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1. Introduction

Denote ΩT = (−∞, T ) ×R
d
+, where T ∈ (0, ∞] is a given number, and Rd

+ = R
d−1×R+

is the upper half space with R+ = (0, ∞). For a point x ∈ R
d
+, we write x = (x′, xd) ∈

R
d−1×R+. In this paper, we prove the following theorem regarding elliptic and parabolic 

equations with singular first-order coefficients, in which Lp(D, ω) denotes the weighted 

Lebesgue space with a given weight ω in a domain D, and Dd, Dx′ denote the partial 

derivatives in the xd-variable and the x′-variable, respectively.

Theorem 1.1. Let α ∈ (−∞, 1), p ∈ (1, ∞), γ ∈ (αp − 1, 2p − 1), and λ > 0.

(i) For any f ∈ Lp(Rd
+, xγ

ddx), there exists a unique strong solution u = u(x) to the 

equation

{

Δu + α
xd

Ddu − λu = f in R
d
+,

u = 0 on ∂R
d
+,

(1.1)

which satisfies

ˆ

Rd
+

(

|DDx′u|p +
∣

∣D2
du + αx−1

d Ddu
∣

∣

p
+ |

√
λDu|p + |x−1

d Dx′u|p

+ |λu|p + |
√

λx−1
d u|p

)

xγ
d dx ≤ N

ˆ

Rd
+

|f |pxγ
d dx,

(1.2)

where N = N(d, α, γ, p) > 0.

(ii) For any f ∈ Lp(ΩT , xγ
ddxdt), there exists a unique strong solution u = u(t, x) to 

the equation

{

ut − Δu − α
xd

Ddu + λu = f in ΩT ,

u = 0 on (−∞, T ) × ∂R
d
+,

(1.3)

which satisfies

ˆ

ΩT

(

|ut|p + |DDx′u|p +
∣

∣D2
du + αx−1

d Ddu
∣

∣

p
+ |

√
λDu|p + |x−1

d Dx′u|p

+ |λu|p + |
√

λx−1
d u|p

)

xγ
d dxdt ≤ N

ˆ

ΩT

|f |pxγ
d dxdt,

(1.4)

where N = N(d, α, γ, p) > 0.

Theorem 1.1 is a special case of Theorems 2.3 and 2.4 below, in which more general 

equations with measurable coefficients and estimates in weighted mixed-norm Sobolev 
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spaces with Ap(µ2)-Muckenhoupt weights are considered, where µ2(s) = sγ0 , s > 0, 

with γ0 ∈ (−1, 1 − α]. We refer the reader to Section 2 for the definitions of function 

spaces and strong solutions. A novelty of Theorem 1.1 is that our weight xγ
d is in general 

not an Ap(R, dx)-Muckenhoupt weight as usually required in the theory of weighted 

estimates. Observe that we do not have the control of the Lp-norm of D2
du as usual, 

but instead we control the Lp-norm of D2
du + αx−1

d Ddu. See an intuitive reason for this 

fact in the paragraph containing (1.12) below, and also Lemma 4.6 and Remark 4.7. 

When α = γ = 0, the estimates (1.2) and (1.4) are the classical Calderón-Zygmund 

estimates for the Laplace and heat equations in the half space. When α = 0, weighted 

estimates similar to these in Theorem 1.1 were first obtained in [21], and the necessity 

of such results in stochastic partial differential equations is explained in [20]. See also 

[22,19] and [17] for further results and recent developments on weighted estimates for 

equations and systems with bounded, measurable, and uniformly elliptic coefficients. To 

the best of our knowledge, Theorem 1.1 is new when α �= 0. It is worth noting that the 

Dirichlet boundary condition is an effective boundary condition only when α < 1. For 

example, when d = α = 1, the equation (1.1) is equivalent to a 2D Poisson equation in 

the punctuated plane R2 \{0} with the zero boundary condition prescribed at the origin. 

It is well known that such boundary condition is negligible as the Brownian motion in 

2D is null recurrent.

Elliptic and parabolic equations with singular coefficients emerge naturally in both 

pure and applied problems. We refer the reader to [7] for some references of related 

problems in probability, geometric PDEs, porous media, mathematical finance, and 

mathematical biology. The equations considered in Theorem 1.1 are also closely related 

to extension operators of the fractional heat and fractional Laplace equations studied, for 

instance, in [1,34]. In the literature, much attention has been paid to regularity theory 

for such equations with singular (or degenerate) coefficients. See, for examples, the book 

[30] and [12,13,9,10,24,31] for classical results, and [35,11] for some recent results. In [25], 

the authors obtained interesting Lp type estimates for extension operators with constant 

coefficients and the Dirichlet or Neumann boundary conditions, by using an functional 

analytic approach. See also [26] for results about more general operators in the form

xα1

d Δx′ + xα2

d

(

D2
d + cx−1

d Dd − bx−2
d ), α1, α2 ∈ R,

where b and c are constants. We also mention the recent interesting work [32,33], in which 

the authors obtained Hölder and Schauder type estimates for scalar elliptic equations of 

a similar type under the conditions that the coefficient matrix is symmetric, sufficiently 

smooth, and the boundary is invariant with respect to the leading coefficients that is es-

sentially the same as (1.5) below, even though we do not assume the symmetry condition 

on the coefficients.

In [5], we obtained the Sobolev type estimates for non-divergence form elliptic and 

parabolic equations similar to (1.1) and (1.3) in a half space with the Neumann boundary 

condition when α ∈ (−1, 1). The results were later extended in [8] to more general 
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α ∈ (−1, ∞), which is optimal. The corresponding singular-degenerate equations in 

divergence form were studied in [6,8] with the conormal boundary condition and in [7]

with the Dirichlet boundary condition. In these papers, we dealt with leading coefficients 

which are measurable in the normal space direction and have small mean oscillations in 

small cylinders (or balls) in time and the remaining space directions. This is called the 

partially VMO condition and was first introduced in [15,16] for non-degenerate equations 

with bounded coefficients. For non-divergence form equations, it was assumed that

adj ≡ 0 or adj/add are constant for j = 1, 2, . . . , d − 1. (1.5)

See [5, (1.8)] and [8, (1.7)]. We also refer to a related work [27] in which a conormal 

boundary value problem for equations in divergence form with singular-degenerate coef-

ficients as A2-Muckenhoupt weights was considered.

To give a formal description of our main results for general equations, we introduce 

some notation. Assume that a = (aij) : ΩT → R
d×d is a matrix of measurable func-

tions that satisfies the following uniform ellipticity and boundedness conditions with the 

ellipticity constant ν > 0:

ν|ξ|2 ≤ aij(t, x)ξiξj and |aij(t, x)| ≤ ν−1 (1.6)

for any ξ = (ξ1, ξ2, . . . , ξn) ∈ R
d and for a.e. (t, x) ∈ ΩT . We also assume that a0, c :

ΩT → R are given measurable functions satisfying

ν ≤ a0(t, x), c(t, x) ≤ ν−1 for a.e. (t, x) ∈ ΩT . (1.7)

We denote the following second-order linear operator in non-divergence form with sin-

gular coefficients

Lu(t, x) = a0(t, x)ut − aij(t, x)Diju − α

xd
adj(t, x)Dju + λc(t, x)u (1.8)

for (t, x) = (t, x′, xd) ∈ ΩT , where α < 1 and λ ≥ 0 are given. Our goal is to find a 

suitable class of Sobolev spaces for the well-posedness and regularity estimates of the 

following parabolic equations with the homogeneous Dirichlet boundary condition

{

Lu = f in ΩT ,

u = 0 on (−∞, T ) × ∂R
d
+.

(1.9)

When the coefficients aij , c, and f are time independent, we also study the corresponding 

elliptic equations

{

L u = f in R
d
+,

u = 0 on ∂R
d
+,

(1.10)
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where

L u(x) = −aij(x)Diju − α

xd
adj(x)Dju + λc(x)u (1.11)

for x = (x′, xd) ∈ R
d
+. In Theorem 2.3, we show that under certain VMO conditions, 

(1.9) has a unique solution in a suitable class of weighted mixed norm Sobolev spaces 

with the weight xpα+γ0

d ω0(t)ω1(x) provided that λ is sufficiently large. Here ω0 ∈ Aq(R)

and ω1 ∈ Ap(Rd
+, µ2) are any Muckenhoupt weights for q, p ∈ (1, ∞) and µ2(s) = sγ0

for s > 0, and γ0 ∈ (−1, 1 − α]. A similar result for the elliptic equation (1.10) is stated 

in Theorem 2.4. From the mentioned theorems, we obtain the local boundary estimates 

stated in Corollary 2.7. Under some mild conditions, it is possible that the mentioned 

results can be extended to the class of equations consisting a singular zeroth order term 

bu/x2
d as those considered in [25,26], by using a change of variables. See Remark 5.3 for 

details.

It should be mentioned that the estimates in our main results (Theorems 1.1, 2.3, and 

2.4) are quite different from those obtained in [5,8] for the same class of equations but 

with the conormal boundary conditions, even when p = 2. In fact, for a given solution 

u of the PDE (1.9) or (1.10), D2
du could be too singular to be Lp-integrable even with 

weights unless the weights have very fast decay near {xd = 0}. This can be seen by the 

ODE

u′′ +
α

x
u′ = 0 for x ∈ (0, 1) (1.12)

with a given α ∈ (0, 1), for which u(x) = x1−α is a solution and u′′(x) = −α(1 −α)x−1−α

which is strongly singular when x → 0+. This striking phenomenon can be seen clearly 

in the local pointwise estimates derived in Section 4. As such, instead of D2
du, we only 

derive the estimate for D2
du + αDdu/xd. Therefore, in our main results, we establish the 

mixed-norm Lp-estimates of

xα
d u, xα−1

d u, xα
d Du, xα−1

d Dx′u, xα
d DDx′u, xα

d ut, and xα
d (D2

du + αDdu/xd)

with weight ωdµ2 for a suitable nonnegative function ω, while in [5,8] the mixed-norm Lp-

estimates of u, Du, D2u, ut with weight ωdµ are obtained. Due to such singularity feature 

for solutions of (1.9) and (1.10), suitable function spaces are found in Section 2.1, and 

they are intrinsic for the problems (1.9) and (1.10).

The proofs of our main results are also different from those in [5–8]. More precisely, 

the proofs of the main results in [5,6,8] use µ(s) = |s|α as an underlying measure, where 

s ∈ R \ {0}, and the proofs of the main results for equations in divergence form in 

[7] use the underlying measure µ1(s) = |s|−α. In this paper, to prove Theorems 2.3

- 2.4, we introduce the new and more general underlying measure µ2(s) = |s|γ0 with 

γ0 ∈ (−1, 1 − α]. Moreover, instead of the L2-estimates as in [6,8], the starting point 

in this paper is the weighted Lp-result stated in Lemma 4.6, which is based on the 
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weighted Lp for divergence form equations established in [7]. By adapting the ideas in 

this paper, in certain cases it is possible to relax the condition (1.5) for non-divergence 

form equations with the boundary condition considered in [8].

The remaining part of the paper is organized as follows. In the next section, we in-

troduce the notation and the function spaces and state the main results of the paper. In 

Section 3, we recall the definition of Muckenhoupt weights and state the weighted mixed-

norm Fefferman-Stein and Hardy-Littlewood maximal function theorems. In Section 4, 

we consider equations with coefficients depending only on the xd-variable. We first derive 

some local boundary estimates for higher-order derivatives of solutions to homogeneous 

equations, which are the key estimates in the proof of the main theorems. In particular, 

we prove Proposition 4.4 below about pointwise estimates of solutions to homogeneous 

equations. Then, we use Proposition 4.4 and an idea introduced in [22] to prove Theo-

rem 4.5, which is slightly more general than Theorem 1.1. Section 5 is devoted to the 

proofs of Theorems 2.3 and 2.4, and Corollary 2.7. To prove Theorems 2.3 and 2.4, we 

apply the mean oscillation argument in [23] with the underlying measure µ2 mentioned 

above. Finally, to show Corollary 2.7, we use a localization and iteration argument.

2. Function spaces, notation, and main results

2.1. Function spaces

For a given function f defined in R
d
+ and for τ ∈ R, we define the multiplicative 

operators

Mf(x) = xdf(x) and M
τ f(x) = xτ

df(x) for x = (x′, xd) ∈ R
d
+.

Let σ be a non-negative Borel measure on either Rd
+ or Rd+1

+ . For p ∈ [1, ∞), −∞ ≤ S <

T ≤ +∞, and D ⊂ R
d
+, and Q := (S, T ) × D, let Lp(Q, dσ) be the weighted Lebesgue 

space consisting of measurable functions u on Q such that the norm

‖u‖Lp(Q,dσ) =

(
ˆ

Q

|u(t, x)|p dσ(t, x)

)1/p

< ∞.

For p, q ∈ [1, ∞), and the weights ω0 = ω0(t) and ω1 = ω1(x), we define Lq,p(Q, ω dσ) to 

be the weighted and mixed-norm Lebesgue space on Q equipped with the norm

‖u‖Lq,p((S,T )×D,ω dσ) =

(

T̂

S

(

ˆ

D

|u(t, x)|pω1(x) σ(dx)
)q/p

ω0(t) dt

)1/q

,

where ω(t, x) = ω0(t)ω1(x). We define the weighted Sobolev space

W 1
p (D, ω1 dσ) =

{

u ∈ Lp(D, ω1 dσ) : Du ∈ Lp(D, ω1 dσ)
}
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equipped with the norm

‖u‖W 1
p (D,ω1dσ) = ‖u‖Lp(D,ω1dσ) + ‖Du‖Lp(D,ω1dσ).

The Sobolev space W 1
p (D, ω1dσ) is defined to be the closure in W 1

p (D, ω1 dσ) of all 

compactly supported functions in C∞(D) vanishing near D ∩ {xd = 0}. We also define

W
2

p (D, ω1dσ) =
{

u ∈ W
1

p (D, ω1dσ) : DDx′u,M−αDd(MαDdu) ∈ Lp(D, ω1dσ)
}

,

equipped with the norm

‖u‖W 2
p (D,ω1dσ) =‖u‖W 1

p (D,ω1dσ) + ‖DDx′u‖Lp(D,ω1dσ)

+ ‖M−αDd(MαDdu)‖Lp(D,ω1dσ).

Similarly, for Q = (S, T ) × D, ω(t, x) = ω0(t)ω1(x), and for q, p ∈ [1, ∞), we denote the 

mixed-norm weighted parabolic Sobolev space

W
1,2

q,p (Q, ωdσ) =
{

u ∈ Lq((S, T ), W 2
p (D, ω1dσ), ω0), ut ∈ Lq,p(Q, ωdσ)

}

,

equipped with the norm

‖u‖
W

1,2
q,p (Q,ωdσ) =

⎛

⎝

T̂

S

‖u(t, ·)‖q
W 2

p (D,ω1dσ)ω0(t)dt

⎞

⎠

1/q

+ ‖ut‖Lq,p(Q,ωdσ).

We also denote Ŵ 1,2
q,p (Q, ωdσ) to be the subspace of W 1,2

q,p (Q, ωdσ) defined by

Ŵ
1,2

q,p (Q, ωdσ) =
{

u ∈ W
1,2

q,p (Q, ωdσ) : M−1u,M−1Dx′u ∈ Lq,p(Q, ωdσ)
}

and equipped with the norm

‖u‖
Ŵ

1,2
q,p (Q,ωdσ) = ‖u‖

W
1,2

q,p (Q,ωdσ) + ‖M−1u‖Lq,p(Q,ωdσ) + ‖M−1Dx′u‖Lq,p(Q,ωdσ).

Similar, we also denote

Ŵ
2

p (D, ω1dσ) =
{

u ∈ W
2

p (D, ω1dσ) : M−1u,M−1Dx′u ∈ Lp(D, ω1dσ)
}

equipped with the norm

‖u‖
Ŵ 2

p (D,ω1dσ) = ‖u‖W 2
p (D,ω1dσ) + ‖M−1u‖Lp(D,ω1dσ) + ‖M−1Dx′u‖Lp(D,ω1dσ).

The spaces Ŵ 1,2
q,p (Q, xαp

d ωdσ) and Ŵ 2
p (D, xαp

d ω1dσ) are where the solutions of (1.9) and 

(1.10) are found, respectively. However, in many intermediate steps, the results hold for 

solutions in the larger spaces W 1,2
q,p (Q, ωdσ) and W 2

p (D, ω1dσ).
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Remark 2.1. It is clear that Ŵ 1,2
q,p (ΩT , ωdσ) is a subspace of

W̃
1,2

q,p (ΩT , ωdσ) :=
{

u ∈ Lq,p(ΩT , ωdσ) : ut,M
−1u, Du,M−1Dx′u,

DDx′u,M−αDd(MαDdu) ∈ Lq,p(ΩT , ωdσ)
}

. (2.1)

In fact, due to the term

‖M−1u‖Lp(D,ω1dσ),

it follows from Lemma 3.4 below that these two spaces are identical.

2.2. Notation and main results

Let r > 0, z0 = (t0, x0) with x0 = (x′
0, x0d) ∈ R

d−1 × R and t0 ∈ R. We define Br(x0)

to be the ball in Rd of radius r centered at x0, Qr(z0) to be the parabolic cylinder of 

radius r centered at z0:

Qr(z0) = (t0 − r2, t0) × Br(x0).

Also, let B+
r (x0) and Q+

r (z0) be the upper-half ball and cylinder of radius r centered at 

x0 and z0, respectively:

B+
r (x0) =

{

x = (x′, xd) ∈ R
d−1 × R : xd > 0, |x − x0| < r

}

,

Q+
r (z0) = (t0 − r2, t0) × B+

r (x0).

For z′
0 = (t0, x′

0) ∈ R × R
d−1, we denote the parabolic cylinder in R × R

d−1 by

Q′
ρ(z′

0) = (t0 − ρ2, t0) × B′
ρ(x′

0),

where B′
ρ(x′

0) is the ball in Rd−1 of radius ρ centered at x′
0. Throughout the paper, when 

x0 = 0 and t0 = 0, for simplicity of notation, we drop x0, z0 and write Br, B+
r , Qr, and 

Q+
r , etc.

For a measurable set Ω ⊂ R
d+1 and any integrable function f on Ω with respect to 

some locally finite Borel measure σ, we write

 

Ω

f(z) σ(dz) =
1

σ(Ω)

ˆ

Ω

f(z) σ(dz), where σ(Ω) =

ˆ

Ω

σ(dz).

Throughout the paper, for α ∈ (−∞, 1) and a number γ0 ∈ (−1, 1 − α], we denote the 

following weights which are used frequently in the paper

µ(s) = |s|α, µ1(s) = |s|−α, µ2(s) = |s|γ0 for s ∈ R \ {0}. (2.2)
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We also write

µ(dz) = µ(xd) dxdt, µ(dx) = µ(xd) dx,

µk(dz) = µk(xd) dxdt, µk(dx) = µk(xd) dx, k = 1, 2.

For any z0 = (z′
0, xd0) ∈ ΩT and ρ > 0, we define the average of f in Q′

ρ(z′
0) as

[f ]ρ,z0
(xd) =

 

Q′

ρ(z′

0)

f(t, x′, xd) dx′dt (2.3)

and its weighted average in Q+
ρ (z0) as

(f)ρ,z0
=

 

Q+
ρ (z0)

f(z) µ2(dz). (2.4)

We denote the weighted mean oscillation of the given coefficients (aij), a0, and c by

a#
ρ (z0) =

d−1
∑

i=1

d
∑

j=1

 

Q+
ρ (z0)

∣

∣

∣
ãij(z) − [ãij ]ρ,z0

(xd)
∣

∣

∣
µ2(dz)

+
d−1
∑

j=1

 

Q+
ρ (z0)

∣

∣

∣
ãdj(z) − (ãdj)ρ,z0

∣

∣

∣
µ2(dz)

+

 

Q+
ρ (z0)

(

∣

∣ã0(z) − [ã0]ρ,z0
(xd)

∣

∣ +
∣

∣c̃(z) − [c̃]ρ,z0
(xd)

∣

∣

)

µ2(dz) (2.5)

for z0 ∈ ΩT , where

ã0 = a0/add, c̃ = c/add, and ãij = aij/add, for i, j = 1, 2, . . . , d.

When the coefficients are time-independent, we similarly define a#
ρ (x0) for x0 ∈ Rd

+. 

We point out that in [7] where the corresponding class of (1.9) in divergence form is 

considered, the mean oscillations of the coefficients are measured with the weight µ1. 

Here we use µ2 in (2.5) and this is more general as when γ0 = −α, we have µ2 ≡ µ1. See 

the work [5,6,8,27] for similar definitions of mean oscillations but with different weights.

Remark 2.2. We note that in the definition of a#
ρ (z0), the mean oscillations of ãdj with 

j = 1, 2, . . . , d − 1 are measured in all variables. For the other coefficients, their mean 

oscillations are measured only in (t, x′). A smallness condition on such partial mean 

oscillations of the coefficients was introduced in [15,16]. It is clear that with the weight, 

the smallness condition is weaker for larger γ0. Also, as ãdd ≡ 1, its mean oscillation is 
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zero hence it does not appear in a#
ρ (z0). Observe also that we may assume without loss 

of generality that add ≡ 1 as we can always divide both sides of the PDE in (1.9) by add

and replace ν in (1.6) and (1.7) with ν2.

By a strong solution u ∈ Ŵ 1,2
q,p (ΩT , xαp

d ω dσ) to (1.9) with p, q ∈ (1, ∞), we mean 

that the first equation of (1.9) is satisfied almost everywhere. By a strong solution u ∈
W 1,2

q,p (ΩT , xγ
ddz) to (1.9), we mean that the first equation of (1.9) is satisfied almost 

everywhere and the zero Dirichlet boundary condition is satisfied in the sense of trace. 

Note that the solution space Ŵ 1,2
q,p (ΩT , xαp

d ω dσ) (or W 1,2
q,p (ΩT , xγ

ddz)) is included in the 

usual parabolic Sobolev space W 1,2
q,p,loc(ΩT , ωdσ) (or W 1,2

q,p,loc(ΩT , dz), respectively), so 

that the derivatives of u on the left-hand side of (1.9) are defined almost everywhere. 

Moreover, the trace operator is well defined for W 1,2
q,p (ΩT , xγ

ddz) when γ < 2p − 1.

We are now ready to state the first main result of the paper.

Theorem 2.3. Let ν ∈ (0, 1), T ∈ (−∞, ∞], p, q, K ∈ (1, ∞), α ∈ (−∞, 1), γ0 ∈ (−1, 1 −
α], and ρ0 > 0. Then there exist δ = δ(d, ν, p, q, α, γ0, K) > 0 sufficiently small and 

λ0 = λ0(d, ν, p, q, α, γ0, K) > 0 such that the following assertion holds. Suppose that 

(1.6) and (1.7) are satisfied, ω0 ∈ Aq(R), ω1 ∈ Ap(Rd
+, µ2) with

[ω0]Aq(R), [ω1]Ap(Rd
+,µ2) ≤ K,

and

a#
ρ (z0) ≤ δ, ∀ ρ ∈ (0, ρ0), ∀ z0 ∈ ΩT . (2.6)

Then for any f ∈ Lq,p(ΩT , xpα
d ω dµ2) and λ ≥ λ0ρ−2

0 , there exists a unique strong 

solution u ∈ Ŵ 1,2
q,p (ΩT , xpα

d ω dµ2) to (1.9), which satisfies

‖ut‖Lq,p
+ ‖DDx′u‖Lq,p

+ ‖M−αDd(MαDdu)‖Lq,p
+ ‖M−1Dx′u‖Lq,p

+
√

λ‖Du‖Lq,p
+ λ‖u‖Lq,p

+
√

λ‖M−1u‖Lq,p
≤ N‖f‖Lq,p

,
(2.7)

where ω(t, x) = ω0(t)ω1(x) for (t, x) ∈ ΩT , dµ2 = xγ0

d dxdt,

Lq,p = Lq,p(ΩT , xpα
d ω dµ2), and N = N(d, ν, p, q, α, γ0, K) > 0.

For elliptic equations, we also obtain the following results concerning (1.10).

Theorem 2.4. Let ν ∈ (0, 1), p, K ∈ (1, ∞), α ∈ (−∞, 1), γ0 ∈ (−1, 1 − α], and ρ0 > 0. 

There exist δ = δ(d, ν, p, α, γ0, K) > 0 sufficiently small and λ0 = λ0(d, ν, p, α, γ0, K) > 0

such that the following assertion holds. Suppose that (1.6) and (1.7) are satisfied, ω ∈
Ap(Rd

+, µ2) with [ω]Ap(Rd
+,µ2) ≤ K, and

a#
ρ (x0) ≤ δ, ∀ ρ ∈ (0, ρ0), ∀ x0 ∈ Rd

+. (2.8)
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Then for any f ∈ Lp(Rd
+, xpα

d ω dµ2) and for λ ≥ λ0ρ−2
0 , there exists a unique strong 

solution u ∈ Ŵ 2
p (Rd

+, xpα
d ω dµ2) to (1.10), which satisfies

‖DDx′u‖Lp
+ ‖M−αDd(MαDdu)‖Lp

+ ‖M−1Dx′u‖Lp

+
√

λ‖Du‖Lp
+ λ‖u‖Lp

+
√

λ‖M−1u‖Lp
≤ N‖f‖Lp

,
(2.9)

where Lp = Lp(Rd
+, xpα

d ω dµ2), N = N(d, ν, p, α, γ0, K) > 0 and dµ2 = xγ0

d dx.

A few remarks about the theorems above are in order.

Remark 2.5. A typical example of weights is the power weights ω1(xd) = xβ
d . It is easily 

seen that ω1 ∈ Ap(Rd
+, µ2) if and only if β ∈ (−γ0 − 1, (1 + γ0)(p − 1)). Therefore, from 

Theorem 2.3, we obtained the estimate and solvability in the space Ŵ 1,2
q,p (ΩT , xγ

ddz), 

where γ = β + αp + γ0 ⊂ (αp − 1, (1 + α + γ0)p − 1). In the special case when α = 0, 

similar results were obtained in [21,18,3]. However, the powers of the distance function in 

these papers vary with the order of derivatives. Thus the results in these papers cannot 

be directly deduced from Theorem 2.3.

Remark 2.6. Theorems 2.3-2.4 imply Theorem 1.1 in the introduction. In fact, when the 

coefficients aij , a0, c are constants, the conditions (2.6) and (2.8) hold for all γ0 and for 

all ρ0 > 0. Then, as γ ∈ (αp − 1, 2p − 1), we can choose γ0 ∈ (−1, 1 − α] such that 

γ = β + αp + γ0 with β ∈ (−γ0 − 1, (1 + γ0)(p − 1)). From this, Remark 2.5, and a 

standard scaling argument u(t, x) → u(s2t, sx) for s > 0, we see that (2.7) and (2.9)

hold for any λ > 0. See Theorem 4.5 below for a slightly generalization of Theorem 1.1. 

When γ ∈ ((α + 1)p − 1, 2p − 1), we also obtain the estimates of ‖D2
du‖Lp(ΩT ,xγ

d dz), 

‖M−1Du‖Lp(ΩT ,xγ
d dz), and ‖M−2u‖Lp(ΩT ,xγ

d dz). When α = 0, this agrees with the results 

in [21,3]. See Lemma 4.6 and Remark 4.7 below.

Finally, we state a local estimate, which is a consequence of Theorems 2.3–2.4.

Corollary 2.7. Let ν ∈ (0, 1), p, q, K ∈ (1, ∞), α ∈ (−∞, 1), γ0 ∈ (−1, 1 − α], λ ∈ [0, ∞), 

and ρ0 > 0. Then there exists δ = δ(d, ν, p, q, α, γ0, K) > 0 sufficiently small such that the 

following assertion holds. Suppose that (1.6), (1.7), and (2.6) are satisfied, ω0 ∈ Aq(R), 

ω1 ∈ Ap(Rd
+, µ2) with

[ω0]Aq(R), [ω1]Ap(Rd
+,µ2) ≤ K.

Assume that f ∈ Lq,p(Q+
1 , xpα

d ω dµ2) and u ∈ Ŵ 1,2
q,p (Q1, xpα

d ω dµ2) is strong solution of 

(1.9) in Q+
1 . Then we have

‖ut‖Lq,p(Q+
1/2,xpα

d ω dµ2) + ‖DDx′u‖Lq,p(Q+
1/2,xpα

d ω dµ2)

+ ‖Dd(MαDdu)‖Lq,p(Q+
1/2,ωdµ2) + ‖M−1Dx′u‖Lq,p(Q+

1/2,xpα
d ω dµ2) (2.10)
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+ ‖Du‖Lq,p(Q+
1/2,xpα

d ω dµ2) + ‖M−1u‖Lq,p(Q+
1/2,xpα

d ω dµ2)

≤ N‖f‖Lq,p(Q+
1 ,xpα

d ω dµ2) + ‖u‖Lq,p(Q+
1 ,xpα

d ω dµ2),

where ω(t, x) = ω0(t)ω2(x) for (t, x) ∈ Q+
1 , N = N(ν, d, p, q, α, γ0, K) > 0, and dµ2 =

xγ0

d dxdt. A similar local estimate holds for the elliptic equation (1.10) in B+
1 .

Remark 2.8. It is worth pointing out that (1.5) is required in [5,8]. Similar structural 

conditions on the matrix (aij) are also imposed in [27,32,33]. In this paper, we do not 

have those restrictions. This is due to the new Hölder regularity of xα−1
d Dk

x′u established 

in (4.11) in Lemma 4.3 below when u solves the homogeneous equations.

3. Preliminaries on weights and weighted inequalities

We first recall the definition of Muckenhoupt weights, which was introduced in [29].

Definition 3.1. For each p ∈ (1, ∞) and for a non-negative Borel measure σ on R
d, a 

locally integrable function ω : R
d → R+ is said to be in the Ap(Rd, σ) Muckenhoupt 

class of weights if and only if [ω]Ap(Rd,σ) < ∞, where

[ω]Ap(Rd,σ) = sup
ρ>0,x∈Rd

[
 

Bρ(x)

ω(y) σ(dy)

][
 

Bρ(x)

ω(y)
1

1−p σ(dy)

]p−1

. (3.1)

Similarly, the class of weight Ap(Rd
+, σ) can be defined in the same way in which the 

ball Bρ(x) in (3.1) is replaced with B+
ρ (x) for x ∈ Rd

+. If σ is a Lebesgue measure, we 

simply write Ap(Rd
+) = Ap(Rd

+, dx) and Ap(Rd) = Ap(Rd, dx). Note that if ω ∈ Ap(R), 

then ω̃ ∈ Ap(Rd) with [ω]Ap(R) = [ω̃]Ap(Rd), where ω̃(x) = ω(xn) for x = (x′, xn) ∈ R
d. 

Sometimes, if the context is clear, we neglect the spatial domain and only write ω ∈ Ap.

Denote the collection of parabolic cylinders in ΩT by

Q = {Q+
ρ (z) : ρ > 0, z ∈ ΩT }.

Now, for any locally integrable function f defined in ΩT , the Hardy-Littlewood maximal 

function of f with respect to dµ2 is defined by

M(f)(z) = sup
Q∈Q,z∈Q

 

Q

|f(ξ)| µ2(dξ), (3.2)

and the Fefferman-Stein sharp function of f with respect to dµ2 is defined by

f#(z) = sup
Q∈Q,z∈Q

 

Q

|f(ξ) − (f)Q| µ2(dξ), (3.3)
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where µ2 is defined in (2.2), and

(f)Q =

 

Q

f(z) µ2(dz). (3.4)

The following version of the weighted mixed-norm Fefferman-Stein theorem and 

Hardy-Littlewood maximal function theorem can be found in [4].

Theorem 3.2. Let p, q ∈ (1, ∞), γ0 ∈ (−1, 1 − α], K ≥ 1. Suppose that ω0 ∈ Aq(R), 

ω1 ∈ Ap(Rd
+, µ2) with

[ω0]Aq
, [ω1]Ap(Rd

+,µ2) ≤ K.

Then, for any f ∈ Lq,p(ΩT , ω dµ2), we have

‖f‖Lq,p(ΩT ,ω dµ2) ≤ N‖f#‖Lq,p(ΩT ,ω dµ2) and

‖M(f)‖Lq,p(ΩT ,ω dµ2) ≤ N‖f‖Lq,p(ΩT ,ω dµ2),

where N = N(d, q, p, γ0, K) > 0 and ω(t, x) = ω0(t)ω1(x) for (t, x) ∈ ΩT .

We now state the well-known weighted Hardy’s inequalities whose proof can be found, 

for instance, in [7, Lemma 3.1].

Lemma 3.3. For p ∈ [1, ∞), the following statements hold.

(i) For each β + 1 < p and a measurable function f defined on R+, we have

‖g‖Lp(R+,sβ−pds) ≤ p

p − (1 + β)
‖f‖Lp(R+,sβds),

where g(s) =
´ s

0
f(τ) dτ .

(ii) For each β + 1 > p and measurable function f defined on R+, we have

‖g‖Lp(R+,sβ−pds) ≤ p

β + 1 − p
‖f‖Lp(R+,sβds),

where g(s) =
´ ∞

s
f(τ) dτ .

Lemma 3.4. Let p ∈ [1, ∞), ω be a weight, and σ be a locally finite non-negative Borel 

measure on Rd
+ such that the set of continuous functions in Rd

+ is dense in Lp(Rd
+, ωdσ). 

Assume that u ∈ W 1
p (Rd

+, ωdσ) and

‖M−1u‖Lp(Rd
+,ωdσ) < ∞.



14 H. Dong, T. Phan / Journal of Functional Analysis 285 (2023) 109964

Then, there exists a sequence of smooth functions {uk} in W 1
p (Rd

+, ωdσ) vanishing near 

{xd = 0}, which converges to u in W 1
p (Rd

+, ωdσ).

Proof. Let η ∈ C∞(R) be such that η(s) = 0 for s ≤ 1/2 and η(s) = 1 for s ≥ 1. For 

each k ∈ N, let vk(x) = u(x)ηk(xd) for x = (x′, xd) ∈ R
d
+, where

ηk(s) = η(ks), s ∈ R.

By the Lebesgue dominated convergence theorem, we see that for j = 1, 2, . . . , d − 1,

vk → u and Dx′vk → Dx′u

in Lp(Rd
+, ωdσ) as k → ∞. Now note that

Ddvk(x) = ηk(xd)Ddu(x) + kη′(kxd)u(x).

Since

|kη′(kxd)| ≤ Nx−1
d 1(0,1/k)(xd),

as k → ∞,

⎛

⎜

⎝

ˆ

Rd
+

|kη′(kxd)u(x)|pω(x)dσ(x)

⎞

⎟

⎠

1/p

≤ N‖M−1u‖Lp(Rd−1×(0,1/k),ω dσ) → 0.

From this and by using the dominated convergence theorem, we obtain

Ddvk → Ddu in Lp(Rd
+, ω dσ) as k → ∞.

Consequently, {vk} converges to u in W 1
p (Rd

+, ωdσ) and vk vanishes near {xd = 0} for 

each k. Finally, by using the standard mollification, we can find a sequence of smooth 

functions {uk} in W 1
p (Rd

+, ωdσ) satisfying the assertion of the lemma. �

We conclude the section with the following lemma, which is used frequently in the 

paper.

Lemma 3.5. Let ν ∈ (0, 1), α ∈ (−∞, 1) and p, q ∈ (1, ∞). Let σ be a non-negative Borel 

measure Rd+1
+ and ω : ΩT → R+ be a weight. Suppose that (1.6) and (1.7) are satisfied. 

Then for any R ∈ (0, ∞], if u is a strong solution of

Lu = f in Q+
R

with some λ ≥ 0 and f ∈ Lq,p(Q+
R, xαp

d ω dσ), then it holds that
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‖Dd(MαDdu)‖Lq,p(Q+
R,ω dσ) ≤ N

[

‖ut‖Lq,p(Q+
R,xαp

d ω dσ) + ‖DDx′u‖Lq,p(Q+
R,xαp

d ω dσ)

+ ‖M−1Dx′u‖Lq,p(Q+
R,xαp

d ω dσ) + λ‖u‖Lq,p(Q+
R,xαp

d ω dσ) + ‖f‖Lq,p(Q+
R,xαp

d ω dσ)

]

,

where N = N(d, ν, α) > 0.

Proof. Without loss of generality, we may assume that the right-hand side of the in-

equality above is finite. By dividing the PDE of u by add and using the conditions (1.6)

and (1.7), we obtain

|Dd(MαDdu)| ≤ N(d, ν, α)MαF,

where

F = |f | + λ|u| + M
−1|Dx′u| + |ut| + |DDx′u|.

Therefore,

‖Dd(MαDdu)‖Lq,p(Q+
R,ω dσ) ≤ N‖F‖Lq,p(Q+

R,xαp
d ω dσ).

The lemma is proved. �

4. Equations with simple coefficients

We consider the special class of equations (1.9) in which the coefficients only depend 

on the xd-variable. Let (aij) : R+ → R
d×d be bounded, measurable, and uniformly 

elliptic: there is ν ∈ (0, 1) so that

ν|ξ|2 ≤ aij(xd)ξiξj and |aij(xd)| ≤ ν−1 (4.1)

for xd ∈ R+ and for ξ = (ξ1, ξ2, . . . , ξd) ∈ R
d. Moreover, let a0, c : R+ → R be measurable 

functions satisfying

ν ≤ a0(xd), c(xd) ≤ ν−1 for a.e. xd ∈ R+. (4.2)

For each α < 1 and λ ≥ 0, we denote

L0u(t, x) = a0(xd)ut + λc(xd)u − aij(xd)Diju(t, x′, xd) − α

xd
adjDju(t, x′, xd),

where (t, x) = (t, x′, xd) ∈ ΩT . We consider the following equation

{

L0u = f in ΩT ,

u(·, 0) = 0 on (−∞, T ) × R
d−1.

(4.3)
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In addition to the uniformly elliptic and bounded conditions as in (4.1), we assume that

adj/add, j = 1, 2, . . . , d − 1 are constant. (4.4)

Dividing both sides of the equation by add, we may assume that

adj(xd) ≡ adj and add(xd) ≡ 1, ∀ xd ∈ R+, j = 1, 2, . . . , d − 1. (4.5)

Observe that under this assumption and by a change of variables, yj = xj − adjxd, j =

1, 2, . . . , d − 1 and yd = xd, without loss of generality, we may assume that adj ≡ 0 for 

j = 1, 2, . . . , d − 1 as in (5.2). Hence, in the remaining part of this section, we assume 

that

adj(xd) ≡ 0 and add(xd) ≡ 1, ∀ xd ∈ R+, j = 1, 2, . . . , d − 1. (4.6)

We stress that the results below still hold true under the condition (4.4) by changing the 

variables back.

Observe that under the condition (4.6) or (4.5), there is a hidden divergence structure 

for the operator L0. Namely,

xα
d L0u(t, x) = xα

d

(

a0(xd)ut + λc(xd)u
)

− Di[x
α
d aij(xd)Dju(t, x)].

Consequently, the PDE in (4.3) can be rewritten in divergence form as

xα
d

(

a0(xd)ut + λc(xd)u
)

− Di[x
α
d aij(xd)Dju(t, x)] = xα

d f(t, x) in ΩT . (4.7)

A function u ∈ L2((−∞, T ), W 1
p (Rd

+, dµ)) is said to be a weak solution of (4.3) if

ˆ

ΩT

µ(x)[−a0uϕt + aijDjuDiϕ + λcuϕ] dz =

ˆ

ΩT

µ(x)fϕ dz

for any ϕ ∈ C∞
0 (ΩT ) and for µ(x) = xα

d with x = (x′, xd) ∈ R
d
+.

4.1. Local pointwise estimates for homogeneous equations

We consider the equation

{

L0u = 0 in Q+
2 (ẑ)

u = 0 on Q2(ẑ) ∩ {xd = 0} if x̂d ≤ 2,
(4.8)

where ẑ = (t̂, ̂x′, ̂xd) ∈ R × R
d−1 × R+. Our goal is to derive pointwise estimates for 

solutions to (4.8) and their derivatives. We start with the following Caccioppoli type 

estimates.
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Lemma 4.1. Let ν ∈ (0, 1], λ ≥ 0, α < 1, and ẑ = (t̂, ̂x′, ̂xd) ∈ R × Rd
+. Assume that 

(4.1), (4.2), and (4.6) are satisfied on ((x̂d − 2)+, ̂xd + 2). If u ∈ W
1,2

2 (Q+
2 (ẑ), dµ) is a 

strong solution of (4.8), then for every 0 < ρ < R ≤ 2,

ˆ

Q+
ρ (ẑ)

(

|Du(z)|2 + λ|u(z)|2
)

µ(dz) ≤ N(d, ν, ρ, R)

ˆ

Q+
R(ẑ)

|u(z)|2µ(dz),

ˆ

Q+
ρ (ẑ)

|ut(z)|2µ(dz) ≤ N(d, ν, ρ, R)

ˆ

Q+
R(ẑ)

(

|Du(z)|2 + λ|u(z)|2
)

µ(dz).

Moreover, for any j ∈ N ∪ {0}, we also have

ˆ

Q+
ρ (ẑ)

|∂j+1
t u(z)|2µ(dz) +

ˆ

Q+
ρ (ẑ)

|DDx′∂j
t u(z)|2µ(dz)

≤ N(d, ν, j, ρ, R)

ˆ

Q+
R(ẑ)

(

|Du(z)|2 + λ|u(z)|2
)

µ(dz).

Proof. As the equation in (4.8) can be written in divergence form as in (4.7), the lemma 

can be proved by using the standard energy estimates. See, for example, the proof of [7, 

Proposition 4.2]. �

Our next result is the following local boundary weighted L∞ and Lipschitz estimates 

of solutions.

Lemma 4.2. Let ν ∈ (0, 1], λ ≥ 0, and α < 1 and assume that (4.1), (4.2), and (4.6) are 

satisfied on (0, 2). If u ∈ W
1,2

2 (Q+
2 (ẑ), dµ) is a strong solution of (4.8) with ẑ ∈ R × Rd

+, 

then we have

sup
z∈Q+

1 (ẑ)

|xα
d max{x−1

d , 1}u(z)| ≤ N
(

 

Q+
2 (ẑ)

|xα
d u(z)|2µ1(dz)

)1/2

,

sup
z∈Q+

1 (ẑ)

|xα
d Du(z)| ≤ N

(

 

Q+
2 (ẑ)

(

|xα
d Du(z)|2 + λ|xα

d u(z)|2
)

µ1(dz)
)1/2

,

where N = N(d, α, ν) > 0.

Proof. As already noted, the equation in (4.8) can be written in the divergence form as 

in (4.7). Therefore, Lemma 4.2 follows by applying [7, Propositions 4.1 and 4.2] to the 

equation (4.7). �

We now derive local boundary L∞-estimates for higher-order derivatives of solutions 

to the homogeneous equations.



18 H. Dong, T. Phan / Journal of Functional Analysis 285 (2023) 109964

Lemma 4.3. Let q ∈ (1, ∞) and q1 ∈ [1, ∞). Under the assumptions of Lemma 4.2, if 

u ∈ W 1,2
q (Q+

2 (ẑ), xαq
d dµ1) is a strong solution of (4.8) and ẑ = (ẑ′, 0) ∈ R

d × {0}, then 

for any j, k ∈ N ∪ {0},

sup
z∈Q+

1 (ẑ)

[

|xα−1
d Dk

x′∂
j+1
t u(z)| + |xα

d DDk
x′∂

j
t u(z)| + |xα−1

d Dk
x′∂

j
t u(z)|

]

≤ N
(

 

Q+
2 (ẑ)

|xα
d Dk

x′∂
j
t u(z)|q1µ1(dz)

)1/q1

, (4.9)

sup
z∈Q+

1 (ẑ)

[

|∂t(x
α
d DDk

x′u(z))| + |D(xα
d DDk

x′u(z))|
]

≤ N
(

 

Q+
2 (ẑ)

(

xα
d |DDk

x′u(z)| +
√

λ|Dk
x′u(z)|

)q1
µ1(dz)

)1/q1

, (4.10)

and

‖Mα−1Dk
x′u‖C1/4,1/2(Q+

1 (ẑ)) ≤ N
(

 

Q+
2 (ẑ)

|xα−1
d Dk

x′u(z)|q1µ1(dz)
)1/q1

(4.11)

for N = N(d, ν, α, j, k). A similar assertion also holds for ẑ = (ẑ′, ̂xd) with x̂d > 2.

Proof. We only prove the boundary estimates since the proof of the interior estimates 

is simpler. By Hölder’s inequality for q1 > 2 and a standard iteration argument for 

q1 ∈ [1, 2) (see, for instance, [14, p. 75]), we only need to consider the case when q1 = 2. 

By shifting the coordinates, we may also assume that ẑ = (0, 0).

We first impose the additional condition that u ∈ W
1,2

2 (Q+
2 , dµ). By using standard 

argument of finite-difference quotients, we see that Dk
x′∂

j
t u is still a solution of (4.8) for 

j, k ∈ N ∪ {0}. Therefore, without loss of generality, we may assume that j = k = 0. 

Applying Lemmas 4.2 and 4.1, we get

sup
z∈Q+

1

[

|xα−1
d ut(z)| + |xα

d Du(z)| + |xα−1
d u(z)|

]

≤ N
(

 

Q+
2

|xα
d u(z)|2µ1(dz)

)1/2

,

which gives (4.9).

To show (4.10), as before we may assume that k = 0. Applying Lemma 4.2 to ut and 

then Lemma 4.1, we get

sup
z∈Q+

1

|xα
d Dut(z)|
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≤ N

(
 

Q4/3

(

|xα
d Dut(z)|2 + λ|xα

d ut(z)|2
)

µ1(dz)

)1/2

≤ N

(
 

Q5/3

|xα
d ut(z)|2µ1(dz)

)1/2

≤ N

(
 

Q2

(

|xα
d Du(z)|2 + λ|xα

d u(z)|2
)

µ1(dz)

)1/2

. (4.12)

Applying Lemma 4.2 to Dx′u and Lemma 4.1, we have

sup
z∈Q+

1

|xα
d DDx′u(z)|

≤ N

(
 

Q3/2

(

|xα
d DDx′u(z)|2 + λ|xα

d Dx′u(z)|2
)

µ1(dz)

)1/2

≤ N

(
 

Q2

|xα
d Dx′u(z)|2µ1(dz)

)1/2

. (4.13)

Similarly, applying Lemma 4.2 to ut and u and then Lemma 4.1, we have

sup
z∈Q+

1

|xα
d ut(z)| + λ|xα

d u(z)|

≤ N

(
 

Q3/2

(

|xα
d ut(z)|2 + λ2|xα

d u(z)|2
)

µ1(dz)

)1/2

≤ N

(
 

Q2

(

|xα
d Du(z)|2 + λ|xα

d u(z)|2
)

µ1(dz)

)1/2

. (4.14)

Now we bound Dd(xα
d Ddu) by using the PDE in (4.8) and combine (4.12), (4.13), and 

(4.14) to get (4.10).

Next we prove (4.11). Again we may assume that k = 0. In view of (4.9), it suffices 

to show that for any (t1, x′
1, x1d), (t1, x′

1, x2d) ∈ Q+
1 satisfying x2d < x1d, we have

|xα−1
1d u(t1, x′

1, x1d) − xα−1
2d u(t1, x′

1, x2d)|

≤ N(x1d − x2d)1/2
(

 

Q+
2

|xα−1
d u(z)|q1µ1(dz)

)1/q1

. (4.15)

When x1d − x2d ≤ x2
1d/2, it follows from the mean value formula and (4.9) that
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|xα−1
1d u(t1, x′

1, x1d) − xα−1
2d u(t1, x′

1, x2d)|

≤ N(x1d − x2d)x−1
1d

(

 

Q+
2

|xα
d u(z)|2µ1(dz)

)1/2

≤ N(x1d − x2d)1/2
(

 

Q+
2

|xα−1
d u(z)|2µ1(dz)

)1/2

,

which yields (4.15). Next we consider the case when x1d − x2d > x2
1d/2. By (4.10) and 

Lemma 4.1, we have

sup
z∈Q+

1

|Dd(xα
d Ddu(z))| ≤ N

(

 

Q+
2

|xα
d u(z)|2µ1(dz)

)1/2

.

Therefore, there exists a bounded function f = f(z′) such that for any z ∈ Q+
1 ,

|xα
d Ddu(z) − f(z′)| ≤ Nxd

(

 

Q+
2

|xα
d u(z)|2µ1(dz)

)1/2

,

which implies that

|Ddu(z) − x−α
d f(z′)| ≤ Nx1−α

d

(

 

Q+
2

|xα
d u(z)|2µ1(dz)

)1/2

.

Using the zero boundary condition, we obtain

|u(z) − (1 − α)−1x1−α
d f(z′)| ≤ Nx2−α

d

(

 

Q+
2

|xα
d u(z)|2µ1(dz)

)1/2

,

which is equivalent to

|xα−1
d u(z) − (1 − α)−1f(z′)| ≤ Nxd

(

 

Q+
2

|xα
d u(z)|2µ1(dz)

)1/2

.

Then by the triangle inequality,

|xα−1
1d u(t1, x′

1, x1d) − xα−1
2d u(t1, x′

1, x2d)|

≤ Nx1d

(

 

Q+
2

|xα
d u(z)|2µ1(dz)

)1/2
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≤ N(x1d − x2d)1/2
(

 

Q+
2

|xα−1
d u(z)|2µ1(dz)

)1/2

,

which gives (4.15).

Finally, we remove the additional condition. Observe that if q ∈ [2, ∞), then by 

Hölder’s inequality, u ∈ W
1,2

2 (Q+
2 , dµ). On the other hand, if q ∈ (1, 2), as ut and Dx′u

satisfy the same equation as u, by using [7, Corollary 2.3] for weak solutions to equations 

in divergence form as in (4.7), we see that ut, Dx′u, Du, u ∈ L2(Q+
R, dµ) for any R < 2. 

This and Lemma 3.5 imply that u ∈ W
1,2

2 (Q+
R, dµ). The lemma is proved. �

We now prove the following result regarding pointwise estimates of solutions to (4.8)

for a more general class of solutions.

Proposition 4.4. Let p ∈ (1, ∞) and β ∈ (p − 1, (2 − α)p − 1). If

u ∈ W
1,2

p (Q+
2 (ẑ), xαp+β

d dz)

is a strong solution of (4.8) and ẑ = (ẑ′, 0), then for any j, k ∈ N ∪ {0},

sup
z∈Q+

1 (ẑ)

[

|xα−1
d Dk

x′∂
j+1
t u(z)| + |xα

d DDk
x′∂

j
t u(z)| + |xα−1

d Dk
x′∂

j
t u(z)|

]

≤ N

 

Q+
2 (ẑ)

|xα
d Dk

x′∂
j
t u(z)|xβ

d dz, (4.16)

sup
z∈Q+

1 (ẑ)

[

|∂t(x
α
d DDk

x′u(z))| + |D(xα
d DDk

x′u(z))|
]

≤ N

 

Q+
2 (ẑ)

(

xα
d |DDk

x′u(z)| +
√

λ|Dk
x′u(z)|

)

xβ
d dz, (4.17)

and

‖Mα−1Dk
x′u‖C1/4,1/2(Q+

1 (ẑ)) ≤ N

 

Q+
2 (ẑ)

|xα−1
d Dk

x′u(z)|xβ
d dz (4.18)

for N = N(d, ν, α, j, k, β). A similar assertion also holds for ẑ = (ẑ′, ̂xd) with x̂d > 2.

Proof. As before, we only consider the boundary case. Without loss of generality, we 

may assume that ẑ = 0. The proposition follows directly from Lemma 4.3 if β ≤ −α. 

Next we consider the case when β > −α. We first impose the additional condition that 

u ∈ W 1,2
p (Q+

3/2, xαp
d dµ1). Then applying Lemma 4.3, we obtain
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sup
z∈Q+

1

[

|xα
d Dk

x′∂
j
t u(z)| + |xα−1

d Dk
x′∂

j+1
t u(z)| + |xα

d DDk
x′∂

j
t u(z)| + |xα−1

d Dk
x′∂

j
t u(z)|

]

≤ N

 

Q+
4/3

|xα
d Dk

x′∂
j
t u(z)|x−α

d dz

≤ ε

 

Q+
4/3

|xα
d Dk

x′∂
j
t u(z)|xβ0

d dz + Nε(β+α)/(α+β0)

 

Q+
4/3

|xα
d Dk

x′∂
j
t u(z)|xβ

d dz

≤ Nε sup
Q+

4/3

|xα
d Dk

x′∂
j
t u(z)| + Nε(β+α)/(α+β0)

 

Q+
4/3

|xα
d Dk

x′∂
j
t u(z)|xβ

d dz,

where β0 ∈ (−1, −α), and we also used Young’s inequality in the second inequality. By an 

iteration argument (see, for instance, [14, Lemma 4.3]), we obtain (4.16). The estimates 

(4.17) and (4.18) can be proved similarly.

Next, we remove the additional condition that u ∈ W 1,2
p (Q+

3/2, xαp
d dµ1). By taking 

the standard mollification with respect to t and x′, and then taking the limit, without 

loss of generality, we may assume that u is smooth in x′ and t. We claim that

u ∈ W
1,2

p (Q+
3/2, xαp+β′

d dz) ∀ β′ > −1, (4.19)

which implies (4.16), (4.17), and (4.18) in the general case. To this end, we take a smooth 

cutoff function η ∈ C∞
0 ((−2, 2)) satisfying η ≡ 1 in (−5/3, 5/3). Then by applying the 

weighted Hardy’s inequality (Lemma 3.3 (ii)) to v := η(xd)xα
d Ddu, we get

‖Mα−1Ddu‖Lp(Q′

2×(0,5/3),xβ
d ) ≤ ‖M−1v‖Lp(Q′

2×R+,xβ
d )

≤ N‖Ddv‖Lp(Q′

2×R+,xβ
d ) < ∞, (4.20)

where we used the condition β > p − 1. By applying the weighted inequality Lemma 3.3

(i) and using the zero boundary condition, we have

‖Mα−2u‖Lp(Q′

2×(0,5/3),xβ
d ) ≤ N‖Mα−1Ddu‖Lp(Q′

2×(0,5/3),xβ
d ) < ∞,

where we used the condition β < (2 − α)p − 1. Therefore,

u ∈ Lp(Q+
5/3, x

(α−2)p+β
d dz).

By applying the same argument to Dx′u, we also have

Dx′u ∈ Lp(Q+
5/3, x

(α−2)p+β
d dz).

This assertion and (4.20) imply that
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M
−1Dx′u, Du ∈ Lp(Q+

5/3, xαp+β1

d dz), where β1 = β − p.

Again as ut and Dx′u satisfy the same conditions as u, we obtain

ut, DDx′u ∈ Lp(Q+
5/3, xαp+β1

d dz).

Then from (4.8) and Lemma 3.5, we get D(MαDdu) ∈ Lp(Q+
5/3, xβ1

d dz), and thus 

u ∈ W 1,2
p (Q+

3/2, xαp+β1

d dz). If β1 > p − 1, we can repeat this procedure to get 

u ∈ W 1,2
p (Q+

rk
, xαp+βk

d dz), where βk = β − kp and {rk} ⊂ (3/2, 2) is a finite sequence of 

decreasing numbers. Let k0 be the integer such that βk0−1 > p − 1 and βk0
≤ p − 1. We 

then have that u ∈ W 1,2
p (Q+

rk0
, xαp+β̂

d dz) for any β̂ > p − 1. By repeating this procedure 

once again, we prove the claim (4.19). The proposition is proved. �

4.2. Mixed-norm Lp-estimates for non-homogeneous equations

The main result of the section is following theorem on the existence and estimate of 

solutions in Ŵ 1,2
q,p (ΩT , xγ

d dz) to (4.3) with γ ∈ (αp − 1, 2p − 1
)

.

Theorem 4.5. Let ν ∈ (0, 1], p, q ∈ (1, ∞), α ∈ (−∞, 1), and γ ∈
(

αp − 1, 2p − 1
)

be 

constants. Assume that aij satisfies (4.1) and (4.6), and a0, c satisfy (4.2). Then, for any 

f ∈ Lq,p(ΩT , xγ
d dz) and λ > 0, there exists a unique strong solution u ∈ Ŵ 1,2

q,p (ΩT , xγ
d dz)

to (4.3) and u satisfies

‖ut‖ + ‖DxDx′u‖ + ‖D2
du + αM−1Ddu‖

+ ‖M−1Dx′u‖ + λ1/2‖Du‖ + λ‖u‖ + λ1/2‖M−1u‖ ≤ N‖f‖,
(4.21)

where ‖ · ‖ = ‖ · ‖Lq,p(ΩT ,xγ
d dz), and N = N(d, ν, α, p, q, γ) > 0.

Observe that Theorem 1.1 is a special case of Theorem 4.5. Before proving the theorem, 

let us recall some notation of functional spaces used in [7]. Let p ∈ [1, ∞), S, T ∈
[−∞, +∞] with S < T , D ⊂ R

d
+ be open, and τ ∈ R. We define

H
−1
p ((S, T ) × D, xτ

d dz)

=
{

u : u = DiFi + M
−1F0 + f for some f ∈ Lp((S, T ) × D, xτ

d dz)

F = (F0, . . . , Fd) ∈ Lp((S, T ) × D, xτ
d dz)d+1

}

,

which is equipped with the norm

‖u‖
H

−1
p ((S,T )×D,xτ

d dz) = inf
{

‖F‖Lp((S,T )×D,xτ
d dz) + ‖f‖Lp((S,T )×D,xτ

d dz) :

u = DiFi + M
−1F0 + f

}

.
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We also define the space

H
1

p ((S, T ) × D, xτ
d dz)

=
{

u ∈ Lp((S, T ), W 1
p (D, xτ

d dx)) : ut ∈ H
−1
p ((S, T ) × D, xτ

d dz)
}

equipped with the norm

‖u‖H 1
p ((S,T )×D,xτ

d dz)

= ‖u‖Lp((S,T )×D,xτ
d dz) + ‖Du‖Lp((S,T )×D,xτ

d dz) + ‖ut‖H
−1
p ((S,T )×D,xτ

d dz).

Next, we state and prove the following lemma.

Lemma 4.6. Let ν ∈ (0, 1], p ∈ (1, ∞), α ∈ (−∞, 1), and γ ∈
(

(α + 1)p − 1, 2p − 1
)

be constants. Assume that aij satisfies (4.1) and (4.6), and a0, c satisfy (4.2). Then, 

for any f ∈ Lp(ΩT , xγ
d dz) and λ > 0, there exists a unique strong solution u ∈

H 1
p (ΩT , xγ−p

d dz) ∩ Ŵ 1,2
p (ΩT , xγ

d dz) to (4.3), which satisfies

‖ut‖ + ‖D2u‖ + λ1/2‖Du‖ + ‖M−1Du‖
+ λ‖u‖ +

√
λ‖M−1u‖ + ‖M−2u‖ ≤ N‖f‖,

(4.22)

where ‖ · ‖ = ‖ · ‖Lp(ΩT ,xγ
d dz) and N = N(d, ν, α, p, γ) > 0.

Proof. By applying the scaling argument mentioned in Remark 2.6, we may assume 

λ = 1. Also, by using a density argument, we assume that f is compactly supported in 

ΩT . Let γ1 = γ − (α + 1)p, and

F (t, x) = −
∞̂

xd

sαf(t, x′, s) ds.

Note that DdF (z) = xα
d f(z) for z = (t, x) ∈ ΩT with x = (x′, xd) ∈ R

d
+. By the weighted 

Hardy’s inequality (Lemma 3.3 (ii)), we have

‖F‖Lp(ΩT ,x
γ1
d dz) = ‖M−1F‖

Lp(ΩT ,x
γ1+p
d dz)

≤ N‖DdF‖
Lp(ΩT ,x

γ1+p
d dz)

≤ N‖Mαf‖
Lp(ΩT ,x

γ1+p
d dz)

= ‖f‖Lp(ΩT ,xγ
d dz), (4.23)

where we used the condition that γ1 + p = γ − αp > p − 1. By the assumptions on the 

coefficients aij , we can write the operator L0 in divergence form as in (4.7). Then, the 

equation (4.3) becomes

xα
d

(

a0(xd)ut + c(xd)u
)

− Di[x
α
d aij(xd)Dju + Fi] = 0 in ΩT , (4.24)
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where Fi = 0 for i = 1, 2, . . . , d − 1 and Fd = F . Note also that by the assumption on γ, 

we see that γ1 ∈ (−1, (1 −α)p −1). Then, by applying [7, Theorem 2.5 and Remark 2.6] to 

the equation (4.24), we see that there is a unique weak solution u ∈ H 1
p (ΩT , xαp+γ1

d dz)

of (4.24), and

‖MαDu‖Lp(ΩT ,x
γ1
d dz) + ‖Mαu‖Lp(ΩT ,x

γ1
d dz) ≤ N‖F‖Lp(ΩT ,x

γ1
d dz),

which together with (4.23) implies that

‖Du‖Lp(ΩT ,xγ−p
d dz) + ‖u‖Lp(ΩT ,xγ−p

d dz) ≤ N‖f‖Lp(ΩT ,xγ
d dz). (4.25)

As γ − p + 1 < p, by using the weighted Hardy’s inequality (Lemma 3.3 (i)) and the 

boundary condition u = 0 on {xd = 0}, we get

‖u‖Lp(ΩT ,xγ−2p
d dz) = ‖M−1u‖Lp(ΩT ,xγ−p

d dz) ≤ N‖Ddu‖Lp(ΩT ,xγ−p
d dz)

≤ N‖f‖Lp(ΩT ,xγ
d dz). (4.26)

Now we prove the estimate (4.22) and conclude that u ∈ Ŵ 1,2
p (ΩT , xγ

d dz). We follow 

an idea introduced in [22, Lemma 2.2] (see also [3, Theorem 3.5]). Let ζ ∈ C∞
0 (R+) be 

non-negative such that

∞̂

0

|ζ(s)|ps−γ−1ds = 1,

∞̂

0

|ζ ′(s)|psp−γ−1ds = N1 < ∞,

and

∞̂

0

|ζ ′′(s)|ps2p−γ−1ds = N2 < ∞.

For each r > 0, let ζr(s) = ζ(rs), where s ∈ R+. We note that with a suitable assumption 

on the integrability of a given function v : ΩT → R, using the Fubini theorem, we have

∞̂

0

⎛

⎝

ˆ

ΩT

|ζr(xd)v(z)|p dz

⎞

⎠ r−γ−1 dr =

ˆ

ΩT

|v(z)|pxγ
d dz,

∞̂

0

⎛

⎝

ˆ

ΩT

|ζ ′
r(xd)v(z)|p dz

⎞

⎠ r−γ−1 dr = N1

ˆ

ΩT

|v(z)|pxγ−p
d dz,

∞̂

0

⎛

⎝

ˆ

ΩT

|ζ ′′
r (xd)v(z)|p dz

⎞

⎠ r−γ−1 dr = N2

ˆ

ΩT

|v(z)|pxγ−2p
d dz.

(4.27)
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Next, for each fixed r > 0, let w(t, x) = ζr(xd)u(t, x), where (t, x) ∈ ΩT with x =

(x′, xd) ∈ R
d−1 × R+. Then w solves the following equation with uniformly elliptic 

coefficients

a0wt + cw − aijDijw = g in ΩT and w = 0 on {xd = 0}, (4.28)

where

g(t, x) = ζr(xd)f(t, x) +
α

xd

(

ζr(xd)Ddu + ζ ′
r(xd)u

)

−
d−1
∑

i=1

aidζ ′
r(xd)Diu − 2ζ ′

rDdu − ζ ′′
r (xd)u.

We first prove (4.22) with the assumption that u ∈ W 1,2
p (ΩT , xαp+γ1

d dz). Under this extra 

assumption and as ζr is compactly supported in (0, ∞), we see that w ∈ W 1,2
p (ΩT ), where 

W 1,2
p (ΩT ) is the usual parabolic Sobolev space. Then by applying the W 1,2

p -estimate for 

(4.28) (see, for instance, [2]), we obtain

‖w‖W 1,2
p (ΩT ) ≤ N‖g‖Lp(ΩT ).

From this, the definition of g, and a simple manipulation, we obtain

‖ζru‖Lp(ΩT ) + ‖ζrDu‖Lp(ΩT ) + ‖ζrD2u‖Lp(ΩT ) + ‖ζrut‖Lp(ΩT )

≤ N
[

‖ζf‖Lp(ΩT ) + ‖ζ ′′
r u‖Lp(ΩT ) + ‖ζ ′

rDu‖Lp(ΩT ) + ‖ζ ′
ru‖Lp(ΩT )

+ ‖ζrDu‖Lp(ΩT ,x−p
d dz) + ‖ζ ′

ru‖Lp(ΩT ,x−p
d dz)

]

.

Then, by raising this last estimate to the power p, multiplying it with r−γ−1, and then 

integrating with respect to r on (0, ∞), we obtain

‖u‖Lp(ΩT ,xγ
d dz) + ‖Du‖Lp(ΩT ,xγ

d dz) + ‖D2u‖Lp(ΩT ,xγ
d dz) + ‖ut‖Lp(ΩT ,xγ

d dz)

≤ N
[

‖f‖Lp(ΩT ,xγ
d dz) + ‖Du‖Lp(ΩT ,xγ−p

d dz)

+ ‖u‖Lp(ΩT ,xγ−p
d dz) + ‖u‖Lp(ΩT ,xγ−2p

d dz)

]

,

where we also used (4.27). It then follows from the last estimate, (4.25), and (4.26) that

‖u‖Lp(ΩT ,xγ
d dz) + ‖Du‖Lp(ΩT ,xγ

d dz) + ‖D2u‖Lp(ΩT ,xγ
d dz) + ‖ut‖Lp(ΩT ,xγ

d dz)

+ ‖Du‖Lp(ΩT ,xγ−p
d dz) + ‖u‖Lp(ΩT ,xγ−p

d dz) + ‖u‖Lp(ΩT ,xγ−2p
d dz)

≤ N‖f‖Lp(ΩT ,xγ
d dz).
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It remains to remove the extra assumption that u ∈ W 1,2
p (ΩT , xαp+γ1

d dz). By mollify-

ing the equation (4.3) in t and x′ and applying [7, Theorem 2.5 and Remark 2.6] to the 

equations of u
(ε)
t and Dx′u(ε), we obtain

u(ε), u
(ε)
t , Dx′u(ε), DDx′u(ε) ∈ Lp(ΩT , xαp+γ1

d dz).

This and Lemma 3.5 imply that u(ε) ∈ W 1,2
p (ΩT , xαp+γ1

d dz) is a strong solution of (4.3)

with f (ε) in place of f . From this, we apply the a priori estimate (4.22) that we just 

proved for u(ε) and pass to the limit as ε → 0+ to obtain the estimate (4.22) for u. The 

proof of the theorem is completed. �

Remark 4.7. Note that in Lemma 4.6 we estimated D2
du because γ is large. The lower 

bound (α + 1)p − 1 of γ is sharp by considering the example u(x) = x1−α and u′′(x) =

−α(1 − α)x−1−α. When α = 0, this result is also consistent with the previous results in 

[21,3].

From Lemma 4.6 and Proposition 4.4, we derive the following mean oscillation esti-

mate.

Corollary 4.8. Let ν ∈ (0, 1], p0 ∈ (1, ∞), α ∈ (−∞, 1), and γ0 ∈ (p0 −1, (2 −α)p0 −1) be 

constants. Let λ > 0, ρ > 0, and ẑ = (t̂, ̂x′, ̂xd) ∈ ΩT . Assume that (4.1), (4.2), and (4.6)

are satisfied. If f ∈ Lp0
(Q+

8ρ(ẑ), xαp0

d dµ2) and u ∈ Ŵ 1,2
p0

(Q+
8ρ(ẑ), xαp0

d dµ2) is a strong 

solution to the equation

{

L0u = f in Q+
6ρ(ẑ),

u = 0 on Q6ρ(ẑ) ∩ {xd = 0} if x̂d ≤ 6ρ,

where µ2(s) = sγ0 for s ∈ R+, then

 

Q+
κρ(ẑ)

|U − (U)Q+
κρ(ẑ)| µ2(dz)

≤ Nκ1/2(|U |)Q+
8ρ(ẑ) + Nκ−(d+2+γ0)/p0 (|Mαf |p0)

1/p0

Q+
8ρ(ẑ)

(4.29)

for any κ ∈ (0, 1), where

U = M
α(ut, DDx′u,M−1Dx′u,

√
λDu, λu,

√
λM−1u), (4.30)

(·)Q is defined in (3.4), and N = N(ν, d, α, p0, γ0) > 0.

Proof. By the assumption on γ0, we see that γ := αp0 + γ0 ∈ ((1 + α)p0 − 1, 2p0 − 1). 

Then, by applying Lemma 4.6 with γ and p0 in place of γ and p, there is a solution 

v ∈ Ŵ 1,2
p0

(ΩT , xγ
d dz) to
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{

L0v = f1Q+
8ρ(ẑ) in ΩT

v = 0 on {xd = 0}

satisfying

‖vt‖Lp0 (ΩT ,xγ
d dz) + ‖D2v‖Lp0 (ΩT ,xγ

d dz) + ‖M−1Dv‖Lp0 (ΩT ,xγ
d dz)

+
√

λ‖Dv‖Lp0 (ΩT ,xγ
d dz) + λ‖v‖Lp0 (ΩT ,xγ

d dz) +
√

λ‖M−1v‖Lp0 (ΩT ,xγ
d dz)

≤ N‖f‖Lp0 (Q+
8ρ(ẑ),xγ

d dz).

(4.31)

From the definition of µ2 in (2.2) and the definition of (·)Q in (3.4), we see that (4.31)

implies

(

|V |p0
)1/p0

Q+
κρ(ẑ)

≤ Nκ−(d+2+γ0)/p0
(

|Mαf |p0
)1/p0

Q+
8ρ(ẑ)

,

(

|V |p0
)1/p0

Q+
8ρ(ẑ)

≤ N
(

|Mαf |p0
)1/p0

Q+
8ρ(ẑ)

,
(4.32)

where

V = M
α(vt, DDx′v,M−1Dx′v,

√
λDv, λv,

√
λM−1v).

Now, let w = u − v ∈ Ŵ 1,2
p0

(Q+
8ρ(ẑ), xγ̄

d dz), and note that w solves the equation

L0w = 0 in Q+
8ρ(ẑ)

and w = 0 on {xd = 0} ∩ Q8ρ(ẑ). Then, we use the mean value theorem and Proposi-

tion 4.4 for w with γ0 in place of β and p0 in place of p to obtain

 

Q+
κρ(ẑ)

|W −
(

W
)

Q+
κρ(ẑ)

| µ2(dz) ≤ Nκ1/2
(

W
)

Q+
8ρ(ẑ)

,

where

W = M
α(wt, DDx′w,M−1Dx′w,

√
λDw, λw,

√
λM−1w).

From this last estimate, (4.32), and the triangle inequality, we obtain the desired esti-

mate. The proof of the lemma is completed. �

Finally, we provide the proof of Theorem 4.5.

Proof of Theorem 4.5. We first prove the a priori estimate (4.21) for a given u ∈
Ŵ 1,2

q,p (ΩT , xγ
d dz) solving (4.3). Let p0 ∈

(

1, min{p, q}
)

be sufficiently closed to 1, and 

γ0 ∈ (p0 − 1, (2 − α)p0 − 1) be sufficiently close to (2 − α)p0 − 1 such that
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γ′ := γ − αp − γ0 ∈
(

− 1 − γ0, (1 + γ0)(p/p0 − 1)
)

,

which implies that

xγ′

d ∈ Ap/p0
(R+, µ2) ⊂ Ap(R+, µ2).

Applying Corollary 4.8, we see that for every ρ > 0 and ẑ ∈ ΩT , we have

 

Q+
κρ(ẑ)

|U − (U)Q+
κρ(ẑ)| µ2(dz)

≤ Nκ1/2(|U |)Q+
8ρ(ẑ) + Nκ−(d+2+γ0)/p0 (|Mαf |p0)

1/p0

Q+
8ρ(ẑ)

,

where κ ∈ (0, 1), U is defined in (4.30), and N = N(ν, d, α, p0, γ0) > 0. It then follows 

that

U# ≤ Nκ1/2M(|U |) + Nκ−(d+2+γ0)/p0M(|Mαf |p0)1/p0 on ΩT ,

where the sharp function and the maximal function are defined in (3.3) and (3.2), respec-

tively. Then, by using the weighted Fefferman-Stein theorem and the Hardy-Littlewood 

theorem for M with the weight xγ′

d (Theorem 3.2), we obtain the estimate

‖U‖
Lq,p(ΩT ,xγ′

d dµ2)
≤ N

[

κ1/2‖U‖
Lq,p(ΩT ,xγ′

d dµ2)

+ κ−(d+2+γ0)/p0‖Mαf‖
Lq,p(ΩT ,xγ′

d dµ2)

]

.

From this, and by choosing κ > 0 sufficiently small, we obtain

‖U‖
Lq,p(ΩT ,xγ′

d dµ2)
≤ N‖Mαf‖

Lq,p(ΩT ,xγ′

d dµ2)
.

Then, by using Lemma 3.5 for (4.3), we obtain the estimate (4.21).

We now prove the solvability of (4.3) in Ŵ 1,2
q,p (ΩT , xγ

d dz). We split the proof into two 

cases.

Case I: γ ∈ (αp − 1, p − 1). We write L0 in divergence form so that the equation (4.3)

becomes

xα
d

(

a0(xd)ut + λc(xd)u
)

− Di[x
α
d aij(xd)Dju] = xα

d f in ΩT . (4.33)

It follows from [7, Theorem 2.5 and Remark 2.6] that there is a unique weak solution 

u ∈ H 1
q,p(ΩT , xγ

ddz) of (4.33). Then, as in the proof Lemma 4.6, by mollifying the 

equation (4.33) in (t, x′) and using Lemma 3.5, we see that u(ε) ∈ W 1,2
q,p (ΩT , xγ

ddz) is a 

strong solution of (4.3) with f (ε) in place of f . Moreover, since γ < p − 1, by using the 

weighted Hardy’s inequality (Lemma 3.3 (i)), we know that
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x−1
d u(ε), x−1

d Dx′u(ε) ∈ Lq,p(ΩT , xγ
ddz).

From this, we apply the a priori estimate (4.21) that we just proved for uε and then pass 

to the limit as ε → 0+, we see that u ∈ Ŵ 1,2
q,p (ΩT , xγ

ddz) and it solves (4.3).

Case II: γ ∈ [p − 1, 2p − 1). For each f ∈ Lq,p(ΩT , xγ
ddz), let {fk} ⊂ C∞

0 (ΩT ) such that

lim
k→∞

‖fk − f‖Lq,p(ΩT ,xγ
d dz) = 0.

We take a γ1 ∈ (αp − 1, p − 1) so that γ1 < γ. Since fk has compact support in ΩT

and smooth, we have fk ∈ Lq,p(ΩT , xγ1

d dz). Therefore, by Case I, there exists a solution 

uk ∈ Ŵ 1,2
q,p (ΩT , xγ1

d dz) of (4.3) with fk in place of f .

Now, if the sequence {uk} ⊂ Ŵ 1,2
q,p (ΩT , xγ

ddz), then by the a priori estimate (4.21), we 

obtain

‖∂tuk‖ + ‖DDx′uk‖ + ‖D2
du + αM−1Dduk‖ + ‖M−1Dx′uk‖

+ λ1/2‖Duk‖ + λ‖uk‖ + λ1/2‖M−1uk‖ ≤ N‖fk‖,

where ‖ ·‖ = ‖ ·‖Lq,p(ΩT ,xγ
d dz). It follows from the linearity of (4.3) and the convergence of 

{fk} in Lq,p(ΩT , xγ
ddz) that {uk} is Cauchy in Ŵ 1,2

q,p (ΩT , xγ
ddz). Let u ∈ Ŵ 1,2

q,p (ΩT , xγ
ddz)

be the limit of {uk} in Ŵ 1,2
q,p (ΩT , xγ

ddz). Then, by passing to the limit, we see that u

solves (4.3).

It remains to prove that uk ∈ Ŵ 1,2
q,p (ΩT , xγ

ddz) for all k. Let k be fixed, and let R0 > 0

be sufficiently large such that

supp(fk) ⊂ DR0
:= (−∞, T ) × R

d−1 × (0, R0).

As γ1 < γ and uk ∈ Ŵ 1,2
q,p (ΩT , xγ1

d dz), we see that uk ∈ Ŵ 1,2
q,p (D2R0

, xγ
ddz). Hence, we 

only need to show that

‖uk‖
Ŵ

1,2
q,p (ΩT \DR0 ,xγ

d dz) < ∞.

For each l ∈ N ∪ {0}, let ηl = ηl(xd) be a smooth function such that ηl ≡ 0 in 

(−2lR0, 2lR0), ηl ≡ 1 outside (−2l+1R0, 2l+1R0), and

‖Dkηl‖L∞
≤ N02−kl, k = 0, 1, 2, ∀l ≥ 0.

Let wl = ukηl, which is a solution to the equation

L0wl = g in ΩT and w = 0 on {xd = 0},

where

g = −aij(Diuδjdη′
l + Djuδidη′

l + uδidδjdη′′
l ) − αx−1

d uη′
l
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Therefore, by the a priori estimate (4.21), we have

‖∂twl‖Lq,p(ΩT ,x
γ1
d dz) + ‖DDx′wl‖Lq,p(ΩT ,x

γ1
d dz)

+ ‖D2
dwl + αM−1Ddwl‖Lq,p(ΩT ,x

γ1
d dz) + λ1/2‖Dwl‖Lq,p(ΩT ,x

γ1
d dz)

+ ‖M−1Dx′wl‖Lq,p(ΩT ,x
γ1
d dz) + λ1/2‖M−1wl‖Lq,p(ΩT ,x

γ1
d dz)

+ λ‖wl‖Lq,p(ΩT ,x
γ1
d dz) ≤ N‖g‖Lq,p(ΩT ,x

γ1
d dz).

Observe that

‖g‖Lq,p(ΩT ,x
γ1
d dz) ≤ N2−l

(

‖Du‖Lq,p(D
2l+1R0

\D
2lR0

,x
γ1
d dz)

+ 2−l‖u‖Lq,p(D
2l+1R0

\D
2lR0

,x
γ1
d dz)

)

.

Combining the two inequalities above, we get

‖u‖
Ŵ

1,2
q,p (D

2l+2R0
\D

2l+1R0
,x

γ1
d dz) ≤ N2−l‖u‖

Ŵ
1,2

q,p (D
2l+1R0

\D
2lR0

,x
γ1
d dz),

where N > 0 depends also on λ, but is independent of l. By iterating this estimate, we 

obtain

‖u‖
Ŵ

1,2
q,p (D

2l+1R0
\D

2lR0
,x

γ1
d dz) ≤ N l2−l(l−1)/2‖u‖

Ŵ
1,2

q,p (D2R0 ,x
γ1
d dz), ∀ l ≥ 0.

This implies

‖u‖
Ŵ

1,2
q,p (ΩT \DR0 ,xγ

d dz) =
∞

∑

l=0

‖u‖
Ŵ

1,2
q,p (D

2l+1R0
\D

2lR0
,xγ

d dz)

≤ ‖u‖
Ŵ

1,2
q,p (D2R0 ,x

γ1
d dz)

∞
∑

l=0

N l2−l(l−1)/2(2lR0)(γ−γ1)/p

≤ N‖u‖
Ŵ

1,2
q,p (DR0 ,x

γ1
d dz) < ∞.

The proof is completed. �

We now conclude this section with the following lemma, which improves Corollary 4.8

as the lower bound of γ0 does not depend on p0. The lemma is used in the next section.

Lemma 4.9. Corollary 4.8 still holds when γ0 ∈ (−1, (2 −α)p0 +1) provided that the term 

κ−(d+2+γ0)/p0 in (4.29) is replaced with κ−(d+2+γ+
0 )/p0 , where γ+

0 = max{γ0, 0}.

Proof. We repeat the proof of Corollary 4.8 by using Theorem 4.5 instead of Lem-

ma 4.6. �
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Remark 4.10. As the discussion right after (4.6), the results in this section hold when 

(4.6) is replaced with (4.4).

5. Equations with partially VMO coefficients

This section is to prove Theorems 2.3, 2.4, and Corollary 2.7. We shall first study 

the equation (1.9) which is a parabolic equation in non-divergence form with singular 

coefficients:

{

Lu = f in ΩT ,

u = 0 on {xd = 0},
(5.1)

where L is defined in (1.8). Note that we can always divide both sides of the PDE in (5.1)

by add and replace ν in (1.6) and (1.7) with ν2. Therefore, it is convenient to assume 

that

add = 1. (5.2)

We first state and prove a lemma about the oscillation estimate for solutions to non-

homogeneous equations.

Lemma 5.1. Let ν ∈ (0, 1), p0 ∈ (1, ∞), α ∈ (−∞, 1), γ0 ∈ (−1, (2 − α)p0 − 1), 

p ∈ (p0, ∞) and assume that (1.6), (1.7), and (5.2) are satisfied. Let λ > 0 and 

ρ, ρ1, ρ0 ∈ (0, 1), ẑ = (t̂, ̂x′, ̂xd) ∈ ΩT , t1 ∈ R and f ∈ Lp0
(Q+

8ρ(ẑ), xp0α
d dµ2). Assume 

that u ∈ Ŵ 1,2
p (Q+

8ρ(ẑ), xpα
d dµ2) vanishing outside (t1 − (ρ0ρ1)2, t1] is a strong solution to 

the equation

{

Lu = f in Q+
6ρ(ẑ),

u = 0 on Q6ρ(ẑ) ∩ {xd = 0} if x̂d ≤ 6ρ.

Then, for any κ ∈ (0, 1), it holds that

 

Q+
κρ(ẑ)

|U − (U)Q+
κρ(ẑ)| µ2(dz)

≤ Nκ1/2 (|U |)Q+
8ρ(ẑ) + Nκ−(d+2+γ+

0 )ρ
2(1−1/p0)
1 (|U |p0)

1/p0

Q+
8ρ(ẑ)

+ Nκ−
d+2+γ

+
0

p0

[

(|Mαf |p0)
1/p0

Q+
8ρ(ẑ)

+ a#
ρ0

(ẑ)
1

p0
− 1

p (|U |p)
1/p

Q+
8ρ(ẑ)

]

,

(5.3)

where U is defined in (4.30) and N = N(d, ν, p, p0, α, γ0) > 0.

Proof. We discuss two cases depending on 8ρ > ρ0 or 8ρ ≤ ρ0.

Case I: 8ρ > ρ0. By using the doubling property of µ2 and Hölder’s inequality, we have
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Q+
κρ(ẑ)

|U − (U)Q+
κρ(ẑ)| µ2(dz) ≤ Nκ−(d+2+γ+

0 )(|U |)Q+
8ρ(ẑ)

≤ Nκ−(d+2+γ+
0 )

(

1(t1−(ρ0ρ1)2,t1]

)1−1/p0

Q+
8ρ(ẑ)

(|U |p0)
1/p0

Q+
8ρ(ẑ)

≤ Nκ−(d+2+γ+
0 )ρ

2(1−1/p0)
1 (|U |p0)

1/p0

Q+
8ρ(ẑ)

,

where N = N(d, p0, γ0) > 0.

Case 2: 8ρ ≤ ρ0. Recall that [a0]8ρ,ẑ(xd), [c]8ρ,ẑ(xd), [aij ]8ρ,ẑ(xd), and (adj)8ρ,ẑ are defined 

as in (2.3)-(2.4), where i, j ∈ {1, 2, . . . , d}. Denote

Lρ,ẑu = [a0]8ρ,ẑut + λ[c]8ρ,ẑu − aij(xd)Diju − α

xd
adjDju,

where

aij(xd) =

{

[aij ]8ρ,ẑ(xd), for i = 1, 2, . . . , d − 1, j = 1, 2, . . . , d,

(adj)8ρ,ẑ, for i = d, j = 1, 2, . . . , d,
(5.4)

and

F1(z) =

d−1
∑

i=1

d
∑

j=1

(aij − [aij ]8ρ,ẑ)Diju(z),

F2(z) =
d−1
∑

j=1

(adj − (adj)8ρ,ẑ)(Ddju(z) + αx−1
d Dju(z)),

F3(z) = ([a0]8ρ,ẑ − a0)ut(z) + λ([c]8ρ,ẑ − c)u(z).

Under the condition (5.2), u satisfies

Lρ,ẑu(t, x) = f(t, x) +

3
∑

i=1

Fi(t, x) in Q+
6ρ(ẑ)

with the boundary condition u = 0 on {xd = 0} if x̂d ≤ 6ρ. Also, as 1 < p0 < p and 

γ0 > −1, by using Hölder’s inequality, u ∈ Ŵ 1,2
p0

(Q+
8ρ(ẑ), xp0α

d dµ2). From (5.2) and the 

definitions in (5.4), the coefficient matrix (aij) satisfies (4.4). Hence, as explained in 

Remark 4.10, we can apply Lemma 4.9 and infer that

 

Q+
κρ(ẑ)

|U − (U)Q+
κρ(ẑ)| µ2(dz)

≤ N
[

κ1/2(|U |)Q+
8ρ(ẑ) + κ−(d+2+γ+

0 )/p0 (|Mαf |p0)
1/p0

Q+
8ρ(ẑ)

+ κ−(d+2+γ+
0 )/p0

3
∑

i=1

(|MαFi|p0)
1/p0

Q+
8ρ(ẑ)

]

,

(5.5)
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where N = N(d, ν, α, γ0, p0) > 0. We now bound the last term on the right-hand side of 

(5.5). By Hölder’s inequality and the boundedness of (aij) in (1.6), the definition of a#
ρ

in (2.5), and (5.2),

(|MαF1|p0)
1/p0

Q+
8ρ(ẑ)

≤
(

|aij(z) − [aij ]8ρ,ẑ(xd)|pp0/(p−p0)
)1/p0−1/p

Q+
8ρ(ẑ)

(|MαDDx′u|p)
1/p

Q+
8ρ(ẑ)

≤ N (|aij(z) − [aij ]8ρ,ẑ(xd)|)1/p0−1/p

Q+
8ρ(ẑ)

(|MαDDx′u|p)
1/p

Q+
8ρ(ẑ)

= Na#
ρ0

(ẑ)1/p0−1/p (|MαDDx′u|p)
1/p

Q+
8ρ(ẑ)

,

where N = N(d, ν, p, p0) > 0. Similarly, we also have

(|MαF2|p0)
1/p0

Q+
8ρ(ẑ)

≤ Na#
ρ0

(ẑ)1/p0−1/p
(

|MαDDx′u|p + |Mα−1Dx′u|p
)1/p

Q+
8ρ(ẑ)

,

(|MαF3|p0)
1/p0

Q+
8ρ(ẑ)

≤ Na#
ρ0

(ẑ)1/p0−1/p (|Mαut|p + λp|Mαu|p)
1/p

Q+
8ρ(ẑ)

.

By plugging the estimates of Fk for k = 1, 2, 3 into (5.5), we obtain (5.3). From the above 

two cases, the lemma is proved. �

Proposition 5.2. Let ν, T , p, q, K, α, γ0, ρ0, and ω be as in Theorem 2.3. There exist 

sufficiently small positive constants

δ = δ(d, ν, α, p, q, γ0, K) and ρ1 = ρ1(d, ν, α, p, q, γ0, K)

such that, under the conditions (1.6), (1.7), and (2.6), the following statement holds. 

Let λ > 0 and f ∈ Lq,p(ΩT , xαp
d ω dµ2). If u ∈ Ŵ 1,2

q,p (Ω, xαp
d ω dµ2) vanishes outside 

(t1 − (ρ0ρ1)2, t1] for some t1 ∈ R and satisfies (5.1), then

‖ut‖Lq,p(ΩT ,xαp
d ω dµ2) + ‖DDx′u‖Lq,p(ΩT ,xαp

d ω dµ2) + ‖M−1Dx′u‖Lq,p(ΩT ,xαp
d ω dµ2)

+ ‖Dd(MαDdu)‖Lq,p(ΩT ,ω dµ2) +
√

λ‖Du‖Lq,p(ΩT ,xαp
d ω dµ2)

+ λ‖u‖Lq,p(ΩT ,xαp
d ω dµ2) +

√
λ‖M−1u‖Lq,p(ΩT ,xαp

d ω dµ2)

≤ N(d, ν, α, p, q, γ0, K)‖f‖Lq,p(ΩT ,xαp
d ω dµ2).

Proof. Without loss of generality, we may assume that (5.2) holds. As ω0 ∈ Aq((−∞, T ))

and ω1 ∈ Ap(Rd
+, dµ2), by the reverse Hölder’s inequality [28, Theorem 3.2], we find 

p1 = p1(d, p, q, γ0, K) ∈ (1, min(p, q)) such that

ω0 ∈ Aq/p1
((−∞, T )), ω1 ∈ Ap/p1

(Rd
+, µ2). (5.6)
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Note that because γ0 ∈ (−1, 1 − α], we can choose p2 ∈ (1, p1) such that γ0 ∈ (−1, (2 −
α)p2 − 1). Applying Lemma 5.1 with p2 in place of p0 and p1 in place of p, we have

U# ≤N
[

κ1/2M(|U |) + κ−(d+2+γ+
0 )ρ

2(1−1/p2)
1 M(|U |p2)1/p2

+ κ−
d+2+γ

+
0

p2 M(|Mαf |p2)1/p2 + κ−
d+2+γ

+
0

p2 δ
1

p2
− 1

p1 M(|U |p1)1/p1

]

in ΩT

for any κ ∈ (0, 1), where N = N(ν, d, p1, p2, α, γ0) > 0. Therefore, it follows from Theo-

rem 3.2 that

‖U‖Lq,p
≤ N

[

κ1/2‖M(|U |)‖Lq,p
+ κ−(d+2+γ+

0 )ρ
2(1−1/p2)
1 ‖M(|U |p2)1/p2‖Lq,p

+ κ−
d+2+γ

+
0

p2 ‖M(|Mαf |p2)
1

p2 ‖Lq,p
+ κ−

d+2+γ
+
0

p2 δ
1

p2
− 1

p1 ‖M(|U |p1)
1

p1 ‖Lq,p

]

,

where N = N(d, ν, p, q, α, γ0, K) > 0 and Lq,p = Lq,p(ΩT , ω dµ2). Then, from (5.6) and 

Theorem 3.2 again, we get

‖U‖Lq,p
≤ N

[(

κ1/2 + κ−(d+2+γ+
0 )ρ

2(1−1/p2)
1

)

‖U‖Lq,p
+ κ−

d+2+γ
+
0

p2 ‖Mαf‖Lq,p

+ κ−
d+2+γ

+
0

p2 δ
1

p2
− 1

p1 ‖U‖Lq,p

]

.

Now, by choosing κ sufficiently small and then δ and ρ1 sufficiently small depending on 

d, ν, p, q, α, γ0, and K such that

N
(

κ1/2 + κ−(d+2+γ+
0 )ρ

2(1−1/p2)
1 + κ−

d+2+γ
+
0

p2 δ
1

p2
− 1

p

)

< 1/2,

we obtain

‖U‖Lq,p
≤ N(d, ν, p, q, α, γ0, K)‖Mαf‖Lq,p

.

This and Lemma 3.5 prove the assertion of the proposition. �

Now, we are ready to prove Theorem 2.3.

Proof of Theorem 2.3. We first prove the estimate (2.7). Let u ∈ Ŵ 1,2
q,p (ΩT , xpα

d ω dµ2) be 

a strong solution of (1.9). We apply Proposition 5.2 and a partition of unity argument in 

the time variable. Let ξ ∈ C∞
0 (R) be a non-negative standard cut-off function vanishing 

outside (−ρ2
0ρ2

1, 0] and satisfying

ˆ

R

ξq(t) dt = 1 and

ˆ

R

(ξ′(t))q dt ≤ N(ρ0ρ1)−2q, (5.7)
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where ρ1 > 0 is from Proposition 5.2. For a given s ∈ R, let ws(t, x) = u(t, x)ξ(t − s). 

We see that ws is a strong solution of

{

Lws = Fs in ΩT

ws(t, x′, 0) = 0 for (t, x′) ∈ (−∞, T ) × R
d−1,

where

Fs(t, x) = f(t, x)ξ(t − s) + a0u(t, x)ξt(t − s).

As ws vanishes outside (s − ρ2
0ρ2

1, s] × R
d
+, by Proposition 5.2, we have

‖∂tws‖Lq,p
+

√
λ‖Dws‖Lq,p

+ ‖DDx′ws‖Lq,p
+ ‖M−1Dx′ws‖Lq,p

+ ‖M−αDd(MαDdws)‖Lq,p
+ λ‖ws‖Lq,p

+
√

λ‖M−1ws‖Lq,p

≤ N‖Fs‖Lq,p
,

(5.8)

where N = N(d, ν, α, γ0, p, q, K) and Lq,p = Lq,p(ΩT , xαp
d ω dµ2). From (5.7), for any 

integer k ≥ 0 and τ ∈ R, we have

‖Mτ Dk
xu‖q

Lq,p
=

ˆ

R

‖Mτ Dk
xws‖q

Lq,p
ds.

Also, it follows from utξ(t − s) = ∂tws − uξt(t − s) that

‖ut‖q
Lq,p

≤ N

ˆ

R

‖∂tws‖q
Lq,p

ds + N(ρ0ρ1)−2q‖u‖q
Lq,p

.

From the last two estimates and by integrating the q-th power of (5.8) with respect to 

s, we conclude that

‖ut‖Lq,p
+

√
λ‖Du‖Lq,p

+ ‖DDx′u‖Lq,p
+ ‖M−1Dx′u‖Lq,p

+ ‖M−αDd(MαDdu)‖Lq,p
+ λ‖u‖Lq,p

+
√

λ‖M−1u‖Lq,p

≤ N‖f‖Lq,p
+ N(ρ0ρ1)−2‖u‖Lq,p

,

where N = N(d, ν, α, p, q, γ0, K) > 0. Then, by choosing

λ0 = λ(d, ν, p, q, α, γ0, K) = 2Nρ−2
1 ,

we obtain (2.7) provided that λ ≥ λ0ρ−2
0 .

Observe that the estimate (2.7) also implies the uniqueness of solutions. It then re-

mains to prove the existence of the solution. We split the proof into two steps.



H. Dong, T. Phan / Journal of Functional Analysis 285 (2023) 109964 37

Step I: Assume p = q and ω ≡ 1. We use the method of continuity. Consider the operator

Lτ u = (1 − τ)
[

∂t − Δ − α

xd
Dd + λ

]

u + τLu

with τ ∈ [0, 1]. It is simple to check that the coefficients in Lτ satisfy all assumptions in 

Theorem 2.3 uniformly in τ ∈ [0, 1]. Then, using the solvability result in Theorem 4.5 and 

the a priori estimate (2.7) that we just proved, we can apply the method of continuity 

to obtain the solvability of (1.9) with λ ≥ λ0ρ−2
0 , where λ0 = λ0(d, ν, p, q, α, γ0, K) > 0

is defined in the proof of (2.7). For details, see for example, [23, Theorem 1.3.4, p. 15]

and the proof of [5, Theorem 1.1].

Step II: We consider the general case with p, q ∈ (1, ∞) and ω as in the statement of 

Theorem 2.3. We follow the approach in [4, Section 8]. Let p1 > max{p, q} be sufficiently 

large and let ε1, ε2 ∈ (0, 1) be sufficiently small depending on K, p, q and γ0 such that

1 − p

p1
=

1

1 + ε1
and 1 − q

p1
=

1

1 + ε2
,

and both ω1+ε1
1 and ω1+ε2

0 are locally integrable and satisfy the doubling property. Pre-

cisely, there is N0 > 0 such that

ˆ

Γ2r(t0)

ω1+ε2
0 (s) ds ≤ N0

ˆ

Γr(t0)

ω1+ε2
0 (s) ds (5.9)

for any r > 0 and t0 ∈ R, where Γr(t0) = (t0 − r2, min{t0 + r2, T}). Similarly

ˆ

B+
2r(x0)

ω1+ε1
1 (x) dµ2 ≤ N0

ˆ

B+
r (x0)

ω1+ε1
1 (x) dµ2 (5.10)

for any r > 0 and any x0 ∈ Rd
+.

Now, let {fk} be a sequence in C∞
0 (ΩT ) such that

lim
k→∞

‖fk − f‖Lq,p(ΩT ,xαp
d ω dµ2) = 0. (5.11)

By Step I, for each k ∈ N, we can find a solution uk ∈ Ŵ 1,2
p1

(ΩT , xαp1

d dµ2) of (1.9) when f

is replaced with fk, where λ ≥ λ0ρ−2
0 for λ0 = λ0(d, ν, p1, p1, α, γ0, K) > 0. Observe that 

if the sequence {uk} is in Ŵ 1,2
q,p (ΩT , xαp

d ω dµ2), then by applying the a priori estimate 

(2.7) that we just proved, we have

‖uk‖
Ŵ

1,2
q,p (ΩT ,xαp

d ω dµ2) ≤ N‖fk‖Lp,q(ΩT ,xαp
d ω dµ2)

and
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‖uk − ul‖Ŵ
1,2

q,p (ΩT ,xαp
d ω dµ2) ≤ N‖fk − fl‖Lp,q(ΩT ,xαp

d ω dµ2)

for all k, l ∈ N and for N = N(d, p, q, α, γ0, λ, K) > 0. Then, by (5.11), we see that {uk}
is Cauchy in Ŵ 1,2

q,p (ΩT , xαp
d ω dµ2). Let u ∈ Ŵ 1,2

q,p (ΩT , xαp
d ω dµ2) be the limit of {uk} in 

Ŵ 1,2
q,p (ΩT , xαp

d ω dµ2). By passing to the limit as k → ∞ in the equation of uk, we see 

that u ∈ Ŵ 1,2
q,p (ΩT , xαp

d ω dµ2) solves (1.9).

From now on, we fix k ∈ N, and prove uk ∈ Ŵ 1,2
q,p (ΩT , xαp

d ω dµ2). Let us denote

DR = (−R2, min{R2, T}) × BR.

Let R0 > 0 sufficiently large such that the support of fk ⊂ DR0
. It follows from (5.9), 

(5.10), and Hölder’s inequality that

‖uk‖
Ŵ

1,2
q,p (D2R0 ,xαp

d ω dµ2) ≤ N(d, p, q, p1, α, γ0, R0)‖uk‖
Ŵ

1,2
p1 (D2R0 ,x

αp1
d dµ2) < ∞.

Then, it remains to prove

‖uk‖
Ŵ

1,2
q,p (ΩT \DR0 ,xαp

d ω dµ2) < ∞.

We use a localization technique with the a priori estimate (2.7). For each l ∈ N ∪ {0}, 

let ηl be a smooth function on (−∞, T ) × R
d such that

ηl ≡ 0 in D2lR0
, ηl ≡ 1 (−∞, T ) × R

d \ D2l+1R0

and

‖Dηl‖L∞
≤ N12−l, ‖∂tηl‖L∞

+ ‖D2ηl‖L∞
≤ N12−2l, ∀ l ≥ 0,

where N1 may depend on R0. Let wl = ukηl, and we see that wl solves the equation

Lwl = g in ΩT and wl = 0 on {xd = 0},

where

g = a0uk∂tηl − aij(DiukDjηl + DjukDiηl + ukDijηl) − αx−1
d ukadjDjηl.

Because wl ∈ Ŵ 1,2
p1

(ΩT , xαp1

d dµ2), by the estimate (2.7), it follows that

‖wl‖Ŵ
1,2

p1 (ΩT ,x
αp1
d ωdµ2) ≤ N‖g‖Lp1 (ΩT ,x

αp1
d ωdµ2),

where N also depends on λ. Observe that
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‖g‖Lp1 (ΩT ,x
αp1
d ωdµ2)

≤ N2−l‖Duk‖Lp1 (D
2l+1R0

\D
2lR0,x

αp1
d

ωdµ2
) + N2−2l‖uk‖Lp1 (D

2l+1R0
\D

2lR0,x
αp1
d

ωdµ2
)

+ N2−l‖M−1uk‖Lp1 (D
2l+1R0

\D
2lR0,x

αp1
d

ωdµ2
).

Then, we get

‖uk‖
Ŵ

1,2
p1 (D

2l+2R0
\D

2l+1R0
,x

αp1
d ωdµ2) ≤ N2−l‖uk‖

Ŵ
1,2

p1 (D
2l+1R0

\D
2lR0

,x
αp1
d ωdµ2),

where N > 0 depends also on R0 and λ, but is independent of l. By iterating this 

estimate, we obtain

‖uk‖
Ŵ

1,2
p1 (D

2l+1R0
\D

2lR0
,x

αp1
d ωdµ2) ≤ N l2−l(l−1)/2‖uk‖

Ŵ
1,2

p1 (D2R0 ,x
αp1
d ωdµ2), ∀ l ≥ 0.

Finally, from the inequality above, (5.9), (5.10), and Hölder’s inequality, we obtain

‖uk‖
Ŵ

1,2
q,p (ΩT \DR0 ,xαp

d ωdµ2) =
∞

∑

l=0

‖uk‖
Ŵ

1,2
q,p (D

2l+1R0
\D

2lR0
,xαp

d ω dµ2)

≤
∞

∑

l=0

‖uk‖
Ŵ

1,2
p1 (D

2l+1R0
\D

2lR0
,x

αp1
d dµ2)‖ω0‖1/q

L1+ε1 (Γ
2l+1R0

)‖ω1‖1/p

L1+ε1 (B+

2l+1R0
,dµ2)

≤ N‖uk‖
Ŵ

1,2
p1 (DR0 ,x

αp1
d dµ2)

∞
∑

l=0

N l2−l(l−1)/2N
l( 1

p + 1
q )

0 < ∞.

The proof is now completed. �

Proof of Theorem 2.4. Let λ0 and δ be as in Theorem 2.3. It suffices to show the a 

priori estimate (2.9) as the existence and uniqueness can be proved in the same way as 

in the proof of Theorem 2.3. For a given solution u ∈ Ŵ 2
p (Rd

+, xαp
d ωdµ2) of (1.10), let 

v(t, x) = ξ(t/n)u(x), where ξ ∈ C∞
0 ((0, 1)). Then, we see that v ∈ Ŵ 1,2

p (Rd+1
+ , xαp

d ωdµ2)

is a solution of the parabolic equation

vt − L v = g in R
d+1
+ with v = 0 on {xd = 0},

where L is defined in (1.11) and

g(t, x) = ξ(t/n)f(x) + ξ′(t/n)u(x)/n.

By the assumptions in Theorem 2.4, we see that all conditions in Theorem 2.3 are 

satisfied. Then, applying the estimate (2.7) of Theorem 2.3 for v, and then taking the 

limit as n → ∞, we obtain (2.9). See, for example, the proof of [5, Theorem 1.2] for 

details. The theorem is proved. �
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Finally, we give the proof of Corollary 2.7.

Proof of Corollary 2.7. For k = 1, 2, . . ., we denote Ik = (−1 + 2−k, 1 − 2−k),

Qk = I2k × (Ik)d and Qk
+ = Qk ∩ Ω0.

We take a sequence of cutoff functions ηk = φ2k(t) 
∏d

j=1 φk(xj), k = 1, 2, . . ., where φk

satisfies

φk = 1 in Ik, φk = 0 outside Ik+1, |φ′
k| ≤ N2k, |φ′′

k | ≤ N22k.

Recall the constant λ0 from Theorem 2.3. Then it is easily seen that uηk satisfies

{

L(uηk) + λkcuηk = fk in Ω0,

uηk = 0 on (−∞, 0) × ∂R
d
+,

(5.12)

where λk ≥ λ0ρ−2
0 is a constant to be specified, Ω0 = (−∞, 0) × R

d
+, and

fk = fηk + λkcuηk + a0uηt − (aij + aji)DiuDjηk

− aijuDijηk − αx−1
d adjuDjηk.

It follows from Theorem 2.3 applied to (5.12) that

Ak ≤ N‖fk‖Lq,p(Ω0,xpα
d ω dµ2)

≤ N‖f‖Lq,p(Qk+1
+ ,xpα

d ω dµ2) + N(λk + 22k)‖u‖Lq,p(Qk+1
+ ,xpα

d ω dµ2)

+ N2k‖M−1u‖Lq,p(Qk+1
+ ,xpα

d ω dµ2) + N2k‖Du‖Lq,p(Qk+1
+ ,xpα

d ω dµ2),

(5.13)

where

Ak :=
∥

∥(uηk)t| + |DDx′(uηk)| + |M−1Dx′(uηk)| +
√

λk|D(uηk)|
+

√

λk|M−1uηk|
∥

∥

Lq,p(Ω0,xpα
d ω dµ2)

+ ‖Dd(MαDd(uηk))‖Lq,p(Ω0,ωdµ2),

and we used the definition of fk in the last inequality. From (5.13) and the properties of 

ηk, we get

Ak ≤ N2kλ
−1/2
k+1 Ak+1 + N‖f‖Lq,p(Qk+1

+ ,xpα
d ω dµ2)

+ N(λk + 22k)‖u‖Lq,p(Qk+1
+ ,xpα

d ω dµ2). (5.14)

We take λk = λ0ρ−2
0 +(5N2k)2 so that N2kλ

−1/2
k+1 ≤ 1/5. Multiplying both sides of (5.14)

by 5−k and taking the sum in k = 1, 2, . . ., we obtain
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∞
∑

k=1

5−kAk ≤
∞

∑

k=1

5−k−1Ak+1 + N‖f‖Lq,p(Q+
1 ,xpα

d ω dµ2)

+ N

∞
∑

k=1

5−k(λk + 22k)‖u‖Lq,p(Q+
1 ,xpα

d ω dµ2). (5.15)

Note that the summations above are all finite. By absorbing the first summation on the 

right-hand side of (5.15) to the left-hand side, we reach

A1 ≤ N‖f‖Lq,p(Q+
1 ,xpα

d ω dµ2) + N‖u‖Lq,p(Q+
1 ,xpα

d ω dµ2),

which implies (2.10). The corollary is proved. �

We conclude the paper with the following remark.

Remark 5.3. It is possible to study the class of (1.9) and (1.10) with the additional zeroth 

order terms of the form bu/x2
d. For example, let us consider we consider the equation

{

Lv(t, x) − b
x2

d
v(t, x) = f(t, x) in ΩT

v = 0 on (−∞, T ) × ∂R
d
+,

(5.16)

where b is a constant and L is defined in (1.8). We also assume

add ≡ 1 and adj = ajd for all j = 1, 2, . . . , d − 1. (5.17)

Following [25], we define u(t, x) = xβ
d v(t, x). Then formally, u satisfies

L̂u := a0ut − aijDiju − α − 2β

xd
adjDju + λcu − β2 − (α − 1)β + b

x2
d

u = xβ
d f.

We shall choose a β such that

β2 − (α − 1)β + b = 0. (5.18)

When b < (α − 1)2/4, (5.18) has two real roots

β1 =
α − 1 +

√

(α − 1)2 − 4b

2
and β2 =

α − 1 −
√

(α − 1)2 − 4b

2
.

Denote αi = α − 2βi for i = 1, 2, so that

α1 = 1 −
√

(α − 1)2 − 4b < 1 and α2 = 1 +
√

(α − 1)2 − 4b > 1.

Now we take β = β1, µ2(xd) = xγ0

d , and γ0 ∈ (−1, α1 − 1]. By (5.17) and Remark 2.1, 

we see that u ∈ Ŵ 1,2
q,p (ΩT , xα1p

d ωdµ2) is a solution to
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{

L̂u(t, x) = xβ
d f(t, x) in ΩT ,

u = 0 on (−∞, T ) × ∂R
d
+

(5.19)

if and only if v is a strong solution to (5.16) and it satisfies

‖v‖ + ‖M−1v‖ + ‖vt‖ + ‖Dv‖ + ‖M−1Dx′v‖ + ‖DDx′v‖
+ ‖D2

dv + αM−1Ddv + bM−2v‖ < ∞,

where ‖ · ‖ = ‖ · ‖
Lq,p(ΩT ,x

(α1+β1)p
d ωdµ2)

. We then apply Theorem 2.3 to obtain the unique 

solvability of (5.19) and the estimate for u ∈ Ŵ 1,2
q,p (ΩT , xα1p

d ωdµ2). Then, by changing 

back to v, we can derive the corresponding result for (5.16).
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