage
probabilities together with reasonable approxima-
tions explicit expressions for the fixation probabilities
and fixation times are obtained. The presented the-
oretical method allowed us to better understand the
microscopic origin of fixation amplification that is
accompanied by significant increase in fixation times.
It is argued that the amplification is the result of
decreasing the probability of mutation elimination,
but it does not increase the number of pathways
to reach the fixation state, leading to slowing down
in the fixation dynamics. The mapping of evolu-
tionary dynamics on inhomogeneous networks into
the motion in the effective free-energy landscape

9

provides new insights on the mechanisms of these
complex processes. It also suggests how these systems
can be modified to optimize the evolutionary output.

The important advantage of our theoretical
approach is that the method can be extended
for studying the evolutionary processes on other
inhomogeneous systems. Specifically, we plan to
generalize our theoretical arguments for analyzing
the evolutionary dynamics on I-star networks where
there are [ star nodes that are connected with all N — |
branched cells. The system considered in this paper
is a special case with [=1. It will be important to
understand how the degree of amplification in those
systems correlates with the fixation times. In addi-
tion, our theoretical method can be extended for
dynamic networks where topological features might
fluctuate between several different arrangements. It
will be also important to apply these theoretical res-
ults for understanding cancer initiation and tumor
formation.
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