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NOTE ON GREEN’S FUNCTIONS OF NON-DIVERGENCE

ELLIPTIC OPERATORS WITH CONTINUOUS COEFFICIENTS

HONGJIE DONG, SEICK KIM, AND SUNGJIN LEE

(Communicated by Ryan Hynd)

Abstract. We improve a result in Kim and Lee [Ann. Appl. Math. 37
(2021), pp. 111–130], showing that if the coefficients of an elliptic operator in
non-divergence form are of Dini mean oscillation, then its Green’s function has
the same asymptotic behavior near the pole x0 as that of the corresponding
Green’s function for the elliptic equation with constant coefficients frozen at
x0.

1. Introduction and main results

We consider an elliptic operator L in non-divergence form

Lu = aij(x)Diju,

where the coefficients A := (aij) are symmetric and satisfy the ellipticity condition:

(1.1) λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2, ∀x ∈ Ω,

where λ and Λ are positive constants and Ω is a domain in R
n with n ≥ 3. Here

and below, we use the usual summation convention over repeated indices.
It is well known that the Green’s function G(x, y) for an elliptic operator in

divergence form has the pointwise bound

(1.2) G(x, y) ≤ C|x− y|2−n (x, y ∈ Ω, x �= y)

even when the coefficients are merely measurable; see e.g. [13, 14, 18]. However,
the Green’s function for an elliptic operator in non-divergence form does not neces-
sarily enjoy the pointwise bound (1.2) even in the case when the coefficients A are
uniformly continuous; see [1]. Recently, it is shown in [15] that if the coefficients A
are of Dini mean oscillation and if the domain is bounded and has C1,1 boundary,
then the Green’s function exists and satisfies the pointwise bound (1.2). Let us
recall the definition of Dini mean oscillation. For x ∈ R

n and r > 0, we denote by
B(x, r) the open ball with radius r centered at x, and write Ω(x, r) := Ω∩B(x, r).
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2046 H. DONG, S. KIM, AND S. LEE

We denote

ωA(r, x) :=

 

Ω(x,r)

|A(y)− ĀΩ(x,r)| dy, where ĀΩ(x,r) :=

 

Ω(x,r)

A,

and we write

ωA(r,D) := sup
x∈D

ωA(r, x) and ωA(r) = ωA(r,Ω).

We say that A is of Dini mean oscillation in Ω if ωA(r) satisfies the Dini’s condition

(1.3)

ˆ 1

0

ωA(t)

t
dt < +∞.

Before proceeding further, let us clarify the relationship between Dini continuity
and Dini mean oscillation. We say that A is Dini continuous at x0 ∈ Ω if

(1.4) ̺A(r, x0) = sup{|A(x)−A(x0)| : x ∈ Ω, |x− x0| ≤ r}

satisfies the Dini’s condition
ˆ 1

0

̺A(t, x0)

t
dt < +∞

and that A is uniformly Dini continuous in Ω if

̺A(r) := sup
x∈Ω

̺A(r, x) satisfies

ˆ 1

0

̺A(t)

t
dt < +∞.

It is clear that if A is uniformly Dini continuous in Ω, then A is of Dini mean
oscillation in Ω. If A is of Dini mean oscillation in Ω, then there is a modification
Ā of A (i.e., Ā = A a.e.) such that Ā is uniformly continuous in Ω with its
modulus of continuity controlled by ωA. See [15, Appendix] for a proof. However,
a function of Dini mean oscillation is not necessarily Dini continuous; see [7] for an
example.

In a recent article [16], we gave an alternative proof of the above-mentioned
result in [15] and established a sharp comparison with the Green’s function for a
constant coefficient operator. In particular, we showed that

(1.5) G(x0, x)−Gx0
(x0, x) = o(|x− x0|

2−n) as x → x0,

where Gx0
is the Green’s function of the constant coefficient operator Lx0

given by

(1.6) Lx0
u := aij(x0)Diju,

provided that the mean oscillation of A satisfies so-called “double Dini condition”
near x0, that is, we have

(1.7)

ˆ 1

0

1

s

ˆ s

0

ωA(t,Ω(x0, r0))

t
dt ds =

ˆ 1

0

ωA(t,Ω(x0, r0)) ln
1
t

t
dt < +∞

for some r0 > 0. It should be noted that the argument in [15, Appendix] reveals that
if A satisfies the double Dini mean oscillation condition (1.7), then there exists a
modification of A that is Dini continuous in a neighborhood of x0. The asymptotic
behavior (1.5) is well known for the Green’s functions for elliptic operators in di-
vergence form with continuous coefficients; see [5]. However, in the non-divergence
form setting, this is a new result and it is one of the novelties in [16].
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GREEN’S FUNCTIONS OF NON-DIVERGENT ELLIPTIC OPERATORS 2047

The aim of this note is to show that one can replace the condition (1.7) with a
simple condition that A is continuous at x0, that is,

(1.8) lim
r→0

̺A(r, x0) = 0.

Notice that the coefficient matrix A = (aij), which is assumed to be of Dini mean
oscillation in Ω, has a modification that is uniformly continuous in Ω. Therefore,
without loss of generality, we shall hereafter assume that A is uniformly continuous
in Ω so that (1.8) holds for all x0 ∈ Ω.

We now state our main theorems.

Theorem 1.9. Let Ω be a bounded C1,1 domain in R
n with n ≥ 3. Assume the

coefficients A = (aij) of the operator L satisfy the condition (1.1) and are of Dini

mean oscillation in Ω. Then there exists the Green’s function G(x, y) of the operator
L in Ω and it satisfies the pointwise bound (1.2). Moreover, for any x0 ∈ Ω, we
have

(1.10) lim
x→x0

|x− x0|
n−2 |G(x0, x)−Gx0

(x0, x)| = 0,

where Gx0
is the Green’s function of the constant coefficient operator Lx0

as in

(1.6).

Theorem 1.11. Under the same hypothesis of Theorem 1.9, we also have

lim
x→x0

|x− x0|
n−2 |G(x, x0)−Gx0

(x, x0)| = 0,(1.12)

lim
x→x0

|x− x0|
n−1 |DxG(x, x0)−DxGx0

(x, x0)| = 0,(1.13)

lim
x→x0

|x− x0|
n |D2

xG(x, x0)−D2
xGx0

(x, x0)| = 0,(1.14)

for any x0 ∈ Ω.

Remark 1.15. As a matter of fact, the proof of Theorem 1.9 shall reveal that we
have

lim
x→x0

|x− x0|
n−2 |G∗(x, x0)−G∗

x0
(x, x0)| = 0,

where G∗ and G∗
x0

are the Green’s functions for the adjoint operators L∗ and L∗
x0
,

respectively. Therefore, (1.12) can be regarded as the adjoint version of (1.10), and
vice versa.

Remark 1.16. We note that the estimates (1.10) and (1.12) are reminiscent of
[5, Eq. (23)]. However, the method used in [5] is not applicable to our setting
because a local L∞ estimate corresponding to [5, Lemma 4] is not available via
Lp theory for adjoint solutions of L∗u = div2 f . Nevertheless, under the stronger
condition that A ∈ Cβ for some β ∈ (0, 1), similar to [5, Theorem 2], we obtain

|G(x0, x)−Gx0
(x0, x)| = O

(

|x− x0|
2−n+β

)

as x → x0,

|Dk
xG(x, x0)−Dk

xGx0
(x, x0)| = O

(

|x− x0|
2−n−k+β

)

as x → x0 (k = 0, 1, 2).

Indeed, by modifying the proof of [5, Theorem 2] and using the global Lorentz type
estimate [5, Lemmas 1 and 2] and interior Schauder estimates for the solutions of
L∗u = div2 f and Lu = f , one can get the above estimates.

A few further remarks are in order. We point out that the proofs for Theorems
1.9 and 1.11 are readily extendable to elliptic systems, but they do not work in the
two-dimensional setting. See [6] for the results regarding the two-dimensional case
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2048 H. DONG, S. KIM, AND S. LEE

as well as for a discussion on how to extend them to elliptic systems. In [16], we
assume that Ω is a bounded C2,α domain. This assumption was adopted there to
obtain a global pointwise estimate for D2

xG(x, y) only. To prove that the pointwise
bound (1.2) holds globally in Ω, we just need a local L∞ estimate (valid up to the
boundary) for solutions of the adjoint equation

L∗u := Dij(a
iju) = 0,

which has been established earlier in [7,8]. We particularly refer to [8, Theorem 1.8],
where Ω is assumed to be a bounded C1,1 domain. However, in the scalar case, it
is not even necessary to assume that Ω is a bounded C1,1 domain for the global
pointwise bound (1.2) to hold. As it will be indicated in the proof of Theorem 1.9,
in the scalar case, it is enough to assume that Ω is a bounded C1,α domain with
α > n−1

n in order to utilize the Lp solvability of the problem (2.1) for some p ∈
(1, n

n−2 ). Also, since we deal with the asymptotic estimates (1.10) and (1.12), which
are interior estimates in nature, we only need an interior L∞ estimate for adjoint
solutions to establish these estimates.

Finally, we should mention that there are many interesting papers dealing with
the Green’s functions or the fundamental solutions of non-divergence form elliptic
and parabolic operators. See, for example, [2–4, 9, 11, 12, 17, 19] and references
therein.

2. Preliminary lemmas

In this section, we present some lemmas which will be used in the proof of
Theorems 1.9 and 1.11. We need to consider the boundary value problem

(2.1) L∗v = div2 g + f in Ω, v =
gν · ν

Aν · ν
on ∂Ω,

where g = (gij) is an n× n matrix-valued function,

div2 g := Dijg
ij ,

and ν is the unit exterior normal vector of ∂Ω. For g ∈ Lp(Ω) and f ∈ Lp(Ω),
where 1 < p < ∞ and 1

p + 1
p′

= 1, we say that v in Lp(Ω) is an adjoint solution of

(2.1) if v satisfies
ˆ

Ω

vLu =

ˆ

Ω

tr(gD2u) +

ˆ

Ω

fu

for any u in W 2,p′

(Ω) ∩W 1,p′

0 (Ω).

Lemma 2.2. Let Ω ⊂ R
n be a bounded C1,1 domain. Let 1 < p < ∞ and assume

that g ∈ Lp(Ω) and f ∈ Lp(Ω). Then there exists a unique adjoint solution u in

Lp(Ω). Moreover, we have the estimate

‖u‖Lp(Ω) ≤ C
(

‖g‖Lp(Ω) + ‖f‖Lp(Ω)

)

,

where the constant C depends on Ω, p, n, λ, Λ, and ωA.

Proof. See [10, Lemma 2]. �

Lemma 2.3. Let R0 > 0 and g = (gij) be of Dini mean oscillation in B(x0, R0).
Suppose u is an L2 solution of

L∗u = div2 g in B(x0, 2r),
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where 0 < r ≤ 1
2R0. Then we have

‖u‖L∞(B(x0,r)) ≤ C

(

 

B(x0,2r)

|u|+

ˆ r

0

ωg(t, B(x0, 2r))

t
dt

)

,

where C = C(n, λ,Λ, ωA, R0).

Proof. See [16, Lemma 2.2]. �

3. Proof of Theorem 1.9

We slightly modify the argument in [16, §3.5]. Let us denote

Ax0
= A(x0), Lx0

u := aij(x0)Diju = tr(Ax0
D2u),

and let Gx0
(x, y) be the Green’s function for Lx0

. Since Lx0
is an elliptic operator

with constant coefficients, the existence of Gx0
as well as the following pointwise

bound is well known:

(3.1) |Gx0
(x, y)| ≤ C|x− y|2−n (x �= y),

where C = C(n, λ,Λ). Moreover, since Ax0
is constant and symmetric, we have

Lx0
= L∗

x0
and Gx0

is also symmetric, i.e.,

(3.2) Gx0
(x, y) = G∗

x0
(y, x) = Gx0

(y, x) (x �= y).

Let us set

g = −(A−Ax0
)Gx0

(·, x0)

and consider the problem

(3.3) L∗v = div2 g in Ω, v =
gν · ν

Aν · ν
on ∂Ω.

Notice that the boundary condition in (3.3) simply reads that v = 0 in ∂Ω since
the Green’s function Gx0

(·, x0) vanishes on ∂Ω.
By using thatA is of Dini mean oscillation in Ω, it is easy to verify that g ∈ Lq(Ω)

for q ∈ (1, n
n−2 ); see [16, Lemma 3.1]. Therefore, by Lemma 2.2, there is a unique v

that belongs to Lq(Ω) for q ∈ (1, n
n−2 ). Then, by the same argument as in [16, §3.1],

we find that

(3.4) G∗(·, x0) := Gx0
(·, x0) + v

becomes the Green’s function of L∗ in Ω with a pole at x0. Also, by following the
same argument as in [16, §3.4], we find that the function G(x, y) given by

G(x, y) = G∗(y, x) (x �= y)

is the Green’s function for L in Ω. Note that we only need the assumption that Ω is
a bounded C1,1 domain to get these conclusions. In fact, in the scalar case, we can
even relax this assumption further to Ω being a C1,α domain for some α > n−1

n .
See [6, Appendix].

Now, for y0 ∈ Ω with y0 �= x0, let

(3.5) r = 1
5 |y0 − x0| and δ = min(κr, diamΩ),

where κ > 0 is to be determined. We assume that r < 1
7dist(x0, ∂Ω) is so that

B(y0, 2r) ⊂ Ω. Let ζ be a smooth function on R
n such that

0 ≤ ζ ≤ 1, ζ = 0 in B(x0, δ/2), ζ = 1 in R
n \B(x0, δ), |Dζ| ≤ 4/δ.
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2050 H. DONG, S. KIM, AND S. LEE

We then define g1 and g2 by

g1 = −ζ(A−Ax0
)Gx0

(·, x0) and g2 = −(1− ζ)(A−Ax0
)Gx0

(·, x0).

Recall the definition (1.4) and note that ‖A−Ax0
‖∞ ≤ C(n,Λ).

Choose p1 ∈ ( n
n−2 ,∞) and p2 ∈ (1, n

n−2 ); e.g., take p1 = 2n
n−2 and p2 = n−1

n−2 . By

(3.1) and properties of ζ, we then have

ˆ

Ω

|g1|
p1 ≤ C

ˆ

Ω\Ω(x0,δ/2)

|x− x0|
(2−n)p1 dx ≤ Cδ(2−n)p1+n,

(3.6)

ˆ

Ω

|g2|
p2 ≤ C̺A(δ, x0)

p2

ˆ

Ω(x0,δ)

|x− x0|
(2−n)p2dx ≤ C̺A(δ, x0)

p2δ(2−n)p2+n.

(3.7)

Let vi be the solutions of the problems

L∗vi = div2 gi in Ω, vi =
giν · ν

Aν · ν
on ∂Ω (i = 1, 2).

By Lemma 2.2 together with (3.6) and (3.7), we have

(3.8) ‖v1‖Lp1 (Ω) ≤ Cδ2−n+ n
p1 and ‖v2‖Lp2 (Ω) ≤ C̺A(δ, x0)δ

2−n+ n
p2 .

Since g1 and g2 also belong to Lq(Ω) for q ∈ (1, n
n−2 ), we have v1 + v2 ∈ Lq(Ω) for

q ∈ (1, n
n−2 ). Therefore, we conclude that

v = v1 + v2

by the uniqueness of solutions to the problem (3.3).
Now, we estimate v1(y0) and v2(y0) as follows. By Lemma 2.3, we have

(3.9) |vi(y0)| ≤ C

 

B(y0,2r)

|vi|+ C

ˆ r

0

ωgi
(t, B(y0, 2r))

t
dt (i = 1, 2).

Using (3.8) together with Hölder’s inequalities, we have

(3.10)

 

B(y0,2r)

|v1| ≤ Cr−
n
p1 ‖v1‖Lp1 (B(y0,2r)) ≤ Cr−

n
p1 δ2−n+ n

p1 ,

 

B(y0,2r)

|v2| ≤ Cr−
n
p2 ‖v2‖Lp2 (B(y0,2r)) ≤ C̺A(δ, x0)r

− n
p2 δ2−n+ n

p2 .

The following technical lemma is a variant of [16, Lemma 3.2]. In fact, the proof is
much shorter under the assumption that A is continuous at x0.

Lemma 3.11. Let η be a Lipschitz function on R
n such that 0 ≤ η ≤ 1 and

|Dη| ≤ 4/δ for some δ > 0. Let

g = −η(A−Ax0
)Gx0

(·, x0)

and for y0 ∈ Ω with y0 �= x0, let r = 1
5 |x0 − y0|. Then, for any t ∈ (0, r] we have

ωg(t,Ω(y0, 2r)) ≤ Cr2−n

(

ωA(t) +
r + δ

δr
̺A(8r, x0)t

)

,

where C = C(n, λ,Λ,Ω).
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Proof. For x̄ ∈ Ω(y0, 2r) and 0 < t ≤ r, we have

ωg(t, x̄) =

 

Ω(x̄,t)

∣

∣

∣
(A−Ax0

)Gx0
(·, x0)η − ((A−Ax0

)Gx0
(·, x0)η)Ω(x̄,t)

∣

∣

∣

≤

 

Ω(x̄,t)

∣

∣

∣
(A−Ax0

)Gx0
(·, x0)η − (A−Ax0

)Ω(x̄,t)Gx0
(·, x0)η

∣

∣

∣

+

 

Ω(x̄,t)

∣

∣

∣
(A−Ax0

)Ω(x̄,t)Gx0
(·, x0)η − ((A−Ax0

)Gx0
(·, x0)η)Ω(x̄,t)

∣

∣

∣

=: I + II.

Observe that we have dist(x0,Ω(x̄, t)) ≥ 2r and thus for x, y ∈ Ω(x̄, t), by (3.1)
and the interior gradient estimate for elliptic equations with constant coefficients,
we have

(3.12) |Gx0
(x, x0)−Gx0

(y, x0)| ≤ Ctr1−n,

where C = C(n, λ,Λ,Ω). Since dist(x0,Ω(x̄, t)) ≥ 2r, by using (3.1) we obtain

I ≤

 

Ω(x̄,t)

∣

∣

∣
(A−Ax0

)− (A−Ax0
)Ω(x̄,t)

∣

∣

∣
|Gx0

(·, x0)|

≤

 

Ω(x̄,t)

Cr2−n|A− ĀΩ(x̄,t)| ≤ Cr2−nωA(t).(3.13)

Also, we have

II ≤

 

Ω(x̄,t)

∣

∣

∣

∣

∣

 

Ω(x̄,t)

(A(y)−A(x0)) (Gx0
(x, x0)η(x)−Gx0

(y, x0)η(y)) dy

∣

∣

∣

∣

∣

dx

≤

 

Ω(x̄,t)

 

Ω(x̄,t)

|A(y)−A(x0)| |Gx0
(x, x0)η(x)−Gx0

(y, x0)η(y)| dy dx.(3.14)

By using (3.1), (3.12) and |Dη| ≤ 4/δ, we have for x, y ∈ Ω(x̄, t) that

|Gx0
(x, x0)η(x)−Gx0

(y, x0)η(y)|

≤ |Gx0
(x, x0)−Gx0

(y, x0)| |η(x)|+ |Gx0
(y, x0)| |η(x)− η(y)|

≤ Ctr1−n + Cr2−nt/δ ≤ Ctr1−n(1 + r/δ).(3.15)

Plugging (3.15) into (3.14) and noting that for y ∈ Ω(x̄, t), we have

|y − x0| ≤ |y − x̄|+ |x̄− y0|+ |y0 − x0| < t+ 2r + 5r = 8r,

we obtain

(3.16) II ≤ Ctr1−n(1 + r/δ)̺A(8r, x0).

Combining (3.13) and (3.16), we have (recall t ≤ r)

ωg(t, x̄) ≤ I + II ≤ Cr2−n (ωA(t) + t(1/r + 1/δ)̺A(8r, x0)) .

The lemma is proved by taking supremum over x̄ ∈ Ω(y0, 2r). �

By applying Lemma 3.11 with η = ζ and η = 1− ζ, respectively, we have
(3.17)
ˆ r

0

ωgi
(t, B(y0, 2r))

t
dt ≤ Cr2−n

(
ˆ r

0

ωA(t)

t
dt+

δ + r

δ
̺A(8r, x0)

)

(i = 1, 2).
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2052 H. DONG, S. KIM, AND S. LEE

Now we substitute (3.10) and (3.17) back to (3.9) to obtain (recall v = v1 + v2)

(3.18) |v(y0)| ≤ Cr2−n
(

rn−2− n
p1 δ2−n+ n

p1 + ̺A(δ, x0)r
n−2− n

p2 δ2−n+ n
p2

+

ˆ r

0

ωA(t)

t
dt+

δ + r

δ
̺A(8r, x0)

)

.

For any ǫ > 0, we can choose κ sufficiently large so that κ2−n+ n
p1 < ǫ/2. Then

choose r0 sufficiently small so that r0 < min
(

1
7dist(x0, ∂Ω),

5
κ diamΩ

)

and

̺A(κr0, x0)κ
2−n+ n

p2 +

ˆ r0

0

ωA(t)

t
dt+

κ+ 1

κ
̺A(8r0, x0) <

1

2
ǫ,

which is possible due to (1.8) and (1.3). Then, it follows from (3.4), (3.18), and
(3.5) that if |y0 − x0| < r0, then we have

(3.19) |G∗(y0, x0)−Gx0
(y0, x0)| ≤ Cǫ|y0 − x0|

2−n.

Therefore, we conclude that

lim
x→x0

|x− x0|
n−2 |G∗(x, x0)−Gx0

(x, x0)| = 0

because ǫ > 0 is arbitrary and (3.19) holds for any y0 ∈ Ω satisfying 0 < |y0−x0| <
r0. Finally, we obtain (1.10) from the above by noting (3.2) and the relation
G(x, y) = G∗(y, x) for x �= y. �

4. Proof of Theorem 1.11

We modify the proof of Theorem 1.9 as follows. Notice that for x0 �= y0 we have

G(y0, x0)−Gx0
(y0, x0) = G∗(x0, y0)−Gx0

(x0, y0),

which suggests that we should consider

ṽ = ṽ(x) = G∗(x, y0)−Gx0
(x, y0).

Note that ṽ satisfies

L∗ṽ = div2 g̃ in Ω, v =
g̃ν · ν

Aν · ν
on ∂Ω,

where

g̃ = −(A−Ax0
)Gx0

(·, y0).

Let r and δ be the same as in (3.5), and let ζ̃ be a smooth function on R
n such that

0 ≤ ζ̃ ≤ 1, ζ̃ = 0 in B(y0, δ/2), ζ̃ = 1 in R
n \B(y0, δ), |Dζ̃| ≤ 4/δ.

We define g̃1 and g̃2 by

g̃1 = −ζ̃(A−Ax0
)Gx0

(·, y0) and g̃2 = −(1− ζ̃)(A−Ax0
)Gx0

(·, y0).

Similar to (3.6) and (3.7), we have
ˆ

Ω

|g̃1|
p1 ≤ C

ˆ

Ω\Ω(y0,δ/2)

|x− y0|
(2−n)p1 dx ≤ Cδ(2−n)p1+n,

ˆ

Ω

|g̃2|
p2 ≤ C̺A(δ + 5r, x0)

p2

ˆ

Ω(y0,δ)

|x− y0|
(2−n)p2dx

≤ C̺A(δ + 5r, x0)
p2δ(2−n)p2+n.
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We shall assume that r < 1
4dist(x0, ∂Ω) is so that B2r(x0) ⊂ Ω. Then by essentially

the same proof of Lemma 3.11, we have

ωg̃i
(t, B(x0, 2r)) ≤ Cr2−n

(

ωA(t) +
r + δ

δr
̺A(3r, x0)t

)

.

Then, similar to (3.18), we get

|ṽ(x0)| ≤ Cr2−n
(

rn−2− n
p1 δ2−n+ n

p1 + ̺A(δ + 5r, x0)r
n−2− n

p2 δ2−n+ n
p2

+

ˆ r

0

ωA(t)

t
dt+

δ + r

δ
̺A(3r, x0)

)

.

By using the last inequality in place of (3.18) and proceeding similarly as in the
proof of Theorem 1.9, we find that, similar to (3.19), for any ǫ > 0, there exists a
positive r0 < 1

4dist(x0, ∂Ω) such that if |x0 − y0| < r0, then we have

|G∗(x0, y0)−Gx0
(x0, y0)| ≤ Cǫ|y0 − x0|

2−n.

Since ǫ > 0 is arbitrary and the last inequality is true for any y0 ∈ Ω satisfying
0 < |y0 − x0| < r0, we obtain (1.12) from the last inequality by using the relations
G(x, y) = G∗(y, x) and Gx0

(x, y) = Gx0
(y, x) for x �= y.

To establish (1.13), we note that v := G(·, x0)−Gx0
(·, x0) satisfies

Lv = −(A−Ax0
)D2Gx0

(·, x0) =: f.

For any y0 ∈ Ω satisfying 0 < |y0 − x0| <
1
4 dist(x0, ∂Ω), let r = 1

5 |y0 − x0|. Since
Gx0

is the Green’s function of constant coefficient operator Lx0
and B(x0, 20r) ⊂ Ω,

we have

|Dk
xGx0

(x, x0)| ≤ C|x− x0|
2−n−k, ∀x ∈ B(x0, 10r) \ {x0}, k = 1, 2, . . . .

Then we have

(4.1) ‖f‖L∞(B(y0,3r)) ≤ C̺A(8r, x0)r
−n.

Also, by a similar computation as in the proof of Lemma 3.11, we have

(4.2) ωf (t, B(y0, 2r)) ≤ Cr−n

(

ωA(t) +
t

r
̺A(8r, x0)

)

.

Therefore, by using (1.12), (4.1), the local W 2,p estimate
(4.3)

r2‖D2v‖Lp(B2r(y0)) + r‖Dv‖Lp(B2r(y0)) ≤ C‖v‖Lp(B3r(y0)) + Cr2‖f‖Lp(B3r(y0)),

and the Sobolev embedding, we have

(4.4) rn−1|Dv(y0)| = o(r),

where we use o(r) to denote some bounded quantity that tends to 0 as r → 0.
Moreover, similar to Lemma 2.3, the proof of [7, Theorem 1.6] reveals that

‖D2v‖L∞(B(y0,r)) ≤ C

(

 

B(y0,2r)

|D2v|+

ˆ r

0

ωf (t, B(y0, 2r))

t
dt

)

.

Therefore, by (4.1), (4.3), and (4.2), we have

(4.5) rn|D2v(y0)| = o(r).

Now, (1.13) and (1.14) follow from (4.4) and (4.5), respectively, recalling that v =
G(·, x0)−Gx0

(·, x0) and r = 1
5 |x0 − y0|. �
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