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1. Introduction

Denote Qp = (—o0, T) xR%, where T' € (0, 00| is a given number, and R? = R4~ xR
is the upper half space with R} = (0, 00). For a point x € Ri, we write x = (¢/,z4) €
R4~ xR . In this paper, we prove the following theorem regarding elliptic and parabolic
equations with singular first-order coefficients, in which L,(D,w) denotes the weighted
Lebesgue space with a given weight w in a domain D, and Dy, D, denote the partial
derivatives in the z4-variable and the x’-variable, respectively.

Theorem 1.1. Let o € (—o0,1), p € (1,00),v € (ap—1,2p— 1), and A > 0.
(i) For any f € L,(R%,2)dx), there exists a unique strong solution u = u(x) to the
equation

a : d
{Au—i— - Dau— Au fin RY, (1.1)

u =0 on 8Ri7

which satisfies

/ (|DDx/u\p + }Dﬁu + az;lDdu’p + |VADu|P + |z  DyrulP

RY

+ Mul? + |\/Xa:;1u\p>acg dr < N/ |fIPx) da,
Re
where N = N(d,«,~,p) > 0.

(ii) For any f € Ly(Qr,z)dxdt), there exists a unique strong solution u = u(t,x) to
the equation

ut—Au—%Ddu+>\u:f mn  Qrp, (1.3)
u =0 on (—o00,T)x0RY, '
which satisfies
/ (|ut|p + |DDyulP + | Dju + am;lDdu’p + [VADul? 4 |z Dyprul?
Q
’ (1.4)

+ [MulP + \\/Xxglu\p)mg dxdt < N/ |fIPx) dadt,

Qp

where N = N(d, a,7,p) > 0.

Theorem 1.1 is a special case of Theorems 2.3 and 2.4 below, in which more general
equations with measurable coefficients and estimates in weighted mixed-norm Sobolev
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spaces with Ap(p2)-Muckenhoupt weights are considered, where pa(s) = s7,s > 0,
with 79 € (=1,1 — «]. We refer the reader to Section 2 for the definitions of function
spaces and strong solutions. A novelty of Theorem 1.1 is that our weight « is in general
not an A, (R, dr)-Muckenhoupt weight as usually required in the theory of weighted
estimates. Observe that we do not have the control of the L,-norm of D3u as usual,
but instead we control the L,-norm of Dgu + ax;lDdu. See an intuitive reason for this
fact in the paragraph containing (1.12) below, and also Lemma 4.6 and Remark 4.7.
When o = v = 0, the estimates (1.2) and (1.4) are the classical Calderén-Zygmund
estimates for the Laplace and heat equations in the half space. When o = 0, weighted
estimates similar to these in Theorem 1.1 were first obtained in [21], and the necessity
of such results in stochastic partial differential equations is explained in [20]. See also
[22,19] and [17] for further results and recent developments on weighted estimates for
equations and systems with bounded, measurable, and uniformly elliptic coefficients. To
the best of our knowledge, Theorem 1.1 is new when « # 0. It is worth noting that the
Dirichlet boundary condition is an effective boundary condition only when o < 1. For
example, when d = o = 1, the equation (1.1) is equivalent to a 2D Poisson equation in
the punctuated plane R?\ {0} with the zero boundary condition prescribed at the origin.
It is well known that such boundary condition is negligible as the Brownian motion in
2D is null recurrent.

Elliptic and parabolic equations with singular coefficients emerge naturally in both
pure and applied problems. We refer the reader to [7] for some references of related
problems in probability, geometric PDEs, porous media, mathematical finance, and
mathematical biology. The equations considered in Theorem 1.1 are also closely related
to extension operators of the fractional heat and fractional Laplace equations studied, for
instance, in [1,34]. In the literature, much attention has been paid to regularity theory
for such equations with singular (or degenerate) coefficients. See, for examples, the book
[30] and [12,13,9,10,24,31] for classical results, and [35,11] for some recent results. In [25],
the authors obtained interesting L,, type estimates for extension operators with constant
coefficients and the Dirichlet or Neumann boundary conditions, by using an functional
analytic approach. See also [26] for results about more general operators in the form

G Ny + x5 (DZ + cxngd - bx(f), ap,as € R,

where b and c are constants. We also mention the recent interesting work [32,33], in which
the authors obtained Hoélder and Schauder type estimates for scalar elliptic equations of
a similar type under the conditions that the coefficient matrix is symmetric, sufficiently
smooth, and the boundary is invariant with respect to the leading coefficients that is es-
sentially the same as (1.5) below, even though we do not assume the symmetry condition
on the coefficients.

In [5], we obtained the Sobolev type estimates for non-divergence form elliptic and
parabolic equations similar to (1.1) and (1.3) in a half space with the Neumann boundary
condition when a € (—1,1). The results were later extended in [8] to more general
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a € (—1,00), which is optimal. The corresponding singular-degenerate equations in
divergence form were studied in [6,8] with the conormal boundary condition and in [7]
with the Dirichlet boundary condition. In these papers, we dealt with leading coefficients
which are measurable in the normal space direction and have small mean oscillations in
small cylinders (or balls) in time and the remaining space directions. This is called the
partially VMO condition and was first introduced in [15,16] for non-degenerate equations
with bounded coefficients. For non-divergence form equations, it was assumed that

agi =0 or ag;/aqq are constant for j =1,2,...,d — 1. (1.5)

See [5, (1.8)] and [8, (1.7)]. We also refer to a related work [27] in which a conormal
boundary value problem for equations in divergence form with singular-degenerate coef-
ficients as Ax-Muckenhoupt weights was considered.

To give a formal description of our main results for general equations, we introduce
some notation. Assume that a = (a;;) : Q7 — R4? is a matrix of measurable func-
tions that satisfies the following uniform ellipticity and boundedness conditions with the
ellipticity constant v > 0:

VI€? < aii(t,2)6& and  ag(tz)| <vt (1.6)

for any & = (£1,&,...,&,) € RY and for a.e. (t,x) € Qp. We also assume that ag, c :
Qr — R are given measurable functions satisfying

v<ag(t,z), c(t,x) <v~' forae. (t,z) € Qp. (1.7)

We denote the following second-order linear operator in non-divergence form with sin-
gular coefficients

Lu(t,z) = ao(t, x)us — ai;(t, z)Diju — gadj(t, z)Dju+ Ae(t, z)u (1.8)
Zq
for (t,xz) = (t,2',zq4) € Qp, where a < 1 and A > 0 are given. Our goal is to find a

suitable class of Sobolev spaces for the well-posedness and regularity estimates of the
following parabolic equations with the homogeneous Dirichlet boundary condition

(1.9)
u 0 on (—o0,T)x ORZ.

{Eu:f in Qp,

When the coefficients a;;, ¢, and f are time independent, we also study the corresponding
elliptic equations

ZLu=f in Re
’ (1.10)
{ u =0 on aRi,
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where
Zu(x) = —ai;(x)Diju — gadj(:c)Dju + Ae(z)u (1.11)
Zq

for x = (2/,24) € Ri. In Theorem 2.3, we show that under certain VMO conditions,
(1.9) has a unique solution in a suitable class of weighted mixed norm Sobolev spaces
with the weight 570wy (t)w; () provided that A is sufficiently large. Here wy € A4(R)
and wi € A,(R%, uo) are any Muckenhoupt weights for ¢,p € (1,00) and po(s) = s7°
for s > 0, and v € (—1,1 — a]. A similar result for the elliptic equation (1.10) is stated
in Theorem 2.4. From the mentioned theorems, we obtain the local boundary estimates
stated in Corollary 2.7. Under some mild conditions, it is possible that the mentioned
results can be extended to the class of equations consisting a singular zeroth order term
bu/ mﬁ as those considered in [25,26], by using a change of variables. See Remark 5.3 for
details.

It should be mentioned that the estimates in our main results (Theorems 1.1, 2.3, and
2.4) are quite different from those obtained in [5,8] for the same class of equations but
with the conormal boundary conditions, even when p = 2. In fact, for a given solution
u of the PDE (1.9) or (1.10), D2u could be too singular to be L,-integrable even with
weights unless the weights have very fast decay near {x4 = 0}. This can be seen by the
ODE

W'+ 2 =0 forze (0,1) (1.12)
T

11— —1l—a

with a given a € (0, 1), for which u(z) = '~ is a solution and v”(z) = —a(l—a)z
which is strongly singular when z — 0T. This striking phenomenon can be seen clearly
in the local pointwise estimates derived in Section 4. As such, instead of DZu, we only
derive the estimate for Dgu + aDgu/x4. Therefore, in our main results, we establish the
mixed-norm L,-estimates of

“lu, x§Du, 25 Dy, 2DDyu, aGuy, and x5 (D3u + aDgu/,)

rqu, Ty
with weight wd s for a suitable nonnegative function w, while in [5,8] the mixed-norm L,-
estimates of u, Du, D?u, u; with weight wdp are obtained. Due to such singularity feature
for solutions of (1.9) and (1.10), suitable function spaces are found in Section 2.1, and
they are intrinsic for the problems (1.9) and (1.10).

The proofs of our main results are also different from those in [5-8]. More precisely,
the proofs of the main results in [5,6,8] use p(s) = |s|* as an underlying measure, where
s € R\ {0}, and the proofs of the main results for equations in divergence form in
[7] use the underlying measure pi(s) = |s|~®. In this paper, to prove Theorems 2.3
- 2.4, we introduce the new and more general underlying measure ps(s) = |s|7 with
Y € (—1,1 — a]. Moreover, instead of the Lo-estimates as in [6,8], the starting point
in this paper is the weighted L,-result stated in Lemma 4.6, which is based on the
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weighted L, for divergence form equations established in [7]. By adapting the ideas in
this paper, in certain cases it is possible to relax the condition (1.5) for non-divergence
form equations with the boundary condition considered in [8].

The remaining part of the paper is organized as follows. In the next section, we in-
troduce the notation and the function spaces and state the main results of the paper. In
Section 3, we recall the definition of Muckenhoupt weights and state the weighted mixed-
norm Fefferman-Stein and Hardy-Littlewood maximal function theorems. In Section 4,
we consider equations with coefficients depending only on the x4-variable. We first derive
some local boundary estimates for higher-order derivatives of solutions to homogeneous
equations, which are the key estimates in the proof of the main theorems. In particular,
we prove Proposition 4.4 below about pointwise estimates of solutions to homogeneous
equations. Then, we use Proposition 4.4 and an idea introduced in [22] to prove Theo-
rem 4.5, which is slightly more general than Theorem 1.1. Section 5 is devoted to the
proofs of Theorems 2.3 and 2.4, and Corollary 2.7. To prove Theorems 2.3 and 2.4, we
apply the mean oscillation argument in [23] with the underlying measure po mentioned
above. Finally, to show Corollary 2.7, we use a localization and iteration argument.

2. Function spaces, notation, and main results
2.1. Function spaces

For a given function f defined in ]Ri and for 7 € R, we define the multiplicative
operators

Mf(z) =zqf(x) and M f(z)=a]f(z) forz=(a/,z4) € RYL.
Let 0 be a non-negative Borel measure on either ]R‘_f_ or RiH. Forp € [1,00), —00 < 5 <

T < +00, and D C ]R‘j_, and @ = (5,T) x D, let L,(Q,do) be the weighted Lebesgue
space consisting of measurable functions u on @ such that the norm

1/p
ez, (o) = ( / u(t,x>|pda<t,z>) < .
Q

For p,q € [1,00), and the weights wy = wo(t) and wy = w1 (x), we define Ly ,(Q,w do) to
be the weighted and mixed-norm Lebesgue space on ) equipped with the norm

1/q

il (8,7 P ) = ( /T ([ 1t a)prin(o) o) o dt) ,
S D

where w(t, ) = wo(t)wi(x). We define the weighted Sobolev space

W) (D,w1 do) = {u € L,(D,w1 do) : Du € Ly(D,w; do)}
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equipped with the norm

lullwi(,widoy =l L, (Dw do) + DUl L, (D,wido)-

The Sobolev space #,}(D,wido) is defined to be the closure in W, (D,w; do) of all
compactly supported functions in C°°(D) vanishing near D N {z4 = 0}. We also define

%Q(D,wlda) = {u € V/Ijl(D,wlda) : DDypru, M Dg(IMDgu) € LP(D,wldU)},
equipped with the norm

[ullw2(Dwidoy =lullwi (D wido) + 1D Dartll 1, (Dwrdo)

+ |9 Da(M* Dau)|| 2., (D w, do) -

Similarly, for @ = (S,T) x D, w(t,x) = wo(t)w1(z), and for ¢,p € [1,00), we denote the
mixed-norm weighted parabolic Sobolev space

%%f(@,wda) :{u € L,((S, T),%Q(D,wlda),wo), Uy € Lqm(Q,wdo*)},

equipped with the norm
1/q

T
HUHW;&?(QM@U) = /”U(t, .)”quz(’D,wldU)wO(t)dt + Hut”Lq,p(Qv‘*’dU)'
S

We also denote 7/:11,%)2(@, wdo) to be the subspace of 7/(117;,2 (Q,wdo) defined by
%ﬁ?(@,wda) ={ue 2 (Q,wdo) : M u, M ' Dyu € Ly p(Q,wdo) }
and equipped with the norm
el 200 wao) = Wl wdoy T 19 0l 4(Quote) + 9V Dol 1, (@ usdo)-
Similar, we also denote
%Q(D,wlda) ={u e #}(D,wido) : M "u, M " Dyu € Ly(D,wido)}
equipped with the norm
1402 oy = 2D+ 198l ) + 98Dl i

The spaces “//:;17,2(62, z5Pwdo) and ”//;,2(2?, z3Pwido) are where the solutions of (1.9) and
(1.10) are found, respectively. However, in many intermediate steps, the results hold for
solutions in the larger spaces V/ql,z’,?(Q, wdo) and 7/1,2 (D, w1 do).
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Remark 2.1. It is clear that 7/21147,2(97«, wdo) is a subspace of

V/qu’f(QT,de) = {u € Ly, (Qr,wdo) : g, M Yu, Du, M1 D,
DD, Dﬁ*O‘Dd(Qﬁ“Ddu) S Lq7p(QT, de')}. (2.1)

In fact, due to the term

Hgﬁ_lulle(D,wlda')a

it follows from Lemma 3.4 below that these two spaces are identical.
2.2. Notation and main results

Let r > 0, 29 = (to, ¥) With zg = (2}, z04) € R¥"! x R and t; € R. We define B,.()
to be the ball in R? of radius 7 centered at x, Q,(z0) to be the parabolic cylinder of
radius 7 centered at zg:

QT(Z()) = (to — 7”‘2,t0) X BT(SC()).

Also, let B (o) and Q.7 (29) be the upper-half ball and cylinder of radius r centered at
xo and zg, respectively:

B (z0) = {z = (2, 2q) € R XR: 24> 0, |2 — 0| < r},

T

Q;L(Zo) = (to — T2,t0) X B;r(.ro)

For 2, = (tg,zh) € R x R4"1 we denote the parabolic cylinder in R x R4~! by
Q,(z) = (to — p*, to) x By (),

where B),(z() is the ball in R?~1 of radius p centered at x). Throughout the paper, when
2o = 0 and tg = 0, for simplicity of notation, we drop zg, 29 and write B,., B}, Q,, and

T, ete

T :

For a measurable set  C R and any integrable function f on € with respect to
some locally finite Borel measure o, we write

1
][f(z) o(dz) = U(Q)/f(z)a(dz), where o(Q) = /a(dz).
Q Q Q

Throughout the paper, for @ € (—o0,1) and a number 9 € (—1,1 — ], we denote the
following weights which are used frequently in the paper

[e3

u(s) =Is* pas) =|s|™*,  pals) = s for s € R\ {0}. (2.2)
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We also write

p(dz) = p(zq) dedt,  p(dz) = p(zq) dz,
pe(dz) = pr(@a) dodt,  pe(de) = pr(za) dz, k=1,2.

For any zo = (z),Z40) € Qr and p > 0, we define the average of f in Q/,(z)) as
fpala = | (60" z) do'ds (2.3
Q) (20)
and its weighted average in Q) (zo) as

Pl = ][ £(2) pald). (2.4)

QF (20)

We denote the weighted mean oscillation of the given coefficients (a;;), ag, and ¢ by

S

=17

~ [aig)pco (w0) | 2(d2)

Qp (z0)

d—1

+3  fowe) — @) a2
7710} (z0)

+ F (Jao(=) = laoluen (@a)| +[6() = [puaaaa)| ) o) (25)
QF (20)

for zy € Qp, where
ao = ao/aqd, €=c/age, and @a;; = aij/aqq, for i,j=1,2,...,d.

When the coefficients are time-independent, we similarly define af(xo) for g € M.
We point out that in [7] where the corresponding class of (1.9) in divergence form is
considered, the mean oscillations of the coefficients are measured with the weight ;.
Here we use o in (2.5) and this is more general as when vy = —«, we have pg = p1. See
the work [5,6,8,27] for similar definitions of mean oscillations but with different weights.

Remark 2.2. We note that in the definition of af(zo), the mean oscillations of éq; with
j=1,2,...,d — 1 are measured in all variables. For the other coefficients, their mean
oscillations are measured only in (¢,2'). A smallness condition on such partial mean
oscillations of the coefficients was introduced in [15,16]. It is clear that with the weight,
the smallness condition is weaker for larger ~q. Also, as agq = 1, its mean oscillation is



10 H. Dong, T. Phan / Journal of Functional Analysis 285 (2023) 109964

zero hence it does not appear in a# (20). Observe also that we may assume without loss
of generality that agq = 1 as we can always divide both sides of the PDE in (1.9) by a4q
and replace v in (1.6) and (1.7) with 2.

By a strong solution u € %sz(QT,zg‘pw do) to (1.9) with p,q € (1,00), we mean
that the first equation of (1.9) is satisfied almost everywhere. By a strong solution u €
W2 (Qp,x)dz) to (1.9), we mean that the first equation of (1.9) is satisfied almost
everywhere and the zero Dirichlet boundary condition is satisfied in the sense of trace.
Note that the solution space “//Aquf (Qp, 25" wdo) (or #,52(Qr, xdz)) is included in the
usual parabolic Sobolev space qu,ﬁ,loc(QT7Wdo—) (or V/q%l’floc(QT,dz), respectively), so
that the derivatives of u on the left-hand side of (1.9) are defined almost everywhere.
Moreover, the trace operator is well defined for #,%(Qp, 2dz) when v < 2p — 1.

We are now ready to state the first main result of the paper.

Theorem 2.3. Let v € (0,1), T € (—o0,0], p,q, K € (1,00), a € (—00,1),7 € (—1,1 —
al, and pg > 0. Then there exist 6 = 6(d,v,p,q,a,v0,K) > 0 sufficiently small and
Ao = XNo(d,v,p,q,a,7,K) > 0 such that the following assertion holds. Suppose that
(1.6) and (1.7) are satisfied, wy € Ag(R), w1 € Ap(RL, po) with

[WO]AQ(R)7 [Wl]AP(Rd J2) <K,
and

af(zo) <4, VYpe(0,p0), VY z€Qr. (2.6)

Then for any f € Lgp(Qr, 25 wdps) and X > A0p62, there exists a unique strong
solution u € #,12(Qr, x5 w dps) to (1.9), which satisfies

lutll,, + IDDaullr,, + M~ Da(M*Dau)|z,, + I~ Dyrullz,,
+VADullz,, + Alullz,, + VA ulL,, < NIfll

a,p — a,p’

(2.7)

where w(t, ) = wo(t)wr (x) for (t,z) € Qr, dus = x° dxdt,
Lyp=LgpQr, 25 wdps), and N = N(d,v,p,q,a,v,K) > 0.
For elliptic equations, we also obtain the following results concerning (1.10).
Theorem 2.4. Let v € (0,1),p, K € (1,00), a € (—00,1),7 € (—1,1 — ], and py > 0.
There exist 6 = 6(d, v, p, a,vo, K) > 0 sufficiently small and \g = Ao(d, v, p, a, 70, K) >0

such that the following assertion holds. Suppose that (1.6) and (1.7) are satisfied, w €
Ap(RL, po) with [wW]a,®e py) < K, and

af(xo) <4, Vpe(0,p0), Vage @. (2.8)
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Then for any [ € LP(Ri,xsaw due) and for X > /\Opaz, there exists a unique strong
solution u € %2(Ri,x§aw dus) to (1.10), which satisfies

IDDgrullr, + [0 Da(M Dau)| 1, + |9 Dol

(2.9)
+ VAIDull, + Allullz, + VI |z, < N{|f]|L,,

where L, = L,(RY, 25w dps), N = N(d, v, p, o, 70, K) > 0 and dus = z)° dz.
A few remarks about the theorems above are in order.

Remark 2.5. A typical example of weights is the power weights w;(x4) = xg . It is easily
seen that wy € A,(R%, p12) if and only if 3 € (—yo — 1, (1 +70)(p — 1)). Therefore, from
Theorem 2.3, we obtained the estimate and solvability in the space %{;f(QT,dez),
where y =+ ap+v C (ap—1,(1 + a+49)p — 1). In the special case when a = 0,
similar results were obtained in [21,18,3]. However, the powers of the distance function in
these papers vary with the order of derivatives. Thus the results in these papers cannot
be directly deduced from Theorem 2.3.

Remark 2.6. Theorems 2.3-2.4 imply Theorem 1.1 in the introduction. In fact, when the
coefficients a;j, ag, ¢ are constants, the conditions (2.6) and (2.8) hold for all v, and for
all pg > 0. Then, as v € (ap — 1,2p — 1), we can choose 79 € (—1,1 — o] such that
v=pB+ap+ with 8 € (=0 —1,(1 + 7)(p — 1)). From this, Remark 2.5, and a
standard scaling argument u(t,z) — u(s’t,sx) for s > 0, we see that (2.7) and (2.9)
hold for any A > 0. See Theorem 4.5 below for a slightly generalization of Theorem 1.1.
When v € ((a+ 1)p —1,2p — 1), we also obtain the estimates of |[D3ullr, 074
1M~ Dullp, (07 272y, and [|M~2ull L (s 274z)- When o = 0, this agrees with the results
in [21,3]. See Lemma 4.6 and Remark 4.7 below.

Finally, we state a local estimate, which is a consequence of Theorems 2.3-2.4.
Corollary 2.7. Let v € (0,1), p,q, K € (1,00), @ € (—00,1),v € (-1,1—a], X € [0,00),
and po > 0. Then there exists § = 0(d, v, p,q, @, Yo, K) > 0 sufficiently small such that the

following assertion holds. Suppose that (1.6), (1.7), and (2.6) are satisfied, wy € A4(R),
wy € Ap(RE, po) with

[wola,®), [wila,®e pny < K.

Assume that f € Ly ,(Q7, 25 *wdps) and u € V/Aql,l’f(Ql,xsaw dus) is strong solution of
(1.9) in QF . Then we have

HUtHLq,p(Qjﬂ,xg%duz) + ||DDw’U||Lq,p(Qj/2,z5% dpz)

tet -1
+ [ Da (0 Ddu)HLq,p(QT/z,wdle) + [ Dz’uHLq,p(QT/z,wso‘w dpa) (2.10)
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-1
+HlIDullr, @1 patwdus) T I UL, L0, 0nw dus)
< N”fHLq’p QT,IZQUJ dpa) + Hu”Lq,p(Qi",xgaw dp2)?

where w(t, ) = wo(t)wa(x) for (t,x) € QF, N = N(v,d,p,q,a,v0,K) > 0, and duy =
z)? dxdt. A similar local estimate holds for the elliptic equation (1.10) in Bf.

Remark 2.8. It is worth pointing out that (1.5) is required in [5,8]. Similar structural
conditions on the matrix (a;;) are also imposed in [27,32,33]. In this paper, we do not
have those restrictions. This is due to the new Hélder regularity of xg_lD’;,u established
n (4.11) in Lemma 4.3 below when u solves the homogeneous equations.

3. Preliminaries on weights and weighted inequalities
We first recall the definition of Muckenhoupt weights, which was introduced in [29].

Definition 3.1. For each p € (1,00) and for a non-negative Borel measure o on R?, a
locally integrable function w : R? — R is said to be in the A,(R% o) Muckenhoupt
class of weights if and only if [w]4,(ra,s) < 00, where

p—1
Lagn= s | f o] f o] e
p>0,xeR4
Bn(x) By (x)
Similarly, the class of weight A,,(Ri,a) can be defined in the same way in which the
ball B,(z) in (3.1) is replaced with B (x) for z € R4. If o is a Lebesgue measure, we
simply write A,(R%) = A,(R%,dz) and A,(R?) = A,(R?, dz). Note that if w € 4,(R),
then © € A,(R?) with [w]a,®) = (@] 4, (R4), Where @(x) = w(zy) for z = (2/,2,) € R4
Sometimes, if the context is clear, we neglect the spatial domain and only write w € A,.

Denote the collection of parabolic cylinders in Q7 by
Q={Q}(2):p>0,2z€Qr}.

Now, for any locally integrable function f defined in Q7, the Hardy-Littlewood maximal
function of f with respect to dus is defined by

M) = s ][\f )| ua(de), (3.2)

and the Fefferman-Stein sharp function of f with respect to dus is defined by

f) = sup ][If Dol na(de), (3.3)

QeQ,zeqQ
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where g is defined in (2.2), and

(o =1 1) mald2) (3.4)

Q

The following version of the weighted mixed-norm Fefferman-Stein theorem and
Hardy-Littlewood maximal function theorem can be found in [4].

Theorem 3.2. Let p,q € (1,00), 7o € (—1,1 — a], K > 1. Suppose that wy € A4(R),
wi € Ap(RE, p2) with

[wola,s [wila,®e o) < K.
Then, for any f € Ly ,(Qr,wdps), we have

1N, 0 wdus) < N||f#||Lq1p(QT,wd/L2) and
MU 2gp@rwdp) < NIy, @0 dus)

where N = N(d, q,p, 70, K) >0 and w(t,z) = wo(t)wi(x) for (t,x) € Q.

We now state the well-known weighted Hardy’s inequalities whose proof can be found,
for instance, in [7, Lemma 3.1].

Lemma 3.3. For p € [1,00), the following statements hold.

(i) For each B+ 1 < p and a measurable function f defined on R, we have
p
9z, Ry, s8-Pds) < m||f||Lp(R+,sﬁds)v

where g(s) = [; f(7)dr.
(ii) For each 8+ 1 > p and measurable function f defined on R, we have

p
9ll, (R ,s8-Pds) < m||f“Lp(R+,sl3ds)a

where g(s) = [ f(T)dr.

Lemma 3.4. Let p € [1,00), w be a weight, and o be a locally finite non-negative Borel
measure on Ri such that the set of continuous functions in R‘i is dense in L, (R‘i, wdo).
Assume that u € W) (R4, wdo) and

||9‘n_1u||Lp(]Ri,wda) < 0.
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Then, there exists a sequence of smooth functions {uy} in W}} (R4, wdo) vanishing near
{zq = 0}, which converges to u in Wy (R%, wdo).

Proof. Let n € C°°(R) be such that n(s) = 0 for s < 1/2 and n(s) = 1 for s > 1. For
each k € N, let vg(z) = u(2)ne(zq) for v = (2/,z4) € RL, where

n(s) =n(ks), seR.

By the Lebesgue dominated convergence theorem, we see that for j =1,2,...,d — 1,

v — u  and Dyvg — Dyu
in L,(R%,wdo) as k — oo. Now note that

Davi(z) = ni(zq) Dau(x) + kn' (kzg)u(z).
Since
k' (kza)| < Nag'10,1/k)(2a),

as k — oo,

1/p
/ [k (kxa)u(z)Pw(z)do(z) < NIl mi-1%(0,1/k) w doy — O-
d
4
From this and by using the dominated convergence theorem, we obtain

Dgv, — Dgu in Lp(Rchdo) as k — oo.

Consequently, {v} converges to u in W} (R%,wdo) and v, vanishes near {z4 = 0} for
each k. Finally, by using the standard mollification, we can find a sequence of smooth
functions {uy} in W (R9,wdo) satisfying the assertion of the lemma. M

We conclude the section with the following lemma, which is used frequently in the
paper.

Lemma 3.5. Let v € (0,1),a € (—00,1) and p,q € (1,00). Let o be a non-negative Borel
measure Rf'l and w : Qp — Ry be a weight. Suppose that (1.6) and (1.7) are satisfied.
Then for any R € (0, 00|, if u is a strong solution of

Lu=f in QE

with some A >0 and f € Ly ,(Q%, 25 wdo), then it holds that
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||Dd(maDdu)||Lq,p(Q;,wda) < N|:||ut||Lq,p(Q;,:rgpw do) + ||DD$'U||Lq,p(Q£,x3pw do)

+ ||m_1D1'u||Lq’p(QE,z:pwdo’) + )‘”uHLqm Qg,a:gpw do) + HfHL p(QR,zd wdo‘):|7
where N = N(d,v,a) > 0.

Proof. Without loss of generality, we may assume that the right-hand side of the in-
equality above is finite. By dividing the PDE of u by ag4q and using the conditions (1.6)
and (1.7), we obtain

|Da(M*Dgu)| < N(d,v,a)MF,
where
= |f| + Alu| + 9 [Dyru| + [ue| + [DDyrul.
Therefore,

[Da(M* D), < N|IF|

q,p(QJr wdo) = a,p QR zgPwdo)”

The lemma is proved. W
4. Equations with simple coefficients
We consider the special class of equations (1.9) in which the coeflicients only depend

on the xzg-variable. Let (@;;) : Ry — R%*4 be bounded, measurable, and uniformly
elliptic: there is v € (0,1) so that

V[E)? <aij(za)éi€; and  ag(zg)| < vt (4.1)
for x4 € Ry and for € = (&1, &, ..., &4) € R Moreover, let g, ¢ : Ry — R be measurable
functions satisfying

v <dp(xq), c(zq) <v! forae z4ER,. (4.2)

For each a < 1 and A > 0, we denote
«
Lou(t,x) = ao(zq)ur + Ne(zq)u — @;j(za)Diju(t, ', xq) — x—Edeju(t, ' 1g),
d

where (t,x) = (t,2',x4) € Qr. We consider the following equation

(4.3)

,COU f in QT7
u(-,0) =0 on (—oo,T) x R41L.
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In addition to the uniformly elliptic and bounded conditions as in (4.1), we assume that
Ggj/Gdd, j=1,2,...,d—1 are constant. (4.4)

Dividing both sides of the equation by @44, we may assume that
Ggi(zq) =ag; and age(zq) =1, VazgeRy, j=1,2,...,d-1L (4.5)

Observe that under this assumption and by a change of variables, y; = z; — Ggjza,j =

1,2,...,d — 1 and yq = x4, without loss of generality, we may assume that a4 = 0 for
j=1,2,...,d—1as in (5.2). Hence, in the remaining part of this section, we assume
that

Ggj(xq) =0 and Ggq(zq) =1, VazgeRy, j=1,2,...,d—-1 (4.6)

We stress that the results below still hold true under the condition (4.4) by changing the
variables back.

Observe that under the condition (4.6) or (4.5), there is a hidden divergence structure
for the operator Ly. Namely,

z§Lou(t, z) =z (ao(zq)ur + Ne(za)u) — Dix§a;(xq) Dyu(t, z)).
Consequently, the PDE in (4.3) can be rewritten in divergence form as
z§ (@o(zq)uy + Xe(zq)u) — D;[z§a;;(zq) Djult, x)] = x§ f(t,x) in Q. (4.7
A function u € L*((—o0,T), #,}(R%, dp)) is said to be a weak solution of (4.3) if
/ w(z)[—aouwp: + @iy DjuD;p + Aeup| dz = / w(@)fedz
Qr Qrp

for any ¢ € C§°(Qr) and for p(z) = 2§ with x = (2/,z4) € RL.
4.1. Local pointwise estimates for homogeneous equations

We consider the equation

{Lou =0 in QF(%) (4.8)

u =0 on Q8)N{xqg=0} if #4<2,
where 2 = (£,4',#4) € R x R4~ x R{. Our goal is to derive pointwise estimates for
solutions to (4.8) and their derivatives. We start with the following Caccioppoli type
estimates.



H. Dong, T. Phan / Journal of Functional Analysis 285 (2023) 109964 17

Lemma 4.1. Let v € (0,1], A > 0, a < 1, and 2 = ({,3',24) € R x ]R_i. Assume that
(4.1), (4.2), and (4.6) are satisfied on ((£q —2)T, 24+ 2). If u € #52(QF (2),dp) is a
strong solution of (4.8), then for every 0 < p < R < 2,

[ (Du@P 4 N ud) < Ndvp. ) [ ful)Putaz),

QL (2) QL%
/ ue(=)Pudz) < N(d, v, p, R) / (IDu(2)[? + Mu(2)[2) uld2).
QF(2) Q%L (2)

Moreover, for any j € N U{0}, we also have

[ 10 u@Pu) + [ IDDotuC) Putaz)
QF(2) QF (2)
< N@jipB) [ (D) + Nl ().
Qk(%)
Proof. As the equation in (4.8) can be written in divergence form as in (4.7), the lemma

can be proved by using the standard energy estimates. See, for example, the proof of [7,
Proposition 4.2]. W

Our next result is the following local boundary weighted L., and Lipschitz estimates
of solutions.

Lemma 4.2. Let v € (0,1], A > 0, and o < 1 and assume that (4.1), (4.2), and (4.6) are

satisfied on (0,2). If u € #,2(QF (2),du) is a strong solution of (4.8) with 2 € R x RY,
then we have

sup |x§max{xgl,1}u(z)\§]\7( ][ |x§‘u(z)|2u1(dz))l/2,

z QJr 2
et Qi )
@ a 2 a 2 1/2
sup |xz§Du(z)] < N( ][ (|z§ Du(z)]” + A|z§u(z)| ),ul(dz)) )

€Qf (%)
e Qf ()

where N = N(d, o, v) > 0.

Proof. As already noted, the equation in (4.8) can be written in the divergence form as
in (4.7). Therefore, Lemma 4.2 follows by applying [7, Propositions 4.1 and 4.2] to the
equation (4.7). W

We now derive local boundary L..-estimates for higher-order derivatives of solutions
to the homogeneous equations.
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Lemma 4.3. Let ¢ € (1,00) and ¢1 € [1,00). Under the assumptions of Lemma 4.2, if
u e WHHQT (2),23%dpy) is a strong solution of (4.8) and 2 = (£/,0) € R? x {0}, then
for any j, k € N U{0},

sup [|x371D’;,85+1u(z)| + |:C§DD’;,8£U(Z)| + |x371D’;,8gu(z)|]

2€Q7 (8)
1 1/q1
<N ( f (2§ DL O u(=)|" i (d2) (4.9)
Qf (2)
sup  [|0¢(2§ DD u(2))| + | D(xg DDGyu(2))]]
2€QT (8)
1/q
SN( ][ (m§“|DD’;,u(z)|+\/X|D’;,u(z)\)qlu1(dz)> 1, (4.10)

Qf(2)

and

a—1nk a—1nk @ /q
[ Dl aaraqi ey S N 1o Dhuz)|  (d)) (4.11)
QF(2)

for N=N(d,v,a,j, k). A similar assertion also holds for 2 = (2',24) with T4 > 2.

Proof. We only prove the boundary estimates since the proof of the interior estimates
is simpler. By Holder’s inequality for ¢; > 2 and a standard iteration argument for
q1 € [1,2) (see, for instance, [14, p. 75]), we only need to consider the case when ¢; = 2.
By shifting the coordinates, we may also assume that 2 = (0, 0).

We first impose the additional condition that u € %I’Z(QQL, du). By using standard
argument of finite-difference quotients, we see that D¥ 87w is still a solution of (4.8) for
j,k € N U{0}. Therefore, without loss of generality, we may assume that j = k = 0.
Applying Lemmas 4.2 and 4.1, we get

sup [ng_lm(Z)l + |wg Du(z)| + \$3_1U(Z)I}
ZGQT
) 1/2
< N(f lagute) Pin(a)
Q7
which gives (4.9).

To show (4.10), as before we may assume that k¥ = 0. Applying Lemma 4.2 to u; and
then Lemma 4.1, we get

sup |zg Duy(2)]
z€Qf
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<JV<tf‘ﬂmiDUﬂZNQ*‘M$3U%Z)Qﬁﬂ(d@>1ﬁ

Qay3

~( f |xsut<z>|2m<dz))1/2

Qs/3

IN

1/2
< N(f (j23 Du(2)|? + )\|x§‘u(z)|2),u1(dz)> . (4.12)

Q2

Applying Lemma 4.2 to D, u and Lemma 4.1, we have

sup |z§ DD, u(z)]
z€Qf

1/2
< N< ][ (|23 DDyru(z)? —l—)\|x3Dzru(z)|2),u1(dz)>
Q32

< N(f |x3Dx/u<z>2m<dz>) - (4.13)
Q2

Similarly, applying Lemma 4.2 to u; and v and then Lemma 4.1, we have

sup |zgue(2)| + Mzgu(z)|
z€Qf

<N (lzGue () + N[agu(z)*) p (dz) -
L/ )

Q3/2
1/2
< N<][ (|x§Du(z)\2 + )\|x§‘u(z)2),u1(dz)> . (4.14)
Q2

Now we bound Dy(z5Dqu) by using the PDE in (4.8) and combine (4.12), (4.13), and
(4.14) to get (4.10).

Next we prove (4.11). Again we may assume that k = 0. In view of (4.9), it suffices
to show that for any (t1, 2], z14), (t1, ¥}, 224) € QF satisfying w24 < 714, we have

297 tuty, o4, 21a) — 25y Mu(ty, 2, 224))|

1/Q1
< N(w1q — xgd)lﬂ( ][ |29 Lu(z)| 0 ul(dz)) . (4.15)
Q5

When z14 — 224 < 23,/2, it follows from the mean value formula and (4.9) that
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|25t 2, 1a) — 255 Mty 2, 2q)|

—1 fe} 2 1/2
< N~ waa)o ( f legut:)Pin(az)
Q3
1/2
< Nl - a2 lag w2 ()
Q5

which yields (4.15). Next we consider the case when x14 — 224 > 22,/2. By (4.10) and
Lemma 4.1, we have

1/2
sup [ Dafa§ Dau(:))| < N( f lafu(a)Pa (@)
zEQIr oF

2

Therefore, there exists a bounded function f = f(2) such that for any z € Q7 ,

|2G Dau(z) — f(2")| < Nxd( 7[ |zg‘u(z)|2u1(dz)> 1/2,
Q3

which implies that

Dau(z) 3 )] < Nale ( f lagu(a)Praa)
QF

Using the zero boundary condition, we obtain

1/2

u(e) (1= )l ()] < Nad (o fagu(a)Pin (@)
Q3
which is equivalent to
/
257 u(2) = (1= @) )] < Vo f leue)Pmd=)
Q7

Then by the triangle inequality,

|xfd_1u(t1,ar’1,x1d) — mg‘d_lu(tl,x’l,xgdﬂ

< Nowa( f egua)Prn(a)

Q7
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1/2

1/2 a—1 2

< N - w202 lag w2 P d2)

Qf

which gives (4.15).

Finally, we remove the additional condition. Observe that if ¢ € [2,00), then by
Holder’s inequality, u € ”//21’2(Q§r,d,u). On the other hand, if ¢ € (1,2), as u; and Dyu
satisfy the same equation as u, by using [7, Corollary 2.3] for weak solutions to equations
in divergence form as in (4.7), we see that u;, Dyru, Du,u € La(QF, du) for any R < 2.
This and Lemma 3.5 imply that u € 7/21’2(62;, dp). The lemma is proved. W

We now prove the following result regarding pointwise estimates of solutions to (4.8)
for a more general class of solutions.

Proposition 4.4. Let p € (1,00) and € (p—1,2—a)p—1). If
u € WA QF (2), 5P dz)
is a strong solution of (4.8) and 2 = (£',0), then for any j, k € N U {0},

sup [|x371D§,8g+1u(z)| + |x3DD§,8gu(z)| + |x371D’;,8gu(z)|]

z€Qf (2)
<N ][ |25 DX, u(z2) |2 dz, (4.16)
Q7 (2)
sup  [|0;(x§ DDSu(2))| + |D(zg DDy u(z))|]
zeQt (2)
<N ][ (z§|DDEu(z)| + VX DEu(2)]) 2 dz, (4.17)
QT (%)
and
||9JT°‘71D’;,U||01/4,1/2(Q1+(2)) S N f |1’3_1D§/U(2)|1’gd2 (418)
Q% (2)

for N=N(d,v,a,j,k, ). A similar assertion also holds for 2 = (%', &4) with &4 > 2.

Proof. As before, we only consider the boundary case. Without loss of generality, we
may assume that 2 = 0. The proposition follows directly from Lemma 4.3 if § < —a.
Next we consider the case when g > —a. We first impose the additional condition that

«

u € 7/1,1’2( ;/2, z5Pdpy). Then applying Lemma 4.3, we obtain
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sup (|2 DY 0fu(2)| + [¢§ ' Dy 0 u(z)| + |2 DDY 0] u(z)| + [« D ol u(z)]]
2€Q7T

<N ][ |25 DE, &l u(z) |z, dz

Qs
<e ][ 2§ DE, 8l u(2) |2 dz + NelP+e)/(atho) ][ x4 DY, 87 u(z)|h d=
Q4/3 Q4/3

< Ne sup |5 DF, 0/ u(z)| + Nef+e)/(atbo) ][ 2§ D¥, 0 u(z)|2 dz,
Qi
e Qs
where fy € (—1, —«), and we also used Young’s inequality in the second inequality. By an
iteration argument (see, for instance, [14, Lemma 4.3]), we obtain (4.16). The estimates
(4.17) and (4.18) can be proved similarly.
Next, we remove the additional condition that u € ”//171’2(62;/2,303” dpy). By taking
the standard mollification with respect to ¢t and z’, and then taking the limit, without
loss of generality, we may assume that u is smooth in 2’ and ¢. We claim that

u € W@, 74 ot gy VB > 1, (4.19)

which implies (4.16), (4.17), and (4.18) in the general case. To this end, we take a smooth
cutoff function n € C§°((—2,2)) satisfying n = 1 in (—5/3,5/3). Then by applying the
weighted Hardy’s inequality (Lemma 3.3 (ii)) to v := n(zq)z$Dgu, we get

19~ Daull . o, < [

x(0,5/3),3° U”L,,(Q;xw,xg

< NHdel|LP(Q’2><R+,mg) < 00, (4.20)

where we used the condition 8 > p — 1. By applying the weighted inequality Lemma 3.3
(i) and using the zero boundary condition, we have

a—2 a—1
1l @y x 0,5/3).0) = NI Davll gy x(0.5/3).5) <
where we used the condition 8 < (2 — a)p — 1. Therefore,
u € Ly 5+/3,$(o¢ 2)p+8 dz).
By applying the same argument to D, u, we also have

Dy € Lp(Qf 5, 2™ PP dz).

This assertion and (4.20) imply that
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M ' Dyu, Du € Ly( r/3,x3p+ﬁl dz), where 8y =8 —p.
Again as u; and D, u satisfy the same conditions as u, we obtain
g, DDyuw € L (Q5/3, 2P TP 4z).

Then from (4.8) and Lemma 3.5, we get D(IM*Dgu) € Ly( 0/379%1 dz), and thus
u € 7/12(@3/2, p'wldz) If 1 > p — 1, we can repeat this procedure to get
ue W) 2Q), 2P P%4z), where B, =  — kp and {r.} C (3/2,2) is a finite sequence of

decreasmg numbers. Let ky be the integer such that 8,1 >p—1and B, <p—1. We

then have that u € #,"2(Q;} ey
once again, we prove the claim (4.19). The proposition is proved. H

ng”de) for any 3 > p — 1. By repeating this procedure

4.2. Mized-norm Ly,-estimates for non-homogeneous equations

The main result of the section is following theorem on the existence and estimate of
solutions in V/ql,zgz(QT,x} dz) to (4.3) with v € (ap — 1,2p — 1).

Theorem 4.5. Let v € (0,1], p,q € (1,00), a € (—00,1), and v € (ap — 1,2p — 1) be
constants. Assume that @;; satisfies (4.1) and (4.6), and G, € satisfy (4.2). Then, for any
[ € Lyp(Qr,x)dz) and X > 0, there exists a unique strong solution u € 7/;1,1,)2 (Qp, 2} dz)
o0 (4.3) and u satisfies

[uell + 1D Dorul| + || DFu + a9 Daull
+ 190 Dyl + A2 Dul| + Alfull + A9 | < NJ|F,

where || ’ || = H ’ HLq,p(QT,xgdzw and N = N(d7 V7a7puq77) > 0.

Observe that Theorem 1.1 is a special case of Theorem 4.5. Before proving the theorem,
let us recall some notation of functional spaces used in [7]. Let p € [1,00), S,T €
[—00, +o0] with S < T, D C R% be open, and 7 € R. We define

H (S, T) x D, xj dz)
={u: u=DiF, + M~LFy+ f for some f € L,((S,T) x D,z dz)
F = (Fy,...,Fy) € Ly((S,T) x D, dz)*"},

which is equipped with the norm

Il 1 (5, xDsg a2y = E LI F N, (500,07 a2) + 1f 0057y D 07 2

u=D;F;+ M 'Fy+ f}.
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We also define the space
%1((5, T) x D,x] dz)
={ue L,((S,T), #,(D,x}dx)) : uy € H;'((S,T) x D,x} dz)}

equipped with the norm

l[ull s ((5,7)x D25 dz)

= llullz,((s,1)x D27 d2) + 1DullL, ((5,7)xD w7 dz) + 1tz (5,7)x D07 d2)-
Next, we state and prove the following lemma.

Lemma 4.6. Let v € (0,1], p € (1,00), @ € (—00,1), and v € ((a +1)p —1,2p — 1)
be constants. Assume that @;; satisfies (4.1) and (4.6), and @o, ¢ satisfy (4.2). Then,
for any f € Ly(Qr,z)dz) and X > 0, there exists a unique strong solution u €
SN Qp, ) P dz) N2 (Qr, 2] dz) to (4.3), which satisfies

[uell + | D>ull + A2 Dul| + [|9" Dul|

(4.22)
+ Mlull + VA9 ]| + (99 2ul] < NI £,

where || : || = || ! ||LP(QT,:vgdz) and N = N(d7 v,a,p, 7) > 0.

Proof. By applying the scaling argument mentioned in Remark 2.6, we may assume
A = 1. Also, by using a density argument, we assume that f is compactly supported in
Qrp. Let v = — (a+ 1)p, and

o

F(t,z) = —/saf(t,x’,s) ds.

Zd
Note that DyF(z) = 2§ f(2) for z = (t,x) € Qp with z = (2/, z4) € R%. By the weighted

Hardy’s inequality (Lemma 3.3 (ii)), we have

”F”LP(QT’*TZI dz) = ||9ﬁ71F||Lp(QT.,zzl+pdz)

SNIDaF |y o antrazy < NIl 0 entrazy = 1L @raaz),  (423)

where we used the condition that v; +p = v — ap > p — 1. By the assumptions on the
coefficients @;;, we can write the operator £y in divergence form as in (4.7). Then, the
equation (4.3) becomes

x (@o(zq)uy + c(zq)u) — Di[z§a;;(zq)Dju+ Fi] =0 in Qp, (4.24)
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where F; =0 fori=1,2,...,d—1and F; = F. Note also that by the assumption on =,
we see that v; € (—1,(1—a)p—1). Then, by applying [7, Theorem 2.5 and Remark 2.6] to
the equation (4.24), we see that there is a unique weak solution u € £ (Qr, P dz)
of (4.24), and

||maDu||Lp(QT,xgldz) + ||mau||Lp(QT,xgldz) < NHFHLP(QT,xgldz)»
which together with (4.23) implies that

HDU||LP(QT,7;3—PdZ) + ||“||LP(QT,xg—sz) < N”fHL,,(QT,zgdz)- (4.25)

As v —p+1 < p, by using the weighted Hardy’s inequality (Lemma 3.3 (i)) and the
boundary condition u = 0 on {z4 = 0}, we get

_ -1
lull ) o wa2razy = 1l 0 w39y < NIDatullp, (0 237742y

< N”fHLp(QT,a:;’dz)' (426)

Now we prove the estimate (4.22) and conclude that u € #,1?(Qr, z), dz). We follow
an idea introduced in [22, Lemma 2.2] (see also [3, Theorem 3.5]). Let ¢ € C§°(R) be
non-negative such that

[icorstas =1 [Icpse s = v <,
0 0
and
/|C”(s)|p52p_7_1ds = Ny < .

For each r > 0, let (.(s) = ((rs), where s € R. We note that with a suitable assumption
on the integrability of a given function v : Q7 — R, using the Fubini theorem, we have

/|Cr za)v(2)|Pdz | r~77 1d7“—/|1) WP dz,

/|C zq)v(2)|Pdz | r=7" 1dr—N1/|v WP P dz, (4.27)

0\8 0\8 O\g

/|C 2)|P dz TVldr*NQ/h) W)™ P .
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Next, for each fixed r > 0, let w(t,z) = (-(zq)u(t,z), where (¢,x) € Qp with x =
(z',24) € R x R;. Then w solves the following equation with uniformly elliptic
coefficients

Gow; +cw —a;jDjjw=¢g in Qpr and w=0 on {zg=0}, (4.28)
where

g(t,x) = Co(za) (L, ) + fd(wdwdu + ¢ (za)u)

d—1
— Zﬁidg(xd)Diu — 20 Dgu — ¢! (za)u.

i=1

We first prove (4.22) with the assumption that u € #,2(Qr, 2577 dz). Under this extra
assumption and as ¢, is compactly supported in (0, 00), we see that w € Wpl’Q(QT), where
Wz}*z (Q27) is the usual parabolic Sobolev space. Then by applying the W;’Q—estimate for
(4.28) (see, for instance, [2]), we obtain

lwllwr20. < Nlglle,@q)-

From this, the definition of g, and a simple manipulation, we obtain

Gl @) + 1 Dull 00y + 16D ul L, @) + 1ruel L, (@)

< N[||Cf||Lp(QT) + ¢ vl ) + 16-Dull, ) + 116G ullL, @)
116 Dully 0y agrasy + 10l g s

Then, by raising this last estimate to the power p, multiplying it with »~7~!, and then
integrating with respect to r on (0,00), we obtain

lullr, @z wqaz) + 1Dl L, 0 272 + 1D*Ull L, @0 07d2) + 1wz, 00 27d2)
§ N|:HfHLp(QT,w;dz) + ||Du||Lp(QT,w}7pdz)
SR PR [ PPN

where we also used (4.27). It then follows from the last estimate, (4.25), and (4.26) that

HUHL,,(QT,wgdz) + HDU”LP(QT,a:;’dz) + ||D2U||LP(QT,x3dz) + HUtHL,,(QT,zgdz)

HDullp, 0 aqraz) T 14l 00 07 + 10l 00 23274

< N fllz,@r.23dz)-
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It remains to remove the extra assumption that u € #,"%(Qp, z3” 1 dz). By mollify-
ing the equation (4.3) in ¢t and 2’ and applying [7, Theorem 2.5 and Remark 2.6] to the
: () (¢) :
equations of u; ’ and D,u'®); we obtain

ul®), uge) , D' DD € Ly(Qr, 2Pt dz).

This and Lemma 3.5 imply that u®) € #,1%(Qr, 2577 dz) is a strong solution of (4.3)
with f(¢) in place of f. From this, we apply the a priori estimate (4.22) that we just
proved for u(®) and pass to the limit as ¢ — 0T to obtain the estimate (4.22) for u. The
proof of the theorem is completed. W

Remark 4.7. Note that in Lemma 4.6 we estimated D%u because 7 is large. The lower
and v (x) =
—a(l — o)z~ 17 When a = 0, this result is also consistent with the previous results in
[21,3].

-«

bound (v + 1)p — 1 of ~ is sharp by considering the example u(x) = x

From Lemma 4.6 and Proposition 4.4, we derive the following mean oscillation esti-
mate.

Corollary 4.8. Let v € (0,1], pp € (1,00), a € (=00, 1), and v € (po—1,(2—a)po—1) be
constants. Let A >0, p > 0, and 2 = (t,2',24) € Qp. Assume that (4.1), (4.2), and (4.6)
are satisfied. If f € Ly, (Qg,(2), 25" dp2) and u € %)a’z(Qgp(ﬁ),mgpodug) is a strong
solution to the equation

,Cou
u

where po(s) = s for s € Ry, then

Fooin Qg,(%),
0 on Qep(2)N{zq=0} i &4<6p,

F U= g, o 2l
QL (2) (4.29)
< NEV2(U gy, o) + Nis™ 00/ (e ppro)
for any k € (0,1), where
U = M (ug, DDyrtr, M~ Do, VADu, A, VAN M), (4.30)
()q is defined in (3.4), and N = N(v,d, o, po, o) > 0.

Proof. By the assumption on -y, we see that 7 := apg + 70 € ((1 + a)po — 1,2py — 1).
Then, by applying Lemma 4.6 with 7 and pg in place of v and p, there is a solution
v e W2 (Qr,x)dz) to
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0 on {zq=0}

v

satisfying

loll ., (2p 2y ax) + ||D2'U||L y(Qraldz) T HmilDU”Lm(QT,xjdz)

+ \/_||DU||L J(@raTaz) T ANV Tdz) T \/XHm*l’UHL o (Qr 2] d2) (4.31)

po (Qr,z
< N”fHL QBp (2),z) dz)*
From the definition of p9 in (2.2) and the definition of (-)g in (3.4), we see that (4.31)

implies

(|V‘P0)1/f0(2) < NH—(d-‘r?-‘r’m)/Po (lm@ﬂpo)l/;‘](é)’
! (4.32)

(VIP) g2, < N(me g Y

where

V = M*(vs, DDyrv, M Dy, VADuv, v, \/Xim_lv).

Now, let w=u—v € V/;lo’z(Qgp(é) x) dz), and note that w solves the equation
Low=0 in Qgp(é)

and w = 0 on {xq = 0} N Qs,(2). Then, we use the mean value theorem and Proposi-
tion 4.4 for w with ~q in place of 8 and pg in place of p to obtain

][ W — (W)Q,fp(gﬂ p2(dz) < Nr!'/? (W)Qgp(é)a
Qikp(2)
where
W =M (wy, DDyw, M Dyrw, VADw, Aw, VAN w).

From this last estimate, (4.32), and the triangle inequality, we obtain the desired esti-
mate. The proof of the lemma is completed. W

Finally, we provide the proof of Theorem 4.5.
Proof of Theorem 4.5. We first prove the a priori estimate (4.21) for a given u €

%{f(ﬂpx} dz) solving (4.3). Let py € (1,min{p,q}) be sufficiently closed to 1, and
v € (po — 1,(2 — a)po — 1) be sufficiently close to (2 — «)pg — 1 such that
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v i=y—ap—9 € (—1—"0(1L+7)(p/po— 1)),

which implies that

IZ € AP/PO(R-‘HHQ) C AP(R+7.[I’2)'

Applying Corollary 4.8, we see that for every p > 0 and 2 € Qp, we have

f U= Whaisl )
Qin(2)
< Nﬁ1/2(|U|) + o 4 N~ (@+2470)/po (|gﬁaf|po)1/Po
= Q5,(2) Qi,(2)°
where k € (0,1), U is defined in (4.30), and N = N(v,d, @, po,70) > 0. It then follows
that

U# < NH1/2M(|U|) —l—Nﬁ_(d+2+V°)/p°M(|9ﬁaf|p°)1/p° on Qr,

where the sharp function and the maximal function are defined in (3.3) and (3.2), respec-
tively. Then, by using the weighted Fefferman-Stein theorem and the Hardy-Littlewood
theorem for M with the weight 2} (Theorem 3.2), we obtain the estimate

< N|s"2|U]l,
q

||U||Lq1p(QT,£3/d}l42) .p(QTaxz/dﬂ2)

4 1~ (d+2+70)/po ”mafHqup(QT,x:}/duz) .

From this, and by choosing x > 0 sufficiently small, we obtain

Wi, < Njme

p(Qr 2 dpe o(Qr,2) dus)’

Then, by using Lemma 3.5 for (4.3), we obtain the estimate (4.21).

We now prove the solvability of (4.3) in %1,},72 (Qp, 2 dz). We split the proof into two
cases.
Case I: v € (ap — 1,p — 1). We write Ly in divergence form so that the equation (4.3)
becomes

2 (@o(zq)uy + Ae(zq)u) — D;[x§a;;(zq)Dju] = 2§ f in Q. (4.33)

It follows from [7, Theorem 2.5 and Remark 2.6] that there is a unique weak solution
u € A, (Qp,x)dz) of (4.33). Then, as in the proof Lemma 4.6, by mollifying the
equation (4.33) in (t,2’) and using Lemma 3.5, we see that u(%) € W2 (Qr,x)dz) is a
strong solution of (4.3) with £ in place of f. Moreover, since v < p — 1, by using the
weighted Hardy’s inequality (Lemma 3.3 (i)), we know that
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2 ) 2 D) € Ly (Qp, 2] d2).

From this, we apply the a priori estimate (4.21) that we just proved for u¢ and then pass
to the limit as e — 0T, we see that u € #;';*(Qp, 2)dz) and it solves (4.3).
Case II: v € [p— 1,2p — 1). For each f € Ly, (Qr,z)dz), let {fi} C C§°(Qr) such that

Jim | fie = fllz, (@ ads) = 0-

We take a 71 € (ap — 1,p — 1) so that 1 < <. Since fi has compact support in Qr
and smooth, we have fj, € L, ,(Qr, z))' dz). Therefore, by Case I, there exists a solution
up € W2 (Qp, 2} dz) of (4.3) with fi in place of f.

Now, if the sequence {uy} C 7/;71;2 (Qr, 2} dz), then by the a priori estimate (4.21), we
obtain

10cur ]| + 1D Dgrug || + | Dgu + a9~ Dyug|| + |9~ Dyrue|
+ A2 Du ]| + Al + A1 k]| < N fil],

where [|-|| = |||z, ,(@r.27dz)- It follows from the linearity of (4.3) and the convergence of
{fe} in Ly p(Qr,z)dz) that {ug} is Cauchy in 4//:11’592(97«, z)dz). Let u € ”‘//Aql’f(QT,x;’dz)
be the limit of {uz} in #*(Qr,x]dz). Then, by passing to the limit, we see that u
solves (4.3).

It remains to prove that ug € %171772(9% xgdz) for all k. Let k be fixed, and let Ry > 0
be sufficiently large such that

supp(fx) C Dr, := (—00,T) x R¥™1 x (0, Ry).

As 71 < v and u € %}f(QT,:E:i“dz), we see that uy € %{f(DQRO,x}dz). Hence, we
only need to show that

”uk ||Wq1,b2(QT\DRO wydz) < oo.

For each | € N U {0}, let = m(xq) be a smooth function such that 7 = 0 in
(—2'Ry,2'Ry), m = 1 outside (21 Ry, 2171 Ry), and

I D*nllp. < No27%, k=0,1,2, VI>0.
Let w; = ugm;, which is a solution to the equation
Low,=¢g in Qr and w=0 on {zgq=0},
where

g = —a;;(Dyudjgn] + Djudiqn] + udiadqmn;’) — cxy 'un)
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Therefore, by the a priori estimate (4.21), we have

10vwillL, ,r.eitdaz) T IDDwwillL, (or2raz)

+ | D3w; + a0 delHL o(Qrzlldz) T /\1/2HleHL

a,p(Qr,z )t dz)

M Dol g, ayras + A

T,T a,p QT’ajd dz)

+ >\le||Lq,p(QT,mgldz) < N||9||Lq,p(QT,mgldz)-

Observe that

—1
19012, @ apray < N2 (1DUlL, Dy \Dye g, gt
—1
+2 ||U|\Lq,p(D2l+1RO\D2,RO,mgldz))-

Combining the two inequalities above, we get

-1
”u”qu,’pQ(D2l+2RO\D2l+1RO,Izldz) < N2 ”u”qu,’z?(D2l+1RO\DQZRO’Igldz)’
where N > 0 depends also on A, but is independent of [. By iterating this estimate, we

obtain

lo—1(I—1)/2
HUHWQ P (D21+IRO\D21RO,Id dz) S N2T (D2R0,$d dz) vi>0.
This implies
o
HUHW‘Z p (Qr\Dry,zjdz) — lz ”u”Wq p ( 21+1R \Dle sy dz)
0
oo
§ ||U||Wq1,p2(D2R Izldz) Z le—l(l—l)/Q(2lRO)('y—’yl)/p
, 0
=0

< Nl Dy azraz) < o
The proof is completed. W

We now conclude this section with the following lemma, which improves Corollary 4.8
as the lower bound of =y does not depend on py. The lemma is used in the next section.

Lemma 4.9. Corollary 4.8 still holds when vy € (—1,(2—a)po+ 1) provided that the term
) (dH2490)/Po i (4.29) is replaced with k= 4T2H90)/P0 where 4 = max{~o,0}.

Proof. We repeat the proof of Corollary 4.8 by using Theorem 4.5 instead of Lem-
ma 4.6. W
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Remark 4.10. As the discussion right after (4.6), the results in this section hold when
(4.6) is replaced with (4.4).

5. Equations with partially VMO coefficients

This section is to prove Theorems 2.3, 2.4, and Corollary 2.7. We shall first study
the equation (1.9) which is a parabolic equation in non-divergence form with singular
coefficients:

(5.1)

Lu = f in QT,
u =0 on {zg=0},

where L is defined in (1.8). Note that we can always divide both sides of the PDE in (5.1)
by agq and replace v in (1.6) and (1.7) with v2. Therefore, it is convenient to assume
that

Add = 1. (52)

We first state and prove a lemma about the oscillation estimate for solutions to non-
homogeneous equations.

Lemma 5.1. Let v € (0,1), po € (1,00), a € (—o0,1),7%0 € (—1,(2 — a)py — 1),
p € (po,00) and assume that (1.6), (1.7), and (5.2) are satisfied. Let A\ > 0 and
psp1,p0 € (0,1), 2 = (£,#',24) € Qr, t1 € R and f € Ly (Qg,(2), 21 dpz). Assume
that u € %1’2(Q§p(2),x§adu2) vanishing outside (t1 — (pop1)?,t1] is a strong solution to
the equation

Lu=f in Qgp(;%)7
u =0 on Qe(2)N{zq=0} if Zq<6p.

Then, for any k € (0,1), it holds that

F U= g, enald)
Qtp(2)

_ + _
< Nkl/2 (IUDQg'p(é) + N~ (@d+2+7 )pf(l 1/po) (|U‘po);/£o(2) (5.3)
#(5\o5 " F 1/p
+ap0<z) 0 (|U|p)Q;rp(2) ’

+
d+2+
_4TeThg 1/po

P < £1Po
+NK; 0 (lm f| )Qst,(i)
where U is defined in (4.30) and N = N(d, v, p, po, ®,v0) > 0.

Proof. We discuss two cases depending on 8p > py or 8p < po.
Case I: 8p > pg. By using the doubling property of uo and Holder’s inequality, we have
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_ +
7[ U = (U) gz, ()] Ha(dz) < Nk~ (44250 )(|U|)Qs+p(2>
Qo (2)

< Nﬁ_(d+2+%’+) ( 1-1/po (‘U|po)1/170

1(tr(pop1)2,t1])Qgp(2) QL (%)

< N (i
8p

where N = N(d,po,v0) > 0.
Case 2: 8p < pg. Recall that [ao]sp,z(Ta), [c]sp,s(2a), [@ij]sp,2(xa), and (aq;)s,, s are defined
as in (2.3)-(2.4), where 4,5 € {1,2,...,d}. Denote

_ o _
L, zu = laolgp,zur + A[clsp su — @ij(xa) Diju — ;dadejUa

where
_ [@ijlsp.s(za), for i=1,2,...,d—1, j=1,2,....d,
S(@a) = ’ 5.4
a”(xd) { (adj)Sp,fa for = da Jj= 1727"'7da ( )
and
d-1 d
Fi(2) =) > (ai — [ailsp.2) Dijulz),
i=1 j=1
d—1
Fa(2) = ) (agj — (agj)sp,2)(Dgju(z) + azy ' Dyu(z)),

j=1
F3(z) = ([ao]sp.z — ao)ue(2) + Al[c]sp,z — cJu(2).
Under the condition (5.2), u satisfies

3
Lozu(t,) = f(t,x)+ Y F(t,z) in Q%)
i=1
with the boundary condition u = 0 on {xg = 0} if £4 < 6p. Also, as 1 < pg < p and
~vo > —1, by using Holder’s inequality, u € %I(J’?(Qgp(é),xgoadug). From (5.2) and the
definitions in (5.4), the coefficient matrix (@;;) satisfies (4.4). Hence, as explained in
Remark 4.10, we can apply Lemma 4.9 and infer that

F U= g el nald)

QE,(2)
— + - 1
< N[m1/2(|U|)Q;p(z) + k(@249 /po (j9m f|pO)Q/£O(2) (5.5)
3
—(d+2+~)/ o 1/p
+ K Yo poZ(wﬁ F’|pO)Q§p0(2) ’

=1
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where N = N(d, v, «,v0,p0) > 0. We now bound the last term on the right-hand side of
(5.5). By Holder’s inequality and the boundedness of (a;;) in (1.6), the definition of af
n (2.5), and (5.2),

@ Po 1/270
(lgjt F1| )Qg},(f)

3 1/po—1/p o 1
< (|a¢j(2) _ [aij]8p72(xd)|pp0/(p Po)) ot (|om DDx/u|P)Q/£(g)

1 1 1
< N (laig(2) = [aiglsp. (@) g2 (M DDpul) )7
_ Naf; (2)1/170_1/1) (‘maDDz’u|p)g/£(2) )

where N = N(d, v, p,po) > 0. Similarly, we also have

(M@ BylPo) /70 < Naf (2)Y/P0~ 1P (] DDyul? + et D) P

QL (2) = Qd,(2)”
(IR Fg[Po) g < Naf ()1 /7012 (90w 4 AR uf?) 7
Qs,(2) Qs,(2)

By plugging the estimates of Fy, for k = 1,2, 3 into (5.5), we obtain (5.3). From the above
two cases, the lemma is proved. W

Proposition 5.2. Let v, T, p, q, K, «, vy, po, and w be as in Theorem 2.3. There exist
sufficiently small positive constants

§= 5(d7 VaavpaQ770aK) and P1 = Pl(d> VaOL,pa(L’YOaK)

such that, under the conditions (1.6), (1.7), and (2.6), the following statement holds.
Let X > 0 and [ € Lqp(Qr,25%w dus). If u € #L2HQ, a5 wdps) vanishes outside
(t1 — (pop1)?, t1] for some t1 € R and satisfies (5.1), then

”ut”Lq p(Qr,zPwdps) + ”DDx’u”Lq p(Qr,zPwdps) + ”S)ﬁilD:C’u”Lq,p(QT,zzpwd,u,g)
+ [[Da(M* Dau)|| 1, ,(r w dus) + \/_||DUHLq o (Q7,25Pw dpis)
+ )‘Hu”Lq,p(QT,mgpw dps) + \/X”m_ UHLQYP(QT,mgpw dus)
< N(d, v, &, P, 4,70, K)”f”Lq,p(QT,zZ‘pw dpz)-
Proof. Without loss of generality, we may assume that (5.2) holds. As wg € A,((—o0,T))

and w; € Ap(R%L,dus), by the reverse Hélder’s inequality [28, Theorem 3.2], we find
p1 = pi(d;p, 4,7, K) € (1, min(p, g)) such that

Wo € A‘I/Pl((_oovT))v w1 € Ap/Pl( +’/J’2)' (56)
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Note that because vy € (—1,1 — ], we can choose py € (1,p;) such that 9 € (—1,(2 —
a)pe — 1). Applying Lemma 5.1 with ps in place of pg and p; in place of p, we have
U#* <N |:Ii1/2M<|U|> + H—(d+2+’v§)pf(1*1/pz)M(|U|pz)1/172

A2+

d + _
bR MR e e s M(JUP)YP] in Qp

for any x € (0,1), where N = N(v,d, p1,p2,,v) > 0. Therefore, it follows from Theo-
rem 3.2 that

< N2 IMAUDIs,,, + 5 @200 0 MU

a,p —

Ul

d+2 1 1

_dt2nd N S e 1
+r MM fP2) P2 |, , 4R e o anIIM(IUI’“)*’lHLq,p},

where N = N(d,v,p,q,®,v,K) >0 and Ly, = Ly »(Qr,wdus). Then, from (5.6) and
Theorem 3.2 again, we get

d+2+

+
_ + _ _ Yo
1k, < N[(2 4w @20D 20D ), e e,

.
+rT o U, ).

Now, by choosing « sufficiently small and then § and p; sufficiently small depending on
d,v,p,q,a,v, and K such that

N(HI/Q 4 Hf(d+2+v5“)p?(1—1/pz) i K_?(SE_%> <1/2,
we obtain
1Ulz,, <N(dv,p,q a7, K)|MflL,,
This and Lemma 3.5 prove the assertion of the proposition. H
Now, we are ready to prove Theorem 2.3.
Proof of Theorem 2.3. We first prove the estimate (2.7). Let u € %{f(QT, zhw dpso) be
a strong solution of (1.9). We apply Proposition 5.2 and a partition of unity argument in

the time variable. Let £ € C§°(R) be a non-negative standard cut-off function vanishing
outside (—pgp?,0] and satisfying

Jewar=1 and [(€0)7 dt < Npom) (5.7)
R

R
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where p; > 0 is from Proposition 5.2. For a given s € R, let w;(¢t,z) = u(t, z)&(t — s).
We see that w; is a strong solution of

Lws =F, in Qp
ws(t,z',0) = 0 for (¢,2) € (—o0,T) x R4,

where

Fo(t,x) = f(t,2)E(t — s) + agu(t, )& (t — s).

As w; vanishes outside (s — p2p?, s] x R‘j_, by Proposition 5.2, we have

||atw5||Lq,p + \/XHDWSHL“? + ||DDfr/wSHLq,p + ”m_lDz/wsqu,p

I DM Doy, + Ml + VA, (58
S NHFS”Lq,pa
where N = N(d,v,a,70,p,¢, K) and Ly, = Lg,(Qr, 25w dps). From (5.7), for any
integer kK > 0 and 7 € R, we have

JmT Dkulg, = / |90 DEw, |9, ds.
R

Also, it follows from w;&(t — s) = Qyws — u&s(t — s) that

Juel,, < [ 10wl ds+ Npopr) > ul, .
R

From the last two estimates and by integrating the ¢-th power of (5.8) with respect to
s, we conclude that

luellz,, + VAIDulL,, + |DDeul|z,, + |9 Doullr,,
+ M Dg(M*Dgu) | 1, , + Mullz,, + VI ullL,,
< N|flle,, + N(pop1) ?||ull,.,,

where N = N(d, v, o, p,q,70, K) > 0. Then, by choosing
)\0 = A(d? v,p,q,x, %, K) - 2N,01_2,

we obtain (2.7) provided that A > \opy 2.
Observe that the estimate (2.7) also implies the uniqueness of solutions. It then re-
mains to prove the existence of the solution. We split the proof into two steps.
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Step I: Assume p = g and w = 1. We use the method of continuity. Consider the operator
@
Lou=1—-7)0, —A— —DdJr)\}quTEu
T4

with 7 € [0, 1]. It is simple to check that the coefficients in £, satisfy all assumptions in
Theorem 2.3 uniformly in 7 € [0, 1]. Then, using the solvability result in Theorem 4.5 and
the a priori estimate (2.7) that we just proved, we can apply the method of continuity
to obtain the solvability of (1.9) with A > )\opSQ7 where \g = A\o(d, v, p, ¢, @, 70, K) > 0
is defined in the proof of (2.7). For details, see for example, [23, Theorem 1.3.4, p. 15]
and the proof of [5, Theorem 1.1].

Step II: We consider the general case with p,q € (1,00) and w as in the statement of
Theorem 2.3. We follow the approach in [4, Section 8]. Let p; > max{p, ¢} be sufficiently
large and let e1,e5 € (0,1) be sufficiently small depending on K, p, ¢ and ~y such that

1
1- 2= and 1-— L =

p1 1+e; p1 1+ey’

and both wi T and wj <2 are locally integrable and satisfy the doubling property. Pre-
cisely, there is Ny > 0 such that

/ wy T (s) ds < Ny / wy T2 (s) ds (5.9)
Par(to) Lr(to)
for any 7 > 0 and ¢y € R, where T',.(tg) = (to — 72, min{to + r2,T}). Similarly

/ wi T () dps < Ny / Wit (z) dpg (5.10)

Bf,.(z0) B (z0)

for any r > 0 and any zy € @
Now, let {fx} be a sequence in C§°(Qr) such that

B 1 fe = Fllz, (@0 2570 dusy = 0 (5.11)

By Step I, for each k € N, we can find a solution uj, € 7/;,11’2 (Qp, 25" dps) of (1.9) when f
is replaced with fi, where \ > )\opEQ for A\g = Ao(d, v, p1,p1, 2,70, K) > 0. Observe that
if the sequence {uy} is in %be(QT,xgpw du9), then by applying the a priori estimate
(2.7) that we just proved, we have

lurllya 2 297w dus) < NIFkllL, (0057w du)

and
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[y, — ulHWAql,%)z(QT,rgpw dpz2) < N~ fl”an(QTvxgp“’d/W)
for all k,1 € N and for N = N(d, p, q, @, 70, A, K) > 0. Then, by (5.11), we see that {uy}
is Cauchy in %%f(QT,:cgpw dus). Let u € %{bQ(QT,xgpw dus) be the limit of {uy} in
%{bQ(QT,xgpw dus9). By passing to the limit as & — oo in the equation of wuy, we see

that u € %{f(QT,xZ‘pw duz) solves (1.9).
From now on, we fix k € N, and prove uy € %1’1;2 (Qr, 25w dps). Let us denote

Dr = (—R? min{R? T}) x Bg.

Let Ry > 0 sufficiently large such that the support of fi C Dg,. It follows from (5.9),
(5.10), and Hoélder’s inequality that

||Uk||Wq{f(D2R07w3Pw dpiz) S N(d7p7 q,P1, %, %0, RO)||ukHWp11w2(D2RO)$ZPI dpa) < 0.
Then, it remains to prove

k]l 2@\ Dy ogPeo dus) < O

We use a localization technique with the a priori estimate (2.7). For each | € N U {0},
let 7; be a smooth function on (—oo,T) x R such that

m=0 in Dyp, m=1 (—00,T)x R\ Dys1p,
and
IDmllee < N27' 0emllee + 1D*mllL. < Ni27%, V120,
where N7 may depend on Ry. Let w; = ugm;, and we see that w; solves the equation
Lwy=g inQr and w; =0 on {z4=0},
where
g = aourdm — aij(DiugDjm + Djur Dimy + up Digm) — axy  ugaq; Dy

Because w; € 7/;)11’2((2@ x5 dpso), by the estimate (2.7), it follows that

||’UJ[| "//Apllj(QT’wg‘plwduz) S N”gHLpl (QT,z:plwdp,g)’

where N also depends on A. Observe that
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||g||Lp1 (QT,xgm wduz)

< N2 DugllL,, (D4 \D ) N2 kL, (D1 g \Dyp gy

arl 2lRg,z g wdm)

2l+1 Ry 2t Ry, 2 Pt wdps 2l+1Rg

+ N27H M ., (0

2l+1R0\D2LR0,zg”1 wduz).

Then, we get

-1
”ukH"fﬁp11’2(D21+2RO\D21+1ROvifjpl‘*’dﬂz) < N2 ”uk||Wp1£2(D21+1R0\D21R0a$3p1w‘1ﬂ2)’

where N > 0 depends also on Ry and A, but is independent of [. By iterating this
estimate, we obtain

< Nlg—li-1/2|

Huk”Wplf(DzHlRo\Dleo’zzpl‘*’dlm) - |uk||%p11’2(D2Row;plwdlm)’ Viz0.

Finally, from the inequality above, (5.9), (5.10), and Holder’s inequality, we obtain

o0

[ ||Wq1,’p2(QT\DR07$gPWdM2) = Z Huk||”//Aq1,’p2(Dzz+1RO\DZlROJSPW dpz2)
=0

N 1/q 1/p
||’U,]€ HWplfz(DzlJrl Ry \Dleo 73331)1 duz) ||w0 ||L1+s1 (F2l+1R0) ||OJ1 ||L1+61 (B;+1RO sdpz)

M8

<

~
I
o

o0
lo—1(l-1)/2 (5 +3)
= NHuk||W}P11’2(DR07903171(1/L2)ZN2 =0/ Ny ? 7 < oo.
=0

The proof is now completed. W

Proof of Theorem 2.4. Let \g and § be as in Theorem 2.3. It suffices to show the a
priori estimate (2.9) as the existence and uniqueness can be proved in the same way as
in the proof of Theorem 2.3. For a given solution u € 7/;,2 (R4, 25 wdps) of (1.10), let
v(t,x) = £(t/n)u(z), where & € C§°((0,1)). Then, we see that v € #,L2(RE, 27 wdps)
is a solution of the parabolic equation

vw—ZLv=g in R‘f‘l with v=0 on {zq=0},
where £ is defined in (1.11) and
g(t,x) = &(t/n) f(x) + £ (t/n)u(z)/n.

By the assumptions in Theorem 2.4, we see that all conditions in Theorem 2.3 are
satisfied. Then, applying the estimate (2.7) of Theorem 2.3 for v, and then taking the
limit as n — oo, we obtain (2.9). See, for example, the proof of [5, Theorem 1.2] for
details. The theorem is proved. H
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Finally, we give the proof of Corollary 2.7.

Proof of Corollary 2.7. For k= 1,2, ..., we denote I}, = (—1 +27% 1 —27F),
QF = Ik x (I)* and Q% = Q"N Q.

We take a sequence of cutoff functions nx = ¢ax(t) H;'l:1 or(z;),k =1,2,..., where ¢y
satisfies

¢p=1 inly, ¢p=0 outside 1, [P} <N2¥, |g}| < N2

Recall the constant Ag from Theorem 2.3. Then it is easily seen that uny satisfies

L(ung) + Ageuny = fr.  in Qo, (5.12)
Ung =0 on (—o00,0)x0R%, ’

where \p > )\OpEQ is a constant to be specified, Qg = (—o0,0) x R‘i, and

fe = fe + Aeuny, + aouny — (aij + aji) DiuDjng

— azjuD;in, — ax;ladjuDjnk.
It follows from Theorem 2.3 applied to (5.12) that

A < NkaHLq,p(QO,mZaw dpa)

< N||fHL B gpo y t N\ + 2%)HU”L P(QET 2w dps) (5.13)

w dpa

+N2’<||sm u||L Qi pawdu2)+N2 IDull,, | @5+ amw dus)

where

Ay = || (uni)e] + DDy (uni)| + (9 Dyr (uni)| + / Ak| D (ung)|
* )\k|m_1unk|“[/q,p(ﬂo,x§aw dpz) + HDd(maDd(unk))HLtz,p(QOWJde)’

and we used the definition of fj in the last inequality. From (5.13) and the properties of
Nk, we get

Ak < N2k/\]:i{2f4k+1 + NHf”L k+1 zh%w dpz)

+ N+ 22 ul, @it gae (5.14)

wdpa)”

We take Ay = Aopp 2+ (5N2F)% so that N2¥A, 1% < 1/5. Multiplying both sides of (5.14)

by 57% and taking the sum in k = 1,2, ..., we obtain
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oo 0o
Z 5_kAk < Z 5_k_1Ak+l + NHf”Lq,p(QT,zgawduz)
k=1 k=1

+NZ5 A+ 2l (5.15)

QF 2% dpiz)”

Note that the summations above are all finite. By absorbing the first summation on the
right-hand side of (5.15) to the left-hand side, we reach

Ay < NSl + Nllul

a,p Ql o wdps) q,p(Q;rvzsaWdﬂ2)’

which implies (2.10). The corollary is proved. W
We conclude the paper with the following remark.

Remark 5.3. It is possible to study the class of (1.9) and (1.10) with the additional zeroth
order terms of the form bu/ wg. For example, let us consider we consider the equation

{Ev(t,x) - %v(t,x) = f(t,z) in Qp (5.16)
v = 0 on (—o0,T) % 3]R‘_i,_,
where b is a constant and £ is defined in (1.8). We also assume
agg =1 and ag =ajq forall j=1,2,...,d—-1 (5.17)
Following [25], we define u(t,z) = xg (t, ). Then formally, u satisfies
Lu = aou; — aijDiju — a ;d 6(1de U+ Aeu — il (a:v_?j B8+ bu = ng.
We shall choose a  such that
B2 —(a—1)B+b=0. (5.18)

When b < (a — 1)%/4, (5.18) has two real roots

1+ /(a—1)2—4 —1- —1)Z—4b
a—1+ (; ) and By = (a—1) .

b = :

Denote a; = a — 23; for i = 1,2, so that

ap=1—-+(a=1)2-4b<1 and as=1++/(a—1)2—-4b>1.

Now we take 8 = f31, ,ug(a:d) =), and 79 € (=1, — 1]. By (5.17) and Remark 2.1,
we see that u € 7,22 (Qr, x5 wdps) is a solution to
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ﬁu(t,x) = fcgf(t,m) in Qp,

(5.19)
u = 0 on (—o00,T) x OR%L

if and only if v is a strong solution to (5.16) and it satisfies

[vll + 19 ol + [loell + [-Dv]| + 19~ Darv]| + [ D Do ]|
+ | D2v 4+ a9~ Dgv + 09 20|| < oo,

where ||-|| = |- ]| ) We then apply Theorem 2.3 to obtain the unique

Lq,p(QT,zga1+ﬂ1)pwd,u2
solvability of (5.19) and the estimate for u € #,'2(Qp, 2P wdps). Then, by changing
back to v, we can derive the corresponding result for (5.16).
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