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Abstract
We prove the boundedness of the non-local operator

Lau(x) =
∫
Rd

(
u(x + y) − u(x) − χα(y)

(∇u(x), y
))
a(x, y)

dy

|y|d+α

from Hα
p,w(Rd) to L p,w(Rd) for the whole range of p ∈ (1,∞), where w is a Muckenhoupt

weight. The coefficient a(x, y) is bounded,merelymeasurable in y, andHölder continuous in
x with an arbitrarily small exponent.We extend the previous results by removing the largeness
assumption on p as well as considering weighted spaces with Muckenhoupt weights. Using
the boundedness result, we prove the unique solvability in L p spaces of the corresponding
parabolic and elliptic non-local equations.
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1 Introduction

We consider non-local operators of the form

Lau(x) =
∫
Rd

(
u(x + y) − u(x) − χα(y)

(∇u(x), y
))
a(x, y)

dy

|y|d+α
, (1.1)

where α ∈ (0, 2) and χα = 1α>1 +1α=11B1 . Note that the coefficient a(x, y) in the operator
La is a function of not only y ∈ R

d but also x ∈ R
d . Non-local operators as above appear in

the equations describing various phenomena in physics, mathematical finance, biology, and
fluid dynamics (see, for instance, [3, 6]).

The main focus of this paper is the boundedness (i.e., continuity) of the operator La from
Hα

p,w(Rd) to L p,w(Rd), 1 < p < ∞, under the assumption that the coefficient a(x, y) is
measurable in y and continuous in x with an integrability condition on the modulus of con-
tinuity (cf. Assumption 2.1 and Remark 2.4), where Hα

p,w(Rd) denotes the Bessel potential

space with a Muckenhoupt weight w ∈ Ap(R
d). See Theorem 2.5. This result then implies

the boundedness of the parabolic operator ∂t−La with a time-dependent coefficient a(t, x, y)
fromH1,α

p,q,w(T ) to L p,q,w(T ), whereH1,α
p,q,w(T ) and L p,q,w(T ) are mixed norm spaces with

weights for parabolic equations. See Corollary 6.3. We remark that even in the unweighted
case, i.e., w = 1, our result is new.

It is well known that, in the study of partial differential equations, a prerequisite is the
boundedness of the corresponding differential operators in the considered function spaces.
For instance, in the L p-theory, one usually obtains a priori estimates of solutions and uses
the method of continuity along with the unique solvability of a simple equation. However,
all of these steps require the boundedness of the involved operator in an L p type function
space. In the local case, for instance, if the operator L is of the form

Lu = ai j Di j u,

the boundedness of the operator L from W 2
p(R

d) to L p(R
d) is straightforward, requiring no

regularity assumptions on the coefficients ai j , provided that they are bounded measurable
functions. This is also the case when the L p space is replaced with a weighted L p space.
Similarly, for a given f ∈ L p(R

d), to find a solution u ∈ Hα
p (Rd) of the following non-local

elliptic equation

Lau = f ,

it is essential to have

‖Lau‖L p(Rd ) ≤ N‖u‖Hα
p (Rd ),

where Hα
p (Rd) is a Bessel potential space without weights. Contrary to the local operator

case, the boundedness of non-local operators in L p spaces is far from being obvious even
in the simple case when a = a(y). Indeed, for non-local operators as in (1.1), as far as the
authors are aware, there is no result in the literature about the boundedness of the operators
if the coefficient a(x, y) is merely bounded measurable without any regularity assumptions
as a function of x ∈ R

d .
There have been considerable studies about the boundedness of non-local operators as in

(1.1) in L p spaces along with L p estimates of solutions to non-local operators. If the coeffi-
cient a(x, y) is constant, the operator La in (1.1) is, by definition, the fractional Laplacian of
order α, whose boundedness is guaranteed for u ∈ Hα

p (Rd). However, even in the aforemen-
tioned simple case, i.e., a = a(y) in the elliptic case and a = a(t, y) in the parabolic case, in
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early work about the boundedness of La , some conditions were imposed on a(y) or a(t, y)
as a function of y ∈ R

d . See [1, 16], the results of which can be applied to show boundedness
of La only when a = a(y) or a = a(t, y) is either symmetric, i.e., a(−y) = a(y), or homo-
geneous of order zero and sufficiently smooth as a function of y ∈ R

d . In fact, the papers
[1, 16] deal with more general forms of non-local operators. These restrictions on a(y) were
removed in [7] so that a(y) can be bounded measurable, but still needs to be a function of
only y ∈ R

d (one can also consider separable coefficients a(x, y) = a1(x)a2(y) by writing
La = a1(x)La2 ).

The boundedness of non-local operators with x-dependent kernels was considered in [17]
for L p spaces with sufficiently large p. In terms of the operator La in (1.1), the coefficient
a can be a function of x ∈ R

d as well as of y ∈ R
d provided that a(x, y) is measurable in

y and Hölder continuous in x . Using this boundedness result, the authors also proved the
existence and uniqueness in Sobolev spaces of solutions to the Cauchy problem for parabolic
integro-differential equations with variable coefficients of the orderα ∈ (0, 2) for sufficiently
large p. The main results in [17] have been applied, for instance, in [18, Theorem 2.5] to
non-local operators with so-called variable densities, where the investigation was also limited
to sufficiently large p.

In this paper, we prove the boundedness of the operator La in (1.1) when a(x, y) is
measurable in y and Hölder continuous in x (see Assumption 2.1 and Remark 2.4) for all
p ∈ (1,∞). That is, we remove the restriction in [17] that p has to be sufficiently large.
Moreover, we show the boundedness of the operator in weighted L p spaces with weight
w ∈ Ap(R

d). Nevertheless, whether the boundedness of non-local operators still holds for
general a(x, y) (for instance, discontinuous or uniformly continuous a(x, y) in x) remains
to be an open problem. It is worth mentioning that if Hölder spaces are considered, the
boundedness of the operator La under optimal conditions is obtained relatively easily by
using perturbation arguments. See, for instance, [8, 15].

As an application of the operator boundedness result, we obtain L p estimates as in [17]
for all p ∈ (1,∞). See Theorem 6.5. Since our boundedness result is proved in weighted L p

spaces, one can consider weighted L p estimates for non-local operators. Regarding results
in the weighted setting, see a recent paper [10].

To prove the boundedness of non-local operators, we first make an observation that La

with a = a(y) (i.e., a is independent of x) is a bounded operator in weighted spaces. This
is done by refining the argument in [17] based on singular integral operator theory. Next,
we prove the boundedness of the operator with a = a(x, y) in weighted L p spaces with
Ap(R

d) weights for a sufficiently large p. Then, we use the Rubio de Francia extrapolation
theorem to obtain the boundedness for all p ∈ (1,∞). While dealing with the operator with
a = a(x, y), we first consider ϕLa instead of La , where ϕ is a suitable cut-off function.
Similarly as in [17], we employ a cut-off function ϕ because we write Lau as an integral
operator with a kernel having an insufficient decay at infinity. See the proof of Lemma 5.1.
After that, we apply a partition of unity type argument to obtain the boundedness of La . See
the proof of Theorem 2.5.

The remaining part of the paper is organized as follows. In the next section, we introduce
some notation and state the main result of the paper. In Sect. 3, we present some auxiliary
results for the proof of the main result. In Sect. 4, we obtain the boundedness of the operator
La in weighted L p spaces when the coefficient a is a function of y only. We present the proof
of the main result in Sect. 5. Finally, using the main result, we obtain the L p estimates for
non-local elliptic and parabolic equations.
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2 Notation andmain result

For x ∈ R
d and R ∈ (0,∞), we denote

BR(x) = {y ∈ R
d : |x − y| < R}, BR = BR(0),

where d is a positive integer. As usual, S(Rd) is the Schwartz function space in R
d and

C∞
0 (Rd) is the set of all infinitely differentiable functions with compact support in R

d . By
(−�)α/2 we mean the fractional Laplacian of order α. That is,

−(−�)α/2u(x) = c P.V.

∫
Rd

(u(x + y) − u(x))
dy

|y|d+α

= c

2

∫
Rd

(u(x + y) + u(x − y) − 2u(x))
dy

|y|d+α

for sufficiently regular u defined on Rd , where

c = c(d, α) = α(2 − α)�
( d+α

2

)
πd/222−α�

(
2 − α

2

) .

For 1 < p < ∞, we set Ap(R
k) to be the set of all nonnegative functions w on R

k such
that

[w]Ap(Rk )

:= sup
x0∈Rk ,R>0

(
1

|BR |
∫
BR(x0)

w dx

) (
1

|BR |
∫
BR(x0)

w−1/(p−1) dx

)p−1

< ∞,

where k is either 1 or d in this paper. For w ∈ Ap(R
d), by L p,w(Rd) we mean the space of

all measurable functions in Rd with the norm

‖ f ‖L p,w(Rd ) =
(∫

Rd
| f |p w dx

) 1
p

.

For p ∈ (1,∞), w ∈ Ap(R
d), and α ∈ R, recall the definition of the weighted Bessel

potential space

Hα
p,w(Rd) = {u ∈ L p,w(Rd) : (1 − �)α/2u ∈ L p,w(Rd)}

with

‖u‖Hα
p,w(Rd ) = ‖(1 − �)α/2u‖L p,w(Rd ).

As one may expect, we have

‖u‖Hα
p,w(Rd ) ≈ ‖u‖L p,w(Rd ) + ‖(−�)α/2u‖L p,w(Rd ). (2.1)

In Lemma 3.4 we show the equivalence of the two norms with constants independent of
α ∈ (0, 2). As usual, when w = 1, in the above notation we simply remove w so that, for
instance, L p = L p,w and Hα

p = Hα
p,w .

Throughout the paper, we denote

∇α
y u(x) = u(x + y) − u(x) − (∇u(x), y

)
(1B1(y)1α=1 + 1α>1)

for x, y ∈ R
d .

We now state our assumption on the coefficient a(x, y) in (1.1).
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Assumption 2.1 (i) There is a positive constant K such that for all x, y ∈ R
d ,

|a(x, y)| ≤ (2 − α)K .

(ii) There exist β ∈ (0, 1) and a increasing function ω(τ), τ > 0, such that

|a(x1, y) − a(x2, y)| ≤ (2 − α)ω(|x1 − x2|)
for x1, x2, y ∈ R

d and ∫
|y|≤1

ω(|y|) dy

|y|d+β
< ∞. (2.2)

(iii) If α = 1, then for any x ∈ R
d and 0 < r < R,∫
r≤|y|≤R

ya(x, y)
dy

|y|d+α
= 0.

Remark 2.2 One noticeable difference between the assumptions on a in [17] and Assump-
tion 2.1 is the term (2 − α). We add (2 − α) to guarantee that the estimates do not blow up
when α goes to 2.

Remark 2.3 The condition (iii) in Assumption 2.1 is satisfied, for instance, if a(x, y) is
symmetric in y, i.e., a(x, y) = a(x,−y).

Remark 2.4 The condition (ii) in Assumption 2.1 is equivalent to a Hölder continuity condi-
tion on a(x, y) as a function of x . Since ω(τ) is increasing, we see that∫

r≤|y|≤2r
ω(|y|) dy

|y|d+β
≥ ω(r)

∫
r≤|y|≤2r

dy

|y|d+β
≥ Nr−βω(r),

which together with (2.2) indicates that a(x, y) is Hölder continuous in x .

Our main result is about the boundedness of non-local operators. Let us consider the
non-local operator La in (1.1).

Theorem 2.5 Let β ∈ (0, 1), α ∈ (0, 2), 1 < p < ∞, and w ∈ Ap(R
d). Sup-

pose that the coefficient a = a(x, y) satisfies Assumption 2.1. Then La is a bounded
operator from Hα

p,w(Rd) to L p,w(Rd). More precisely, there exists a constant N =
N (d, p, α, β, K , ω, [w]Ap ) such that, for any u ∈ Hα

p,w(Rd),

‖Lau‖L p,w(Rd ) ≤ N‖u‖Hα
p,w(Rd ).

Moreover, the constant N can be chosen so that N = N (d, p, α0, α1, β, K , ω, [w]Ap ) if
0 < α0 ≤ α ≤ α1 < 1 and N = N (d, p, α0, β, K , ω, [w]Ap ) if 1 < α0 ≤ α < 2,
respectively.

Remark 2.6 In particular, if 1 < α0 ≤ α < 2, the constant N is independent of α so that the
constant N does not blow up as α ↗ 2. Regarding this observation, see also, for instance,
[2, 7].

Throughout the paper, we may omit Rd in C∞
0

(
R
d
)
, S (

R
d
)
, or L p

(
R
d
)
whenever the

omission is clear from the context. Sometimes we use ‘sup’ to represent the essential supre-
mum. We write N (d, δ, . . .) in the estimates to express that the constant N is determined
only by the parameters d, δ, . . .. The constant N can differ from line to line.
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3 Auxiliary results

In this section, we present some auxiliary results.

Lemma 3.1 For any α ∈ (0, 1) and f ∈ S(Rd),

f (x) = N0

∫
Rd

|z|−d+α(−�)α/2 f (x − z) dz

and

f (x + y) − f (x) = N0

∫
Rd

kα(z, y)(−�)α/2 f (x − z) dz,

where

kα(z, y) = |z + y|−d+α − |z|−d+α

is an integrable function of z and

N0 = N0(α, d) = �((d − α)/2)

2απd/2�(α/2)
.

Proof The first assertion follows from

F−1[|ξ |−α](x) = N0|x |−d+α, (3.1)

where F−1 is the inverse Fourier transform. See Lemma 2.1 in [11] for the constant N0 and
the integrability of kα . 
�
Lemma 3.2 Let γ ∈ (0, 2), R ∈ (0,∞), and u ∈ L1,loc(R

d). Then∫
Bc
R

|u(x + y)| dy

|y|d+γ
≤ N R−γ γ −1Mu(x) (3.2)

and ∫
BR

|u(x + y)| dy

|y|d−γ
≤ N Rγ γ −1Mu(x),

where N depends only on d.

Proof Denote Bj = B2 j R for j = 0, 1, . . . , and observe that

∫
Bc
R

|u(x + y)| dy

|y|d+γ
=

∞∑
j=0

∫
Bj+1\Bj

|u(x + y)| dy

|y|d+γ

≤
∞∑
j=0

R−(d+γ )2− j(d+γ )

∫
Bj+1\Bj

|u(x + y)| dy

≤ N R−γ
∞∑
j=0

2−γ j−
∫
Bj+1

|u(x + y)| dy

≤ N R−γ (1 − 2−γ )−1Mu(x) ≤ N R−γ γ −1Mu(x),

which shows the first inequality (3.2). For the second inequality, we set Bj = B2− j R for
j = 0, 1, . . . , and proceed similarly as above with Bj \ Bj+1 in place of Bj+1 \ Bj . 
�
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The following lemma is a weighted-L p norm inequality for multiplier operators in [13].
From the proofs there, one can see that the constant N depends only on the parameters
described below. As usual, we denote a multi-index by γ = (γ1, . . . , γd) with |γ | = γ1 +
· · · + γd , where γi is a nonnegative integer.

Lemma 3.3 Let m be a bounded multiplier of an operator T defined on S(Rd). If there is a
constant C such that for any |γ | ≤ d,

sup
R>0

(
R2|γ |−d

∫
R<|ξ |<2R

|Dγm(ξ)|2 dξ

)1/2

≤ C, (3.3)

then for any p ∈ (1,∞) and w ∈ Ap(R
d), there exists a constant N = N (d, p,C, [w]Ap )

such that

‖T f ‖L p,w ≤ N‖ f ‖L p,w

for any f ∈ S(Rd).

The next lemma is about the equivalence of the Hα
p,w norms stated in (2.1).

Lemma 3.4 Let α ∈ [0, α0] and 1 < p < ∞. Then for any w ∈ Ap(R
d), there exists a

constant N = N (d, p, α0, [w]Ap ) such that

N−1(‖u‖L p,w + ‖(−�)α/2u‖L p,w ) ≤ ‖u‖Hα
p,w

≤ N (‖u‖L p,w + ‖(−�)α/2u‖L p,w ) (3.4)

for any u ∈ Hα
p,w(Rd).

Proof To prove (3.4), it suffices to show that, for u ∈ S(Rd),

‖(1 − �)−α/2u‖L p,w ≤ N‖u‖L p,w , ‖(−�)α/2(1 − �)−α/2u‖L p,w ≤ N‖u‖L p,w (3.5)

for the first inequality, and

‖(1 − �)α/2(1 + (−�)α/2)−1u‖L p,w ≤ N‖u‖L p,w

for the second inequality. We set

m1(ξ) = (1 + |ξ |2)α/2, m2(ξ) = 1 + |ξ |α.

Then, by differentiating, one can check that the following multipliers

1

m1(ξ)
,

|ξ |α
m1(ξ)

,
m1(ξ)

m2(ξ)

satisfy the assumptions of Lemma 3.3, especially, the inequality (3.3). For instance, we use

|Dγm1| ≤ N (1 + |ξ |2)(α−|γ |)/2, |Dγm2| ≤ N |ξ |α−|γ | + 1|γ |=0,∣∣∣∣Dγ

(
1

m2(ξ)

)∣∣∣∣ ≤ N |ξ |−|γ |1|ξ |≤2 + N |ξ |−α−|γ |1|ξ |≥1

to obtain that ∣∣∣∣Dγ

(
m1(ξ)

m2(ξ)

)∣∣∣∣ ≤ N |ξ |−|γ |,

where N = N (d, α0, γ ). In particular, N can be chosen depending on α0 instead of α. The
lemma is proved. 
�
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The following lemma is a classical result for theRiesz transforms and theHilbert transform
(see, for instance, [19]).

Lemma 3.5 Let p ∈ (1,∞) and w ∈ Ap(R
d). There exists N = N (d, p, [w]Ap ) such that,

for any u ∈ L p,w(Rd),

‖(−�)−1/2∇u‖L p,w ≤ N‖u‖L p,w .

Lemma 3.6 Let α ∈ (0, 2), p ∈ (1,∞), and w ∈ Ap(R
d). There exists a constant N =

N (d, p, α, [w]Ap ) such that, for any u ∈ Hα
p,w(Rd), ϕ ∈ C∞

0 (Rd), we have
∫
Rd

∫
Rd

(∫
Rd

|u(x + y) − u(x)||ϕ(x + y − z) − ϕ(x − z)| 2 − α

|y|d+α
dy

)p

w(x) dx dz

≤ N‖u‖p
Hα

p,w
‖ϕ‖p

H1
p
. (3.6)

Moreover, the constant N can be chosen so that N = N (d, p, α0, α1, [w]Ap ) if 0 < α0 ≤
α ≤ α1 < 1 and N = N (d, p, [w]Ap ) if 1 ≤ α < 2, respectively.

Proof We write ∫
Rd

|u(x + y) − u(x)||ϕ(x + y − z) − ϕ(x − z)| dy

|y|d+α

=
(∫

B1
+

∫
Bc
1

) (
· · · dy

|y|d+α

)
.

By Lemma 3.2, we have∫
Bc
1

|u(x + y) − u(x)||y|−(d+α) dy

≤
∫
Bc
1

|u(x + y)||y|−(d+α) dy + Nα−1|u(x)| ≤ Nα−1Mu(x). (3.7)

Using the Minkowski inequality in z, (3.7), and the weighted Hardy-Littlewood maximal
function theorem, we have

∫
Rd

∫
Rd

(∫
Bc
1

|u(x + y) − u(x)||ϕ(x + y − z) − ϕ(x − z)| dy

|y|d+α

)p

dz w(x) dx

≤ N‖ϕ‖p
L p

∫
Rd

(∫
Bc
1

|u(x + y) − u(x)| dy

|y|d+α

)p

w(x) dx

≤ Nα−p‖ϕ‖p
L p

∫
Rd

(Mu(x))pw(x) dx ≤ Nα−p‖ϕ‖p
L p

‖u‖p
L p,w

, (3.8)

where N = N (d, p, [w]Ap ).
Note that for α < 1, by Lemma 3.2,∫

B1
|u(x + y) − u(x)||y|−(d+α−1) dy

≤
∫
B1

|u(x + y)||y|−(d+α−1) dy + N (1 − α)−1|u(x)|

≤ N (1 − α)−1Mu(x), (3.9)
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where N = N (d). By using (3.9) and the Minkowski inequality, for α < 1, we have
∫
Rd

∫
Rd

(∫
B1

|u(x + y) − u(x)||ϕ(x + y − z) − ϕ(x − z)| dy

|y|d+α

)p

dz w(x) dx

≤ ‖Dϕ‖p
L p

∫
Rd

(∫
B1

|u(x + y) − u(x)| dy

|y|d+α−1

)p

w(x) dx

≤ N (1 − α)−p‖Dϕ‖p
L p

∫
Rd

(Mu(x))pw(x) dx

≤ N (1 − α)−p‖Dϕ‖p
L p

‖u‖p
L p,w

, (3.10)

where N = N (d, p, [w]Ap ).
For 1 ≤ α < 2, we observe that by Lemma 3.2 with R = s,

∫
B1

|u(x + y) − u(x)| dy

|y|d+α−1 ≤
∫ 1

0

∫
B1

|Du(x + sy)| dy

|y|d+α−2 ds

≤
∫ 1

0
sα−2

∫
Bs

|Du(x + y)| dy

|y|d+α−2 ds ≤ N (2 − α)−1M(Du)(x), (3.11)

where the constant N depends only on d . By utilizing (3.11) and the Minkowski inequality,
we see that∫

Rd

∫
Rd

(∫
B1

|u(x + y) − u(x)||ϕ(x + y − z) − ϕ(x − z)| dy

|y|d+α

)p

dz w(x) dx

≤ ‖Dϕ‖p
L p

∫
Rd

(∫
B1

|u(x + y) − u(x)| dy

|y|d+α−1

)p

w(x) dx

≤ N (2 − α)−p‖Dϕ‖p
L p

∫
Rd

(MDu(x))p w(x) dx

≤ N (2 − α)−p‖Dϕ‖p
L p

‖Du‖p
L p,w

, (3.12)

where N = N (d, p, [w]Ap ). Combining (3.8), (3.10), (3.12), and Lemmas 3.4 and 3.5 , we
obtain (3.6). In particular, when α ∈ [1, 2), by Lemma 3.4 and the first inequality in (3.5),

‖Du‖L p,w ≤ N‖u‖H1
p,w

≤ N‖u‖Hα
p,w

. (3.13)

Finally, due to the presence of the term 2 − α in (3.6), from the above proof we see that
N can be chosen as described in the lemma if 0 < α0 ≤ α ≤ α1 < 1 or 1 ≤ α < 2. 
�
Lemma 3.7 Let α ∈ (0, 2), p ∈ (1,∞), and w ∈ Ap(R

d). There exists a constant N =
N (d, p, α, [w]Ap ) such that for any u ∈ Hα

p,w(Rd),
∫
Rd

(∫
|y|≥1

∣∣∣∇α
y u(x)

∣∣∣ dy

|y|d+α

)p

w(x) dx ≤ N
(
‖u‖p

L p,w
1α≤1 + ‖Du‖p

L p,w
1α>1

)
.

Moreover, the constant N can be chosen so that N = N (d, p, α0, [w]Ap ) if 0 < α0 ≤ α ≤ 1
or 1 < α0 ≤ α < 2. (An upper bound α1 for α ∈ (0, 1) does not appear in this case.)

Proof Observe that for |y| ≥ 1,

|∇α
y u(x)| ≤

(∫ 1

0
|∇u(x + sy)| ds + |∇u(x)|

)
|y|1α>1

+ (|u(x + y)| + |u(x)|) 1α≤1,
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which implies that
∫

|y|≥1

∣∣∣∇α
y u(x)

∣∣∣ dy

|y|d+α
≤ Nα−1Mu(x)1α≤1 + N (α − 1)−1MDu(x)1α>1

by Lemma 3.2. Then our assertion follows directly from the weighted Hardy-Littlewood
maximal function theorem. 
�
Lemma 3.8 Let 0 < α < 2, p ∈ (1,∞), and w ∈ Ap(R

d). Then, there is a constant
N = N (d, p, α, [w]Ap ) such that for any u ∈ H2

p,w(Rd),

∫
Rd

(∫
Rd

∣∣∣∇α
y u(x)

∣∣∣ (2 − α)
dy

|y|d+α

)p

w(x) dx ≤ N‖u‖p
H2

p,w
.

Moreover, the constant N can be chosen so that N = N (d, p, α0, α1, [w]Ap ) if 0 < α0 ≤
α ≤ α1 < 1 and N = N (d, p, α0, [w]Ap ) if 1 < α0 ≤ α < 2, respectively.

Proof For α ≥ 1, by using a similar argument as in (3.11) and Lemma 3.2, we see that there
is a constant N = N (d) such that∫

B1
|u(x + y) − u(x) − (∇u(x), y)| dy

|y|d+α

≤
∫ 1

0

∫ 1

0

∫
B1

s
∣∣D2u(x + sty)

∣∣ dy

|y|d−(2−α)
dt ds

≤ N (2 − α)−1M(D2u)(x). (3.14)

By Lemma 3.7, (3.14), and the weighted Hardy-Littlewood maximal function theorem, we
reach our assertion. For α < 1, we proceed similarly upon obtaining

∫
B1

|u(x + y) − u(x)| dy

|y|d+α
≤ N (1 − α)−1M(Du)(x).


�

4 Boundedness of non-local operator with a = a(y) in Ap weighted
spaces

If the coefficient a of the non-local operator La in (1.1) is a function of y only, La is a
bounded operator from Hα

p to L p . See [7, 17]. We extend this result in the setting of Ap

weighted spaces, which is an essential ingredient to the proof of the main theorem.

Proposition 4.1 Let p ∈ (1,∞) and α ∈ (0, 2). Suppose that the x-independent coefficient
a = a(y) of a non-local operator La satisfies Assumption 2.1. Then, for each w ∈ Ap(R

d),
there is a constant N = N (d, p, α, [w]Ap ) such that for any u ∈ S(Rd),

‖Lau‖L p,w ≤ NK‖(−�)α/2u‖L p,w , (4.1)

where K is the constant in Assumption 2.1. Moreover, the constant N can be chosen so
that N = N (d, p, α0, α1, [w]Ap ) if 0 < α0 ≤ α ≤ α1 < 1 and N = N (d, p, α0, [w]Ap ) if
1 < α0 ≤ α < 2, respectively. Furthermore, if the condition (iii) in Assumption 2.1 is satisfied
for α ∈ (0, 2), the constant N depends only on d, p, [w]Ap , and α0, where 0 < α0 ≤ α < 2.
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Before proving Proposition 4.1, we introduce a well known result from harmonic analysis.
We refer the reader to [4, 5, 14].

Lemma 4.2 Let T be a singular integral operator of the type

T f (x) =
∫
Rd

K (x − z) f (z) dz.

Assume that there are positive constants γ and C1 such that

|K (x + z) − K (x)| ≤ C1
|z|γ

|x |d+γ
, |x | ≥ 4|z|.

Also assume that there is a constant C2 such that

‖T f ‖L2 ≤ C2‖ f ‖L2

for any f ∈ L2(R
d). Then, for any p ∈ (1,∞), w ∈ Ap(R

d), and f ∈ L p,w(Rd), there is
a constant N = N (d, p, γ,C1,C2, [w]Ap ) such that

‖T f ‖L p,w ≤ N‖ f ‖L p,w .

Now, we prove Proposition 4.1.

Proof of proposition 4.1

To showProposition 4.1,we exploit an idea in [17].Wefirst consider the casewhenα ∈ (0, 1).
For ε ∈ (0, 1), set aε(y) = a(y)1ε≤|y|≤ε−1 . Using Fubini’s Theorem and Lemma 3.1,

Lau(x) =
∫
Rd

(
u(x + y) − u(x)

)
a(y)

dy

|y|d+α

= lim
ε→0

N0

∫
Rd

(∫
Rd

kα(z, y)(−�)α/2u(x − z) dz

)
aε(y)

dy

|y|d+α

= lim
ε→0

N0

∫
Rd

(∫
Rd

kα(z, y)aε(y)
dy

|y|d+α

)
(−�)α/2u(x − z) dz.

For ε ∈ (0, 1), set

T ε f (x) =
∫
Rd

kε(x − z) f (z) dz,

where

kε(x) =
∫
Rd

kα(x, y)aε(y)
dy

|y|d+α
,

so that in the pointwise sense,

Lau(x) = N0 lim
ε→0

T ε(−�)α/2u(x).

From now on, we check that T ε satisfies the conditions in Lemma 4.2.

Lemma 4.3 Let 0 < α0 ≤ α ≤ α1 < 1. Assume that |a(y)| ≤ 1 for all y ∈ R
d . Then, there

is a constant N = N (d, α0, α1) such that for any f ∈ L2(R
d),

‖T ε f ‖L2 ≤ N‖ f ‖L2 .
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Proof Since

F[T ε f ] = F[kε]F[ f ],
we only show that F[kε] is bounded. Bearing (3.1) in mind, we see that, by denoting ξ̂ =
ξ/|ξ |,

|F[kε](ξ)| =
∣∣∣∣
∫
Rd

F[kα(·, y)](ξ)aε(y)
dy

|y|d+α

∣∣∣∣
≤ N |ξ |−α

∫
Rd

|ei(ξ,y) − 1| dy

|y|d+α
= N

∫
Rd

|ei(ξ̂ ,y) − 1| dy

|y|d+α

≤ N
∫
B1

dy

|y|d+α−1 + N
∫
Bc
1

dy

|y|d+α
≤ N (d, α0, α1).

The lemma is proved. 
�
Lemma 4.4 Let 0 < α0 ≤ α ≤ α1 < 1. Suppose that for all y ∈ R

d , |a(y)| ≤ 1. Then, for
all |x | > 4|z|,

|kε(x + z) − kε(x)| ≤ N
|z|γ

|x |d+γ
, (4.2)

where N = N (d, α0, α1) and γ = γ (α0, α1).

Proof In fact, the lemma follows from the proof of [17, Lemma 14], where the authors prove,
instead of (4.1), the boundedness of La in L p spaces without weights by obtaining∫

|x |>4|z|
|kε(x + z) − kε(x)| dx ≤ C, z ∈ R

d

instead of (4.2). However, the proof there also shows the inequality (4.2). For the reader’s
convenience, here we present a slightly simplified version of the proof of [17, Lemma 14]
dedicated to verify the inequality (4.2).

Fix ε ∈ (0, 1). For notational simplicity, we replace aε , kε with a, k, respectively. For any
r > 0,

k(r x) =
∫
Rd

kα(r x, y)a(y)
dy

|y|d+α

=
∫
Rd

(
|r x + y|−d+α − |r x |−d+α

)
a(y)

dy

|y|d+α

= r−d+α

∫
Rd

(
|x + y

r
|−d+α − |x |−d+α

)
a(y)

dy

|y|d+α

= r−d
∫
Rd

(
|x + y|−d+α − |x |−d+α

)
a(ry)

dy

|y|d+α

=: r−dk(x, r).

Hence, for |x | > 4|z|, by writing

k(x + z) − k(x) = k

(
|x | x + z

|x |
)

− k

(
|x | x

|x |
)

and using the above k(·, ·), we have

|k(x + z) − k(x)| = |x |−d
(
k

(
x + z

|x | , |x |
)

− k

(
x

|x | , |x |
))
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≤ |x |−d
∫ ∣∣∣∣∣

∣∣∣∣x̂ + ẑ

r
+ y

∣∣∣∣
−d+α

−
∣∣∣∣x̂ + ẑ

r

∣∣∣∣
−d+α

− |x̂ + y|−d+α + |x̂ |−d+α

∣∣∣∣∣
dy

|y|d+α
,

where r = |x |/|z|(> 4), x̂ = x/|x | and ẑ = z/|z|. By using an orthogonal transformation,
we may assume that x̂ = e = (1, 0, . . . , 0) ∈ R

d . We split

I =
∫ ∣∣∣∣∣

∣∣∣∣e + ẑ

r
+ y

∣∣∣∣
−d+α

−
∣∣∣∣e + ẑ

r

∣∣∣∣
−d+α

− |e + y|−d+α + |e|−d+α

∣∣∣∣∣
dy

|y|d+α

=
∫

|y|≤ 1
r

· · · +
∫

1
r ≤|y|, 12≤|y+e|

· · · +
∫

|y+e|≤ 2
r

· · · +
∫

2
r ≤|y+e|≤ 1

2

· · ·

=: I1 + I2 + I3 + I4.

For any a, b ∈ R
d satisfying |a + tb| > 0 for any t ∈ [0, 1], it follows that
∣∣∣|a + b|−d+α − |a|−d+α

∣∣∣ ≤ N |b|
∫ 1

0
|a + tb|−d+α−1 dt

≤ N |b|( inf
0≤t≤1

|a + tb|)−d+α−1.

(4.3)

Estimate of I1. For any 0 ≤ t ≤ 1 and |y| ≤ 1/r ,

|e + t y|, |e + ẑ

r
+ t y| ≥ 1

2
.

Thus, bearing (4.3) in mind,

I1 ≤
∫

|y|≤ 1
r

∣∣∣∣|e + ẑ

r
+ y|−d+α − |e + ẑ

r
|−d+α

∣∣∣∣ +
∣∣∣|e + y|−d+α − |e|−d+α

∣∣∣ dy

|y|d+α

≤ N
∫

|y|≤ 1
r

dy

|y|d+α−1 ≤ Nrα−1.

Estimate of I2. For any 0 ≤ t ≤ 1 and |y + e| ≥ 1
2 ,

|e + t
ẑ

r
+ y|, |e + t

ẑ

r
| ≥ 1

4
.

By (4.3), I2 is bounded by∫
1
r ≤|y|, 12≤|e+y|

∣∣∣∣|e + ẑ

r
+ y|−d+α − |e + y|−d+α

∣∣∣∣ +
∣∣∣∣|e + ẑ

r
|−d+α − |e|−d+α

∣∣∣∣ dy

|y|d+α

≤ N

r

∫
1
r ≤|y|

dy

|y|d+α
≤ Nrα−1.

Estimate of I3. For |y + e| ≤ 2
r , we see that

|y| ≥ 1

2
, |e + ẑ

r
+ y| ≤ 3

r
.

Therefore, using |e + ẑ/r | ≥ 1/2,

I3 ≤ N
∫

|e+ ẑ
r +y|≤ 3

r

(
|e + ẑ

r
+ y|−d+α + 1

)
dy + N

∫
|e+y|≤ 2

r

(
|e + y|−d+α + 1

)
dy
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≤ N
∫

|y|≤ 3
r

|y|−d+α dy ≤ Nr−α.

Estimate of I4. For 2
r ≤ |y + e| ≤ 1

2 , t ∈ [0, 1], we have
1

r
≤ |e + t

ẑ

r
+ y| ≤ 1,

1

2
≤ |y|, |e + t

ẑ

r
| ≥ 1

2
.

By (4.3), we arrive at

I4 ≤
∫

2
r ≤|e+y|≤ 1

2

∣∣∣∣|e + ẑ

r
+ y|−d+α − |e + y|−d+α

∣∣∣∣ +
∣∣∣∣|e + ẑ

r
|−d+α − |e|−d+α

∣∣∣∣ dy

|y|d+α

≤ Nr−1
∫ 1

0

∫
1
r ≤|e+t ẑr +y|≤1

|e + t
ẑ

r
+ y|−d+α−1 dy dt

+ Nr−1
∫ 1

0

∫
2
r ≤|e+y|≤1/2

|e + t
ẑ

r
|−d+α−1 dy dt

≤ Nr−1
∫

1
r ≤|y|≤1

|y|−d+α−1 dy + Nr−1 ≤ Nr−α.

Finally, by taking γ = min{1 − α1, α0}, we have
I ≤ Nr−γ .

The lemma is proved. 
�
Let us continue the proof of Proposition 4.1 Clearly, we can assume that K = 1. By

combining Lemmas 4.2, 4.3 and 4.4, we see that the assertion in Proposition 4.1 holds when
α ∈ (0, 1). Note that the constant N in (4.1) can be chosen depending only on α0 and α1, but
independent of α, provided that 0 < α0 ≤ α ≤ α1 < 1.

To complete the proof of Proposition 4.1, we proceed as follows. First, we prove again
the inequality (4.1) for α ∈ [3/4, 1) to present the exact dependency of the constant N on α

as α ↗ 1. Then, using this result, we prove the inequality (4.1) for α ∈ (1, 2). In particular,
we show that the constant N can be chosen independent of α if 1 < α0 ≤ α < 2. Finally, we
prove the case α = 1. In the steps below, we use the idea in the proof of [17, Lemma 15].

As above, we set aε(y) = a(y)Iε<|y|<ε−1 and denote

La
εu(x) =

∫
Rd

∇α
y u(x)aε(y)

dy

|y|d+α
.

Then we have

Lau(x) = lim
ε→0

La
εu(x).

Thus, to prove (4.1) it suffices to show that

‖La
εu‖L p,w ≤ N‖(−�)α/2u‖L p,w , (4.4)

where N = N (d, p, α, [w]Ap ), but independent of ε. Let α ∈ [3/4, 1). By Lemma 3.1, we
see that

La
εu(x) = N0

∫
Rd

∫
Rd

k1/2(z, y)(−�)1/4u(x − z) dz aε(y)
dy

|y|d+α

= N0

∫
Rd

∫
Rd

k1/2(z, y)((−�)1/4u(x − z) − (−�)1/4u(x)) dz aε(y)
dy

|y|d+α
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= N0

∫
Rd

(∫
Rd

k1/2(z, y)aε(y)
dy

|y|d+α

)
((−�)1/4u(x − z) − (−�)1/4u(x)) dz, (4.5)

where N0 = N0(d) and the second equality is due to∫
Rd

k1/2(z, y) dz = 0.

Note that, if we set

mε(z) :=
∫
Rd

(∣∣∣∣ z

|z| + y

∣∣∣∣
−d+1/2

− 1

)
aε(|z|y) dy

|y|d+α
,

then, for z 
= 0, ∫
Rd

k1/2(z, y)aε(y)
dy

|y|d+α
= 1

|z|d−1/2+α
mε(z).

From (4.5), we get that

La
εu(x) = N0

∫
Rd

((−�)1/4u(x − z) − (−�)1/4u(x))mε(z)
dz

|z|d−1/2+α
. (4.6)

If we have

|mε(z)| ≤ (1 − α)−1N (4.7)

for any z 
= 0, where N depends only on d , but independent of ε, then the representation
(4.6) along with Proposition 4.1 for order α − 1/2 proves (4.4). Thus, it remains to show
(4.7). Upon denoting ẑ = z/|z|, we write

mε(z) =
∫

|y|≤1/2

(
1

|ẑ + y|d−1/2 − 1

)
aε(|z|y) dy

|y|d+α

+
∫

|y|>1/2

(
1

|ẑ + y|d−1/2 − 1

)
aε(|z|y) dy

|y|d+α
=: Iε + Jε.

Set

f (t) = 1

|ẑ + t y|d−1/2 , t ∈ [0, 1].

Then, since |ẑ + t y| ≥ 1/2 for |y| ≤ 1/2,∣∣∣∣ 1

|ẑ + y|d−1/2 − 1

∣∣∣∣ = | f (1) − f (0)| ≤ sup
t∈[0,1]

| f ′(t)| ≤ N |y|.

Therefore,

|Iε| ≤ N
∫

|y|≤1/2
|aε(|z|y)| dy

|y|d+α−1 ≤ (1 − α)−1N ,

where N = N (d). To estimate Jε , we split

Jε =
∫

|y|>1/2,|ẑ+y|≥1/4

(
1

|ẑ + y|d−1/2 − 1

)
aε(|z|y) dy

|y|d+α

+
∫

|ẑ+y|≤1/4

(
1

|ẑ + y|d−1/2 − 1

)
aε(|z|y) dy

|y|d+α
,
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where both integrals are bounded by a constant depending only on d because α ≥ 3/4,
∣∣∣(|ẑ + y|−d+1/2 − 1)aε(|z|y)

∣∣∣ ≤ N

in the first integral, and |y| ≥ 1/2 in the second integral. Hence, we have obtained (4.7).
Since 1/4 ≤ α − 1/2 < 1/2, it follows that (4.4) holds with

N = (1 − α)−1N (d, p, α − 1/2, [w]Ap ) = (1 − α)−1N (d, p, [w]Ap ). (4.8)

For α ∈ (1, 2), Lau can be written in the form

d∑
i=1

∫
Rd

(Diu(x + y) − Diu(x)) ai (y)
dy

|y|d+α−1 =
d∑

i=1

Lai (Diu)(x),

where

ai (y) = yi

|y|
∫ 1

0
a(y/s)s−1+α ds.

Note that the order of Lai is α − 1. By Proposition 4.1 for α ∈ (0, 1) just proved above and
Lemma 3.5,

‖Lau‖L p,w ≤
d∑

i=1

‖Lai Diu‖L p,w ≤ N‖(−�)(α−1)/2∇u‖L p,w ≤ N‖(−�)α/2u‖L p,w .

From |a| ≤ (2− α) and (4.8), we see that N = N (d, p, α0, [w]Ap ) if 1 < α0 ≤ α < 2 with
no blow-up as α ↗ 2.

Finally, we prove (4.4) for α ∈ (3/4, 5/4) with N = N (d, p, [w]Ap ) under the additional
assumption that a(y) satisfies the condition (iii) in Assumption 2.1.

Using the condition (iii) in Assumption 2.1, we have

La
εu(x) = N0

∫
Rd

((−�)1/4u(x − z) − (−�)1/4u(x))mε(z)
dz

|z|d+α−1/2 ,

where

mε(z) =
∫

|y|≤1/2

(
1

|ẑ + y|d−1/2 − 1 − (−d + 1/2)(ẑ, y)

)
aε(|z|y) dy

|y|d+α

+
∫

|y|>1/2

(
1

|ẑ + y|d−1/2 − 1

)
aε(|z|y) dy

|y|d+α
=: Iε + Jε.

Then, since |ẑ + t y| ≥ 1/2 for |y| ≤ 1/2 (recall f (t) = |ẑ + t y|−d+1/2),
∣∣∣∣ 1

|ẑ + y|d−1/2 − 1 − (−d + 1/2)(ẑ, y)

∣∣∣∣ = | f (1) − f (0) − f ′(0)|

≤ 1

2
sup

t∈[0,1]
| f ′′(t)| ≤ N |y|2,

we have

|Iε| ≤ N
∫

|y|≤1/2
|aε(|z|y)| dy

|y|d+α−2 ≤ N ,
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where N = N (d). Note that the estimate of Jε still depends only on d . By using the propo-
sition for 1/4 < α − 1/2 < 3/4 proved above, we have (4.4) with

N = N (d, p, α − 1/2, [w]Ap ) = N (d, p, [w]Ap ).

Note that the constant N in (4.4) for the above three cases (α ∈ (0, 1), α ∈ (3/4, 5/4), α ∈
(1, 2)) can be chosen depending only on a0 if 0 < a0 ≤ α < 2, which is the last assertion
of the proposition. In particular, the constant N does not blow up as α → 1 if the condition
(iii) in Assumption 2.1 is satisfied. This finishes the proof of Proposition 4.1.

5 Proof of theorem 2.5

We start with a key lemma.

Lemma 5.1 Let β ∈ (0, 1), α ∈ (0, 2), p ∈ (1,∞), w ∈ Ap(R
d), ε ∈ (0, 1), and ϕ ∈

C∞
0 (Bε). Also let a(x, y) be the coefficient of a non-local operator La satisfying conditions

(ii) and (iii) of Assumption 2.1. Set

γ (r) =
∫

|y|≤r
ω(|y|) dy

|y|d+β
, 0 < r < ∞.

Suppose that there is a positive constant K such that

sup
x∈B2ε,y∈Rd

|a(x, y)| ≤ (2 − α)K .

Then there is a constant N = N (d, p, α, β, [w]Ap ) such that for u ∈ S(Rd),

‖ϕLau‖p
L p,w

≤ NC(ε, ϕ, p, β, γ, K )‖(−�)α/2u‖p
L p,w

, (5.1)

where C is a constant determined as follows.

C(ε, ϕ, p, β, γ, K ) = K p‖ϕ‖p
L∞ + ε pK p‖Dϕ‖p

L∞ + εβ p‖ϕ‖p
L∞γ p(ε).

The constant N can be chosen so that N = N (d, p, α0, α1, β, [w]Ap ) if 0 < α0 ≤ α ≤
α1 < 1 and N = N (d, p, α0, β, [w]Ap ) if 1 < α0 ≤ α < 2, respectively.

Proof We first consider the case when p ∈ (d/β,∞). To clarify the dependency of N with
respect to α, we use N1 when the constants in the inequalities below do not depend on α. For
a measurable function f on R

d × R
d and r > 0, denote

K(r , f ) = (2 − α)−1 sup
z∈Br ,y∈Rd

| f (z, y)|.

Assume that a(x, y) are infinitely differentiable in x . By Lemma 3.1, we see that, for any
x ∈ R

d ,

ϕ(x)a(x, y) = N1

∫
Rd

|x − z|−d+β(−�)β/2(ϕ(·)a(·, y))(z) dz.

Using this, we observe that for any x ∈ R
d ,
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ϕ(x)Lau(x) =
∫
Rd

∇α
y u(x)ϕ(x)a(x, y)

dy

|y|d+α

= N1

∫
Rd

∇α
y u(x)

(∫
Rd

|x − z|−d+β(−�)β/2(ϕ(·)a(·, y))(z) dz
)

dy

|y|d+α

= N1

∫
Rd

|x − z|−d+β

(∫
Rd

∇α
y u(x)(−�)β/2(ϕ(·)a(·, y))(z) dy

|y|d+α

)
dz

=: N1

∫
Rd

|x − z|−d+βL(−�)β/2(ϕ(·)a(·,y))(z)u(x) dz. (5.2)

For |x | ≤ ε,

|x − z|−d+β ≤ N1|z|−d+β, |z| ≥ 2ε. (5.3)

Hence, from (5.2) and (5.3), we have
∫
Rd

|ϕ(x)Lau(x)|pw(x) dx =
∫
Bε

|ϕ(x)Lau(x)|pw(x) dx

≤ N1

∫
Bε

(∫
Rd

|x − z|−d+β
∣∣∣L(−�)β/2(ϕ(·)a(·,y))(z)u(x)

∣∣∣ dz
)p

w(x) dx

≤ N1

∫
Bε

(∫
B2ε

|x − z|−d+β
∣∣∣L(−�)β/2(ϕ(·)a(·,y))(z)u(x)

∣∣∣ dz
)p

w(x) dx

+ N1

∫
Bε

(∫
Bc
2ε

|z|−d+β
∣∣∣L(−�)β/2(ϕ(·)a(·,y))(z)u(x)

∣∣∣ dz
)p

w(x) dx

=: J1 + J2.

Estimate of J1. Using Hölder’s inequality, we have

J1 ≤ N1

∫
Bε

(∫
B2ε

|x − z|(−d+β)
p

p−1 dz

)p−1 (∫
B2ε

∣∣∣L(−�)β/2(ϕ(·)a(·,y))(z)u(x)
∣∣∣p dz

)
w(x) dx .

Note that, for |x | ≤ ε,
(∫

B2ε
|x − z|(−d+β)

p
p−1 dz

)p−1

≤
(∫

B3ε
|z|(−d+β)

p
p−1 dz

)p−1

≤ N1ε
β p−d .

Hence, we have that

J1 ≤ N1ε
β p−d

∫
Bε

∫
B2ε

∣∣∣L(−�)β/2(ϕ(·)a(·,y))(z)u(x)
∣∣∣p w(x) dz dx

≤ N1ε
β p−d

∫
B2ε

∫
Rd

∣∣∣L(−�)β/2(ϕ(·)a(·,y))(z)u(x)
∣∣∣p w(x) dx dz.

By Proposition 4.1, we see that

J1 ≤ N1N
pεβ p−d (2 − α)−p

∫
B2ε

(
sup
y∈Rd

|(−�)β/2(ϕ(·)a(·, y))(z)|p
) ∫

Rd
|(−�)α/2u|pw(x) dx dz

≤ N1N
pεβ p(2 − α)−p

(
sup

y∈Rd ,z∈B2ε
|(−�)β/2(ϕ(·)a(·, y))(z)|p

) ∫
Rd

|(−�)α/2u|pw(x) dx,

(5.4)
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where N is the constant in Proposition 4.1. To estimate the supremum of

|(−�)β/2(ϕ(·)a(·, y))(z)|
in (5.4), we observe that, for any y, z ∈ R

d ,

|(−�)β/2(ϕ(·)a(·, y))(z)|
≤ N1

∫
|h|>ε

|ϕ(z + h)a(z + h, y) − ϕ(z)a(z, y)| dh

|h|d+β

+ N1

∫
|h|<ε

|ϕ(z + h)a(z + h, y) − ϕ(z)a(z, y)| dh

|h|d+β

≤ N1

∫
|h|>ε

|ϕ(z + h)a(z + h, y) − ϕ(z)a(z, y)| dh

|h|d+β

+ N1|a(z, y)|
∫

|h|≤ε

|ϕ(z + h) − ϕ(z)| dh

|h|d+β

+ N1|ϕ(z)|
∫

|h|≤ε

|a(z + h, y) − a(z, y)| dh

|h|d+β

+ N1

∫
|h|≤ε

|a(z + h, y) − a(z, y)||ϕ(z + h) − ϕ(z)| dh

|h|d+β

=: I1 + I2 + I3 + I4. (5.5)

For any y ∈ R
d and z ∈ B2ε,

I1 ≤ N1 sup
z,y

|ϕ(z)a(z, y)|ε−β

≤ N1 sup
z∈B2ε,y∈Rd

|a(z, y)|‖ϕ‖L∞ε−β ≤ N1(2 − α)K(2ε, a)‖ϕ‖L∞ε−β,

I2 ≤ N1 sup
z∈B2ε,y∈Rd

|a(z, y)|‖Dϕ‖L∞ε1−β ≤ N1(2 − α)K(2ε, a)‖Dϕ‖L∞ε1−β,

I3, I4 ≤ N1(2 − α)‖ϕ‖L∞γ (ε).

From the above estimates of Ii , i = 1, 2, 3, 4, together with (5.4), we obtain that

J1 ≤ NC(ε, ϕ, p, β, γ,K(2ε, a))‖(−�)α/2u‖p
L p,w

, (5.6)

where N can be chosen as described in the lemma.
Estimate of J2. By the Minkowski inequality

J 1/p2 = N1

∥∥∥∥∥
∫
Bc
2ε

|z|−d+β
∣∣∣L(−�)β/2(ϕ(·)a(·,y))(z)u(·)

∣∣∣ dz
∥∥∥∥∥
L p,w(Bε)

≤ N1

∫
Bc
2ε

|z|−d+β
∥∥∥L(−�)β/2(ϕ(·)a(·,y))(z)u(·)

∥∥∥
L p,w(Bε)

dz

≤ N1

∫
Bc
2ε

|z|−d+β
∥∥∥L(−�)β/2(ϕ(·)a(·,y))(z)u(·)

∥∥∥
L p,w(Rd )

dz.

Then by Proposition 4.1, it follows that

J 1/p2 ≤ N1N‖(−�)α/2u‖L p,w

∫
Bc
2ε

|z|−d+β sup
y∈Rd

|(−�)β/2 (ϕ(·)a(·, y)) (z)| dz,
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where N is the constant in Proposition 4.1. For z ∈ Bc
2ε , we see from (5.5) that

I2 = I3 = I4 = 0

and

I1 = N1

∫
|h|>ε

|ϕ(z + h)a(z + h, y)| dh

|h|d+β
,

which imply that J 1/p2 is bounded by

N1N (2 − α)−1‖(−�)α/2u‖L p,w

∫
Bc2ε

|z|−d+β
∫
|h|>ε

sup
y∈Rd

|ϕ(z + h)a(z + h, y)| dh

|h|d+β
dz

= N1N (2 − α)−1‖(−�)α/2u‖L p,w

∫
|h|>ε

∫
Bc2ε

|z|−d+β sup
y∈Rd

|ϕ(z + h)a(z + h, y)| dz dh

|h|d+β
,

where

|z|−d+β sup
y∈Rd

|ϕ(z + h)a(z + h, y)| = 0

for z + h ∈ Bc
ε and

|z|−d+β sup
y∈Rd

|ϕ(z + h)a(z + h, y)| ≤ |z|−d+β sup
z∈Bε,y∈Rd

|a(z, y)|‖ϕ‖L∞

for z + h ∈ Bε. Thus,∫
Bc
2ε

|z|−d+β sup
y∈Rd

|ϕ(z + h)a(z + h, y)| dz

≤
∫
Bc
2ε∩{z+h∈Bε}

ε−d+β sup
z∈Bε,y∈Rd

|a(z, y)|‖ϕ‖L∞ dz

≤ N1ε
β sup
z∈Bε,y∈Rd

|a(z, y)|‖ϕ‖L∞ .

This shows that

J 1/p2 ≤ N1N (2 − α)−1‖(−�)α/2u‖L p,w

∫
|h|>ε

εβ sup
z∈Bε,y∈Rd

|a(z, y)|‖ϕ‖L∞
dh

|h|d+β

= N1N (2 − α)−1‖(−�)α/2u‖L p,w sup
z∈Bε,y∈Rd

|a(z, y)|‖ϕ‖L∞

≤ N1NK(2ε, a)‖(−�)α/2u‖L p,w‖ϕ‖L∞ .

By combining the above estimate for J2 and (5.6) for J1, we see that the inequality (5.1)
holds for a(x, y) which is infinitely differentiable in x with C (ε, ϕ, p, β, γ,K(2ε, a)).

For general a, set

an(x, y) = a(x, y) ∗ ηn(x), η(x) = ndη(nx)

for n = 1, 2, . . . , where η is a standard mollifier on Rd . Note that

|an(z1, y) − an(z2, y)| ≤ (2 − α)ω(|z1 − z2|), z1, z2, y ∈ R
d .

By the inequality (5.1) proved above for an , we have

‖ϕLan u‖p
L p,w

≤ NC (ε, ϕ, p, β, γ,K(2ε, an)) ‖(−�)α/2u‖p
L p,w

.
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Since for any ρ > 0,

K(2ε, an) ≤ K(2ε + ρ, a)

for large n, by Fatou’s Lemma, we see that for any ρ > 0,

‖Lau‖p
L p,w

≤ liminf
n→∞ ‖Lan u‖p

L p,w

≤ liminf
n→∞ NC(ε, ϕ, p, β, γ,K(2ε, an))‖(−�)α/2u‖p

L p,w

≤ NC(ε, ϕ, p, β, γ,K(2ε + ρ, a))‖(−�)α/2u‖p
L p,w

.

Upon noting that

lim
ρ→0

C(ε, ϕ, p, β, γ,K(2ε + ρ, a)) ≤ C(ε, ϕ, p, β, γ, K ),

we finish the proof when p > d/β.
For general p ∈ (1,∞), we apply the Rubio de Francia extrapolation theorem. See, for

instance, [9, Theorem 2.5]. The lemma is proved. 
�
Remark 5.2 From our arguments, it is not clear if the constant N in Lemma 5.1 can be
independent of β. For instance, if we take p = 2d/β and let β go to zero, then even the
constant in Proposition 4.1 might blow up. On the other hand, if one can the dependency on
β in Lemma 5.1, the boundedness of the operators La with a(x, y) having assumptions can
be achieved by mollifying the coefficients.

Proof of theorem 2.5

Here, we use a version of the partition of unity argument in the proof of Theorem 1.6.4 in
[12].

We may assume that u ∈ S as S is dense in Hα
p,w . Let

La
1u(x) =

∫
|y|≤1

(u(x + y) − u(x) − χα(y)(∇u(x), y))a(x, y)
dy

|y|d+α
.

According to Lemmas 3.7, 3.4, and 3.5 , we obtain

‖(La − La
1)u‖L p,w ≤ N‖u‖Hα

p,w
.

Therefore, it is sufficient to show that

‖La
1u‖L p,w ≤ N‖u‖Hα

p,w
.

Let ϕ ∈ C∞
0 (B1), 0 ≤ ϕ ≤ 1, and ϕ(x) = 1 if |x | ≤ 1/2. Then for any x ∈ R

d ,
∫
Rd

∣∣La
1u(x)

∣∣p w(x) dx = N
∫
Rd

∫
Rd

∣∣ϕ(x − z)La
1u(x)

∣∣p w(x) dz dx .

Observe that

ϕ(x − z)La
1u(x) = La

1

(
u(·)ϕ(· − z)

)
(x) − u(x)La

1

(
ϕ(· − z)

)
(x)

−
∫

|y|≤1

(
u(x + y) − u(x)

)(
ϕ(x + y − z) − ϕ(x − z)

)
a(x, y)

dy

|y|d+α

=: I1 + I2 + I3.
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We first estimate I2. Using the Minkowski inequality in z and Lemma 3.8 to ϕ without
weights, we see that∫ ∫

I p2 w(x) dz dx ≤ N
∫

|u(x)|p‖ϕ‖p
H2

p
w(x) dx ≤ N‖u‖p

L p,w
.

For I3, using Lemma 3.6 and the fact that |a(x, y)| ≤ (2 − α)K , we have∫ ∫
I p3 w(x) dz dx ≤ N‖u‖p

Hα
p,w

.

To estimate I1, we observe that

La
1

(
u(·)ϕ (· − z)

)
(x) = ϕ

(
x − z

4

)
La
1

(
u(·)ϕ(· − z)

)
(x).

Thus by Lemma 5.1, we see that∫
Rd

∫
Rd

∣∣La
1

(
u(·)ϕ(· − z)

)
(x)

∣∣p w(x) dx dz

≤ N
∫
Rd

∫
Rd

∣∣(−�)α/2(u(·)ϕ(· − z)
)
(x)

∣∣p w(x) dx dz

≤ N
∫
Rd

∫
Rd

∣∣(−�)α/2u(x)ϕ(x − z)
∣∣p w(x) dx dz

+ N
∫
Rd

∫
Rd

∣∣(−�)α/2(ϕ(· − z)
)
(x)u(x)

∣∣p w(x) dx dz

+ N
∫
Rd

∫
Rd

(∫
Rd

|u(x + y) − u(x)||ϕ(x + y − z) − ϕ(x − z)| dy

|y|d+α

)
w(x) dz dx

=: J1 + J2 + J3.

By the same calculations as in the estimates of I2 and I3, we derive that

J2 + J3 ≤ N‖u‖p
Hα

p,w
.

Note that J1 = N‖(−�)α/2u‖p
L p,w

. Consequently, by Lemma 3.4 we reach the result.

6 Application: Lp estimates for non-local equations

In this section we study the following non-local parabolic equations of the form

ut − Lau = f in R
d
T := (0, T ) × R

d (6.1)

with the non-local operator La given by

Lau(t, x) =
∫
Rd

(
u(t, x + y) − u(t, x) − χα(y)

(∇u(t, x), y
))
a(t, x, y)

dy

|y|d+α
.

We introduce some function spaces related to parabolic equations. Setw(t, x) = w1(t)w2(x),
where w1 ∈ Aq(R) and w2(x) ∈ Ap(R

d), p, q ∈ (1,∞). Then, we define L p,q,w(Rd
T ), also

denoted by L p,q,w(T ), to be the space of integrable functions with the mixed norm

‖u‖L p,q,w(T ) =
(∫ T

0

(∫
Rd

|u(t, x)|pw2(x) dx

)q/p

w1(t) dt

) 1
q

.

123



Boundedness of non-local operators with spatially dependent… Page 23 of 28 62

Wewrite Hα
p,q,w(T ) to indicate the class of Hα

p,w2
(Rd)-valued functions u on (0, T ) equipped

with the norm

‖u‖Hα
p,q,w(T ) =

(∫ T

0
‖u(t, ·)‖q

Hα
p,w2

(Rd )
w1(t) dt

) 1
q

.

As solution spaces for parabolic equations, H1,α
p,q,w(T ) denotes the collection of functions

u ∈ Hα
p,q,w(T ) such that ut ∈ L p,q,w(T ). It is a Banach space with respect to the norm

‖u‖H1,α
p,q,w(T )

= ‖u‖Hα
p,q,w(T ) + ‖ut‖L p,q,w(T ).

Wewrite only p instead of p, q when p = q so that, for instance,H1,α
p (T )meansH1,α

p,p,w(T )

with w = 1.
We now state our assumption on the coefficient a(t, x, y) in (6.1). Throughout the section,

we set K and δ as positive constants and assume that the function a0 satisfies the following
conditions.

Assumption 6.1 (i) The function a0 = a0(t, y) ≥ 0 is measurable, homogeneous in y with
index zero, differentiable in y up to the order [ d2 ] + 1, and

|Dγ
y a0(t, y)| ≤ K

for all t ∈ (0, T ), y ∈ R
d and multi-indices, γ ∈ N

d with |γ | ≤ [ d2 ] + 1.
(ii) When α = 1, for all t ∈ (0, T )∫

Sd−1
ya0(t, y)μd−1(dy) = 0,

where Sd−1 is the unit sphere in R
d and μd−1 is the standard Lebesgue measure on it.

(iii) For all t ∈ (0, T ),

inf
ξ∈Sd−1

∫
Sd−1

|(y, ξ)|αa0(t, y)μd−1(dy) ≥ δ > 0.

Assumption 6.2 (i) For all x, y ∈ R
d and t ∈ (0, T ),

(2 − α)a0(t, y) ≤ a(t, x, y) ≤ (2 − α)K .

(ii) There exist β ∈ (0, 1) and a increasing function ω(τ), τ > 0, such that

|a(t, x1, y) − a(t, x2, y)| ≤ (2 − α)ω(|x1 − x2|)
for x1, x2, y ∈ R

d and t ∈ (0, T ), and∫
|y|≤1

ω(|y|) dy

|y|d+β
< ∞.

(iii) If α = 1, then for any (t, x) ∈ R
d
T and 0 < r < R,

∫
r≤|y|≤R

ya(t, x, y)
dy

|y|d+α
= 0.

By using Theorem 2.5 for each t ∈ (0, T ) and then integrating with respect to t , we obtain
the following boundedness of parabolic non-local operators.

123



62 Page 24 of 28 H. Dong et al.

Corollary 6.3 Let β ∈ (0, 1), α ∈ (0, 2), 1 < p, q < ∞, and w(t, x) = w1(t)w2(x),
w1 ∈ Aq(R) and w2 ∈ Ap(R

d). Suppose that the coefficient a(t, x, y) of La satisfies the
conditions (ii) and (iii) in Assumption 6.2 and is bounded by (2 − α)K. Then the operator
∂t − La is continuous from H1,α

p,q,w(T ) to L p,q,w(T ).

Remark 6.4 As is easy to see, in Corollary 6.3 one can have any nonnegative function w1(t)
instead of w1 ∈ Aq(R).

By utilizing the above results, especially, when w = 1 and p = q , we prove the following
L p-estimates for parabolic and elliptic equationswith spatial non-local operators withHölder
continuous coefficients. As noted in the introduction, the same type of results are proved in
[17] but for sufficiently large p. That is, we have removed the largeness assumption on p in
[17]. On the other hand, our boundedness results for operators in the weighted space setting
also make it possible to derive weighted versions of the results below. Indeed, such results
are proved recently in [10] using Theorem 2.5 and Corollary 6.3 in this paper after detailed
preparations for weighted L p-estimates.

We first state the parabolic case. Note that in the results below we do not pursue whether
the constant N stays bounded, for instance, as α ↗ 2 (see Remark 2.6). However, it is
possible to investigate the dependency of N on α as described in Theorem 2.5. See [10] for
a priori estimates with more informative dependency of N on α.

Theorem 6.5 Let β ∈ (0, 1), α ∈ (0, 2), 1 < p < ∞, and the coefficient a of the operator
La satisfy Assumption 6.2. Suppose that u ∈ H1,α

p (T ) satisfies
{
ut − Lau + λu = f in R

d
T ,

u(0, x) = 0, x ∈ R
d ,

(6.2)

where f ∈ L p(T ). Then, there exists λ0 = λ0(d, p, α, β, δ, K , ω) such that for any λ ≥ λ0,

‖ut‖L p(T ) + ‖(−�)α/2u‖L p(T ) ≤ N‖ f ‖L p(T ), (6.3)

‖u‖L p(T ) ≤ N (T ∧ λ−1)‖ f ‖L p(T ), (6.4)

where N = N (d, p, α, β, δ, K , ω). Moreover, for any f ∈ L p(T ) there exists a unique

u ∈ H1,α
p (T ) satisfying (6.2), (6.3), and (6.4).

Before presenting the proof of Theorem 6.5, we first give some corollaries derived from
Theorem 6.5 for parabolic equations with lower-order coefficients and an elliptic counterpart
of Theorem 6.5.

Corollary 6.6 Let β ∈ (0, 1), α ∈ (0, 2), 1 < p < ∞ and a = a(t, x, y) satisfy Assump-
tion 6.2. Also let bi (t, x) and c(t, x) be bounded by K . Suppose that u ∈ H1,α

p (T ) satisfies
{
ut − Lau + bi Diu Iα>1 + cu = f in R

d
T ,

u(0, x) = 0, x ∈ R
d ,

(6.5)

where f ∈ L p(T ). Then

‖u‖H1,α
p (T )

≤ N‖ f ‖L p(T ), (6.6)

where N = N (d, p, α, β, δ, K , ω, T ). Moreover, for any f ∈ L p(T ), there exists a unique

u ∈ H1,α
p (T ) satisfying (6.5) and (6.6).
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Proof By the method of continuity, it is sufficient to show (6.6). We only consider the case
when α > 1 as the other case is simpler. Fix λ ≥ λ0, where λ0 is the constant in the statement
of Theorem 6.5. Let τ ∈ (0, T ). Due to Theorem 6.5, we have

‖u‖H1,α
p (τ )

≤ N‖ut − Lau + λu‖L p(τ )

≤ N‖ut − Lau + bi Diu + cu‖L p(τ ) + N‖u‖L p(τ ) + N‖Du‖L p(τ ),

where the constant N is independent of τ . By (3.13) and Lemma 3.4,

‖Du‖L p(Rd ) ≤ N‖(−�)α/2u‖L p(Rd ) + N‖u‖L p(Rd ).

Then, by dilation in x (see, for instance, the proof of [12, Theorem 1.5.1]) and integration
with respect to the t variable,

‖Du‖L p(τ ) ≤ ε‖(−�)α/2u‖L p(τ ) + N (ε)‖u‖L p(τ ).

By taking sufficiently small ε, we see that

‖u‖H1,α
p (τ )

≤ N‖ut − Lau + bi Diu + cu‖L p(τ ) + N‖u‖L p(τ )

= N‖ f ‖L p(τ ) + N‖u‖L p(τ ).

Observe that

‖u(t, ·)‖p
L p(Rd )

≤
∥∥∥∥
∫ t

0
|ut |(s, ·) ds

∥∥∥∥
p

L p(Rd )

≤ t p−1
(∫ t

0
‖ut (s, ·)‖p

L p(Rd )
ds

)
= t p−1‖ut‖p

L p(t)

for any t ∈ (0, T ). Hence, by taking integration over (0, τ ), we have

‖u‖p
L p(τ ) ≤

(∫ τ

0
t p−1‖ut‖p

L p(t)
dt

)
≤

(∫ τ

0
t p−1‖u‖p

Hα
p(t)

dt

)
.

Thus,

‖u‖p

H1,α
p (τ )

≤ N‖ f ‖p
L p(τ ) + N

(∫ τ

0
t p−1‖u‖p

Hα
p(t)

dt

)
.

Set

A(s) = ‖u‖p

H1,α
p (s)

, B(s) = N‖ f ‖p
L p(s)

. C(s) = Ns p−1

for s ∈ (0, T ). Then, we see that

A(τ ) ≤ B(τ ) +
∫ τ

0
C(t)A(t) dt

for any τ ∈ (0, T ). By Grönwall’s inequality,

A(T ) ≤ B(T )e
∫ T
0 C(t) dt .

This proves the corollary. 
�
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Corollary 6.7 Let β ∈ (0, 1), α ∈ (0, 2), 1 < p < ∞, and the operator La be
independent of the time variable with a(x, y) satisfying Assumption 6.2. Then, there are
λ0 = λ0(d, p, α, β, δ, K , ω) and N = N (d, p, α, β, δ, K , ω) such that, for any λ ≥ λ0 and
u ∈ Hα

p (Rd) satisfying

− Lau + λu = f in R
d , (6.7)

we have

‖(−�)α/2u‖L p(Rd ) + λ‖u‖L p(Rd ) ≤ N‖ f ‖L p(Rd ). (6.8)

Furthermore, for any f ∈ L p(R
d), there exists a unique u ∈ Hα

p (Rd) satisfying (6.7) and
(6.8).

Proof Let η be a smooth function in R with

η(0) = 0,
∫ 1

0
|η(t)| dt > 0.

Set ηn(t) = η(t/n), t ∈ R, and consider vn = uηn . By applying Theorem 6.5 with T = n
to vn , then letting n go to infinity, we obtain a priori estimate (6.8). Then, by the method of
continuity and the unique solvability of equations with simple coefficients, for instance, in
[7], one can finish the proof. 
�

We will prove Theorem 6.5 by the standard freezing coefficient argument. One can find
the argument in the proof of [12, Lemma 1.6.3] for second-order elliptic equations, and in
the proof of [17, Lemma 8] for non-local equations. To show the exact parameters which the
constants depend on in the estimates, we give a detailed proof of the following lemma.

Lemma 6.8 Assume that β ∈ (0, 1), α ∈ (0, 2), and p ∈ (1,∞). Suppose that Assump-
tion 6.2 holds. Then, there exist ε = ε(d, p, α, β, δ, K , ω), N = N (d, p, α, δ, K ), and
λ0 = λ0(d, p, α, β, δ, K , ω) such that the following holds. If λ ≥ λ0, u ∈ H1,α

p (T ) satisfies
(6.2) and for every t ∈ (0, T ), u(t, ·) has support in a ball of radius ε, then

‖ut‖L p(T ) + ‖(−�)α/2u‖L p(T ) ≤ N‖ f ‖L p(T ),

‖u‖L p(T ) ≤ N (T ∧ λ−1)‖ f ‖L p(T ).

Proof Without loss of generality, we assume that for all t ∈ (0, T ), u(t, ·) ∈ C∞
0 (Bε). Let

ϕ ∈ C∞
0 (B4ε), 0 ≤ ϕ ≤ 1, ϕ(x) = 1 if |x | ≤ 2ε, with

‖Dϕ‖L∞ ≤ N

ε
.

Set

L0u(t, x) =
∫
Rd

∇α
y u(t, x)a(t, 0, y)

dy

|y|d+α
.

In this proof we denote La by L. Note that for any λ > 0, by Proposition 1 in [17], there is
a constant N1 = N1(d, p, α, δ, K ) such that

‖u‖L p(T ) ≤ N1(T ∧ λ−1)‖ut − L0u + λu‖L p(T )

and

‖ut‖L p(T ) + ‖(−�)α/2u‖L p(T ) ≤ N1‖ut − L0u + λu‖L p(T ).
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Then by the triangle inequality, we have

‖u‖L p(T ) ≤ N1(T ∧ λ−1)
(‖ f ‖L p(T ) + ‖ϕ(L − L0)u‖L p(T )

+‖(Lu − L0u)(1 − ϕ)‖L p(T )

)
and

‖ut‖L p(T ) + ‖(−�)α/2u‖L p(T )

≤ N1
(‖ f ‖L p(T ) + ‖ϕ(L − L0)u‖L p(T ) + ‖(Lu − L0u)(1 − ϕ)‖L p(T )

)
.

Observe that for any t ∈ (0, T ],
sup

z∈B8ε,y∈Rd
|a(t, z, y) − a(t, 0, y)|p ≤ ω(8ε)p.

Due to Lemma 5.1 with a → a(t, x, y) − a(t, 0, y) and ε → 4ε, we see that

‖ϕ(L − L0)u‖L p(T ) ≤ N0C(ε)‖(−�)α/2u‖L p(T ),

where

C(ε) = ω(8ε) + γ (4ε)εβ,

which goes to zero as ε → 0. Since u has support in the ball of radius ε centered at 0, using
the Minkowski inequality, we see that for each t ∈ (0, T ),

‖(Lu − L0u)(1 − ϕ)‖L p

=
(∫

Bc
2ε

∣∣∣∣
∫

|y|>ε

∇α
y u(t, x)(a(t, x, y) − a(t, 0, y))

dy

|y|d+α

∣∣∣∣
p

|1 − ϕ(x)|p dx
)1/p

≤
(∫

Bc
2ε

∣∣∣∣
∫

|y|>ε

u(t, x + y)(a(t, x, y) − a(t, 0, y))
dy

|y|d+α

∣∣∣∣
p

dx

)1/p

≤ N
∫

|y|>ε

‖u(t, · + y)‖L p

dy

|y|d+α
≤ N2ε

−α‖u(t, ·)‖L p .

For a fixed ε > 0 satisfying N1N0C(ε) ≤ 1/2, we have that

‖ut‖L p(T ) + ‖(−�)α/2u‖L p(T ) ≤ 2N1‖ f ‖L p(T ) + 2N1N2ε
−α‖u‖L p(T )

and

‖u‖L p(T ) ≤ 2N1(T ∧ λ−1)‖ f ‖L p(T ) + 2N1N2(T ∧ λ−1)ε−α‖u‖L p(T ).

Taking λ0 = 4N1N2ε
−α , we obtain the desired estimates. 
�

Proof of theorem 6.5

Using the partition of unity argument and standard freezing coefficient technique with
Lemma 6.8, we have (6.3) and (6.4). The uniqueness comes from the estimates. Finally,
using Theorem 2.5 and the method of continuity, we reach the existence of a solution.
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