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ABSTRACT. We improve a result in Kim and Lee [Ann. Appl. Math. 37
(2021), pp. 111-130], showing that if the coefficients of an elliptic operator in
non-divergence form are of Dini mean oscillation, then its Green’s function has
the same asymptotic behavior near the pole zo as that of the corresponding
Green’s function for the elliptic equation with constant coefficients frozen at
0.

1. INTRODUCTION AND MAIN RESULTS
We consider an elliptic operator L in non-divergence form
Lu = a"(z)Djju,
where the coefficients A := (a%) are symmetric and satisfy the ellipticity condition:
(1.1) NP2 < ali(@)eie < AP, Vo eq,

where X\ and A are positive constants and €2 is a domain in R™ with n > 3. Here
and below, we use the usual summation convention over repeated indices.

It is well known that the Green’s function G(z,y) for an elliptic operator in
divergence form has the pointwise bound

(1.2) Glz,y) <Clz —y*™  (z,y€Q, z#y)

even when the coefficients are merely measurable; see e.g. [13,14,18]. However,
the Green’s function for an elliptic operator in non-divergence form does not neces-
sarily enjoy the pointwise bound (1.2) even in the case when the coefficients A are
uniformly continuous; see [1]. Recently, it is shown in [15] that if the coefficients A
are of Dini mean oscillation and if the domain is bounded and has C''! boundary,
then the Green’s function exists and satisfies the pointwise bound (1.2). Let us
recall the definition of Dini mean oscillation. For € R™ and r > 0, we denote by
B(z,r) the open ball with radius r centered at z, and write Q(z,7) := QN B(x,r).

Received by the editors January 9, 2022, and, in revised form, September 3, 2022.

2020 Mathematics Subject Classification. Primary 35J08, 35B45; Secondary 35J47.

Key words and phrases. Green’s function, non-divergence elliptic equation, Dini mean
oscillation.

The first author was partially supported by the Simons Foundation, grant no. 709545, a Simons
fellowship, grant no. 007638, and the NSF under agreement DMS-2055244.

The second author was partially supported by National Research Foundation of Korea (NRF)
Grant No. NRF-2019R1A2C2002724 and No. NRF-2022R1A2C1003322.

(©2023 American Mathematical Society
2045

Licensed to Brown Univ. Prepared on Tue May 30 14:50:41 EDT 2023 for download from IP 128.148.254.57.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2046 H. DONG, S. KIM, AND S. LEE
We denote
wA(T7 I) = ][ |A(y) - AQ(m,r)| dy7 where A‘Q(LEJ‘) = ][ Av
Q(z,r) Q(z,r)

and we write

wa(r, D) :=supwa(r,z) and wa(r)=wa(r,Q).
€D

We say that A is of Dini mean oscillation in €2 if wa (r) satisfies the Dini’s condition
1
t
(1.3) / ““;( ) dt < too.
0

Before proceeding further, let us clarify the relationship between Dini continuity
and Dini mean oscillation. We say that A is Dini continuous at xg € Q if

(1.4) oa(r,xo) = sup{|A(z) — A(zo)| : 2 € Q, |z —zo| <71}

satisfies the Dini’s condition
1
t
/ —QA(t’ 20) gt < 00
0

and that A is uniformly Dini continuous in € if

1
oa(r) :=sup pa(r,z) satisfies / 2alt) dt < +o0.
€N 0 t

It is clear that if A is uniformly Dini continuous in 2, then A is of Dini mean
oscillation in Q. If A is of Dini mean oscillation in €2, then there is a modification
A of A (ie, A = A ae.) such that A is uniformly continuous in Q with its
modulus of continuity controlled by wa. See [15, Appendix] for a proof. However,
a function of Dini mean oscillation is not necessarily Dini continuous; see [7] for an
example.

In a recent article [16], we gave an alternative proof of the above-mentioned
result in [15] and established a sharp comparison with the Green’s function for a
constant coefficient operator. In particular, we showed that

(1.5) G(wg, ) — Guy (w0, 7) = 0|z — 20[*™™) as x — o,
where G, is the Green’s function of the constant coeflicient operator L, given by
(1.6) Lyyu := a"(z0)D;ju,

provided that the mean oscillation of A satisfies so-called “double Dini condition”
near xg, that is, we have

Ly g Lwa(t,Q In 1
(1.7) /1/ Mdtds:/ walt, Ywo,ro)Ing 0
0o SJo t 0 t

for some rg > 0. It should be noted that the argument in [15, Appendix] reveals that
if A satisfies the double Dini mean oscillation condition (1.7), then there exists a
modification of A that is Dini continuous in a neighborhood of 3. The asymptotic
behavior (1.5) is well known for the Green’s functions for elliptic operators in di-
vergence form with continuous coefficients; see [5]. However, in the non-divergence
form setting, this is a new result and it is one of the novelties in [16].
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GREEN’S FUNCTIONS OF NON-DIVERGENT ELLIPTIC OPERATORS 2047

The aim of this note is to show that one can replace the condition (1.7) with a
simple condition that A is continuous at x(, that is,

(1.8) lim pa (1, 29) = 0.
r—0

Notice that the coefficient matrix A = (a%), which is assumed to be of Dini mean
oscillation in €2, has a modification that is uniformly continuous in 2. Therefore,
without loss of generality, we shall hereafter assume that A is uniformly continuous
in  so that (1.8) holds for all zy € Q.

We now state our main theorems.

Theorem 1.9. Let Q be a bounded CY' domain in R™ with n > 3. Assume the
coefficients A = (a¥) of the operator L satisfy the condition (1.1) and are of Dini
mean oscillation in Q. Then there exists the Green’s function G(x,y) of the operator
L in Q and it satisfies the pointwise bound (1.2). Moreover, for any xo € Q, we

have
(1.10) ILm |z — 20" "2 |G (20, 2) — Gy (20,2)] = 0,

xr o
where G, s the Green’s function of the constant coefficient operator Ly, as in
(1.6).
Theorem 1.11. Under the same hypothesis of Theorem 1.9, we also have
(1.12) ILm |z — 20" "2 |G (2, 20) — Gy (2,20)] = 0,

xr o
(1.13) lim |z — zo|" ! | DGz, 10) — DpGay (2, 20)| = 0,

Tr—xo
(1.14) ILm |z — xo|™ |D2G (2, 20) — D2Gay (2, 20)| = 0,
T—T0

for any xqg € Q.

Remark 1.15. As a matter of fact, the proof of Theorem 1.9 shall reveal that we
have

lim |z — x0|"_2 |G™ (7, 20) — G, (z,20)| = 0,
Tr—x9

where G* and G, are the Green’s functions for the adjoint operators L* and L} ,
respectively. Therefore, (1.12) can be regarded as the adjoint version of (1.10), and
vice versa.

Remark 1.16. We note that the estimates (1.10) and (1.12) are reminiscent of
[5, Eq. (23)]. However, the method used in [5] is not applicable to our setting
because a local L™ estimate corresponding to [5, Lemma 4] is not available via
LP theory for adjoint solutions of L*u = div?f. Nevertheless, under the stronger
condition that A € C? for some § € (0, 1), similar to [5, Theorem 2], we obtain

|G (zg, ) — Gyy(z0,2)] = O (|x — a:o\%”ﬂg) as T — o,
|DEG(w,20) — DEGo (2, 20)| = O (|x — o[> ™™ *F) as 2 =2y (k=0,1,2).

Indeed, by modifying the proof of [5, Theorem 2] and using the global Lorentz type
estimate [5, Lemmas 1 and 2] and interior Schauder estimates for the solutions of
L*u =div’ f and Lu = f, one can get the above estimates.

A few further remarks are in order. We point out that the proofs for Theorems
1.9 and 1.11 are readily extendable to elliptic systems, but they do not work in the
two-dimensional setting. See [6] for the results regarding the two-dimensional case
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2048 H. DONG, S. KIM, AND S. LEE

as well as for a discussion on how to extend them to elliptic systems. In [16], we
assume that Q is a bounded C%® domain. This assumption was adopted there to
obtain a global pointwise estimate for D2G (z,y) only. To prove that the pointwise
bound (1.2) holds globally in €2, we just need a local L™ estimate (valid up to the
boundary) for solutions of the adjoint equation

L*u:= D;j(a"u) =0,

which has been established earlier in [7,8]. We particularly refer to [8, Theorem 1.8],
where ) is assumed to be a bounded C'' domain. However, in the scalar case, it
is not even necessary to assume that Q is a bounded C''! domain for the global
pointwise bound (1.2) to hold. As it will be indicated in the proof of Theorem 1.9,
in the scalar case, it is enough to assume that Q is a bounded C** domain with
a > ”T_l in order to utilize the L? solvability of the problem (2.1) for some p €
(1, %5). Also, since we deal with the asymptotic estimates (1.10) and (1.12), which
are interior estimates in nature, we only need an interior L> estimate for adjoint
solutions to establish these estimates.

Finally, we should mention that there are many interesting papers dealing with
the Green’s functions or the fundamental solutions of non-divergence form elliptic
and parabolic operators. See, for example, [2-4,9,11,12,17,19] and references
therein.

2. PRELIMINARY LEMMAS

In this section, we present some lemmas which will be used in the proof of
Theorems 1.9 and 1.11. We need to consider the boundary value problem

gv v on 0f),

Av-v

where g = (¢%) is an n x n matrix-valued function,

(2.1) L'v =divig+ finQ, v=

diV2 g = Dijgij,
and v is the unit exterior normal vector of 0€). For g € LP(Q2) and f € LP(Q),
where 1 < p < oo and % + z% = 1, we say that v in LP(Q2) is an adjoint solution of

(2.1) if v satisfies
/vLu:/tr (gD%u) /fu
Q

for any u in W22 (Q) N Wol’p/(Q).

Lemma 2.2. Let Q C R” be a bounded C™' domain. Let 1 < p < oo and assume
that g € LP(Q) and f € LP(). Then there exists a unique adjoint solution u in
LP(Q). Moreover, we have the estimate

lull ey < C (lgllir@) + 1flr@)) »
where the constant C' depends on Q, p, n, A, A, and wa.
Proof. See [10, Lemma 2]. O

Lemma 2.3. Let Ry > 0 and g = (g") be of Dini mean oscillation in B(xq, Ry).
Suppose v is an L? solution of

L*u = div’ g in B(z,2r),
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GREEN’S FUNCTIONS OF NON-DIVERGENT ELLIPTIC OPERATORS 2049

where 0 < r < %Ro. Then we have

" t,B 2
||UHL0<:(B(IO’T)) <C ][ ‘u| —|—/ wdt ,
B(w0,2) 0 t

where C = C'(n, \, A, wa, Rp).
Proof. See [16, Lemma 2.2]. O

3. PROOF OoF THEOREM 1.9
We slightly modify the argument in [16, §3.5]. Let us denote
A, = A(zg), Lyu:=a"(xg)Diju = tr(A,,D*u),

and let G, (z,y) be the Green’s function for L,,. Since L,, is an elliptic operator
with constant coefficients, the existence of G, as well as the following pointwise
bound is well known:

(3.1) |Gao(2,9)| < Clo =y (z#y),

where C' = C(n, A\, A). Moreover, since A,, is constant and symmetric, we have
. . .
L., = L}, and Gy, is also symmetric, i.e.,

(3.2) Gao(2,y) = Go (4, 0) = Goo(y,2) (2 # ).

Let us set

g = _(A - Awo)Gwo('wa)
and consider the problem
_gr-v
CAv-v
Notice that the boundary condition in (3.3) simply reads that v = 0 in 9 since
the Green’s function Gy, (+,zo) vanishes on 9S).

By using that A is of Dini mean oscillation in €2, it is easy to verify that g € LI(Q)
for ¢ € (1, -25); see [16, Lemma 3.1]. Therefore, by Lemma 2.2, there is a unique v
that belongs to L(€2) for ¢ € (1, -"5). Then, by the same argument as in [16, §3.1],
we find that

(3.4) G*(,20) == Gy (-, 20) + v

becomes the Green’s function of L* in Q with a pole at zy. Also, by following the
same argument as in [16, §3.4], we find that the function G(z,y) given by

Gz,y) =G (y,x) (z#y)
is the Green’s function for L in ). Note that we only need the assumption that Q is
a bounded C''! domain to get these conclusions. In fact, in the scalar case, we can
even relax this assumption further to Q being a C1*® domain for some o > ”T_l
See [6, Appendix].
Now, for yy € Q with yo # zg, let

(3.3) L'v=div’iginQ, v on 0f.

(3.5) r=%lyo —zo| and &= min(kr,diam ),

where © > 0 is to be determined. We assume that r < %dist(aco,aQ) is so that
B(yo,2r) C Q. Let ¢ be a smooth function on R™ such that

0<(¢<1, ¢=0in B(x9,8/2), ¢=1in R™\ B(x,d), |D¢|<4/é.
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2050 H. DONG, S. KIM, AND S. LEE

We then define g; and go by
gl = _C(A - AIQ)Gmo(.>xO) and g2 = _(1 - C)(A - A‘(E())GIO(.7 "EO)'

Recall the definition (1.4) and note that |A — Ay, llee < C(n,A).
Choose p; € (-25,00) and ps € (1,-25); e.g., take py = 22
(3.1) and properties of ¢, we then have

(3.6)
/|gl|P1 <C |l‘ _ x0|(2—n)p1 dr < 05(2—")1714-%,
Q Q\Q(z0,6/2)

3|3
Nf—=

(3.7)
/ lg2[P? < Coa(6,x0)P? / |z — o] ®"MP2dz < Coa (6, a0)P2 53 IP2Fn,
Q Q(z0,0)

Let v; be the solutions of the problems

giv v
Av.v
By Lemma 2.2 together with (3.6) and (3.7), we have

L*v; =divig; in Q, v; = on 0N (i=1,2).
(3.8) ||7)1||Lp1(9) < (o Ry and H’UQHLpg(Q) < Coal(0, $0)52in+%.

Since gy and gs also belong to L1(Q) for ¢ € (1
q € (1, 7%5). Therefore, we conclude that

, 75 ), we have vy + vy € L(Q) for
V=111 + vy

by the uniqueness of solutions to the problem (3.3).
Now, we estimate v1(yo) and va2(yo) as follows. By Lemma 2.3, we have

r (t., B 2
(39)  |ulw)<C |vi|+c/ wg: (b, BWo.2) ;1 9.
B(yo,2r) 0 13

Using (3.8) together with Holder’s inequalities, we have

][ 1] < Cr 3 01 [l s (B(go.2ry) < Cr 76245,
(310) 3(90727")

n

][ [va| < Cr™ 72 ||va| o2 (B(yo,2r)) < Coald, xo)r P2 37" en
B(yo,2r)

The following technical lemma is a variant of [16, Lemma 3.2]. In fact, the proof is
much shorter under the assumption that A is continuous at xg.

Lemma 3.11. Let n be a Lipschitz function on R™ such that 0 < n < 1 and
|Dn| < 4/§ for some § > 0. Let

g = _W(A - AI())G:IJ()('7$O)
and for yo € Q with yo # xo, let r = L|zo — yo|. Then, for any t € (0,7] we have

r+0

et . 20)) < O (wn() + 5 pa(srat).

where C' = C(n, A\, A, Q).
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GREEN’S FUNCTIONS OF NON-DIVERGENT ELLIPTIC OPERATORS 2051

Proof. For & € Q(yp,2r) and 0 < t < r, we have

wglt, @) = fﬂ( .

< ]i . (A = A) Gy (- 20)1 = (& = Ay )Gy (7001

(A - AGJO)GID(W 330)77 - ((A - Awo)Gwo(" xo)n)ﬂ(:fz,t)

+f o (=00 G = (8= R G e
=:1+1I.

Observe that we have dist(xo, Q(Z,t)) > 2r and thus for z, y € Q(z,t), by (3.1)
and the interior gradient estimate for elliptic equations with constant coefficients,
we have

(3.12) |Gz (7, 00) — Gay (Y, 20)| < Ctrt™",
where C' = C(n, A, A, Q). Since dist(xo, 2(Z,t)) > 2r, by using (3.1) we obtain

P A=) B R age 6ol 0]
x,t

(3.13) < ][ Cr>"|A — Aggn| < O "wa(t).
Q(z,t)

Also, we have

Il<f
Q(z,t)

14 < f 1MW) - AG G 20)1() Gy 20)0(0)
Q(z Q(z,t)

By using (3.1), (3 12) and |Dn| < 4/, we have for z, y € Q(Z,t) that
|Gy (2, 0)(7) = Gy (4, 20)1(y))|

< |Gy (@, 20) = Gao (Y, 0)| [n(@)| + |Gy (y, x0)| [n(2) — n(y)]
(3.15) < Ctr'=" 4 Cr2"t )5 < Ctr' =" (1 + 1 /9).

][ (A(y) — A(20)) (Guy (&, 70)1(x) — Gao (3, z0)(y)) dy| de

Plugging (3.15) into (3.14) and noting that for y € Q(z,t), we have
[y — ol < Iy — 7l + 7 — yol + [yo — wol < t+2r + 57 = 8r,
we obtain
(3.16) IT < Ctr'=™(1+1/68)oa (8, 20).
Combining (3.13) and (3.16), we have (recall t < r)
we(t,Z) < T+ IT<Or* ™ (wa(t) +t(1/r +1/8)0a(8r,20)).
The lemma is proved by taking supremum over T € Q(yo, 27). |

By applying Lemma 3.11 with n = { and n = 1 — (, respectively, we have
(3.17)

/ch(/ wal) gy, 001, <8T,x0>> (i=1,2).
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2052 H. DONG, S. KIM, AND S. LEE
Now we substitute (3.10) and (3.17) back to (3.9) to obtain (recall v = v1 + vq)

(318) folu)| < Or2 (1772587 4 pa(ao)r” 2 et

+/0 wAt( ) dt + 6—5 oA (87, xo))

For any € > 0, we can choose x sufficiently large so that K2R < €/2. Then
choose rq sufficiently small so that rq < min (%dist(a:o, o0N), % diam Q) and

g "o walt Kk+1 1
QA(H'F(),SCO) +o5 +/ At( ) dt + - oA (8rg, z9) < 56,
0

which is possible due to (1.8) and (1.3). Then, it follows from (3.4), (3.18), and
(3.5) that if |yg — xo| < 1o, then we have

(3.19) |G* (Y0, 20) — Glay (Y0, 20)| < Celyo — o>
Therefore, we conclude that

li_>m | — xo\"_z |G*(x, x0) — Gy (x,20)] =0
xr o

because € > 0 is arbitrary and (3.19) holds for any yo € 2 satisfying 0 < |yo — o] <
ro. Finally, we obtain (1.10) from the above by noting (3.2) and the relation
G(z,y) = G*(y,x) for z # y. O

4. PrROOF OF THEOREM 1.11
We modify the proof of Theorem 1.9 as follows. Notice that for zg # yo we have
G(Yo, 20) — Gay (Y0, 20) = G™ (20, Y0) — Gy (20, Y0),
which suggests that we should consider
v =0(z) = G*(2,90) — Gao (2, Y0)-
Note that v satisfies
gy v

Lo =div’ g in Q, v=4— on o9,
V-V

where
—(A— AIQ)GJEo('>y0)'
Let r and § be the same as in (3.5), and let ¢ be a smooth function on R™ such that
0<{<1, (=0inB(y,6/2), ¢=1inR"\B(y,d), |D{ <4/s
We define g; and g, by
&1 = —C(A = A)Gay(90) and o= —(1= (A = Ayy)Gao (-, 00)-
Similar to (3.6) and (3.7), we have

/ &t <C |z — yo|®=MPr dz < €GP
Q O\Q(yo,5/2)

/ |g2|p2 SOQA(5+5T,I0)1)2/ |x_y0| 2 np2dil?
@ Qyo,9)

< Coal(6 + 5r,m)P2 5 mpatn,

Licensed to Brown Univ. Prepared on Tue May 30 14:50:41 EDT 2023 for download from IP 128.148.254.57.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



GREEN’S FUNCTIONS OF NON-DIVERGENT ELLIPTIC OPERATORS 2053

We shall assume that r < 1dist(zo,99) is so that Ba,(z9) C Q. Then by essentially

the same proof of Lemma 3.11, we have
0
wg, (t, B(z0,2r)) < Cr*™" (wA(t) + % oa (3r, xo)t) .

Then, similar to (3.18), we get

|o(x0)| < Cr2—" (r"iz*ﬁé%wrﬁ + 0A (6 4 5, xo)r™ 2 m2 5 e
" wa (t o+
+/ i( ) dt + TQA(?)T,J?())).
0

By using the last inequality in place of (3.18) and proceeding similarly as in the
proof of Theorem 1.9, we find that, similar to (3.19), for any € > 0, there exists a
positive rg < %dist(xo, 0Q) such that if |zo — yo| < 1o, then we have

|G*(20,50) — Gao (0, y0)| < Celyo — x>

Since € > 0 is arbitrary and the last inequality is true for any yo € 2 satisfying
0 < |yo — zo| < ro, we obtain (1.12) from the last inequality by using the relations
G(z,y) = G*(y,x) and Gy, (z,y) = Gy (y, z) for z # y.
To establish (1.13), we note that v := G(-,x¢) — G, (-, o) satisfies
Lv=—(A—A,,)D*G,, (-, x0) = .

For any yo € Q satisfying 0 < |yo — xo| < § dist(zo, 09), let 7 = £|yo — zo|. Since
G, is the Green’s function of constant coefficient operator L, and B(xg,20r) C ,
we have

|D§G$0(I7$0)| < CY|:Z7 - x0|27n7k5 Vr € B(«Io, 1OT) \ {Io}, k= 15 27 ceee
Then we have

(4.1) I £l Lo (B(yo,3r)) < Coa (87, a0)r™".

Also, by a similar computation as in the proof of Lemma 3.11, we have
t
(4.2) wy(t, B(yo,2r)) < Cr " (wA(t) + . oA (8r, x0)> .

Therefore, by using (1.12), (4.1), the local W?2? estimate
(4.3)
2 1D%0 Lo (Byr o)) + TIIDY Lo (8o (o)) < CllYll o By o)) + C* 11l (B w01

and the Sobolev embedding, we have
(4.4) " Do(yo)| = o(r),

where we use o(r) to denote some bounded quantity that tends to 0 as r — 0.
Moreover, similar to Lemma 2.3, the proof of [7, Theorem 1.6] reveals that

" we(t, B(yg,2r
HDQ’UHLOO(B(yO,r)) <C (][ |D21)| —|—/ Wdt> .
B(yo,2r) 0

Therefore, by (4.1), (4.3), and (4.2), we have

(4.5) ™| D*v(yo)| = o(r).
Now, (1.13) and (1.14) follow from (4.4) and (4.5), respectively, recalling that v =
G(-,20) = G+, 20) and 7 = %|$0—y0\- U
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