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Abstract—This paper proposes a data-driven graphical frame-
work for the real-time search of risky cascading fault chains
(FCs). While identifying risky FCs is pivotal to alleviating
cascading failures, the complex spatio-temporal dependencies
among the components of the power system render challenges to
modeling and analyzing FCs. Furthermore, the real-time search
of risky FCs faces an inherent combinatorial complexity that
grows exponentially with the size of the system. The proposed
framework leverages the recent advances in graph recurrent
neural networks to circumvent the computational complexities
of the real-time search of FCs. The search process is formalized
as a partially observable Markov decision process (POMDP),
which is subsequently solved via a time-varying graph recurrent
neural network (GRNN) that judiciously accounts for the inherent
temporal and spatial structures of the data generated by the
system. The key features of this structure include (i) leveraging
the spatial structure of the data induced by the system topology,
(ii) leveraging the temporal structure of data induced by system
dynamics, and (iii) efficiently summarizing the system’s history
in the latent space of the GRNN. The proposed framework’s
efficiency is compared to the relevant literature on the IEEE
39-bus New England system and the IEEE 118-bus system.

I. INTRODUCTION

Large-scale disruptions in power systems generally follow a
sequence of less severe anomalous events that gradually stress
the system over time. Various reports on the events preceding
blackouts indicate that system operators are either unaware
of these gradual changes or oblivious to the contingencies
following these changes. Specifically, such small-scale anoma-
lies can lead to hidden failures that propagate and eventually
result in large-scale monitoring, and control disruptions. For
instance, in a report by the North American Electric Reliability
Corporation [1], it was concluded that inadvertent tripping of a
power line led to a series of failures causing the 2003 blackout
in North America. Therefore, forming real-time and accurate
situational awareness in power systems has a pivotal role in
ensuring a secure and reliable power system operation.

In this paper, we formalize a graphical framework for
dynamically predicting the chains of risky faults a power
system faces. A fault chain (FC) is a sequence of consecutive
component outages that captures the temporal evolution of a
cascading outage process. Due to the combinatorially extensive
number of possible failures, which grows with the system
size and failure horizon, finding critical failure sequences is
computationally challenging. Since a FC captures the high-
impact and rear-occurrence characteristic of cascading failures
in any dynamically-changing power system partly, timely
identification of the riskiest FCs to system operators for any
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given system state is instrumental to predicting failures and
preventing cascading failures.

Predicting FCs and assessing their risks can be formal-
ized by (i) creating an exhaustive list of all possible failure
scenarios up to a specific time horizon, (ii) evaluating the
disruption (e.g., load loss) caused by each, and (iii) evaluating
the likelihood of each scenario. Accomplishing these three
tasks faces the following two key challenges. First, the space
of scenarios grows exponentially fast with the power system
size and time horizon, rendering listing all scenarios computa-
tionally prohibitive even for moderate network sizes and target
horizons. Secondly, the system changes dynamically with high
unpredictability, which necessitates constantly updating the
scenario space. Before specifying our approach, we review
the existing literature relevant to this paper’s scope.

A. Literature Review

In this subsection, we provide an overview of the literature
most closely related to the scope of this paper. The study
in [2] aims to identify and quantify all the vulnerable sections
of the power system that can potentially lead to cascading
failures. Specifically, it develops a FC framework for risky
FC identification to address this. In [3], a rapid stochastic
procedure is proposed to yield large collections of high-risk
FCs. Despite the effectiveness of [3], such a method faces a
computational bottleneck addressed by the study in [4], which
proposes eliminating a large number of redundant constraints
to make the contingency screening more efficient. With similar
motivation, [5] formulates a bi-level optimization problem
to gain a higher evaluation efficiency for risky FC search
and [6] employs a sequential importance sampling algorithm
to acquire critical FCs from cascading outage simulations. Due
to a variety of other benefits associated with identifying a
collection of risky FCs, FC search algorithms are employed for
risk-assessment [7]-[9], risk mitigation [10], and vulnerable
component identification [11], [12] and others [13].

There exist a number of machine learning (ML) approaches
that aim to enhance the efficiency of risky FC search. Broadly,
these models quantify the vulnerability of each power system
component from simulated power system operational data by
learning data-driven models. For instance, the study in [14]
formulates the search for risky FCs in a Markov decision pro-
cess (MDP) environment and employs reinforcement learning
(RL) algorithms to find risky FCs. The investigation in [15]
employs deep neural networks to obtain critical states during
cascading outages, and [16] employs convolutional neural
networks for faster contingency screening. The study in [12]
proposes a transition-extension approach that builds upon
the RL approach in [14] to make it amenable to real-time
implementation. This is facilitated by exploiting the similarity
between adjacent power-flow snapshots. Finally, [17] proposes
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to employ graph convolutional neural networks that leverage
the grid’s topology to identify cascading failure paths.

In parallel to ML-based approaches, there also exist model-
based approaches that quantitatively and qualitatively model,
analyze and simulate large-scale cascading outage processes.
This is done by developing simulation models that capture
the power system physics. The first category of studies aims
to develop high-level statistical models to facilitate faster
computation and quick inference. Generally, these are data-
driven models such as CASCADE [18], the branching process
model [19], the interaction model [20], and models based on
influence graphs [21], [22]. While these approaches are quick
in revealing important quantitative properties of cascading
outages and often lead to interpretable conclusions due to
their ability to capture the non-local behavior of the cascading
outage process, such models cannot accommodate the time-
varying interactions among components at different stages of
a cascade. To tackle this challenge, detailed failure models
such as the OPA [23], improved OPA [24], random chemistry
model [3] and others [25], [26] are studied that precisely
model the AC power-flow and power dispatch constraints of
the components in the grid while simulating the cascading
outage process. Despite their detailed modeling and effec-
tiveness, these models are computationally intensive, a major
impediment to their adoption for real-time implementation.

B. Contribution

Despite the effectiveness of the aforementioned models,
these models broadly face the following challenges: (i) The
models fail to capture the concurrent spatio-temporal de-
pendencies across the time horizon among the components
of the power system under dynamically changing network
topologies. (ii) The cascading outage process is assumed to
follow Markov property. While this simplification can ren-
der reasonable approximations during the earlier stages of
the cascading failure, the later stages of the failure process
typically exhibit temporal dependencies beyond the previous
stage, making the Markovian assumptions inadequate. (iii)
These models become prohibitive even for moderate grid sizes
due to the combinatorial growth in either the computational or
storage requirements with the number of components in the
grid.

We propose a data-driven graphical framework for effi-
ciently identifying risky cascading FCs to address the afore-
mentioned challenges associated with the ML approaches. The
proposed framework designs a graph recurrent neural network
(GRNN) to circumvent the computational complexities of the
real-time search of FCs. The search process is formalized as
a partially observable Markov decision process (POMDP),
which is subsequently solved via a time-varying GRNN that
judiciously accounts for the inherent temporal and spatial
structures of the data generated by the system. The key features
of this structure include (i) leveraging the spatial structure of
the data induced by the system topology, (ii) leveraging the
temporal structure of data induced by system dynamics, and
(iii) efficiently summarizing the system’s history in the latent
space of the GRNN, rendering the modeling assumptions real-
istic and the approach amenable to real-time implementation.

Finally, we highlight the difference between our proposed
approach and the graph neural network (GNN)-based approach
investigated in [17]. The goal in [17] is to detect all cascading
failure paths that lead to load-shedding in a limited number of
search attempts. Such a decision is binary since a cascading
failure path may either lead to load shedding or not. In
contrast, our approach aims to identify cascading failure paths
with maximum risk (FCs with maximum load-shed) in a
limited number of search attempts where, ideally, the most
critical cascading failure paths should be identified earlier
than the relatively less critical ones. While related, the problem
descriptions and the attendant solutions are distinct.

II. PROBLEM FORMULATION
A. System Model

Consider a power system consisting of N buses. To capture
the interconnectivity of the system, we represent it by an
undirected graph G £ (V, E), where the set of vertices
V = [N] £ {1,...,N} represents the buses and the edge
set EE C V x V represents the transmission lines. We denote
the binary adjacency matrix of G by B € {0,1}¥*¥ such
that b, , = [B],,» = 1 indicates there exists at least one
transmission line between buses u and v (e.g., in the case
of parallel transmission lines). We define X € RY*¥ ag
the system state matrix of the grid, which compactly represents
F' system state parameters (e.g., voltage angles, injected real
power) for all the N buses and we refer to any system state
parameter f € {1,...,F} of bus u € [N] by s = [X]u.;.

B. Modeling Fault Chains

Depending on an array of internal (e.g., system instabilities)
and external (e.g., weather) conditions, the system faces a
degree of risk in disruptions that may lead to component
outages. We focus on transformers and transmission lines as
the components of interest. When the outages are substantial
enough, they can lead to more outages, resulting in a FC. Our
objective is to dynamically identify the FCs that the system
faces and assess their associated risks (e.g., load losses). In
this subsection, we formalize a model for FCs and their risks
based on an objective formalized in the next subsection.

Consider the topology of a generic outage-free system that
precedes an FC given by Gy, and denote the associated system
state by X. A generic FC that the system might be facing is
specified as a sequence of consecutive component outages that
represents a cascading outage process. Consider a FC model
that consists of at most P stages, where P can be selected
based on the horizon of interest for risk assessment, and denote
the set of all components in the system by Y. It is noteworthy
that the number of stages in different FCs can be distinct. In
cases that a fault chain terminates before P < P stages, it
means that the sets {Up,,,...,Up} will be empty sets.

In each stage ¢ € [P], a number of additional components
fail. We define U; as the set of components that fail in stage
i € [P]. We note that the set I; could consist of more than one
component failures in any stage i, i.e., |i;| > 1. We also note
that when a transmission line fails and it has parallel channels,
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only the failed line will be included in Uf;, and its parallel
lines will be retained as functioning components. Clearly, U; C
u \{U;:lll/lj}, and the sequence of components that fail in P
stages is specified by a FC sequence V

Up) . 6]

Additionally, we denote the healthy components in any stage
i of the FC by £; € U\{U/_jU;}. We note that when the
failure process is slow (e.g., in the earlier stages of a cascading
failure), the sets U; have fewer components, and when the
process is fast (e.g., last stages of a cascading failure), these
sets are more populated since component outages are usually
grouped depending on their time of occurrence [8], [9], [21].

Due to component outages in each stage ¢, the system’s
topology alters to G; = (Vi, E;) with an associated adjacency
matrix B; and an underlying system state X ;. Consecutive fail-
ures lead to compounding stress on the remaining components,
which need to ensure minimal load shedding in the network.
Nevertheless, when the failures are severe enough, they can
lead to load losses. We denote the load loss (LL) imposed by
the component failures in {; in stage ¢ by LL(4;), i.e.,

LL(U;) = load(G;—1) — load(G;) , 2)

V 2 (U, Us,...

where load(G;) is the total load (in MWSs) when the system’s
state in stage ¢ is associated with the topology G;. Accordingly,
we define the total load loss (TLL) imposed by the FC V by

P
TLLY) =) L) - 3)
=1

C. Problem Statement

Due to the re-distribution of power across transmission lines
after each stage of the FC, some FC sequences particularly lead
to substantial risks and owing to the continuously time-varying
system’s state, different loading and topological conditions
face different risks. Hence, it is important for system operators
to find, efficiently and in real-time, the set of FCs with the
largest TLL associated with any given initial system state Xj.

Our objective is to identify S number of FC sequences,
each consisting of P stages, that impose the largest TLL. To
formalize this, we define F as the set of all possible FCs
with a target horizon of P, and our objective is to identify .S
members of F with the largest associated losses. We denote
these S members by {Vf,...,V¢}. Identifying the sets of
interest can be formally cast as solving

s
P: {Vi,...,Vi} =  argmax Z TLL(V;) . D
{Vl,...,Vs} Vi, EF i=1

Problem P aims to maximize the accumulated TLL due to
the S number of FC sequences. Without loss of generality, we
assume that the TLLs of the set of sequences {V},...,V§}
are in the descending order, i.e., TLL(V)) > TLL(V;) >
.-+ > TLL(VY). Solving P faces a significant computational
challenge since the cardinality of F grows exponentially with
the system size NN, the number of components |I/|, and the
risk assessment horizon P.

III. SEQUENTIAL SEARCH VIA POMDPs
A. Sequential Search

To circumvent the complexity of solving P in (4), we design
an agent-based learning algorithm that sequentially constructs
the set of FCs {Vy,..., V& }. Specifically, the agent starts with
constructing V5 = (Ur1,...,U1,p) such that it sequentially
identifies the sets {1 1,...,U; p} in each stage i € [P] as
follows. The agent admits the topology and the system state as
its initial baseline inputs, denoted by Gy and X, respectively.
In the first stage, the agent identifies the components in
U removing which is expected to impose the most intense
TLL. To control the complexity and reflect the reality of
FCs, in which failures occur component-by-component, we
are interested in identifying only one component in each
stage. Nevertheless, due to the physical constraints, removing
one component can possibly cause outages in one or more
other components in the same stage. We denote the set of all
components to be removed in the first stage by the set U ;.

The risk associated with each candidate set ({1 ; has two,
possibility opposing, impacts. The first pertains to the imme-
diate loss due to component failures in U/, ;, and the second
captures the losses associated with the future possible failures
driven by the failures in U4; ;. Hence, identifying the sets U/} 1
involves look-ahead decision-making and cannot be carried
out greedily based on only the immediate LLs. Once the set
U1 is identified (via our proposed Algorithm 1 the details
of which we discuss in Section IV-C), the agent removes all
the components in this set to update the grid topology to Gy,
and uses simulations (by solving a power-flow or an optimal
power-flow, if necessary) to determine the associated system
state X.

Subsequently, G; and X; are leveraged to identify the set
Uy 2 by removing the components from the set U\{f 1}, and
this process continues recursively for a total of P stages, at the
end of which the set V] is constructed. Subsequently, a similar
process is repeated to construct V5 and the algorithm repeats
this process S times to identify .S sequences of interest. While
repeating the search process, it is important that the agent
avoids finding the same FC sequences over and over again
that were discovered previously. Accordingly, as discussed in
detail in Section IV-D, we alter the agent decision process to
take into account the number of times any given component
was removed. Fig. 1 illustrates a search process where an agent
constructs a FC sequence V = (¢}, (3, (1) by leveraging the
current system state (G;, X;) in each stage i € [3].

B. Modeling Search as a POMDP

The cascading outage process renders temporal dependen-
cies across outage stages, typically spanning more than two
stages. The full extent of such dependencies might be hidden
in the observed (time) domain. We leverage the hidden de-
pendencies in the latent (hidden) space of the fault chain gen-
eration process. Since the observation at each stage provides
only partial information for decision making, we formalize the
agent decision process at every stage of the search process by a
partially observed Markov decision process (POMDP). In our
search process, to control the computational complexity, we
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determine the system state in stage (i + 1), i.e., (Gi+1, Xi+1)
by leveraging the system state (G;,X;) in stage i. Neverthe-
less, the load loss at stage (i + 1) depends on all the past 4
stages and the set of components removed in those system
states. In this subsection, we characterize the POMDP of
interest, and address solving it in Section IV.

We denote the partial observation that the agent uses at
stage ¢ to determine the system state at stage ¢ + 1 by O, =
(Gi, X;). Accordingly, we define the sequence

Si =(0y,...,0,) , 5)

which we refer to as the POMDP state at stage ¢, and it
characterizes the entire past sequence of observations that
render O, ;. As stated earlier, at stage ¢ only O; is known to
the agent. At stage 4, upon receiving the observation O, the
agent aims to choose a component from the set of available
components to be removed in the next stage. To formalize
this process, we define the agents action as its choice of
the component of interest. We denote the action at stage @
by a;. Accordingly, we define the action space A; as the
set of all remaining components, ie., A; = L{\{Uj;lluj}.
Once the agent takes an action a; € A; in stage i, the
underlying POMDP state in next stage is randomly drawn
from a transition probability distribution P

Si+1 ~ ]P(S ‘ Si,ai) . (6)

Probability distribution PP captures the randomness due to the
power system dynamics, and it is determined by the generator
re-dispatch strategy in each stage of the FC. To quantify the
risk associated with taking action a; in POMDP state S; when
transitioning to S; 1, we define an instant reward r;

T é T‘(SZ‘+1 | SZ‘, ai) é Ioad(gz) — |Oad(gi+1) . (7)

Hence, for any generic action selection strategy 7, the aggre-
gate reward collected by the agent starting from the baseline
POMDP state can be characterized by a value function

P-1
Vi(So) =) 4" r(Sit1 |84,7(0))) )
i=0

where the discount factor v € R, decides how much future
rewards are favored over instant rewards, and 7(O;) denotes
the action selected by the agent given an observation O; in
stage i € [P]. Therefore, finding an optimal action selection
strategy 7* for the agent can be formally cast as solving

Q: 7 =argmax E[Vi(So)] . )

IV. GRNN-BASED APPROACH TO SOLVING POMDPs
A. Motivation

An optimal strategy 7" (9) in a POMDP environment can
be found by leveraging classical dynamic programming algo-
rithms. Such traditional solutions, however, not only require
the knowledge of the transition probability model P and the
reward function dynamics but also pose a significant compu-
tational challenge when solving for 7*. Under such unknown
model settings, Q-learning serves as an effective model-free

Fig. 1: An agent decision process rendering a FC Vi = (£1,63,(3).

value-based RL algorithm [27] that can find optimal strategies,
although only in an MDP environment. In particular, the
algorithm focuses on implicitly estimating the MDP state
value function (8), from each state S;, associated with every
action a; € A;. These estimates are widely referred to as Q-
values, denoted by Q(S;,a;) € R, where a higher Q(S;,a;)
indicates that taking an action a; from a MDP state S; yields
better aggregate future rewards [27].

Note that, however, when solving Q in a POMDP envi-
ronment, the ordinary (Q-learning algorithm is ineffective as
partial observations O; are typically not reflective of the un-
derlying POMDP state S;. As aresult, Q(O;, a;) # Q(S;, a;).
Therefore, designing real-time FC search algorithms critically
hinges on finding an accurate and efficient solution to Q in (9).
To this end, we aim to design an approach that judiciously
exploits the underlying structure of each POMDP state S;. In
particular, we develop a graph recurrent Q-network (GRQN)
architecture that exploits the following three key elements:

1) Neural Networks for Q-value Prediction: Implement-
ing the ordinary ()-learning algorithm relies on building Q-
tables that store ()-values for each POMDP state-action pair.
However, storing such a ()-table imposes a significant storage
challenge even for moderate system sizes since the number of
state-action pairs scales combinatorially with the system size
N. Furthermore, such an algorithm fails to incorporate contin-
uous POMDP state spaces S;. As a remedy, we employ univer-
sal function approximators such as NNs to predict Q(S;, a;)
values as approximate surrogates for each estimated POMDP
state-action element in the ()-Table [28].

2) Spatial Correlation: The data streams generated by
measurement units across the network have strong spatial
correlation induced due to the inherent meshed topology of
transmission networks. Specifically, the coordinates of X,
in each stage i, are statistically correlated, and hence, data
streams are typically jointly modeled via probabilistic graphi-
cal models [29], [30]. Therefore, it is important to judiciously
leverage the spatial structure of X; when solving Q.

3) Temporal Correlation: Besides the spatial correlation,
there exists a strong temporal structure induced due to the
observational dependencies across the successive stages of any
FC sequence. In particular, the load loss incurred due to a
component failure in stage ¢ depends on the set of components
that have failed in all the preceding (i — 1) stages.
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To this end, in order to exploit the spatio-temporal correla-
tion among the coordinates of a sequence of system states X;
to predict QQ(S;, a;) values accurately, we leverage the output
of a time-varying GRNN to incorporate the spatial structure
and leverage its recurrency to effectively integrate observa-
tional dependencies through time to account for the temporal
structure. Subsequently, the GRNN output then acts as an input
to a NN that predicts ()-values for each POMDP state-action
pair, altogether assembling into an GRQN architecture. Next,
we discuss the various components of the time-varying GRNN,
and discuss designing a learning algorithm to search for FC
sequences of interest in Section I'V-C.

B. Development of a Time-Varying GRNN Model

GRNNs are a family of GNN architectures specialized
for processing sequential graph structured data streams [31].
These architectures exploit the local connectivity structure
of the underlying network topology G, to efficiently extract
features from each bus by sequentially processing time-varying
system states X, that evolve on a sequence of graphs G;.
More broadly, these architectures generalize recurrent neural
networks [32] to graphs. To lay the context for discussions, we
first discuss time-varying graph convolutional neural networks
(GCNNs), the components of which serve as an essential
building block to motivate time-varying GRNNs.

1) Time-Varying GCNNs: Consider the i'" stage of a FC
sequence V; where an agent receives an observation O; =
(Gi,X;) on graph G, associated with an adjacency matrix
B,. Central to the development of GCNNs is the concept
of a graph-shift operation that relates an input system state
X; € RV*F to an output system state F; € RV*F

F;, =B, X, . (10)

Clearly, the output system state F; is a locally shifted version
of the input system state X, since each element [F;],, f, for any
bus u € V; and parameter f, is a linear combination of input
system states in its 1-hop neighborhood. Local operations,
such as (10) capture the 1-hop structural information from
X, by estimating another system state F'; and are important
because of the strong spatial correlation that exists between
[Xi]u,r and its network neighborhood determined by ;.
Alternative transformations such as that employed in [33]
quantify the merits of estimating system states that capture
the spatial structure of X,;. In order to capture the structural
information from a broader K-hop neighborhood instead, (10)
can be readily extended by defining a time-varying graph
convolutional filter function H : RMXF — RNXH that
operates on an input system state X; to estimate an output
system state H(G;, X; ; H)
K
HG:, X H) =) (BT X)) - Hy (1)
k=1

where H denotes the number of output features estimated on
each bus and H = {H, € RF*# . k ¢ [K]} denotes the
set of filter coefficients parameterized by matrices Hy, learned
from simulations where each coordinate of Hy, suitably weighs

the aggregated system state obtained after k repeated 1-
hop graph-shift operations performed on X,;. Note that (11)
belongs to a broad family of graph-time filters [34] that are
polynomials in time-varying adjacency matrices B;. There ex-
ists many types of graph-time filters [35]. We employ (11) due
to its simplicity. Nevertheless, (11) only captures simple linear
dependencies within X;. To capture non-linear relationships
within X, time-varying GCNNs compose multiple layers of
graph-time filters (11) and non-linearities such that the output
system state of each GCNN layer is given by
®(Gi, Xi; H) =o(H(G,Xi; H)) . (12)
where o : R — R is commonly known as the activation func-
tion (applied element-wise) such that ®(G;, X; ; H) € RV*H,
2) Time-Varying GRNNs: GCNNs can only extract spatial
features from each system state X; independently (12). For
this reason, we add recurrency to our GCNN model (12)
in order to capture the temporal observational dependencies
across the various stages of a FC sequence to construct a
GRNN. A time-varying GRNN extracts temporal features from
an input sequence (O; : i € [P]) by estimating a sequence
of hidden system states (Z; : ¢ € [P]) where each system
state Z; € RV>H jg latent that facilitates in summarizing the
entire past observational history, that is both redundant and
difficult to store, until stage ¢. This is done by judiciously
parameterizing each hidden system state Z; that is a function
of the graph-time filter output (11) operated on both the current
input system state X, and previous hidden system state Z;_1
independently to obtain

Zi =0 (Hi(Gi,X;; Hi) + Ha(Gii1,Zi 15 Ha))
(13)

where Hy : RVXF 5 RNXH gpd H, : RVXH 5 RNXH
are filters (11) each parameterized by a distinct set of filter
coefficients H, = {H} € RF*7 v k € [K]} and Hay =
{H? € RIXH v [ € [K]}, respectively. Subsequently, similar
to (12), to capture the non-linear relationships from each
hidden system state Z; to facilitate dynamic decision-making
on graphs G;, the estimated output system state Y; € RV*¢

Y: =p(H3(Gi,Zi s Hs)) Vie[P], (14)
where the graph-time filter Hy : RNXH — RNXG in (11) is
parameterized by the filter coefficient set s, G denotes the
number of estimated output features on each bus u € V;, and p
is a pointwise non-linearity applied element-wise to output Hs.
Note that H, K, G, o and p are hyper-parameters for a GRNN.
Additionally, the number of learnable parameters H; Vi € [3]
is independent of the system size N and the horizon P of
the FC sequence due to parameter sharing across the stages
of the FC, providing the model with flexibility to learn from
input sequences (O; : i € [P]) of different and long risk
assessment horizons without a combinatorial growth in the
number of learnable parameters, ensuring tractability. Next,
we leverage the sequence of GRNN output system states (Y :
i € [P]) to learn a strategy 7 ~ m* (9) to efficiently solve (4).
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Fig. 2: Graph recurrent Q-network (GRQN) architecture.
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C. Finding a Strategy via Graph Recurrent Q-learning

As discussed in Section IV, estimating Q(S;, a;) via tradi-
tional RL algorithms is intractable. Hence, we choose to pre-
dict Q(S;,a;) via NNs. However, since the agent is no
longer privy to the true underlying POMDP state S,, inspired
by the approach of [36], we develop a GRQN architecture
to estimate Y; (14) in order to predict Q(Y;,a;) as a
proxy to approximate Q(S;,a;). Additionally, since for any
given initial system state (Go, Xo), it is of interest to find S
number of FC sequences (4) with the maximum TLL, it is
not enough to predict Q(Y;, a;) but rather to guide the search
of subsequent FCs with the next highest TLL by leveraging
Q(Y;, a;). Therefore, we design a graph recurrent ()-learning
algorithm to discover the S number of FC sequences of interest
{Vi,...,V%} one after the other while concurrently training
the GRQN. Next, we discuss the GRQN architecture and the
designed training algorithm.

1) GRQN Architecture: The architecture consists of a time-
varying GRNN, parameterized by Ogrnn = {H; : i € [3]},
that sequentially processes observations at each stage of the
FC and a fully-connected NN, parameterized by Onn, to pre-
dict Q(Y;,a;) for each action a; € A;. Accordingly, we
parameterize the GRQN by 6 2 {OcrnN, Onn - For any FC
sequence Vs, an input data stream of observations Q; € RV*F
obtained at each stage ¢ of the FC acts as an input to the
GRNN using which an output system state Y; € RV*E ig
estimated. Subsequently, a fully connected NN of input and
output dimension N x G and |U|, respectively, is leveraged
to output a Q(Y5,:|0) € R vector consisting of Q-values
for each action. Overall, at each stage 7, a GRQN takes
O, and Z;_; as it’s baseline inputs, concisely denoted by
GRQN(O;,Z;_1|6), and outputs a vector Q(Y,,-|0) and the
next hidden system state Z; (13), crucial to carry forward to
guide the search of FCs during the training of the GRQN.
Note that we initialize Zo by 0 € RY*H_ Fig. 2 illustrates
the end-to-end GRQN architecture.

2) Sequential Experience Buffer: In order to deal with the
issue of catastrophic forgetting [28], we employ a sequential
experience buffer that stores FC sequences discovered dur-
ing training of the GRQN from which batches of random
sequences are sampled to facilitate the learning of parameters
6. While there exists various ways to implement such a buffer,
we employ an ordered list that stores all the visited transition

tuples as a sequence ((O;, a;,r;, O;11,end(O;11)) : i € [P])
where we have defined end(O;41) as a boolean value, if true,
indicating that the observation O;,; is associated with a last
stage of the risk assessment horizon P.

3) Training the GRQN: For stability in the training of the
GRQN, we employ the standard trick [28] of splitting the
task of predicting and evaluating ()-values via two separate
GRQNSs, a target network GRQN(-,:|@7) and a behavior
network GRQN(+,:|@) each parameterized by a distinct set
of parameters 6~ and 6, respectively. For every training
iteration n of the graph recurrent ()-learning algorithm, the
agent samples B random batches of FC sequences, each
of type ((Oj,a;,75,0;41,end(0j11)) : j € [P]), from
the sequential experience buffer on which the target GRQN
is unrolled to estimate Y; (14) using which B batches of
Q(Y;,:]67) are predicted with respect to the target network.
Subsequently, the agent computes a look-ahead target output
for each batch where each target ¢; Vj € [P] is given by

tj=rj+7-(1—end(Oj1))  maxQ(Y;41,a67) . (15)

Accordingly, the parameters of the behavior network is up-
dated via gradient descent with respect to a quadratic loss

Oni1 =6, —a-Vo(t; — Q(Y;,a,]0))* (16)

where « denotes the learning rate and n denotes the current
training iteration. The update (16) is preformed x times for
every action taken by the agent in any stage ¢ € [P] of the
FC and additionally, serves as a means to control the compu-
tational complexity of our learning algorithm. In this paper,
we employ the Adam optimizer [37] to perform the gradient
update (16) and update the target network parameters 8~ = @
at the end of every FC sequence discovered.

4) Graph Recurrent Hidden System State Updates: As the
agent gains more experience and continues to store visited
transition sequences of tuples in the experience buffer, the
hidden system state Z; of the GRNN may either zeroed or car-
ried forward after every newly discovered FC. Our experiments
suggest that sequential updates where the hidden system state
Z; (13) is carried forward from the previous stages throughout
the parameter update (16) leads to learning of better FC search
strategies. Hence, we choose to carry forward the previously
learned hidden system state during the training of our GRQN.

5) Outline of Algorithm 1: Algorithm 1 outlines the graph
recurrent (Q-learning algorithm used to learn the parameters
0 of the behaviour GRQN(,-|0) to facilitate the discovery
of the S number of FC sequences of interest. During the
initial few iterations, since the sequential experience buffer is
empty, we allow the agent to explore and fill the buffer with
FC sequences for Explore number of iterations offline (more
details in Section V-A1). Subsequently, the real-time algorithm
is initiated. Initially, the agent lacks any information about
the cascading failure dynamics. Hence, it relies on the prior
knowledge to construct U; ;, for any fault chain j in each stage
i € [P], as the agent is unable to evaluate the LL associated
with removing an arbitrary component ¢; € U;\{Ui_ U 1}
in any stage of the FC V;. Gradually, Algorithm 1 learns
to construct the sets f;; by leveraging the learned latent
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Algorithm 1 Graph Recurrent QQ-learning (GRQN)

1: procedure GRAPH RECURRENT (Q-LEARNING
2 Initialize behaviour network with random & GRQN(-, -|0)
3 Initialize target network with weights 6~ = @ GRQN(-,-|67)
4 Initialize Buffer < ()

5:  TInitialize Zo + 0 € RV*H
6: for Episode s=1,...,5 do
7 Episode < ()

8 Vs ()

9 Reset power-flow according to initial state Sg, Og
0 for Stage i =1,..., P do

1 _,Z; < GRQN(O;,Z;_1|0)

12: e explore if rdndi((]7 1) <e
exploit otherwise
13: Take action a; and determine f;
14: Vs «— Vs UU;
15: Update power-flow and obtain O; 41
16: Calculate load loss r; from (7)
17: Episode < Episode U (O;, a;, 7, O;41,end(0;11))
18: if s > Explore then
19: count(S;, a;) < count(S;,a;) + 1
20: for training n =1,...,x do
21: Sample B FC sequences from Buffer
22: tj,_<— GRQN(O]+1,0|9_) from (15)
23: Q(Y;,a;]0), _ < GRQN(O;,,0l6)
24: Calculate Vg (t; — Q(Y,a;]0))?
25: Update 0 as in (16)
26: Update € as in (19)
27: end for
28: end if
29: Update availability of actions backwards
30: end for
31: Buffer «— Buffer U Episode
32: Zo Zp
33: if TLL(Vs) > M then
34: Store risky FC
35: end if
36: 60— =26
37: end for

38: end procedure

39: Find the accumulated risk due to all the S FCs {V1,...,Vs}.

graphical feature representations. These representations are
obtained by optimizing the look-ahead target function (15)
characterized by the behavior network GRQN(-,:|@) since
the parameters 6 of this network determine the (@-values
influencing the actions a; € A; taken by the agent. Therefore,
when choosing actions a; € A;, the agent should make a
trade-off between exploration and exploitation throughout the
training of the GRQNs. Next, we discuss an exploration-
exploitation search strategy that the agent employs to make
the real-time search of FCs of interest more efficient.

D. Fault Chain Search Strategy

We employ the standard e-greedy search strategy with an
adaptive exploration schedule. Initially, the agent is compelled
to take actions based on prior knowledge to find FCs with
maximum expected TLL. Typically, since an outage of a
component carrying higher power makes the remaining com-
ponents vulnerable to overloading, a reasonable exploration
strategy of the agent would be to remove components carrying
maximum power-flow. Therefore, we follow a power-flow
weighted (PFW) exploration strategy (also adopted in [12])
such that, in any stage 7 of the FC, the agent chooses the gt
available component ¢] € A; according to the rule

PF(¢7)/1/count(S;, £) + 1
a; = argmax . ,
g S PR(E)/\/count(S;, F) + 1

K3

a7

with probability e where we denote PF(Z{ ) as the absolute
value of the power flowing through component ¢ and denote
count(S;, #!) as the number of times the component ¢/ was
chosen when the agent was in POMDP state S; in the past.
On the other hand, as the agent gains more experience, the
agent should choose actions based on the ()-values learned
via the behaviour network GRQN(-, -|@). Accordingly, a strat-
egy based on (Q-values learned by the agent is designed.
Specifically, actions are chosen proportional to the @Q-values
normalized by each POMDP state-action visit count to avoid
repetitions of FC sequences discovered earlier. Accordingly,
the agent chooses action a;

a; = argmax ' ,

¢ count(S;, ) +1

K2

(18)

with probability 1 — e.

In order to balance the exploration-exploitation trade-off
between (17) and (18) during the training of the GRQN, it is
important to dynamically alter the probability e so that, with
more experience, the agent chooses actions based on (18).
Appropriately, we follow the exploration schedule given by

Z\jf:l\ pF(g{)/\/count(Soag{) +1
Ay
2 PR

€ = max , €|

where ¢y ensures a minimum level of exploration.

V. CASE STUDIES AND DISCUSSION

In this section, extensive simulations are performed to
validate the proposed graphical framework to find FCs that
incur large TLLs. While we employ the DC power-flow model
to simulate FCs, other models such as the AC power-flow can
be easily integrated within our framework. In order to generate
FCs, we employ PYPOWER a port of MATPOWER [38] to
Python and leverage PyTorch [39] to train the behavior and
target GRQNs.

A. Algorithm Initialization and Evaluation Criteria

1) Offline Sequential Buffer Initialization: To initiate the
parameter update of the behavior GRQN via gradient de-
scent (16), there must exist at least B FC sequences in the
experience buffer. However, unlike in the case of (17), the
buffer can be populated offline for any loading condition.
Therefore, the agent can afford to take actions greedily with
respect to components conducting maximum power and, ac-
cordingly, backtrack to update the availability of actions to
avoid repeating FCs discovered previously. Hence, prior to the
start of our real-time FC search Algorithm 1, we let the agent
explore offline for Explore iterations where the agent, in any
stage 4, chooses actions according to the rule

PF(#)
a; = Argmax — 7 -
4 >h-1 PF(E)
with probability 1 to fill the sequential experience buffer. Note
that this needs to be done only once offline for any loading
condition. This is important since the quality of the sequences
in the buffer greatly affects the efficiency of the search.

. (20)
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Evaluation Metrics

Accuracy Metrics

Range for Accumulative TLL Range for the No. of Risky
Algorithm Ele TLL(V;) (in MWs) FCs Zle L(TLL(V;) > M) | Range for Regret(S) (in MWs) | Range for Precision(S)
Algorithm 1 (k = 3) 110.42 x 103 £ 37% 199 + 71 765.33 x 10° £+ 5.3% 0.169 £+ 35%
Algorithm 1 (k = 2) 96.18 x 10° + 38% 173 £ 59 779.57 x 10° £ 4.7% 0.144 + 34%
Algorithm 1 (k = 1) 86.43 x 10° + 35% 161 + 48 789.32 x 10° + 3.87% 0.134 £+ 29%
PFW + RL + TE [12] 60.63 x 10° + 3.4% 109 +£ 5 815.12 x 10° + 0.26% 0.0909 + 4.8%
PFW + RL [12] 57.18 x 10° + 3.1% 101 +£ 9 818.57 x 10° + 0.22% 0.084 + 3.7%

TABLE I: Performance comparison for the IEEE-39 New England test system.

2) Accuracy Metrics and Evaluation Criteria: We aim
to identify FCs with the largest TLLs. Hence, one natural
evaluation metric is the accumulated TLL due to the set
of FCs {V,...,Vs}. Besides that, we also consider the
total number of risky FCs discovered as a function of FC
sequence iterations s € [S], as considered in [12], to further
perform comparisons. A FC sequence V, is deemed risky
if it’s associated TLL exceeds a pre-specified level M, i.e.,
TLL(V,) > M. These two metrics are useful for evaluating the
relative performance of Algorithm 1 compared to alternative
approaches. For evaluating the accuracy of Algorithm 1, we
adopt the following two metrics that quantify the accuracy in
load loss and risky fault chain discovery rates.

a) Load Loss Accuracy: We define a regret term that
quantifies the gap between the accumulated TLL discovered
by Algorithm 1 and the optimal accumulated TLLs of the
ground truth FCs with the maximum TLL given by the set
{V5,...,V&}. Specifically, for s € [S] we define

S s
Regret(s) = > TLL(V;) =Y TLL(V) . @D
i=1 =1

A lower regret value indicates a higher accuracy.

b) Risky FC Discovery Rate: We define a precision
metric that quantifies the fraction of FCs that are deemed risky
in the set of discovered FC. Specifically, for s € [S] we define

Precision(s) = %ZH(TLL(VZ-) > M), (22)
i=1

where 1(-) denotes the indicator function. A higher precision
value indicates higher accuracy.

B. IEEE-39 New England Test System

This test system comprises of N = 39 buses and |U/| = 46
components, including 12 transformers and 34 lines. We con-
sider a loading condition of 0.55 x base_load, where base_load
denotes the standard load data for the New England test case
in PYPOWER after generation-load balance to quantify the
performance of our approach. These loading conditions were
chosen since it is relatively difficult to discover FCs with large
TLLs in a lightly loaded power system as there are fewer such
FCs in comparison to the space of all FC sequences |F]|.

1) Parameters and Hyper-parameters: The hyper-
parameters of the GRQNs are chosen by performing hyper-
parameter tuning. Accordingly, we choose H = G = 12
hidden and output number of features when computing both
the hidden system state (13) and the output system state (14).

We use K = 3 graph-shift operations for the graph-filter (11)
that is used to compute (13) and (14). We use both p and
o as the hyperbolic tangent non-linearity ¢ = p = tanh
and the ReLU non-linearity for the fully-connected NN that
approximates the ()-values. For other parameters, we choose
F = 1 since we employ voltage phase angles as the only
input system state parameter f, choose v = 0.99 since large
LLs mostly occur in the last few stages of the FC sequence,
an €y = 0.01 to ensure a minimum level of exploration during
the FC search process, a batch size B = 32, Explore = 250,
a risk assessment horizon P = 3, FC sequence iteration
S = 1200 (excluding the initial Explore iterations), learning
rate & = 0.005, and x € [3] that controls the frequency of
the learning update (16) and also governs the computational
complexity of the graph recurrent (-learning algorithm.

We consider M equal to 5% of total load (where the total
load is 0.55 X base_load). To quantify the regret (21), we
need to compute the TLL associated with the S most critical
FC sequences (ground truth) V¥, Vs € [S]. This is carried
out by generating all possible FC sequences (i.e., set F) with
a target horizon of P = 3 for the considered total load of
0.55 x base_load. By leveraging the pre-computed set F, we
observe a total of 3738 risky FCs for the loading condition
0.55 x base_load using our developed FC simulator.

2) Accuracy and Efficiency - Performance Results: Prior to
the start of Algorithm 1, we let the agent fill the experience
buffer for Explore iterations following the strategy (20) and
subsequently, initiate Algorithm 1. Table I illustrates the results
obtained. The first column specifies the algorithm employed
for evaluation. The second and third columns show the mean
and standard deviation of the evaluation metrics and the forth
and fifth columns show the mean and standard deviation of
the accuracy metrics defined in (21) and (22) for S = 1200.
It is observed that Algorithm 1 with a greater x discovers FC
sequences that incur larger accumulated TLL and also discov-
ers more number of risky FCs, on average. This indicates that
the accuracy metrics improve as « increases. This is expected
since the weights of the behaviour GRQN are updated more
frequently resulting in a more accurate prediction of the Q-
values associated with each POMDP state S;. For instance, the
average regret of Algorithm 1 for x = 3 is 765.33 x 103> MWs,
which is 3.04% lower than the average regret when x = 1.
Similarly, the average precision for x = 3 is 0.169, which is
26% higher than the average precision when x = 1. To further
assess how the accuracy metrics scale with s € [S], figures 3
and 4 illustrate the accuracy versus s € [S]. The observations
are consistent with Table I, where it is observed that a higher s
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Fig. 3: Regret(s) versus s for the IEEE-39 bus system.

results in a lower average regret and greater average precision.
It is noteworthy that the advantage of the setting x = 3 is
viable at the expense of incurring a higher computational cost.
This is due to more frequent weight updates rendering an
inevitable accuracy-complexity trade-off.

3) Comparison with Baselines: To further illustrate the
merits of the proposed graphical framework, we compare it
with two state-of-the-art baseline approaches proposed in [12].
We label the first approach in [12] based on the ordinary Q-
learning algorithm without prior knowledge as PFW + RL
and label their best performing approach based on transition
and extension of prior knowledge from other power system
snapshots by PFW + RL + TE. To ensure a fair comparison,
we employ the same exploration schedule for e discussed
in Section IV-D with the same parameters and the same
discount factor « for all the approaches. Note that, in the
PFW + RL + TE approach, we first run their proposed Q-
learning based approach offline, for a loading condition of
0.6 x base_load (bringing in the prior knowledge). This is run
for S = 5000 iterations to ensure the convergence of their
Q@-learning algorithm. Subsequently, we store its extensive
Q-table to run its PFW + RL + TE approach in real-time
for the considered loading condition of 0.55 X base_load,
signifying a transition from the power system snapshot loaded
at 0.6 x base_load and an extension to the current power
system snapshot loaded at 0.55 x base_load. Note that, when
performing comparisons, we set the parameters and hyper-
parameters associated with Algorithm 1 the same as that
described in Section V-B1.

a) Comparison under Unbounded Computational Bud-
get: In parallel to Algorithm 1, we simultaneously run the Q-
learning update discussed in [12] for both the PFW 4 RL and
PFW + RL 4 TE approaches to perform comparisons. Table I
compares the accuracy metrics for S = 1200, showing that
Algorithm 1 consistently outperforms both the other baseline
approaches by a wide margin. For instance, Algorithm 1
with x = 3 renders an average regret that is 6.2% smaller
than the regret associated with the best preforming baseline
PFW + RL + TE approach. Furthermore, we have two more
key observations. First, Algorithm 1 with x = 3 finds FC
sequences whose accumulated TLL is almost double than that
of the two baseline approaches.

Secondly, even though our approach is designed to optimize
the accumulated TLLs (4) that is quantified via regret (21), it
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--#- Algorithm 1 (k = 2)
—¥- Algorithm 1 (k =1)
~m- PFW+RL[12]
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Fig. 4: Precision(s) versus s for the IEEE-39 bus system.

also finds a larger number of risky FCs (on average). This is
reflected in Table I and Fig. 4. It is noteworthy that the baseline
approach PFW + RL + TE outperforms Algorithm 1 for the
first fifty search iterations as shown in Fig. 4. This is expected
since our approach does not assume any prior knowledge of the
failure dynamics while the PFW + RL + TE approach brings in
prior knowledge via the extensive ()-table computed offline for
the power system snapshot loaded at 0.6 x base_load. However,
as S increases, Algorithm 1 learns the failure dynamics more
accurately, resulting in improved accuracy metrics than that
of baseline approaches. For example, the average precision of
Algorithm 1 with x = 3 is roughly 86% more than that of
PFW + RL + TE and 99% more than PFW + RL.

b) Comparison under Bounded Computational Budget:
The previous subsection focused on the performance, sans the
computational complexity of performing each FC sequence
iteration s € [S]. For real-time implementation, the compu-
tational complexity of the FC search should be within the
period of a dispatch cycle. Hence, we evaluate all the above
approaches considering a given computational budget. Specif-
ically, we consider the same evaluation and accuracy metrics
as discussed in Section V-A2 and evaluate them considering
a strict run-time of five minutes for the algorithms, averaged
over 50 Monte Carlo iterations. Table II illustrates the relative
performance of different algorithms under budget. There are
three main observations. First, within the 5 minute computa-
tional time budget, for k = 3, the number of FC sequences
discovered is considerably smaller than other algorithms. This
is reflected in the second column of Table II. This observation
is expected since a large value of x necessitates a larger
computation time per FC search iteration due to the gradient
update (16), and hence, affords fewer search iterations. Sec-
ondly, when comparing the evaluation metrics, Algorithm 1
with k£ = 2 finds the greatest accumulated TLL and also the
largest number of risky FCs, on average. Although both PFW
+ RL and PFW + RL + TE approaches find the most number
of FC sequences, S = 1608 and S = 1611, respectively, the
quality of the FCs found are inferior compare to Algorithm 1
with k = 2 since their accumulative TLL and the number of
risky FCs are smaller. Third, when comparing the accuracy
metrics, the average regret and precision for Algorithm 1 with
k = 3 outperform other algorithms. Although this approach
only finds S = 575 FCs on average, it yields the most quality
FC sequences since the frequent update of the behavior GRQN
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10
Evaluation Metrics Accuracy Metrics
Average No. of FC Range for Accumulative TLL Range for the No. of Risky
Algorithm Sequences S Discovered Zf:l TLL(V;) (in MWs) FCs E;’:I L(TLL(V;) > M) | Range for Regret(S) (in MWs) | Range for Precision(S)
Algorithm 1 (k = 3) 575 63.484 x 10° + 36.7% 104 + 33 457.09 x 10> £ 5.9% 0.1791 + 31%
Algorithm 1 (k = 2) 700 79.792 x 105 £ 39% 123 + 38 521.47 x 10° + 7.5% 0.1752 £+ 31.5%
Algorithm 1 (k = 1) 937 70.848 x 10° + 33.3% 117 + 34 673.56 x 10 + 4.76% 0.1249 + 29.1%
PFW + RL + TE [12] 1608 68.74 x 10> + 3.4% 112 £+ 4 965.41 x 10° £ 1.61% 0.0698 + 2.91%
PFW + RL [12] 1611 65.35 x 103 + 3.9% 105 £ 5 969.78 x 10° + 2.27% 0.0653 £+ 5.07%

TABLE II: Performance comparison for a computational time of 5 minutes for the IEEE-39 New England test system.

weights results in a more accurate (-value prediction that
optimize (4) better per search iteration s € [S]. Compared
to non-graphical algorithm counterparts, although it can find
fewer FC sequences .S, it has been able to identify the more
relevant sequences of interest.

It is noteworthy that we have evaluated all the algorithms
on a standard computer with no Graphics Processing Units
(GPUs). By leveraging GPUs, our approach can accelerate the
risky FC search process even further as GPUs are designed
to facilitate the operations involving matrix and vectors for
efficient training of the GRQNs, as opposed to other two
baselines approaches that, cannot be accelerated for a given
computation time.

C. IEEE-118 Test System

This test system consists of N = 118 buses and || =
179 components. We consider a loading condition of 0.6 x
base_load, where base_load denotes the standard load data
for the IEEE-118 test case in PYPOWER after generation-
load balance to quantify the performance of our approach.

1) Parameters and Hyper-parameters: We choose H =
G = 48 hidden and output number of features when computing
both the hidden system state (13) and the output system
state (14). We use K = 3 graph-shift operations for the
graph-filter (11), use both p and o as the hyperbolic tangent
non-linearity ¢ = p = tanh and the RelLU non-linearity for
the fully-connected NN to approximate ()-values. For other
parameters, we choose F' = 1 since we employ voltage phase
angles as the only input system state parameter f, choose
v = 0.99, ¢¢ = 0.01, a batch size B = 32, Explore = 250,
a risk assessment horizon P = 3, FC sequence iteration
S = 1600 (excluding the initial Explore iterations), learning
rate o = 0.0005, and x € [3]. We set M to 5% of total load
(where the total load is 0.6 x base_load).

2) Accuracy and Efficiency — Performance Results: Al-
gorithm 1 is initiated after the experience buffer is filled
for Explore search iterations. Table III illustrates the results
obtained. Similar to 39-bus system, we observe that Algo-
rithm 1 with a greater s discovers FC sequences with larger
accumulated TLLs and discovers more number of risky FCs
leading to superior accuracy metrics for larger «. For instance
the average regret of Algorithm 1 with k = 3 is 321.90 x 103
MWs and it is 0.4% lower the average regret when x = 1.
Similarly, the average precision when x = 3 is 11.7% higher
that of x = 1. Figures 5 and 6 illustrate the average accuracy
metrics for Algorithm 1 as a function of s € [S].

3) Comparison with Baselines: We perform comparisons
with the two baselines approaches in [12], i.e., the PFW + RL
and PFW + RL + TE. For the PFW + RL + TE approach, we
first run their proposed (J-learning-based approach offline, for
a loading condition of 1.0 x base_load (bringing in the prior
knowledge) for S = 5000 iterations and store its extensive Q-
table to run the PFW + RL + TE approach in real-time for the
considered loading condition of 0.6 x base_load, signifying a
transition from 1.0 x base_load to an extension to the current
system loaded at 0.6 x base_load. We set the parameters and
hyper-parameters as described in Section V-CI.

a) Comparison under Unbounded Computational Bud-
get: Table III compares the accuracy metrics for S = 1600,
showing that Algorithm 1 consistently outperforms both the
other baseline approaches. Figure 5 shows how the average
regret scales as a function of search iterations s € [S]. Fur-
thermore, even though our approach is designed to optimize
the accumulated TLLs (4) that is quantified via regret (21), it
also finds a larger number of risky FCs.

b) Comparison under Bounded Computational Budget:
We next evaluate all the above approaches considering a run-
time computational budget of five minutes, averaged over 25
MC iterations, and Table IV illustrates the relative perfor-
mance. All the observations corroborate those observed for
the 39-bus system.

D. Discussion

1) Performance Comparisons: The ordinary Q-learning
algorithm performs only one ()-value update for every ac-
tion taken by the agent due to the intrinsic design of the
algorithm illustrated in [12]. On the other hand, the graph
recurrent ()-learning algorithm discussed in section IV-C can
perform multiple gradient updates (x in the inner loop in
Algorithm 1) that directly influence the -values learned
by the agent, via the GRQN. This is possible due to the
availability of a sequential experience buffer. This, in turn,
facilitates learning more efficient strategies in fewer search
trials. We also emphasize the approach in [12] models each
permutation of component outages as a unique MDP state,
and as a result, it stores the ()-values for a combinatorial
number of resulting MDP state-action pairs in an extensive
(Q-table, rendering it not scalable. However, by judiciously
leveraging the graphical structure of each POMDP state and
appropriately modeling the dependencies across the various
stages of the FC, we have bypassed the storage challenge with
fewer modeling assumptions while, at the same time, achieving
better performance.
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Evaluation Metrics Accuracy Metrics

Range for Accumulative TLL Range for the No. of Risky
Algorithm % TLL(V;) (in MWs) FCs 3% | 1(TLL(V;) > M) | Range for Regret(S) (in MWs) | Range for Precision(sS)
Algorithm 1 (x = 3) 4573 x 10° £ 16% 302 + 49 321.90 x 10° £ 2.3% 0.19 £ 17%
Algorithm 1 (k = 2) 40.42 x 10° + 1% 254 + 39 327.22 x 10° + 2.4% 0.16 £ 15%
Algorithm 1 (x = 1) 44.62 x 10° £ 12% 274 + 28 323.02 x 10° £ 1.7% 0.17 £ 10%
PFW + RL + TE [12] 34.23 x 10° + 2.7% 208 + 6 333.40 x 10° + 0.28% 0.13 + 3%
PFW + RL [12] 35.50 x 103 £+ 2.4% 174 £ 8 332.14 x 10° £+ 0.25% 0.11 £ 5%

TABLE III: Performance comparison for the IEEE-118 test system.
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Fig. 5: Regret(s) versus s for the IEEE-118 bus system.

2) Scalability: For large networks, we can further leverage
the structure of our GRNN by following an approach based
on distributed processing. Specifically, we partition the system
into smaller subsystems following the conventional approaches
for other monitoring purposes (e.g., estate estimation). The
size of subsystems can be decided based on the computational
complexity the system operator can afford. The FCs are
subsequently identified within each subsystem. The identified
risky FCs can be subsequently concatenated to form the FCs
for the entire system. This approach, of course, might induce
suboptimality in the overall performance of identifying the
risky fault chains. Nevertheless, the level of suboptimality
induced is expected to be negligible by noting that a fault
with a high probability will lead to other faults in its locality.

3) Model Adaptation: The computational complexity of
learning the failure dynamics can vary across different cascad-
ing failure models. The agent’s role is to learn the underlying
failure dynamics via repeated interactions with the cascading
failure simulator. Under different models (e.g., DC power flow
model, AC power flow model, transient stability model), the
complexity of the learning environment changes. As expected,
the transient stability-related models are more challenging
to learn than DC power flow-based models under the same
number of search iterations .S. When S is small, the difference
in accuracies can be considerable, and the simpler models
(e.g., DC power flow-based) will exhibit better performance.
Nevertheless, the performance gap diminishes as the S in-
creases, and the complex models also get a chance to be
learned accurately. When prediction accuracies are compared
over an arbitrary number of search iterations .S (each model
can have different search iterations S), then we expect all the
models to render similar performance since the latent feature

—&— Algorithm 1 (k = 3)
| -#- Algorithm 1 (k = 2)
d —¥ Algorithm 1 (k = 1)
'!l -m- PFW +RL[12]

—-® PFW+RL+TE[12]
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Fig. 6: Precision(s) versus s for the IEEE-118 bus system.

representation of the GRNN will be able to better learn the
underlying failure dynamics.

4) Robustness to Different Cascade Triggers: This paper
focuses on triggering mechanisms that fall within the general
framework of topological changes, i.e., component failures and
their subsequent failures. However, other types of triggering
mechanisms such as inappropriate power system control de-
cisions and hidden failures in protection systems, to name a
couple, also influence the final load loss. As a result, the type
of triggering mechanism directly influences the complexity
of the learning problem and the agent decision process. One
commonality, however, across the different types of triggering
mechanisms is that the underlying topology of the network is
bound to change as the cascading failure evolves. Therefore,
our framework (which explicitly takes into account the topo-
logical changes) can be readily customized to accommodate
other triggers. For instance, in cases where power system
control decisions trigger the initial failures, the actions space
A; can be modeled as continuous, resulting in a more complex
agent learning problem. In such cases, an obvious modification
would be to augment the input system state X,; to include
more nodal features (e.g., net power injection and voltage
magnitudes). This results in a greater amount of information
propagated across the hidden layers Z,. Subsequently, this
results in a more complex objective that is a function of
the output Y,; of the time-varying GRNN architecture, and
the action space .4;. Optimizing this objective can potentially
incur failure paths resulting in maximum load shed. This way,
the proposed framework can be robust to the initial fault event
type by appropriate re-formulation.
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Evaluation Metrics Accuracy Metrics
Average No. of FC Range for Accumulative TLL Range for the No. of Risky
Algorithm Sequences S Discovered Zle TLL(V;) (in MWs) FCs E;’:I L(TLL(V;) > M) | Range for Regret(S) (in MWs) | Range for Precision(S)
Algorithm 1 (k = 3) 186 11.46 x 10% + 16.2% 92 + 10 175.63 x 10° + 3.4% 0.201 + 15%
Algorithm 1 (k = 2) 239 18.32 x 10° + 18% 101 + 12 212.22 x 10° + 4.1% 0.17 + 14%
Algorithm 1 (k = 1) 301 19.86 x 105 + 13% 115 £ 7 256.75 x 103 £ 2.6% 0.18 £ 13%
PFW + RL + TE [12] 527 18.56 x 10° £ 3% 102 £ 3 436.22 x 10° £ 0.98% 0.096 + 5%
PFW + RL [12] 522 17.98 x 103 £ 3% 97 + 4 439.13 x 10° + 1.1% 0.092 £ 6%

TABLE IV: Performance comparison for a computational time of 5 minutes for the IEEE-118 bus test system.
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