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Abstract
We prove the boundedness of the non-local operator

d
LoU(x) = fw (x4 ) — u(x) = xa ) (Vae(x), y)) alx, y) —o

| y|d+a
from HY , (R?) to L., (R?) for the whole range of p € (1, 00), where w is a Muckenhoupt
weight. The coefficient a(x, y) is bounded, merely measurable in y, and Holder continuous in
x with an arbitrarily small exponent. We extend the previous results by removing the largeness
assumption on p as well as considering weighted spaces with Muckenhoupt weights. Using
the boundedness result, we prove the unique solvability in L, spaces of the corresponding
parabolic and elliptic non-local equations.
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1 Introduction

We consider non-local operators of the form

d
£uw = [ (43 =0 = 1) (Va0 ) ate D (L

where « € (0, 2) and xo = lg>1+ lo=115,. Note that the coefficient a(x, y) in the operator
L% is a function of not only y € R? but also x € R?. Non-local operators as above appear in
the equations describing various phenomena in physics, mathematical finance, biology, and
fluid dynamics (see, for instance, [3, 6]).

The main focus of this paper is the boundedness (i.e., continuity) of the operator £ from
Hg,w(]Rd) to L p,w(Rd), 1 < p < oo, under the assumption that the coefficient a(x, y) is
measurable in y and continuous in x with an integrability condition on the modulus of con-
tinuity (cf. Assumption 2.1 and Remark 2.4), where H]‘j"w(]R{d) denotes the Bessel potential
space with a Muckenhoupt weight w € A, (R?). See Theorem 2.5. This result then implies
the boundedness of the parabolic operator 9, — £ with a time-dependent coefficienta(z, x, y)
from H},’f;,w (T)to Ly 4, (T), where H};,‘;,w (T)and L 4 4 (T) are mixed norm spaces with
weights for parabolic equations. See Corollary 6.3. We remark that even in the unweighted
case, i.e., w = 1, our result is new.

It is well known that, in the study of partial differential equations, a prerequisite is the
boundedness of the corresponding differential operators in the considered function spaces.
For instance, in the L -theory, one usually obtains a priori estimates of solutions and uses
the method of continuity along with the unique solvability of a simple equation. However,
all of these steps require the boundedness of the involved operator in an L, type function
space. In the local case, for instance, if the operator £ is of the form

Lu = aij D,‘ ju,
the boundedness of the operator £ from W!% ®R%) to L P (R?) is straightforward, requiring no
regularity assumptions on the coefficients @'/, provided that they are bounded measurable
functions. This is also the case when the L, space is replaced with a weighted L space.

Similarly, fora given f € L, (RY), to find a solution u € Hy (RY) of the following non-local
elliptic equation

LU = f,
it is essential to have
||£a'4||Lp(Rd) = N||”||1—1;(]Rd),

where H;‘ (RY) is a Bessel potential space without weights. Contrary to the local operator
case, the boundedness of non-local operators in L, spaces is far from being obvious even
in the simple case when a = a(y). Indeed, for non-local operators as in (1.1), as far as the
authors are aware, there is no result in the literature about the boundedness of the operators
if the coefficient a(x, y) is merely bounded measurable without any regularity assumptions
as a function of x € R,

There have been considerable studies about the boundedness of non-local operators as in
(1.1)in L, spaces along with L, estimates of solutions to non-local operators. If the coeffi-
cient a(x, y) is constant, the operator £ in (1.1) is, by definition, the fractional Laplacian of
order o, whose boundedness is guaranteed foru € H) (R4). However, even in the aforemen-
tioned simple case, i.e., a = a(y) in the elliptic case and a = a(t, y) in the parabolic case, in
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early work about the boundedness of £¢, some conditions were imposed on a(y) or a(z, y)
asafunctionof y € RY. See [1, 16], the results of which can be applied to show boundedness
of £% only when a = a(y) ora = a(t, y) is either symmetric, i.e., a(—y) = a(y), or homo-
geneous of order zero and sufficiently smooth as a function of y € R¥. In fact, the papers
[1, 16] deal with more general forms of non-local operators. These restrictions on a(y) were
removed in [7] so that a(y) can be bounded measurable, but still needs to be a function of
only y € R? (one can also consider separable coefficients a(x, y) = aj(x)az(y) by writing
LY =a;(x)L%2).

The boundedness of non-local operators with x-dependent kernels was considered in [17]
for L, spaces with sufficiently large p. In terms of the operator £ in (1.1), the coefficient
a can be a function of x € R? as well as of y € R? provided that a(x, y) is measurable in
y and Holder continuous in x. Using this boundedness result, the authors also proved the
existence and uniqueness in Sobolev spaces of solutions to the Cauchy problem for parabolic
integro-differential equations with variable coefficients of the order « € (0, 2) for sufficiently
large p. The main results in [17] have been applied, for instance, in [18, Theorem 2.5] to
non-local operators with so-called variable densities, where the investigation was also limited
to sufficiently large p.

In this paper, we prove the boundedness of the operator £¢ in (1.1) when a(x, y) is
measurable in y and Holder continuous in x (see Assumption 2.1 and Remark 2.4) for all
p € (1,00). That is, we remove the restriction in [17] that p has to be sufficiently large.
Moreover, we show the boundedness of the operator in weighted L, spaces with weight
weA p(]Rd). Nevertheless, whether the boundedness of non-local operators still holds for
general a(x, y) (for instance, discontinuous or uniformly continuous a(x, y) in x) remains
to be an open problem. It is worth mentioning that if Holder spaces are considered, the
boundedness of the operator £¢ under optimal conditions is obtained relatively easily by
using perturbation arguments. See, for instance, [8, 15].

As an application of the operator boundedness result, we obtain L, estimates as in [17]
forall p € (1, 00). See Theorem 6.5. Since our boundedness result is proved in weighted L,
spaces, one can consider weighted L, estimates for non-local operators. Regarding results
in the weighted setting, see a recent paper [10].

To prove the boundedness of non-local operators, we first make an observation that £¢
with a = a(y) (i.e., a is independent of x) is a bounded operator in weighted spaces. This
is done by refining the argument in [17] based on singular integral operator theory. Next,
we prove the boundedness of the operator with @ = a(x, y) in weighted L, spaces with
A ,,(Rd ) weights for a sufficiently large p. Then, we use the Rubio de Francia extrapolation
theorem to obtain the boundedness for all p € (1, oo). While dealing with the operator with
a = a(x,y), we first consider ¢ £? instead of £%, where ¢ is a suitable cut-off function.
Similarly as in [17], we employ a cut-off function ¢ because we write £%u as an integral
operator with a kernel having an insufficient decay at infinity. See the proof of Lemma 5.1.
After that, we apply a partition of unity type argument to obtain the boundedness of £¢. See
the proof of Theorem 2.5.

The remaining part of the paper is organized as follows. In the next section, we introduce
some notation and state the main result of the paper. In Sect. 3, we present some auxiliary
results for the proof of the main result. In Sect. 4, we obtain the boundedness of the operator
L% in weighted L, spaces when the coefficient a is a function of y only. We present the proof
of the main result in Sect. 5. Finally, using the main result, we obtain the L estimates for
non-local elliptic and parabolic equations.

@ Springer



62 Page4of28 H.Dong et al.

2 Notation and main result

Forx e R and R € (0, 00), we denote
Br(x) ={y € R?: |x —y| < R}, Bg = Bg(0),

where d is a positive integer. As usual, S(RY) is the Schwartz function space in R¢ and
Cy° (R?) is the set of all infinitely differentiable functions with compact support in R?. By
(—=A)%/? we mean the fractional Laplacian of order «. That is,

—(=A)Y?u(x) = cP. v./ wx + y) — u(x)) ‘{%
RA |yld+e

¢ 5 dy
_E/Rd w(x+y) +ux—y) — M(x))MTJra

for sufficiently regular u defined on R?, where

a2 —a)l (d%)

=cld. o) = .
c=cd)= i (2- %)

Forl < p < oo, we set A p(]Rk ) to be the set of all nonnegative functions w on R¥ such
that

[w]Ap(Rk)

1 1 p=l
‘= sup <—/ wdx) (—/ w’l/(”’”dx) < 00,
xoeRk, k>0 \ BRI JBr(xo) |BR| JBg(x0)

where k is either 1 or d in this paper. For w € A), (R%), by L pow (R¥) we mean the space of
all measurable functions in R? with the norm

1
P
£ e, @ = (/Rd 1£17 wdx) :

For p € (1,00), w € A p(Rd), and o € R, recall the definition of the weighted Bessel
potential space

HY (R ={u e Lpuy®): (1-A)"%ueL,,[®R)
with
el arg ey = (1= D*ul L, g
As one may expect, we have
”u“Hg,w(Rd) ~ ”u”Lp.u;(Rd) + ”(_A)a/zunl‘[’.w(Rd)' (21)

In Lemma 3.4 we show the equivalence of the two norms with constants independent of
o € (0,2). As usual, when w = 1, in the above notation we simply remove w so that, for
instance, L, = L and Hy = Hp .

Throughout the paper, we denote

VYux) = u(x +y) —ux) — (Vux), y)(1g, () lg=1 + log=1)

for x, y € RY.
We now state our assumption on the coefficient a(x, y) in (1.1).
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Assumption 2.1 (i) There is a positive constant K such that for all x, y € R4,
la(x, »)I = 2 - K.
(ii) There exist 8 € (0, 1) and a increasing function w(t), T > 0, such that
la(xi, y) —a(x2, M| = 2 —)o(xi — x2])

for x1, x3,y € R? and

dy
2.2
[, oty <o 2

111 o = ,ten orany x € an <r< N
(iii) If 1, then for any x € R? and 0 R

dy
yax,y)———=0
/;<|y<R |y|d+e

Remark 2.2 One noticeable difference between the assumptions on « in [17] and Assump-
tion 2.1 is the term (2 — o). We add (2 — «) to guarantee that the estimates do not blow up
when o goes to 2.

Remark 2.3 The condition (iii) in Assumption 2.1 is satisfied, for instance, if a(x, y) is
symmetric in y, i.e., a(x, y) = a(x, —y).

Remark 2.4 The condition (ii) in Assumption 2.1 is equivalent to a Holder continuity condi-
tion on a(x, y) as a function of x. Since w(t) is increasing, we see that

d d
/ o(y)— > w(r)/ — > Nr ),
r<lyl<2r |yl <pyi<2r ¥4

which together with (2.2) indicates that a(x, y) is Holder continuous in x.

Our main result is about the boundedness of non-local operators. Let us consider the
non-local operator £4 in (1.1).

Theorem2.5 Let B € (0,1), « € (0,2), 1 < p < o0, and w € AI,(Rd). Sup-
pose that the coefficient a = a(x,y) satisfies Assumption 2.1. Then L is a bounded
operator from H >, w(]Rd) to Lp, » (R, More precisely, there exists a constant N =

N, p,a, B, K, o, [w]a,) such that, for any u € pyw(Rd),
||£au||L1;_w(Rd) < N”””Hﬁ)w(Rd)

Moreover, the constant N can be chosen so that N = N(d, p, ap, o1, B, K, w, [w]Ap) if
0O <oy <a <a <land N = N(d,p,ao,,B,K,a),[w]Ap) ifl <o <o < 2
respectively.

Remark 2.6 In particular, if | < ag < « < 2, the constant N is independent of « so that the
constant N does not blow up as @ ' 2. Regarding this observation, see also, for instance,
[2,7].

Throughout the paper, we may omit RY in C3° (RY), S (R?), or L, (R?) whenever the
omission is clear from the context. Sometimes we use ‘sup’ to represent the essential supre-
mum. We write N(d, §, ...) in the estimates to express that the constant N is determined
only by the parameters d, &, . . .. The constant N can differ from line to line.
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3 Auxiliary results

In this section, we present some auxiliary results.
Lemma3.1 Foranya € (0,1) and f € S(RY),
ﬂwzmAQMJMEAW%u—oa
and
Pl = f6) =N [ KGR =2
where

K*(z,y) = |z + y|79He — |zt

is an integrable function of 7 and

r'(d—a)/2)
No = No(a,d) = ——————.
0= Noled) = o T (@)2)
Proof The first assertion follows from
~IEIT 1) = Nolx| =4+, 3.1)

where F~! is the inverse Fourier transform. See Lemma 2.1 in [11] for the constant Ny and
the integrability of k¢. O

Lemma3.2 Lety € (0,2), R € (0, 00), and u € Ly 1oc(R?). Then
dy
y.,—1
/ |u(x+y)|| T < NR77y "Mux) (3.2)

and

dy -1
lu(x +y)—— < NR"y ™ Mu(x),
Br |y[¢—Y

where N depends only on d.

Proof Denote B; = B, for j =0, 1, ..., and observe that
[ it 3 / (x+)
5 [u(x y)||y|d+y _j=0 5o, lu(x +y || |d+y
[e.¢]
= R—("+V)2‘f(d+1’)/ lu(x + y)|dy
=0 Bjt1\B;

oo
< NR7Y Zz—Vf][ lu(x + y)|dy

=0 Bjsi
<NR77(1=2"")""Mux) < NR7y""Mu(x),
which shows the first inequality (3.2). For the second inequality, we set B; = B, for

Jj =0,1, ..., and proceed similarly as above with B; \ B; in place of Bj 1 \ B;. O
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The following lemma is a weighted-L , norm inequality for multiplier operators in [13].
From the proofs there, one can see that the constant N depends only on the parameters
described below. As usual, we denote a multi-index by y = (y1, ..., yq) with |y| = y1 +
- -+ =+ y4, where y; is a nonnegative integer.

Lemma 3.3 Letr m be a bounded multiplier of an operator T defined on S(RY). If there is a
constant C such that for any |y| < d,

12
sup (RZ'V‘*" / |Dym<s>|2ds> <cC, (3.3)
R>0 R<|&|<2R

then for any p € (1, 00) and w € Ap(]Rd), there exists a constant N = N(d, p, C, [w]Ap)
such that

1T, < NIfIL,.,
forany f € S(RY).

The next lemma is about the equivalence of the H}; ,, norms stated in (2.1).

Lemma3.4 Let o € [0,a0] and 1 < p < oo. Then for any w € A,,(Rd), there exists a
constant N = N(d, p, ap, [wla,) such that

N7l 1A uly, ) < lullgg, < Nz, +18ulp, ) (34

p,w

foranyu € HI‘;"w(Rd).

Proof To prove (3.4), it suffices to show that, foru € S (R,
(1= A)ullg,, < Nlulle,,. 1(=A**1=A)"%u||,, < NlulL,, 3.5
for the first inequality, and
I = 221+ (=2 ullr,, < Nlulz,,
for the second inequality. We set
mi(€) = 1+ 512 ma@) =1+ €%
Then, by differentiating, one can check that the following multipliers

1 151 mié)
mi(€)" mi€) ma&)

satisfy the assumptions of Lemma 3.3, especially, the inequality (3.3). For instance, we use

IDYmy| < N(1+16[H@ D2 DY my| < Nig| " 41,20,

()
ma(§)

to obtain that

< NIET g <0 + NIEIT g 2

DY ('m(é))
m (&)

where N = N(d, «g, y). In particular, N can be chosen depending on ¢ instead of «. The

lemma is proved. O

< Nlg|="1,
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The following lemma is a classical result for the Riesz transforms and the Hilbert transform
(see, for instance, [19]).

Lemma3.5 Let p € (1,00) and w € A,,(Rd). There exists N = N(d, p, (wla,) such that,
foranyu € Lp,w(]Rd),

I(=A)"Y2Vull,, < Nllulz,,-

Lemma3.6 Let o € (0,2), p € (1,00), and w € A,,(Rd). There exists a constant N =
N, p,«a, [wla,) such that, for any u € Hgyw(]Rd), NS C(c)’o(]Rd), we have

o 4
f/(f U+ 3) — u @G+ = 2) = o5 — Do dy) w(x)dxdz
rd Jrd \JRd [y|dte
< Nl ol (3.6)

Moreover, the constant N can be chosen so that N = N(d, p, ap, o1, [w]Ap) if0 < ap <
o« <oy <land N= N, p, [w]AP) if ] <a < 2, respectively.

Proof We write

d
fd ux +3) —u)llp(x +y —2) — g —Z>l|y|Ty+a

(/B f) ( |y|d+a>'

By Lemma 3.2, we have

[ 4 = w4 dy

B

< / e + WIyl~ @ dy + N~ u(o)] < No~ Mu(x). (3.7)
5

Using the Minkowski inequality in z, (3.7), and the weighted Hardy-Littlewood maximal
function theorem, we have

P
d

L1 (/ |u<x+y>—u(x>||<p(x+y—z>—<p<x—z>|L) dz w(x) dx

Rd JRA Bf |)’|

p
< Nlelz, /Rd (/C lu(x +y) — u(x)l| |d+a) w(x)dx

< Na~ ”II@IIL / (Mu()’w(x)dx < Na~P o]} IIMIILM (3.8)

where N = N(d, p, [wla,)
Note that for ¢ < 1, by Lemma 3.2,

/ e+ y) — u (@)l @HD dy
By

< f lu(x + Py~ D dy + N1 — o) Hu)]
B

<N — ) "Mux), (3.9)
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where N = N(d). By using (3.9) and the Minkowski inequality, for @ < 1, we have

d p
//( Iu(x+y)—u(x)llw(x+y—Z)—s0(x—z)|Ty+a) dz w(x) dx
Re JR? \J By Iyl

dy P
< D¢l /Rd </B] lu(x + y) _M(XNW) w(x)dx

< NA -7 Dgll}, /R [(Mu() w) dx
<N =) "IDgll} ulf . (3.10)

where N = N(d, p, [w]a,).
For 1 <« < 2, we observe that by Lemma 3.2 with R = s,

/|(+) o] —2 </1 Dutx +sy)|—2_d

ux +y) —ux)|——— < u(x +sy)|———=ds

B |y|dte=l o Ja |y|dta—2
I d

<[ 52| 1Dux + ) —2ds < N@ — )" ' MDD (x), 3.11)
0 B, |y|d+e—2

where the constant N depends only on d. By utilizing (3.11) and the Minkowski inequality,
we see that

d p
ff( |u(x+y>—u(x)||<p<x+y—z)—w<x—z>|Ty+) dz (@) dx
R4 Jrd \J B, [yla+e

p
<109l [ (/ |u<x+y>—u(x)|%) W) dx
» Jra \Jp, |y[dte

=< N(2—Ot)_"||D<0||fp/ (MDu(x))? w(x) dx
R4
< NQ@=-a"IDglf IDulf, . (3.12)

where N = N(d, p, [w]Ap). Combining (3.8), (3.10), (3.12), and Lemmas 3.4 and 3.5 , we
obtain (3.6). In particular, when « € [1, 2), by Lemma 3.4 and the first inequality in (3.5),

I1DullL,,, = Nllullgy, = Nlullug, (3.13)

Finally, due to the presence of the term 2 — « in (3.6), from the above proof we see that
N can be chosen as described in the lemma if 0 < g <a <oj <lorl <a < 2. O

Lemma3.7 Let o € (0,2), p € (1,00), and w € AI,(R‘Z). There exists a constant N =
N(d, p,a, [w]a,) such that for any u € H,”,"w(]Rd),

[,

Moreover; the constant N can be chosen so that N = N (d, p, ap, [w]Ap) if0<ag<a<l
orl <ap <o < 2. (An upper bound a1 for « € (0, 1) does not appear in this case.)

d

p
y 14 14
|y|d+a> wx)dx <N (”u”Lp_wlotfl + ”DMHLI,,,,, 1Ot>1) .

V‘y)‘u(x)’

Proof Observe that for |y| > 1,

1
Vo) < <f0 (Vutx + sy)lds + |Vu(x>|> Mt

+ (Ju(x + )+ ux)]) Lo,
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which implies that

/Iylzl

by Lemma 3.2. Then our assertion follows directly from the weighted Hardy-Littlewood
maximal function theorem. O

d
Vau ()| MTyH < No™ Mu(9) Lzt + N(@ = D™ MDux) o=

Lemma3.8 Let 0 < ¢ < 2, p € (1,00), and w € A,,(Rd). Then, there is a constant
N =N, p,a, [w]a,) such that for any u € H;w(Rd),

[ (L

Moreover, the constant N can be chosen so that N = N(d, p, ag, o1, [w]Ap) if0 <ay <
o <oy <land N= N, p, oo, [wla,) ifl <apg <o <2, respectively.

V“u(x)’ Q2—a)—— ) wx)dx < Nllulli,gw-

| |d+a

Proof For o > 1, by using a similar argument as in (3.11) and Lemma 3.2, we see that there
is a constant N = N (d) such that

dy
f G +3) = 1) = (VuG). )| g

Du(x—l—st) dtds
<[ [, st el s

<NQ2—a) "M(D>u)(x). (3.14)

By Lemma 3.7, (3.14), and the weighted Hardy-Littlewood maximal function theorem, we
reach our assertion. For @ < 1, we proceed similarly upon obtaining

/B jate +3) — )| ‘lldﬂa < N(1 =)~ MDu)@).
1

4 Boundedness of non-local operator with a = a(y) in A, weighted
spaces

If the coefficient a of the non-local operator £¢ in (1.1) is a function of y only, £¢ is a
bounded operator from H]‘f to L,. See [7, 17]. We extend this result in the setting of A,
weighted spaces, which is an essential ingredient to the proof of the main theorem.

Proposition 4.1 Let p € (1, 00) and o € (0, 2). Suppose that the x-independent coefficient
a = a(y) of a non-local operator L* satisfies Assumption 2.1. Then, for each w € A,,(Rd),
there is a constant N = N(d, p, o, [w]a,) such that for any u € S(RY),

L%z, < NKI(=A)*ull,,. (4.1)

where K is the constant in Assumption 2.1. Moreover, the constant N can be chosen so
that N = N(d, p, o, a1, [w]Ap) f0<oy<a<ay<land N =N, p, o, [w]Ap) if
1 < ap < a < 2, respectively. Furthermore, if the condition (iii) in Assumption 2.1 is satisfied
fora € (0, 2), the constant N depends only on d, p, [w]Ap, and g, where 0 < o < a < 2.

@ Springer



Boundedness of non-local operators with spatially dependent... Page 110f28 62

Before proving Proposition 4.1, we introduce a well known result from harmonic analysis.
We refer the reader to [4, 5, 14].

Lemma4.2 Let T be a singular integral operator of the type

Tf@) = / K(r —2)f(2)dz.
Rd

Assume that there are positive constants y and C1 such that

|z]Y

[K(x +2) — K(x)| < CIW,

|x| > 4]z].

Also assume that there is a constant Cy such that

ITflL, < Callfllz,

forany f € Lo (R?). Then, forany p € (1,00), w € AP(Rd), and f € Lp,w(Rd), there is
aconstant N = N, p, y, C1, Ca, [w]Ap) such that

ITfLyw = NIfIIL,.,-

Now, we prove Proposition 4.1.

Proof of proposition 4.1

To show Proposition 4.1, we exploitanideain [17]. We first consider the case when« € (0, 1).
Fore € (0, 1), seta.(y) = a(y) lssly‘sé‘—l . Using Fubini’s Theorem and Lemma 3.1,

dy
L% (x) = /Rd (ux+y) — u(x))a(y)m
1 /2 _
_SIER)NO/R(; (/ k% (z, y)(=A)*u(x z)dz> ag(y)| |d+a
= lim N k%(z, y)ag(y) —— dy (—=A)*?u(x — 2)dz
e—0 0 Rd d ¢ |y|d+e '
Fore € (0, 1), set
1w = [ k- ar@ade
Rt
where
ke (x) = / K G a0 |d+a
so that in the pointwise sense,
L% (x) = N lim T (= A)*?u(x).
e—0
From now on, we check that 7¢ satisfies the conditions in Lemma 4.2.

Lemma4.3 Let0 < ap < o <oy < 1. Assume that la(y)| < 1 forall y € RY. Then, there
is a constant N = N(d, ap, a1) such that for any f € Lo (R,

IT¢fliL, < NI fllL,-
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Proof Since
FIT? 1= FlkelFLf],

we only show that F[k.] is bounded. Bearing (3.1) in mind, we see that, by denoting é =

£/I&l,
o dy
| Flk:1)| = V FIKE o1& )ae () —r
Rd [y|d+e

_ ; dy iy dy
<N o i€y _q — N/ i€y _ 1
= NEl /Rd ¢ ||y|”’+°Y R ¢ ||y|d+"‘

- N/ dy N/ DN )
< — —— < N(d, ap, a1).
B lyldtet B |y|4te

The lemma is proved. O

Lemma4.4 Let0 < ag < o < oy < 1. Suppose that for all y € RY, |a(y)| < 1. Then, for
all |x| > 4|z|,

[z|”

lke(x 4+ 2) — ke (x)| < N|x|d+)/ s

4.2)

where N = N(d, ap, a1) and y = y(xg, o).

Proof 1In fact, the lemma follows from the proof of [17, Lemma 14], where the authors prove,
instead of (4.1), the boundedness of £ in L, spaces without weights by obtaining

/ lke(x +2) —ke(x)|dx <C, zeR?

[x|>4|z]

instead of (4.2). However, the proof there also shows the inequality (4.2). For the reader’s
convenience, here we present a slightly simplified version of the proof of [17, Lemma 14]
dedicated to verify the inequality (4.2).

Fix ¢ € (0, 1). For notational simplicity, we replace a., k. with a, k, respectively. For any
r>0,

dy
k = k“ _—
(rx) /R KX a0 =
dy
— —d+a _ —d+a
—fw (I o7 = el ) a0

_ —d+a ( X —d+a __ 7d+0t)
=r X X a
/Rd v+ | x| )

d
—d ( —d+a —d+a y
r b Y17 — T ey
fRd |y[d+e

=: r_dk(x, r).

Hence, for |x| > 4|z|, by writing

k(e +2) — k(o) = k <|x|x “) —k (|x|i>
] N

and using the above k(-, -), we have

k(x4 2) — k()| = |x| 2 <k <x re |x|) —k (i, |x|>>
x| | x|
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< lxl‘d/

where r = |x|/|z](> 4), X = x/|x| and Z = z/|z|. By using an orthogonal transformation,
we may assume that x = e = (1,0,...,0) € R, We split

= /
:/ +/ +/ +f
lyj<1 Lyl 3 <lytel Iy+el<2 2<)ytel<y

=h+L+15+1.

—d+a
_|)’C*+y|—d+ol+|x"|—d+a

A

3 —d+a
)2+;+y

dy
|y|d+a’

2>

i+
r

—d+a
_|e+y|—d+0t+|e|—d+ol

3 —d+o
e+;+y

d
e+E J
r

|y|d+a

Forany a, b € R4 satisfying |a + tb| > 0 for any ¢ € [0, 1], it follows that

‘|a +b|—d+a _ |a|—d+a

1
< N|b|/ la + tb|~4T* 1 4y
0 (4.3)
< N|b|( inf |a + tb|)~¢FeT,
0<t<l

Estimate of I1. Forany 0 <t < land |y| < 1/r,

N =

2
le +1y], |e+;+ty|z

Thus, bearing (4.3) in mind,

I S/
NES

SN/ | |j-£]a 1 SNra_l'
Iyt 1Y

Estimate of I;. Forany 0 <t < 1 and |y + ¢| > 2,

dy
|y|d+ot

B, t ] .
e = 4 YIHE — e 2|7 o [Je 4y T — e

4 Z 1
le+r=+yl, leti-[>—.
r r 4

By (4.3), I is bounded by

ﬁsyl,ésleﬂ’

N dy
roJicy |y|d+a -

r

é —d+a —d+ta| Y
e+ | el

z _ _
e+ =+l dta _ e 4 y|7dtel 4

a—1

Estimate of Is. For |y + e| < =, we see that

_r,

1 z 3
Iylzi, le+-+yl < -.
r r
Therefore, using |e + z/r| > 1/2,
b4 _ _
I3 <N . (|€+*+y| d+a+l)dy+N (Ie—l—yl d+a+l)dy
le++yl<3 r le+yl<2
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SN I tdy <N

yl=z

Estimate of 14. For % <|ly+el < %, t € [0, 1], we have

N | =
| —

Z 1 Z
Sle+t=+y[ <1, - =<|yl, le+t=|>
r 2 r

By (4.3), we arrive at

Iy < /
F<letyl<y

=

1 A
Z

SNr_]f/ . le +1=> +y|"4T* ayde
0 Jl<jetrity|<l r

1 A
4

+Nr*1// le + =7 dy dr
0 J2gle+yl<1/2 r

< Nr—lf |y|—d+(¥—1dy+Nr—1 < Nr— @,
F=lyl=t

r=

+

;o - 2 _ -
e~ 4 yI7 — e+ Y e 4~ — el

Finally, by taking y = min{l — «1, ¢}, we have
I < Nr7 7.
The lemma is proved. O

Let us continue the proof of Proposition 4.1 Clearly, we can assume that K = 1. By
combining Lemmas 4.2, 4.3 and 4.4, we see that the assertion in Proposition 4.1 holds when
a € (0, 1). Note that the constant N in (4.1) can be chosen depending only on «g and «, but
independent of «, provided that 0 < a9 <@ < 1 < 1.

To complete the proof of Proposition 4.1, we proceed as follows. First, we prove again
the inequality (4.1) for @ € [3/4, 1) to present the exact dependency of the constant N on «
as « /' 1. Then, using this result, we prove the inequality (4.1) for & € (1, 2). In particular,
we show that the constant N can be chosen independent of « if 1 < a9 < o < 2. Finally, we
prove the case o = 1. In the steps below, we use the idea in the proof of [17, Lemma 15].

As above, we set a.(y) = a(y)18<‘y|<5_1 and denote

dy
a — o
Lou(x) = /I‘M Vyu(x)ag(y)7|y|d+a.
Then we have
L%(x) = SIER) Liu(x).
Thus, to prove (4.1) it suffices to show that
1£8ullz,,, < NI(=2)ul,,, 4.4)

where N = N(d, p, «, [w]Ap), but independent of €. Let « € [3/4, 1). By Lemma 3.1, we
see that

d
L4u(x) = No / / K20 ) (=) P — 2 dzas () — o
]Rd ]Rd |}’|

dy

= No/ f K2z, ) (=) *u(x = 2) — (=8)*u(x) dz ag () ——
Re JRd |y[ete
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d
= No / ( / k(2 y)ag(y)Ty) (=) ux —2) = (=) *ux)) dz,  (4.5)
Rd \JRd |y|d+e
where Ng = No(d) and the second equality is due to

fRd k'%(z, y)dz = 0.

Note that, if we set

me(2) ::/ (
Rd

dy 1
1/2 _
[de (Z7 )’)ae(y)|y|d+a - |Z|d_1/2+am£(z)‘

Z
Iz

—d+1/2 dy
-1 as(|Z|)’)|y|T+a,

then, for z # 0,

From (4.5), we get that
dz
ﬁgu(x) = NO \/l'%d((—A)l/“u(x - Z) - (—A)1/4u()€))m5(2) W. (46)
If we have

Ime(2)l < (1 —a)"'N 4.7

for any z # 0, where N depends only on d, but independent of ¢, then the representation
(4.6) along with Proposition 4.1 for order @ — 1/2 proves (4.4). Thus, it remains to show
(4.7). Upon denoting Z = z/|z|, we write

@) / ( ! 1) (I2ly) -2
me(z) = =15 — l)azly)—7—
‘ lyl<i/2 \|Z + y|4=1/2 ‘ |y|d+e

1 dy
" /\y|>1/2 (IZ +yld-12 ]> %e(lzly) |yld+e fet Je

Set

1
f(t)zma te[0,1].

Then, since |z + ty| > 1/2 for |y| < 1/2,

1
————— — 1| =|f() = fO)| =< sup |f'(1)] < Nlyl.
|Z 4 y|d=1/2 ’ te[0,1]
Therefore,
d
LI < N jae (29| oy < (1 =)' N,
lyl<1/2 |yl

where N = N (d). To estimate J,, we split

J f < : 1) Izl 2
= ———— — 1) a:(zly
‘ ly|>1/2,154y[=1/4 \ |12 + y[d=1/2 ¢ |y|d+e

+ f < ! 1) D
< a1 ags\|1Z|Y) —— 1>
tyl<1/a \|Z + y|4=1/2 ‘ |y|d+e
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where both integrals are bounded by a constant depending only on d because o > 3/4,
(2 +yI72 = Dag(Izln)| = N

in the first integral, and |y| > 1/2 in the second integral. Hence, we have obtained (4.7).
Since 1/4 < a — 1/2 < 1/2, it follows that (4.4) holds with

N=(0-a)'Nd p.a—1/2,[wla,)=1-a)'Nd. p.[wla,).  (48)
For « € (1, 2), L% can be written in the form
d dy d
Z/Rd (Diulx +y) = Din () @i () oy = D L4 (D) (x),
i=1 i=1

where
_ yi : —1+a
ai(y) =— | a(y/s)s ds.
Iyl Jo

Note that the order of £% is & — 1. By Proposition 4.1 for o € (0, 1) just proved above and
Lemma 3.5,

d
£z, < IL%DullL,,, < NI(=A)“"D2Vu|L,, < NI(-8)*ulL,,.
i=1

From |a| < (2 — «) and (4.8), we see that N = N(d, p, ao, [wla,) if 1 <ag <a <2 with
no blow-up as o 7 2.

Finally, we prove (4.4) forx € (3/4,5/4) with N = N(d, p, [w]Ap) under the additional
assumption that a(y) satisfies the condition (iii) in Assumption 2.1.

Using the condition (iii) in Assumption 2.1, we have

d
Leux) = No /R LD =) = ) uIme @)
where

1 . dy
¢(2) = 5 — 1 = (=d +1/2)(z, e —
e (@) /|y51/z<|z+y|"‘1/2 (~d+1/2)( y)>a (|Z|y)|y|"+“

I o
+fy|>1/z (W - 1) as (21) g =+ e+ Je.

Then, since |2 + ty| > 1/2 for |y| < 1/2 (recall () = |z + ty|~4T1/?),

m - (—d 412G y)‘ — 1) = £O) = £/ O)]
< %,SE?E] 0] < NIyl
we have
L] < N el —2 < N,
y<1/2 |y[dHe=2
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where N = N(d). Note that the estimate of J; still depends only on d. By using the propo-
sition for 1/4 < o — 1/2 < 3/4 proved above, we have (4.4) with

N = N(d7 p,a— 1/2’ [w]Ap) = N(d7 p [w]Ap)~

Note that the constant N in (4.4) for the above three cases (@ € (0, 1), € (3/4,5/4),a €
(1, 2)) can be chosen depending only on ap if 0 < ap < o < 2, which is the last assertion
of the proposition. In particular, the constant N does not blow up as @ — 1 if the condition
(iii) in Assumption 2.1 is satisfied. This finishes the proof of Proposition 4.1.

5 Proof of theorem 2.5
We start with a key lemma.

Lemma5.1 Let B € (0,1), @ € (0,2), p € (1,00), w € A,,(]Rd), e € (0,1),and ¢ €
Cg°(B;). Also let a(x, y) be the coefficient of a non-local operator L satisfying conditions
(ii) and (iii) of Assumption 2.1. Set

(r) f -2 o
y(r) = o(ly)——, <r < oo.
lyl<r lyl4+h

Suppose that there is a positive constant K such that

sup  Ja(x,y)| < 2 —-a)K.

x€By,,yeRd
Then there is a constant N = N(d, p, a, B, [w]A[,) such that foru € S(RY),
lctullf, , < NCle.g.p. B.y. K)I(=2)*ull} . (5.1)
where C is a constant determined as follows.
Ce 0, p. B v. K)=K"llgll] +e”KP|Doll] +ePloll]_y? ().

The constant N can be chosen so that N = N(d, p, ap, o1, B, [w]a,) if 0 < ap < o <
oy <land N =N, p, ao, B, [w]Ap) ifl <ap <o <2, respectively.

Proof We first consider the case when p € (d/B, co). To clarify the dependency of N with
respect to o, we use Ny when the constants in the inequalities below do not depend on «. For
a measurable function f on RY x RY and r > 0, denote

Kr,f)=2—a)" sup |fz )l

z€B,,yeRd

Assume that a(x, y) are infinitely differentiable in x. By Lemma 3.1, we see that, for any
x e R4,

p(atx, y) = Ny fR = ) O, @) dz.
Using this, we observe that for any x € R4,
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a o dy
oLt = [ iuwpat ) =G

d
=N / v;'u<x)</ |x—z|—d+ﬂ<—A)ﬁ/2(<p(-)a<-,y>)<z>dz) Y
R4 R4

|y|d+a
dy
- N / [ — o]+ ( / Vou) (— A2 (p()al, y) <z)—> dz
Rd Rd ( ) |y|d+e
=: N1/ x — z|74HB LDy () da. (52)
Rd
For [x| < e,
Ix — 2|7 < NyJz| 7T 2] > 2e. (5.3)

Hence, from (5.2) and (5.3), we have

[ eztucorue = [ jpoctucorue s
R By
_d — A2 (00l b
§N1/ / Ix — z|~9+P ‘ﬁ( ) <<p(>a<,y>)<z)u(x)‘ dz) wx)dx
B: \JR?

p
< N1/ (/ e — 2 | L0y )| dz) W) dx
& Boe

Al

P
|Z|—d+f5 ’ﬁ(—A)ﬂ/z(w(')a(',)’))(z)u(x)‘ dz) w(x)dx
%6
=:J1 + /5.

Estimate of Ji. Using Holder’s inequality, we have

p—1
_ _r_
I < le (/ v — 2| TP B dz) (/ ‘E(—A)ﬁ/z(fﬂ(')u(‘»y))(z)u(x)‘p dz) w(x)dx.
Be By, By,

Note that, for |x| < &,

r—1 r—1
_ P — P
(/ x — 2|7 dz) < </ 2| P dz) < NyePr.,
BZE B3s

Hence, we have that

Jp < ngﬂp—d/ /
Be J Bye

< leﬁ”*d/ /
Bpe JRY

By Proposition 4.1, we see that

c(—A)ﬂ/z(fﬂ(')a(',}'))(z)u(x)‘p w(x)dzdx

Lem"/z(womo,y))(z)u(x)”’ w(x) dx dz.

Ji < NINPePP=d (2 —q)=P / (sup |<—A)ﬂ/2(w<-)a<~,y))<z)|"> f [(=A)*2ulPw(x)dx dz
Bye \yeRd R4

leNﬂeﬂP@—a)—P( sup |<—A>f‘/2(w<->a<-,y>)(z)P) f N EA PulPw) dx,
R

yeRd, ze By,

(5.4)
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where N is the constant in Proposition 4.1. To estimate the supremum of
(=22 (p(at, 1)@
in (5.4), we observe that, for any y, z € R4,
(=22 (p()at, )@

dh
§N1/ lo(z +ma(z+h, y) = e@az, Vlo—grs
|h|>¢ |h|
dh
+N1/ oz +maz+h,y) —¢@alz, y)loasg
|h|<e |h|

dh
= le lo(z +ma(z+h, y) —e@alz, Vlo—grg
Ih|>¢ ||

dh
+N1|a(z,y>|/ 0+ 1) — o)
lhl<e |h|d+F
+Mle@! [ lat+hy) — a2
1192 alz V) —a\Z, YY)z
hi<e |h|4+P

dh
N[l hon — el + D - eI
lhi<e |h|4+P
=L+ L+ 15+ 14
Forany y € R? and z € By,

I < Nysuplp(2)a(z, y)le™”
Z,y

<N sup la@ Weli.e™? < N2 —a)KQe, )¢l e,

7€By.,yeR4

L <N sup |a@ WDl e ™ < N2 —a)KQ2e, )| Dol e P,

Z€Bye,yeRY
I3, 14 < N12 —a)llollL, v (e).
From the above estimates of 1;,i = 1, 2, 3, 4, together with (5.4), we obtain that
Ji < NC(e.. p. B, y. KQe. a) | (=8)*Pul] .

where N can be chosen as described in the lemma.
Estimate of J,. By the Minkowski inequality

/I;’é’g

<N / 7|4 +8 HE(—AW/Z(w(-)a(-,y»(x)u(_)’

BZs

§N1/
B

Then by Proposition 4.1, it follows that

PRLI AL ‘£<7A>f’/2<¢<~>a<~,y»(z>u(.)‘ dz

Lpw(Be)

dz
Lpw(Be)

dz.

- —AB2(w()al-,y
HRaL H LEAPROaCN@
Lpw®)

¢
2e

L7 < NiNI(=8)ul 1, / = sup (=P (p(at, y) @) dz,

BZe ,VERd

(5.5)

(5.6)
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where N is the constant in Proposition 4.1. For z € Bj,, we see from (5.5) that
L=5L5=14=0

and

dh

I =N1/ oz + Wtz + h, )| =
|h|>e |h|d+ﬂ

which imply that le /7 is bounded by

_ _ dh
NINQ2 —«a) IH(_A)“/ZMHLP_w/C |z] d+ﬂ/ sup |ga(z+h)a(z+h,)r)|mdz
BS, hl>e yepd R

=NMN@ -0 =0 ullg,, f\

h|>¢

_ dh
[ 17 s ot + mate + bl ds
w, i

where

12|79 P sup |@(z+ ha(z +h, y)| =0
yeRd

forz +h € Bf and

|l sup lp(z +Ma@+h Y <1z sup  laz el
yeRd z€B;,yeR?

for z + h € B,. Thus,
/ 12179 sup |o(z + h)a(z +h, y)|dz
BS, yeRd

<

—d
f e sup Gz lllelLy dz
BS N{z+heB:} z€B;,yeRd

<Nief sup a@ D@l Ly
z€B;,yeRd

This shows that

1 _ dh
L7 < NINQ@ =) I(=8)*ullg,, e sup laG o WIlell., —r
lh|>¢  zeB, yeRd |h|4+E

=NINQ—a) (=8)"%ullg,, sup la@ Vel
z€B,,yeRd

< NINKQe, a)[(—=2)*2ullL, , 1]l Lo

By combining the above estimate for J> and (5.6) for J;, we see that the inequality (5.1)
holds for a(x, y) which is infinitely differentiable in x with C (e, ¢, p, B, v, K(2¢, a)).
For general a, set

an(x, y) = a(x, y) * 1a(x),  n(x) =ny(nx)
forn =1, 2, ..., where 7 is a standard mollifier on R?. Note that
lan (21, ¥) = an(z2, )| < @ = (2t —220) 21,22,y € R
By the inequality (5.1) proved above for a,,, we have

lo£™ull] < NC(e.9.p. B,y KQe an) |(=2)*ull] .
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Since for any p > 0,
KQRe,a,) < KQRe+ p,a)
for large n, by Fatou’s Lemma, we see that for any p > 0,
l£oulf < iminf | £%ul] |

< liminfNC(e, ¢, p, B, 7. K26, an)|(=2)*ull] |

< NC(e. 9. p. B, 7. KQe + p, a) | (=2)*?ull] .
Upon noting that

}‘_IPO Ce,p,p,B.y.KQ2e +p,a)) = C(e, 9, p. B, v. K),

we finish the proof when p > d/p.
For general p € (1, co), we apply the Rubio de Francia extrapolation theorem. See, for
instance, [9, Theorem 2.5]. The lemma is proved. O

Remark 5.2 From our arguments, it is not clear if the constant N in Lemma 5.1 can be
independent of §. For instance, if we take p = 2d /B and let 8 go to zero, then even the
constant in Proposition 4.1 might blow up. On the other hand, if one can the dependency on
B in Lemma 5.1, the boundedness of the operators £¢ with a(x, y) having assumptions can
be achieved by mollifying the coefficients.

Proof of theorem 2.5

Here, we use a version of the partition of unity argument in the proof of Theorem 1.6.4 in
[12].
We may assume that u € S as S is dense in H . Let

d
?M(X)Z/H 1(u(x+y)—M(X)—Xa(y)(W(X),y))a(x,y)|y|Ty+a-
yls

According to Lemmas 3.7, 3.4, and 3.5 , we obtain

1" = LDulle,,, < Nlullgg

pw’

Therefore, it is sufficient to show that
I£{ullL,, < Nlullbg,.

Letg € Cgo(Bl),O <@ <1,and p(x) = 1if x| < 1/2. Then for any x € R4,

/ ’C‘fu(x)yp w(x)dx:N/ / |<p(x—z)[l‘1’u(x)’p wx)dzdx.
R4 Rd JRd
Observe that
9(x — ) L{u(x) = LS (u()e(- — 2))(x) = u(x) L] (9 — 2)) (x)
dy
- /\'I 1 (u(x +y) —u@)(e(x +y —2) —@(x — 2))alx, y)MTM

=L+ DL+
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We first estimate />. Using the Minkowski inequality in z and Lemma 3.8 to ¢ without
weights, we see that

//I;w(x)dzdx < N/ WPl w(x) dx < Nlul]
fi .
For I3, using Lemma 3.6 and the fact that |a(x, y)| < (2 — «)K, we have
/fz;’w(x)dzdx < Nl , -
To estimate /|, we observe that

X =2

LI (- —2))x) =¢ < 1

> LY (e = 2)) (x).
Thus by Lemma 5.1, we see that
//Iﬁ‘f(u(-)wc—z))(x)|”w(x)dxdz
Rd JRA
SN/ / (=) (O (- —2))(0)|” wx) dx dz
R JRA
EN/ / |(—A)a/2”(x)<0(x—z)|pw(x)dxdz
R JRA
+Nf / |(=8)(p(- = ) u)|” wix) dx dz
R‘] Rd
d
+N/ / </ l”(x+y)—“(X)I|¢(X+y—z)—w(x—z)lTyw> w(x) dz dx
R Tt A\ 1yl
=Ji+ L+ /.

By the same calculations as in the estimates of /> and /3, we derive that

Jt I3 < Nlullfyg -

Note that J; = N||(—=A)*/%u Ilf,, o' Consequently, by Lemma 3.4 we reach the result.

6 Application: L, estimates for non-local equations

In this section we study the following non-local parabolic equations of the form
w— L% = f in RE:=(0,T) x R (6.1)
with the non-local operator £¢ given by
LU(t, x) = /1‘@ (u(t, x+y) —u(,x)— Xa(y)(Vu(t, X), y)) a(t, x, y)bfliTy_Hx.
We introduce some function spaces related to parabolic equations. Set w(¢, x) = wi(#)wz(x),

where w; € A;(R) and wa(x) € AP(Rd), P, q € (1, 00). Then, we define prqyw(R‘%), also
denoted by L 4., (T), to be the space of integrable functions with the mixed norm

T q/p 5
||u||L,,Vq_w<T>=</ (/ |u<r,x>|"wz<x)dx) wl(t)dt> .
0 R4
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We write HY  (T') toindicate the class of H]‘f (R?)-valued functions u on (0, T') equipped

) Pq,w w2
with the norm

T 7
|mmmﬂn=(ﬁ wmo%hﬂmman

As solution spaces for parabolic equations, H;’f;,w(T) denotes the collection of functions

u e H;‘,q,w(T) such thatu, € L 4, (T). It is a Banach space with respect to the norm

lellygre oy = lullag, )+ el g0

We write only p instead of p, ¢ when p = ¢ so that, for instance, H};a (T') means Hl,’f’;,,w (T)
with w = 1.

We now state our assumption on the coefficient a(z, x, y) in (6.1). Throughout the section,
we set K and § as positive constants and assume that the function ay satisfies the following
conditions.

Assumption 6.1 (i) The functionag = ap(¢, y) > 0is measurable, homogeneous in y with
index zero, differentiable in y up to the order [%] + 1, and

IDYao(t, y)| < K

forallt € (0, T), y € RY and multi-indices, y € N¢ with |y| < [4] + L.
(ii)) Wheno = 1, forallz € (0, T)

f yao(t, y)a—1(dy) =0,
Sd—l

where $¢~1 is the unit sphere in R? and py_ is the standard Lebesgue measure on it.
(iii) Forallt € (0, T),

inf /Sd_l [(y, ©)%ao(t, y)pa—1(dy) = & > 0.

gesd-l
Assumption 6.2 (i) Forall x,y e R? and ¢ € (0, T),
2 —wap(t,y) =alt,x,y) =2—-a)K.
(i) There exist B € (0, 1) and a increasing function w(t), T > 0, such that
la(z, x1,y) —a(t, x2, )| = 2 — ) (x; — x2))

for x1, x3,y € RYandr e 0,T), and

/ -2 <
o(y)—— < 0.
lyl<l |y|d+F

(iii) If o = 1, then for any (¢, x) € R‘% and0 <r < R,

dy
ya(t,x,y)—— =0
/rEI,VSR |y|d+e

By using Theorem 2.5 for each ¢ € (0, T') and then integrating with respect to ¢, we obtain
the following boundedness of parabolic non-local operators.
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Corollary 6.3 Let B € (0,1), « € (0,2), 1 < p,q < 00, and w(t,x) = wi(Hwa(x),
w; € Ay(R) and wy € A,,(Rd). Suppose that the coefficient a(t, x, y) of L satisfies the
conditions (ii) and (iii) in Assumption 6.2 and is bounded by (2 — a)K. Then the operator
0y — L% is continuous from ’H},’Z,w(T) to Lp gw(T).

Remark 6.4 As is easy to see, in Corollary 6.3 one can have any nonnegative function w (t)
instead of w; € Ay (R).

By utilizing the above results, especially, when w = 1 and p = ¢, we prove the following
L ,-estimates for parabolic and elliptic equations with spatial non-local operators with Hélder
continuous coefficients. As noted in the introduction, the same type of results are proved in
[17] but for sufficiently large p. That is, we have removed the largeness assumption on p in
[17]. On the other hand, our boundedness results for operators in the weighted space setting
also make it possible to derive weighted versions of the results below. Indeed, such results
are proved recently in [10] using Theorem 2.5 and Corollary 6.3 in this paper after detailed
preparations for weighted L ,-estimates.

We first state the parabolic case. Note that in the results below we do not pursue whether
the constant N stays bounded, for instance, as « ' 2 (see Remark 2.6). However, it is
possible to investigate the dependency of N on « as described in Theorem 2.5. See [10] for
a priori estimates with more informative dependency of N on «.

Theorem 6.5 Let B € (0,1), @ € (0,2), 1 < p < 00, and the coefficient a of the operator
L4 satisfy Assumption 6.2. Suppose that u € HL’“(T) satisfies

(6.2)
u@©,x) =0, xeR?,

iu,—Lau—i—ku:f in ]R‘%,

where f € L,(T). Then, there exists .o = Ao(d, p, a, B, 8, K, ) such that for any . > A,
lurll,ry + 1(=2)*2ullL ) < NILfllL, ). (6.3)

lullz,ay < NT AXDIfllL, @), (6.4)

where N = N, p,a, B,8, K, w). Moreover, for any f € L,(T) there exists a unique
u € Hy*(T) satisfying (6.2), (6.3), and (6.4).

Before presenting the proof of Theorem 6.5, we first give some corollaries derived from
Theorem 6.5 for parabolic equations with lower-order coefficients and an elliptic counterpart
of Theorem 6.5.

Corollary 6.6 Let p € (0,1), « € (0,2), | < p <00 and a = a(t, x, y) satisfy Assump-
tion 6.2. Also let b' (t, x) and c(t, x) be bounded by K. Suppose that u € H;,’a(T) satisfies

ur — L% + b Djuly-1 +cu= f in ]R’;,

(6.5)
u(0,x) =0, xeR,

where f € Ly(T). Then

lellygie iy = NUFIL, ), (6.6)
where N = N(d, p,a, B,8, K, w, T). Moreover, for any f € L,(T), there exists a unique
ue HL’“(T) satisfying (6.5) and (6.6).
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Proof By the method of continuity, it is sufficient to show (6.6). We only consider the case
when o > 1 as the other case is simpler. Fix A > Ao, where Aq is the constant in the statement
of Theorem 6.5. Let T € (0, T'). Due to Theorem 6.5, we have

”””H};"(z) < Nlluy — L% + ull L, )
< Nlus — L + b' Dju + cul|L, ) + NlullL, ) + NlIDullL, ),
where the constant N is independent of . By (3.13) and Lemma 3.4,
IDully, @y < NI(=D)"?ully @iy + Nlull,, @a)-

Then, by dilation in x (see, for instance, the proof of [12, Theorem 1.5.1]) and integration
with respect to the ¢ variable,

IDull, ) < ell(=A)?ull @) + N@llullL, -
By taking sufficiently small ¢, we see that
leell g1y = N llur = L% + b' Diu+ cullL, @) + NlullL, @

=NIfllL,q + NllullL, -

Observe that

P

t
N oy < ”/0 rl(s, ) ds

Ly(RY)

t
p—1 P _ -1 p
<1 (/0 lus s, >||Lp(Rd)ds> =" udll]

for any ¢ € (0, T'). Hence, by taking integration over (0, 7), we have

T T
p 1y P 1y P
IIMIILP(,)5</0 % ”uI”L"([)dt)S</o % ||u||H%(,)dz>.

Thus,
p 14 i 1 P
.
ey = NI N (07 kg ).
Set
Als) = ”“”f{;ﬂ@y B(s) = NIfI] ) Cls) =NsP™!

for s € (0, T). Then, we see that
A(r) < B(r) + /Or C(t)A@)dt
for any = € (0, T'). By Gronwall’s inequality,
A(T) < B(T)eho cwdr,

This proves the corollary. O
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Corollary 6.7 Let § € (0,1), « € (0,2), 1 < p < oo, and the operator L® be
independent of the time variable with a(x, y) satisfying Assumption 6.2. Then, there are
r = rold, p,a,B,8, K, w)and N = N(d, p, «, B, 8, K, ) such that, for any A > X,y and
u€Hy (RY) satisfying
— L%+ u=f in RY, (6.7)

we have

(=2 ull @iy + *ully, ey < NIl @ay- (6.8)
Furthermore, for any f € Ll,(]Rd), there exists a unique u € H;‘ (RY) satisfying (6.7) and
(6.8).

Proof Let n be a smooth function in R with

1
n(0) =0, /Oln(t)|dz>0.

Set n,(t) = n(t/n), t € R, and consider v,, = un,. By applying Theorem 6.5 with T = n
to vy, then letting n go to infinity, we obtain a priori estimate (6.8). Then, by the method of
continuity and the unique solvability of equations with simple coefficients, for instance, in
[7], one can finish the proof. ]

We will prove Theorem 6.5 by the standard freezing coefficient argument. One can find
the argument in the proof of [12, Lemma 1.6.3] for second-order elliptic equations, and in
the proof of [17, Lemma 8] for non-local equations. To show the exact parameters which the
constants depend on in the estimates, we give a detailed proof of the following lemma.

Lemma 6.8 Assume that § € (0,1), a € (0,2), and p € (1,00). Suppose that Assump-
tion 6.2 holds. Then, there exist ¢ = e(d, p,a,B,8,K,w), N = N, p,,§, K), and
ro = ro(d, p,a, B,8, K, w) such that the following holds. If A > ,o, u € H},’Q(T) satisfies
(6.2) and for every t € (0, T), u(t, -) has support in a ball of radius ¢, then

lurll, ) + 1(=2)*2ullL ) < NI fllL, ).
lullz,ry < NCT ARl
Proof Without loss of generality, we assume that for all t € (0, T), u(t,-) € C3°(Be). Let
@ € C§°(B4e), 0 < ¢ < 1, (x) = 1if |x| < 2e, with
N
1DollL,, < —.
&

Set

dy
= v —
Lout, x) /Rd Pt a0, )

In this proof we denote £¢ by L. Note that for any A > 0, by Proposition 1 in [17], there is
a constant N1 = N1(d, p, «, §, K) such that

lullL, )y < Ni(T A A Yy — Lou + AullL, )
and

luellz,cry + 1= ull vy < Nillus — Lou + rullL, ().
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Then by the triangle inequality, we have
lullL, iy < N (T ALY (L Ly + leL = LoullL,
+(Lu — Lou)(1 — §0)||L,,(T))
and
luellz, ) + I1(=2)"2ullL, ()
<N (”f“L,,(T) + llo(L = Lo)ullL, @) + I(Lu — Lou)(1 — <P)||LP(T)) .
Observe that for any ¢ € (0, T,

sup  la(t,z,y) —a(,0, )" < w(8e)?.
7€Bg.,yeR

Due to Lemma 5.1 witha — a(t, x, y) —a(t, 0, y) and ¢ — 4¢, we see that
gL — Loullz,ry < NoC@II(—=A)**ullL, ().
where
C(e) = w(8e) + y (4e)e”,

which goes to zero as ¢ — 0. Since « has support in the ball of radius ¢ centered at 0, using
the Minkowski inequality, we see that for each t € (0, T),

[(Lu = Louw)(1 = @)L,

-(/
f(/B

<N [ e, -2 < N, )
< ults 49, g = Nae Tl Il

[yI>¢

Viu(t, x)(a(t,x,y) —a(t,0 y))d7y
|y|>¢ ’ ’ o o |}’|d+a

¢
2e

p 1/p
1 —w(X)I”dx)

» 1/p
dx

d
f u(t, %+ )@l 5, y) — a0, ) —a—
IyI>e [yl

C
2e

For a fixed ¢ > 0 satisfying Ny NoC(e) < 1/2, we have that

luelle, ) + II(—A)O‘/2M||L,,(T) <2Nill fllL, ) +2N1N2e™lull L, (1)
and

lullL, ) < 2N1(T AXDIF L,y + 2NIN2(T AL De™ ullL, ).

Taking Lo = 4N Noe™“, we obtain the desired estimates. m]

Proof of theorem 6.5

Using the partition of unity argument and standard freezing coefficient technique with
Lemma 6.8, we have (6.3) and (6.4). The uniqueness comes from the estimates. Finally,
using Theorem 2.5 and the method of continuity, we reach the existence of a solution.
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