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 ABSTRACT:    The first examples of enantioselective doubly decarboxylative cross coupling are disclosed. Malonate half amides are 
smoothly coupled to a variety of primary carboxylic acids after formation of the corresponding redox-active esters under Ni-elec-
trocatalytic conditions using a new chiral ligand based on PyBox resulting in amides with a-alkylated stereocenters. The scope of 
the reaction is broad tolerating numerous functional groups and uniformly proceeds with high ee. Finally, the potential utility of 
this enantioselective radical-radical reductive cross coupling to simplify synthesis is demonstrated with numerous case studies.

   The enantioselective a-alkylation of carbonyl compounds is 
a staple transformation in organic synthesis that has been 
widely studied.1 With regards to ester and amide alkylation, 
the use of chiral auxiliaries is still commonplace due to the pre-
dictable outcomes and practical ease with which diastere-
omers can be separated.2 Such an approach is also intuitive as 
it takes advantage of polar-bond analysis resulting in an eno-
late nucleophile reacting with an alkyl halide electrophile. In 
1983, Frejd reported a different approach wherein an electro-
philic a-halocarbonyl compound could be cross coupled with 
an aryl zinc nucleophile via Ni catalysis.3 In 2005, the Fu group 
reported an enantioselective variant of such a reaction setting 
the stage for a number of advances in catalytic enantioselec-
tive access to a-alkylated ester and amide derivatives (Figure 
1A).4 Indeed, numerous studies built off of those seminal find-
ings to combine electrophilic ester and amide derivatives with 
olefins under Ni-catalysis (Figure 1A).5-7 In 2022, the Fu group 
further demonstrated that in situ generated Reformansky-type 
reagents could be coupled to alkyl halides in enantioselective 
fashion (Figure 1B).8 Recent findings from the Xu group have 
subsequently demonstrated that two electrophiles such as a-
halo boronic esters and alkyl halides could also be coupled with 
high enantiocontrol under photoreductive conditions (Figure 
1C).9 Meanwhile, doubly decarboxylative cross coupling 
(dDCC) has emerged as a powerful method to construct Csp3-
Csp3 bonds under electrochemical conditions (with and with-
out Ni, Figure 1D).10-12 In this Communication, the first exam-
ples of enantio- and diasteroselective dDCC between redox-ac-
tive esters (RAEs) derived from readily available alkyl carbox-
ylic acids and malonate derivatives are disclosed.13 This Ni-
electrocatalytic reaction is simple to conduct, uses inexpensive 
components, and demonstrates a wide substrate scope. Its 
tactical application results in a significant reduction in step 
count in a variety of different contexts.14 

The development of enantioselective dDCC required extensive 
screening of conditions and ligands, some of which is 

Figure 1. Historical Context and Precedent Inspiring Enantiose-
lective dDCC 

summarized in Table 1 using RAEs 1 and 2. The final optimized 
conditions utilized NiCl2•glyme (20 mol%), chiral ligand L15 (24 
mol%), MgBr2 (2.0 equiv.), FeBr3 (0.5 equiv.), and LiBr (0.2 M) 
as the electrolyte in DMA (0.04 M) at 0 oC, affording 3 in 54% 
isolated yield and 90% ee after 3 hours of electrolysis (0.1 
mmol scale, Mg anode and RVC cathode). In contrast, either 1st 
10 or 2nd 12 generation dDCC condition proved to be much less 
effective (Table 1, entries 2 and 3). In terms of additives, MgBr2 
appeared to be crucial for this reaction whereas MgCl2 gave 
similar yield and much lower Table 1. Reaction Development 
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and Optimizationa,b,c,d 

 
aYields determined by GC-MS analysis. bee values determined 
by chiral SFC analysis. cIsolated yield. dNot determined. 

ee, and MgBr2•Et2O only provided 31% 3 (Table 1, entries 4 and 
5). Replacing FeBr3 with FeBr2 also led to inferior results (Table 
1, entry 6). Changing other parameters such as solvent, elec-
trolyte and temperature resulted in unsatisfactory outcomes 
(Table 1, entries 7–9). In addition, TCNHPI-based RAEs proved 
to be too reactive under these conditions, undergoing unme-
diated cathodic reduction without affording desired cross-cou-
pled product (Table 1, entry 10). A series of control experi-
ments indicated that nickel catalyst, ligand and electricity were 
crucial to promote this reaction, while MgBr2 and FeBr3 were 
indispensable components to ensure its efficiency (Table 1, en-
tries 11–16). 

The ligands had a substantial effect on the outcome of this re-
action. As observed in our previous report,10 tridentate ligands 
proved to be superior to bidentate analogues in the Ni-cata-
lyzed Csp3–Csp3 dDCC reaction. For example, bidentate ligands 
with different backbones (L1–L4) all gave very poor yield and 
ee. To our delight, preliminary screening of PyBox ligands pro-
vided promising results, and the use of L5 gave 3 in 31% yield 
and 46% ee. Further modification of L5 revealed that alkyl 
chain substituents at the C-1 position dramatically improved 

enantioselectivity (L10–L13). Final adjustment of the C-4 sub-
stituent of the pyridine ring increased the yield without loss of 
enantiopurity. 

With the optimal conditions in hand, the scope of enantiose-
lective doubly decarboxylative Csp3-Csp3 cross coupling was in-
vestigated, as shown in Table 2. A vast array of RAEs derived 
from readily available alkyl carboxylic acids were tested. Aside 
from simple alkyl chains (3, 5, 6, 18), a broad range of func-
tional groups could be tolerated, such as terminal alkenes (4), 
internal alkenes (35, 37, 38), trifluoromethyl group (8), termi-
nal alkynes (9), internal alkynes (10, 36), alkyl halides (15, 17), 
aryl halides (7), ketones (16, 41, 42), silyl ethers (20), ethers 
(11, 19), imides (14), heterocycles (12, 13), lactones (38), car-
bamates (39, 40), and esters (39, 40). Several RAEs derived 
from malonate derivatives were also explored ranging from 
various substitutions on the phenyl ring (21-27) to substrates 
containing alkyl fluorides (32), nitriles (31) and internal alkenes 
(33, 34). Even with pre-existing stereocenters, the reaction can 
be programmed to access diastereomers with high control (33, 
34, 39, 40, 41 and 42). With the exception of compounds 27 
and 28, none of these structures have been prepared before. 
However, several related derivatives of some of these mole-
cules (3, 6, 7, 14, 16, 17, 19 and 20) have been synthesized in 
racemic form, often through laborious routes (see SI for graph-
ical comparison). 

It is worth noting that compound 3 has been prepared on a 
gram scale with no significant reduction in both yield and en-
antiopurity. With regard to limitations, coupling of 2 and sec-
ondary alkyl carboxylic acids was unsuccessful (43). As for the 
malonate-derived RAEs, the secondary aryl amide group 
proved to be critical as evidenced by the fact that the corre-
sponding analogs containg tertiary amides (44), secondary ali-
phatic amides (45) and esters (46) all gave unproductive re-
sults. 

The enantioselective dDCC outlined herein can be applied to 
simplify the synthesis of both medicinally important structures 
and intermediates employed in natural product total synthesis 
(Figure 2). For instance, the bile-acid derivative 49 (Figure 2A) 
was previously prepared from commercial hyodeoxycholic acid 
47 as an inseparable mixture of diasteromers at C-24 in 15 
steps with only one of those steps making a key C–C bond.15 In 
contrast, the same starting material could be enlisted to afford 
the desired product in only four steps as the major isomer 
(96:4 dr). The key dDCC proceeded in 34% yield with high dia-
stereoselectivity (96:4 dr) thereby enabling this rapid route. 
Similarly, indole building block 54 (Figure 2B) required a 10-
step sequence featuring an Evans alkylation.16 In contrast, the 
dDCC approach was far more direct requiring only 3 steps from 
commercial 53 (42% yield and 88% ee for the coupling step). In 
the next case study, the total synthesis of penicitide A em-
ployed a simple chiral alcohol 57 that was prepared from D-
aspartic acid 55 in 12 steps.17 In contrast, the same structure 
could be accessed in only five steps from carboxylic acid 56 fol-
lowed by a diasteroselective dDCC (51% yield, 96:4 dr) and am-
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ide reduction. Finally, carboxylic acid 61 was recently em-
ployed to complete the total synthesis of fluvirucinin B1.18 Its 
preparation involved a circuitous 12-step route that 



 

Table 2. Scope of Ni-Electrocatalytic Enantioselective Csp3–Csp3 Doubly Decarboxylative Coupling (dDCC)a 

 
aYields of isolated products are indicated in each case unless otherwise specified.
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Figure 2. Enantioselective Doubly Decarboxylative Cross Coupling Can Simplify Synthesis. a47 (0.1 mmol), 48 (0.3 mmol) and 6.0 
F/mol were used. bReaction was conducted at -5oC.
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could be completely circumvented by employing an enantiose-
lective dDCC on carboxylic acid 60 (44% yield, 90% ee) followed 
by mild amide hydrolysis to enable 3-step access. In all four of 
these cases, the use of pyrophoric and/or toxic reagents and 
expensive transition metals was eliminated as well as numer-
ous functional group interconversions, protecting group ma-
nipulations, and redox fluctuations. This is yet another exam-
ple of how radical retrosynthetic logic14 can often lead to more 
direct and ideal synthetic routes.19  

A mechanistic analysis of this reaction system will be the sub-
ject of a future study. Currently, the elementary steps are un-
derstood by analogy to prior art (See SI for proposed mecha-
nism). The precise role of the enabling Mg- and Fe-based addi-
tives is unclear at the present moment. To elucidate the active 
catalytic species a non-linear effect study was performed (see 
SI) suggesting that a monomeric Ni-complex bearing a single 
chiral ligand is operative.20 A CV study (see SI) was also per-
formed suggesting that the most reducible species in solution 
is the Ni-ligand complex. Two reduction peaks are observed, 
which may be attributed to the reduction potential of 
Ni(II)/Ni(I) and Ni(I)/Ni(0), respectively.21 The moderate yields 
observed in several cases might originate from the different 
rates of generating the alkyl radicals from the electronically dif-
fering RAEs. Based on this assumption, a fine-tuning the elec-
tronic properties of the NHPI moiety of the two different RAEs 
(e.g. install different substitution groups on the benzene ring) 
might be a potential strategy to enhance the yields.  

This work discloses a unique example of forging C–C bonds ad-
jacent to a carbonyl group using dDCC with high stereocontrol. 
As an addition to the growing body of literature wherein the 
stereochemical course of radical cross couplings can be con-
trolled with judicious ligand choice it expands the scope of this 
newly emerging reaction class.22 It also represents a useful 
precedent for the development of electrocatalytic asymmetric 
transformations.23 The simple reaction setup, readily available 
reagents, and high enantiocontrol combined with illustrative 
examples that simplify synthesis through radical retrosynthetic 
logic are suggestive of broad applicability. 
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[high FG tolerance]
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