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Abstract—This paper proposes a data-driven graphical frame-
work for the real-time search of risky cascading fault chains
(FCs). While identifying risky FCs is pivotal to alleviating
cascading failures, the complex spatio-temporal dependencies
among the components of the power system render challenges to
modeling and analyzing FCs. Furthermore, the real-time search
of risky FCs faces an inherent combinatorial complexity that
grows exponentially with the size of the system. The proposed
framework leverages the recent advances in graph recurrent
neural networks to circumvent the computational complexities
of the real-time search of FCs. The search process is formalized
as a partially observable Markov decision process (POMDP),
which is subsequently solved via a time-varying graph recurrent
neural network (GRNN) that judiciously accounts for the inherent
temporal and spatial structures of the data generated by the
system. The key features of this structure include (i) leveraging
the spatial structure of the data induced by the system topology,
(ii) leveraging the temporal structure of data induced by system
dynamics, and (iii) efficiently summarizing the system’s history
in the latent space of the GRNN. The proposed framework’s
efficiency is compared to the relevant literature on the IEEE
39-bus New England system and the IEEE 118-bus system.

I. INTRODUCTION

Large-scale disruptions in power systems generally follow a

sequence of less severe anomalous events that gradually stress

the system over time. Various reports on the events preceding

blackouts indicate that system operators are either unaware

of these gradual changes or oblivious to the contingencies

following these changes. Specifically, such small-scale anoma-

lies can lead to hidden failures that propagate and eventually

result in large-scale monitoring, and control disruptions. For

instance, in a report by the North American Electric Reliability

Corporation [1], it was concluded that inadvertent tripping of a

power line led to a series of failures causing the 2003 blackout

in North America. Therefore, forming real-time and accurate

situational awareness in power systems has a pivotal role in

ensuring a secure and reliable power system operation.

In this paper, we formalize a graphical framework for

dynamically predicting the chains of risky faults a power

system faces. A fault chain (FC) is a sequence of consecutive

component outages that captures the temporal evolution of a

cascading outage process. Due to the combinatorially extensive

number of possible failures, which grows with the system

size and failure horizon, finding critical failure sequences is

computationally challenging. Since a FC captures the high-

impact and rear-occurrence characteristic of cascading failures

in any dynamically-changing power system partly, timely

identification of the riskiest FCs to system operators for any
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given system state is instrumental to predicting failures and

preventing cascading failures.

Predicting FCs and assessing their risks can be formal-

ized by (i) creating an exhaustive list of all possible failure

scenarios up to a specific time horizon, (ii) evaluating the

disruption (e.g., load loss) caused by each, and (iii) evaluating

the likelihood of each scenario. Accomplishing these three

tasks faces the following two key challenges. First, the space

of scenarios grows exponentially fast with the power system

size and time horizon, rendering listing all scenarios computa-

tionally prohibitive even for moderate network sizes and target

horizons. Secondly, the system changes dynamically with high

unpredictability, which necessitates constantly updating the

scenario space. Before specifying our approach, we review

the existing literature relevant to this paper’s scope.

A. Literature Review

In this subsection, we provide an overview of the literature

most closely related to the scope of this paper. The study

in [2] aims to identify and quantify all the vulnerable sections

of the power system that can potentially lead to cascading

failures. Specifically, it develops a FC framework for risky

FC identification to address this. In [3], a rapid stochastic

procedure is proposed to yield large collections of high-risk

FCs. Despite the effectiveness of [3], such a method faces a

computational bottleneck addressed by the study in [4], which

proposes eliminating a large number of redundant constraints

to make the contingency screening more efficient. With similar

motivation, [5] formulates a bi-level optimization problem

to gain a higher evaluation efficiency for risky FC search

and [6] employs a sequential importance sampling algorithm

to acquire critical FCs from cascading outage simulations. Due

to a variety of other benefits associated with identifying a

collection of risky FCs, FC search algorithms are employed for

risk-assessment [7]–[9], risk mitigation [10], and vulnerable

component identification [11], [12] and others [13].

There exist a number of machine learning (ML) approaches

that aim to enhance the efficiency of risky FC search. Broadly,

these models quantify the vulnerability of each power system

component from simulated power system operational data by

learning data-driven models. For instance, the study in [14]

formulates the search for risky FCs in a Markov decision pro-

cess (MDP) environment and employs reinforcement learning

(RL) algorithms to find risky FCs. The investigation in [15]

employs deep neural networks to obtain critical states during

cascading outages, and [16] employs convolutional neural

networks for faster contingency screening. The study in [12]

proposes a transition-extension approach that builds upon

the RL approach in [14] to make it amenable to real-time

implementation. This is facilitated by exploiting the similarity

between adjacent power-flow snapshots. Finally, [17] proposes
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to employ graph convolutional neural networks that leverage

the grid’s topology to identify cascading failure paths.

In parallel to ML-based approaches, there also exist model-

based approaches that quantitatively and qualitatively model,

analyze and simulate large-scale cascading outage processes.

This is done by developing simulation models that capture

the power system physics. The first category of studies aims

to develop high-level statistical models to facilitate faster

computation and quick inference. Generally, these are data-

driven models such as CASCADE [18], the branching process

model [19], the interaction model [20], and models based on

influence graphs [21], [22]. While these approaches are quick

in revealing important quantitative properties of cascading

outages and often lead to interpretable conclusions due to

their ability to capture the non-local behavior of the cascading

outage process, such models cannot accommodate the time-

varying interactions among components at different stages of

a cascade. To tackle this challenge, detailed failure models

such as the OPA [23], improved OPA [24], random chemistry

model [3] and others [25], [26] are studied that precisely

model the AC power-flow and power dispatch constraints of

the components in the grid while simulating the cascading

outage process. Despite their detailed modeling and effec-

tiveness, these models are computationally intensive, a major

impediment to their adoption for real-time implementation.

B. Contribution

Despite the effectiveness of the aforementioned models,

these models broadly face the following challenges: (i) The

models fail to capture the concurrent spatio-temporal de-

pendencies across the time horizon among the components

of the power system under dynamically changing network

topologies. (ii) The cascading outage process is assumed to

follow Markov property. While this simplification can ren-

der reasonable approximations during the earlier stages of

the cascading failure, the later stages of the failure process

typically exhibit temporal dependencies beyond the previous

stage, making the Markovian assumptions inadequate. (iii)

These models become prohibitive even for moderate grid sizes

due to the combinatorial growth in either the computational or

storage requirements with the number of components in the

grid.

We propose a data-driven graphical framework for effi-

ciently identifying risky cascading FCs to address the afore-

mentioned challenges associated with the ML approaches. The

proposed framework designs a graph recurrent neural network

(GRNN) to circumvent the computational complexities of the

real-time search of FCs. The search process is formalized as

a partially observable Markov decision process (POMDP),

which is subsequently solved via a time-varying GRNN that

judiciously accounts for the inherent temporal and spatial

structures of the data generated by the system. The key features

of this structure include (i) leveraging the spatial structure of

the data induced by the system topology, (ii) leveraging the

temporal structure of data induced by system dynamics, and

(iii) efficiently summarizing the system’s history in the latent

space of the GRNN, rendering the modeling assumptions real-

istic and the approach amenable to real-time implementation.

Finally, we highlight the difference between our proposed

approach and the graph neural network (GNN)-based approach

investigated in [17]. The goal in [17] is to detect all cascading

failure paths that lead to load-shedding in a limited number of

search attempts. Such a decision is binary since a cascading

failure path may either lead to load shedding or not. In

contrast, our approach aims to identify cascading failure paths

with maximum risk (FCs with maximum load-shed) in a

limited number of search attempts where, ideally, the most

critical cascading failure paths should be identified earlier

than the relatively less critical ones. While related, the problem

descriptions and the attendant solutions are distinct.

II. PROBLEM FORMULATION

A. System Model

Consider a power system consisting of N buses. To capture

the interconnectivity of the system, we represent it by an

undirected graph G
4

= (V,E), where the set of vertices

V
4

= [N ]
4

= {1, . . . , N} represents the buses and the edge

set E ⊆ V × V represents the transmission lines. We denote

the binary adjacency matrix of G by B ∈ {0, 1}N×N such

that bu,v
4

= [B]u,v = 1 indicates there exists at least one

transmission line between buses u and v (e.g., in the case

of parallel transmission lines). We define X ∈ R
N×F as

the system state matrix of the grid, which compactly represents

F system state parameters (e.g., voltage angles, injected real

power) for all the N buses and we refer to any system state

parameter f ∈ {1, . . . , F} of bus u ∈ [N ] by xu,f
4

= [X]u,f .

B. Modeling Fault Chains

Depending on an array of internal (e.g., system instabilities)

and external (e.g., weather) conditions, the system faces a

degree of risk in disruptions that may lead to component

outages. We focus on transformers and transmission lines as

the components of interest. When the outages are substantial

enough, they can lead to more outages, resulting in a FC. Our

objective is to dynamically identify the FCs that the system

faces and assess their associated risks (e.g., load losses). In

this subsection, we formalize a model for FCs and their risks

based on an objective formalized in the next subsection.

Consider the topology of a generic outage-free system that

precedes an FC given by G0, and denote the associated system

state by X0. A generic FC that the system might be facing is

specified as a sequence of consecutive component outages that

represents a cascading outage process. Consider a FC model

that consists of at most P stages, where P can be selected

based on the horizon of interest for risk assessment, and denote

the set of all components in the system by U . It is noteworthy

that the number of stages in different FCs can be distinct. In

cases that a fault chain terminates before P̃ < P stages, it

means that the sets {UP̃+1
, . . . ,UP } will be empty sets.

In each stage i ∈ [P ], a number of additional components

fail. We define Ui as the set of components that fail in stage

i ∈ [P ]. We note that the set Ui could consist of more than one

component failures in any stage i, i.e., |Ui| ≥ 1. We also note

that when a transmission line fails and it has parallel channels,
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only the failed line will be included in Ui, and its parallel

lines will be retained as functioning components. Clearly, Ui ⊆
U\{∪i−1

j=1Uj}, and the sequence of components that fail in P
stages is specified by a FC sequence V

V
4

= 〈U1,U2, . . . ,UP 〉 . (1)

Additionally, we denote the healthy components in any stage

i of the FC by `i ∈ U\{∪i−1
j=1Uj}. We note that when the

failure process is slow (e.g., in the earlier stages of a cascading

failure), the sets Ui have fewer components, and when the

process is fast (e.g., last stages of a cascading failure), these

sets are more populated since component outages are usually

grouped depending on their time of occurrence [8], [9], [21].

Due to component outages in each stage i, the system’s

topology alters to Gi
4

= (Vi, Ei) with an associated adjacency

matrix Bi and an underlying system state Xi. Consecutive fail-

ures lead to compounding stress on the remaining components,

which need to ensure minimal load shedding in the network.

Nevertheless, when the failures are severe enough, they can

lead to load losses. We denote the load loss (LL) imposed by

the component failures in Ui in stage i by LL(Ui), i.e.,

LL(Ui)
4

= load(Gi−1)− load(Gi) , (2)

where load(Gi) is the total load (in MWs) when the system’s

state in stage i is associated with the topology Gi. Accordingly,

we define the total load loss (TLL) imposed by the FC V by

TLL(V)
4

=

P
∑

i=1

LL(Ui) . (3)

C. Problem Statement

Due to the re-distribution of power across transmission lines

after each stage of the FC, some FC sequences particularly lead

to substantial risks and owing to the continuously time-varying

system’s state, different loading and topological conditions

face different risks. Hence, it is important for system operators

to find, efficiently and in real-time, the set of FCs with the

largest TLL associated with any given initial system state X0.

Our objective is to identify S number of FC sequences,

each consisting of P stages, that impose the largest TLL. To

formalize this, we define F as the set of all possible FCs

with a target horizon of P , and our objective is to identify S
members of F with the largest associated losses. We denote

these S members by {V∗
1 , . . . ,V

∗
S}. Identifying the sets of

interest can be formally cast as solving

P : {V∗
1 , . . . ,V

∗
S}

4

= argmax
{V1,...,VS} :Vi∈F

S
∑

i=1

TLL(Vi) . (4)

Problem P aims to maximize the accumulated TLL due to

the S number of FC sequences. Without loss of generality, we

assume that the TLLs of the set of sequences {V∗
1 , . . . ,V

∗
S}

are in the descending order, i.e., TLL(V∗
1 ) ≥ TLL(V∗

2 ) ≥
· · · ≥ TLL(V∗

S). Solving P faces a significant computational

challenge since the cardinality of F grows exponentially with

the system size N , the number of components |U|, and the

risk assessment horizon P .

III. SEQUENTIAL SEARCH VIA POMDPs

A. Sequential Search

To circumvent the complexity of solving P in (4), we design

an agent-based learning algorithm that sequentially constructs

the set of FCs {V∗
1 , . . . ,V

∗
S}. Specifically, the agent starts with

constructing V∗
1

4

= 〈U1,1, . . . ,U1,P 〉 such that it sequentially

identifies the sets {U1,1, . . . ,U1,P } in each stage i ∈ [P ] as

follows. The agent admits the topology and the system state as

its initial baseline inputs, denoted by G0 and X0, respectively.

In the first stage, the agent identifies the components in

U removing which is expected to impose the most intense

TLL. To control the complexity and reflect the reality of

FCs, in which failures occur component-by-component, we

are interested in identifying only one component in each

stage. Nevertheless, due to the physical constraints, removing

one component can possibly cause outages in one or more

other components in the same stage. We denote the set of all

components to be removed in the first stage by the set U1,1.

The risk associated with each candidate set U1,1 has two,

possibility opposing, impacts. The first pertains to the imme-

diate loss due to component failures in U1,1, and the second

captures the losses associated with the future possible failures

driven by the failures in U1,1. Hence, identifying the sets U1,1

involves look-ahead decision-making and cannot be carried

out greedily based on only the immediate LLs. Once the set

U1,1 is identified (via our proposed Algorithm 1 the details

of which we discuss in Section IV-C), the agent removes all

the components in this set to update the grid topology to G1,

and uses simulations (by solving a power-flow or an optimal

power-flow, if necessary) to determine the associated system

state X1.

Subsequently, G1 and X1 are leveraged to identify the set

U1,2 by removing the components from the set U\{U1,1}, and

this process continues recursively for a total of P stages, at the

end of which the set V∗
1 is constructed. Subsequently, a similar

process is repeated to construct V∗
2 and the algorithm repeats

this process S times to identify S sequences of interest. While

repeating the search process, it is important that the agent

avoids finding the same FC sequences over and over again

that were discovered previously. Accordingly, as discussed in

detail in Section IV-D, we alter the agent decision process to

take into account the number of times any given component

was removed. Fig. 1 illustrates a search process where an agent

constructs a FC sequence V∗
s = 〈`11, `

2
2, `

1
3〉 by leveraging the

current system state (Gi,Xi) in each stage i ∈ [3].

B. Modeling Search as a POMDP

The cascading outage process renders temporal dependen-

cies across outage stages, typically spanning more than two

stages. The full extent of such dependencies might be hidden

in the observed (time) domain. We leverage the hidden de-

pendencies in the latent (hidden) space of the fault chain gen-

eration process. Since the observation at each stage provides

only partial information for decision making, we formalize the

agent decision process at every stage of the search process by a

partially observed Markov decision process (POMDP). In our

search process, to control the computational complexity, we
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determine the system state in stage (i+1), i.e., (Gi+1,Xi+1)
by leveraging the system state (Gi,Xi) in stage i. Neverthe-

less, the load loss at stage (i + 1) depends on all the past i
stages and the set of components removed in those system

states. In this subsection, we characterize the POMDP of

interest, and address solving it in Section IV.

We denote the partial observation that the agent uses at

stage i to determine the system state at stage i+ 1 by Oi
4

=
(Gi,Xi). Accordingly, we define the sequence

Si
4

= 〈O0, . . . ,Oi〉 , (5)

which we refer to as the POMDP state at stage i, and it

characterizes the entire past sequence of observations that

render Oi+1. As stated earlier, at stage i only Oi is known to

the agent. At stage i, upon receiving the observation Oi, the

agent aims to choose a component from the set of available

components to be removed in the next stage. To formalize

this process, we define the agents action as its choice of

the component of interest. We denote the action at stage i
by ai. Accordingly, we define the action space Ai as the

set of all remaining components, i.e., Ai
4

= U\{∪i−1
j=1Uj}.

Once the agent takes an action ai ∈ Ai in stage i, the

underlying POMDP state in next stage is randomly drawn

from a transition probability distribution P

Si+1 ∼ P(S | Si, ai) . (6)

Probability distribution P captures the randomness due to the

power system dynamics, and it is determined by the generator

re-dispatch strategy in each stage of the FC. To quantify the

risk associated with taking action ai in POMDP state Si when

transitioning to Si+1, we define an instant reward ri

ri
4

= r(Si+1 | Si, ai)
4

= load(Gi)− load(Gi+1) . (7)

Hence, for any generic action selection strategy π, the aggre-

gate reward collected by the agent starting from the baseline

POMDP state can be characterized by a value function

Vπ(S0)
4

=

P−1
∑

i=0

γi · r(Si+1 | Si, π(Oi)) , (8)

where the discount factor γ ∈ R+ decides how much future

rewards are favored over instant rewards, and π(Oi) denotes

the action selected by the agent given an observation Oi in

stage i ∈ [P ]. Therefore, finding an optimal action selection

strategy π∗ for the agent can be formally cast as solving

Q : π∗ 4

= argmax
π

E [Vπ(S0)] . (9)

IV. GRNN-BASED APPROACH TO SOLVING POMDPs

A. Motivation

An optimal strategy π∗ (9) in a POMDP environment can

be found by leveraging classical dynamic programming algo-

rithms. Such traditional solutions, however, not only require

the knowledge of the transition probability model P and the

reward function dynamics but also pose a significant compu-

tational challenge when solving for π∗. Under such unknown

model settings, Q-learning serves as an effective model-free
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Fig. 1: An agent decision process rendering a FC V∗

s = 〈`11, `
2
2, `

1
3〉.

value-based RL algorithm [27] that can find optimal strategies,

although only in an MDP environment. In particular, the

algorithm focuses on implicitly estimating the MDP state

value function (8), from each state Si, associated with every

action ai ∈ Ai. These estimates are widely referred to as Q-

values, denoted by Q(Si, ai) ∈ R, where a higher Q(Si, ai)
indicates that taking an action ai from a MDP state Si yields

better aggregate future rewards [27].

Note that, however, when solving Q in a POMDP envi-

ronment, the ordinary Q-learning algorithm is ineffective as

partial observations Oi are typically not reflective of the un-

derlying POMDP state Si. As a result, Q(Oi, ai) 6= Q(Si, ai).
Therefore, designing real-time FC search algorithms critically

hinges on finding an accurate and efficient solution to Q in (9).

To this end, we aim to design an approach that judiciously

exploits the underlying structure of each POMDP state Si. In

particular, we develop a graph recurrent Q-network (GRQN)
architecture that exploits the following three key elements:

1) Neural Networks for Q-value Prediction: Implement-

ing the ordinary Q-learning algorithm relies on building Q-

tables that store Q-values for each POMDP state-action pair.

However, storing such a Q-table imposes a significant storage

challenge even for moderate system sizes since the number of

state-action pairs scales combinatorially with the system size

N . Furthermore, such an algorithm fails to incorporate contin-

uous POMDP state spaces Si. As a remedy, we employ univer-

sal function approximators such as NNs to predict Q(Si, ai)
values as approximate surrogates for each estimated POMDP

state-action element in the Q-Table [28].

2) Spatial Correlation: The data streams generated by

measurement units across the network have strong spatial

correlation induced due to the inherent meshed topology of

transmission networks. Specifically, the coordinates of Xi,

in each stage i, are statistically correlated, and hence, data

streams are typically jointly modeled via probabilistic graphi-

cal models [29], [30]. Therefore, it is important to judiciously

leverage the spatial structure of Xi when solving Q.

3) Temporal Correlation: Besides the spatial correlation,

there exists a strong temporal structure induced due to the

observational dependencies across the successive stages of any

FC sequence. In particular, the load loss incurred due to a

component failure in stage i depends on the set of components

that have failed in all the preceding (i− 1) stages.
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To this end, in order to exploit the spatio-temporal correla-

tion among the coordinates of a sequence of system states Xi

to predict Q(Si, ai) values accurately, we leverage the output

of a time-varying GRNN to incorporate the spatial structure

and leverage its recurrency to effectively integrate observa-

tional dependencies through time to account for the temporal

structure. Subsequently, the GRNN output then acts as an input

to a NN that predicts Q-values for each POMDP state-action

pair, altogether assembling into an GRQN architecture. Next,

we discuss the various components of the time-varying GRNN,

and discuss designing a learning algorithm to search for FC

sequences of interest in Section IV-C.

B. Development of a Time-Varying GRNN Model

GRNNs are a family of GNN architectures specialized

for processing sequential graph structured data streams [31].

These architectures exploit the local connectivity structure

of the underlying network topology Gi to efficiently extract

features from each bus by sequentially processing time-varying

system states Xi that evolve on a sequence of graphs Gi.

More broadly, these architectures generalize recurrent neural

networks [32] to graphs. To lay the context for discussions, we

first discuss time-varying graph convolutional neural networks

(GCNNs), the components of which serve as an essential

building block to motivate time-varying GRNNs.

1) Time-Varying GCNNs: Consider the ith stage of a FC

sequence Vs where an agent receives an observation Oi
4

=
(Gi,Xi) on graph Gi associated with an adjacency matrix

Bi. Central to the development of GCNNs is the concept

of a graph-shift operation that relates an input system state

Xi ∈ R
N×F to an output system state Fi ∈ R

N×F

Fi
4

= Bi ·Xi . (10)

Clearly, the output system state Fi is a locally shifted version

of the input system state Xi since each element [Fi]u,f , for any

bus u ∈ Vi and parameter f , is a linear combination of input

system states in its 1-hop neighborhood. Local operations,

such as (10) capture the 1-hop structural information from

Xi by estimating another system state Fi and are important

because of the strong spatial correlation that exists between

[Xi]u,f and its network neighborhood determined by Gi.

Alternative transformations such as that employed in [33]

quantify the merits of estimating system states that capture

the spatial structure of Xi. In order to capture the structural

information from a broader K-hop neighborhood instead, (10)

can be readily extended by defining a time-varying graph

convolutional filter function H : R
N×F → R

N×H that

operates on an input system state Xi to estimate an output

system state H(Gi,Xi ; H)

H(Gi,Xi ; H)
4

=
K
∑

k=1

[

Bk−1
i ·Xi

]

·Hk , (11)

where H denotes the number of output features estimated on

each bus and H
4

= {Hk ∈ R
F×H : k ∈ [K]} denotes the

set of filter coefficients parameterized by matrices Hk learned

from simulations where each coordinate of Hk suitably weighs

the aggregated system state obtained after k repeated 1-

hop graph-shift operations performed on Xi. Note that (11)

belongs to a broad family of graph-time filters [34] that are

polynomials in time-varying adjacency matrices Bi. There ex-

ists many types of graph-time filters [35]. We employ (11) due

to its simplicity. Nevertheless, (11) only captures simple linear

dependencies within Xi. To capture non-linear relationships

within Xi, time-varying GCNNs compose multiple layers of

graph-time filters (11) and non-linearities such that the output

system state of each GCNN layer is given by

Φ(Gi,Xi ; H)
4

= σ ( H(Gi,Xi ; H) ) , (12)

where σ : R → R is commonly known as the activation func-

tion (applied element-wise) such that Φ(Gi,Xi ; H) ∈ R
N×H .

2) Time-Varying GRNNs: GCNNs can only extract spatial

features from each system state Xi independently (12). For

this reason, we add recurrency to our GCNN model (12)

in order to capture the temporal observational dependencies

across the various stages of a FC sequence to construct a

GRNN. A time-varying GRNN extracts temporal features from

an input sequence 〈Oi : i ∈ [P ]〉 by estimating a sequence

of hidden system states 〈Zi : i ∈ [P ]〉 where each system

state Zi ∈ R
N×H is latent that facilitates in summarizing the

entire past observational history, that is both redundant and

difficult to store, until stage i. This is done by judiciously

parameterizing each hidden system state Zi that is a function

of the graph-time filter output (11) operated on both the current

input system state Xi and previous hidden system state Zi−1

independently to obtain

Zi
4

= σ ( H1(Gi,Xi ; H1) + H2(Gi−1,Zi−1 ; H2) ) ,
(13)

where H1 : R
N×F → R

N×H and H2 : R
N×H → R

N×H

are filters (11) each parameterized by a distinct set of filter

coefficients H1 = {H1
k ∈ R

F×H ∀ k ∈ [K]} and H2 =
{H2

k ∈ R
H×H ∀ k ∈ [K]}, respectively. Subsequently, similar

to (12), to capture the non-linear relationships from each

hidden system state Zi to facilitate dynamic decision-making

on graphs Gi, the estimated output system state Yi ∈ R
N×G

Yi
4

= ρ ( H3(Gi,Zi ; H3) ) ∀i ∈ [P ] , (14)

where the graph-time filter H3 : RN×H → R
N×G in (11) is

parameterized by the filter coefficient set H3, G denotes the

number of estimated output features on each bus u ∈ Vi, and ρ
is a pointwise non-linearity applied element-wise to output H3.

Note that H , K, G, σ and ρ are hyper-parameters for a GRNN.

Additionally, the number of learnable parameters Hi ∀i ∈ [3]
is independent of the system size N and the horizon P of

the FC sequence due to parameter sharing across the stages

of the FC, providing the model with flexibility to learn from

input sequences 〈Oi : i ∈ [P ]〉 of different and long risk

assessment horizons without a combinatorial growth in the

number of learnable parameters, ensuring tractability. Next,

we leverage the sequence of GRNN output system states 〈Yi :
i ∈ [P ]〉 to learn a strategy π̃ ≈ π∗ (9) to efficiently solve (4).
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Fig. 2: Graph recurrent Q-network (GRQN) architecture.

C. Finding a Strategy via Graph Recurrent Q-learning

As discussed in Section IV, estimating Q(Si, ai) via tradi-

tional RL algorithms is intractable. Hence, we choose to pre-

dict Q(Si, ai) via NNs. However, since the agent is no

longer privy to the true underlying POMDP state Si, inspired

by the approach of [36], we develop a GRQN architecture

to estimate Yi (14) in order to predict Q(Yi, ai) as a

proxy to approximate Q(Si, ai). Additionally, since for any

given initial system state (G0,X0), it is of interest to find S
number of FC sequences (4) with the maximum TLL, it is

not enough to predict Q(Yi, ai) but rather to guide the search

of subsequent FCs with the next highest TLL by leveraging

Q(Yi, ai). Therefore, we design a graph recurrent Q-learning

algorithm to discover the S number of FC sequences of interest

{V∗
1 , . . . ,V

∗
S} one after the other while concurrently training

the GRQN. Next, we discuss the GRQN architecture and the

designed training algorithm.

1) GRQN Architecture: The architecture consists of a time-

varying GRNN, parameterized by θGRNN
4

= {Hi : i ∈ [3]},

that sequentially processes observations at each stage of the

FC and a fully-connected NN, parameterized by θNN, to pre-

dict Q(Yi, ai) for each action ai ∈ Ai. Accordingly, we

parameterize the GRQN by θ
4

= {θGRNN,θNN}. For any FC

sequence Vs, an input data stream of observations Oi ∈ R
N×F

obtained at each stage i of the FC acts as an input to the

GRNN using which an output system state Yi ∈ R
N×G is

estimated. Subsequently, a fully connected NN of input and

output dimension N × G and |U|, respectively, is leveraged

to output a Q(Yi, ·|θ) ∈ R
|U| vector consisting of Q-values

for each action. Overall, at each stage i, a GRQN takes

Oi and Zi−1 as it’s baseline inputs, concisely denoted by

GRQN(Oi,Zi−1|θ), and outputs a vector Q(Yi, ·|θ) and the

next hidden system state Zi (13), crucial to carry forward to

guide the search of FCs during the training of the GRQN.

Note that we initialize Z0 by 0 ∈ R
N×H . Fig. 2 illustrates

the end-to-end GRQN architecture.

2) Sequential Experience Buffer: In order to deal with the

issue of catastrophic forgetting [28], we employ a sequential

experience buffer that stores FC sequences discovered dur-

ing training of the GRQN from which batches of random

sequences are sampled to facilitate the learning of parameters

θ. While there exists various ways to implement such a buffer,

we employ an ordered list that stores all the visited transition

tuples as a sequence 〈(Oi, ai, ri,Oi+1, end(Oi+1)) : i ∈ [P ]〉
where we have defined end(Oi+1) as a boolean value, if true,

indicating that the observation Oi+1 is associated with a last

stage of the risk assessment horizon P .

3) Training the GRQN: For stability in the training of the

GRQN, we employ the standard trick [28] of splitting the

task of predicting and evaluating Q-values via two separate

GRQNs, a target network GRQN(·, ·|θ−) and a behavior

network GRQN(·, ·|θ) each parameterized by a distinct set

of parameters θ
− and θ, respectively. For every training

iteration n of the graph recurrent Q-learning algorithm, the

agent samples B random batches of FC sequences, each

of type 〈(Oj , aj , rj ,Oj+1, end(Oj+1)) : j ∈ [P ]〉, from

the sequential experience buffer on which the target GRQN

is unrolled to estimate Yj (14) using which B batches of

Q(Yj , ·|θ
−) are predicted with respect to the target network.

Subsequently, the agent computes a look-ahead target output

for each batch where each target tj ∀j ∈ [P ] is given by

tj = rj + γ · (1− end(Oj+1)) ·max
a

Q(Yj+1, a|θ
−) . (15)

Accordingly, the parameters of the behavior network is up-

dated via gradient descent with respect to a quadratic loss

θn+1 = θn − α · ∇θ (tj −Q(Yj , aj |θ))
2 , (16)

where α denotes the learning rate and n denotes the current

training iteration. The update (16) is preformed κ times for

every action taken by the agent in any stage i ∈ [P ] of the

FC and additionally, serves as a means to control the compu-

tational complexity of our learning algorithm. In this paper,

we employ the Adam optimizer [37] to perform the gradient

update (16) and update the target network parameters θ
− = θ

at the end of every FC sequence discovered.

4) Graph Recurrent Hidden System State Updates: As the

agent gains more experience and continues to store visited

transition sequences of tuples in the experience buffer, the

hidden system state Zi of the GRNN may either zeroed or car-

ried forward after every newly discovered FC. Our experiments

suggest that sequential updates where the hidden system state

Zi (13) is carried forward from the previous stages throughout

the parameter update (16) leads to learning of better FC search

strategies. Hence, we choose to carry forward the previously

learned hidden system state during the training of our GRQN.

5) Outline of Algorithm 1: Algorithm 1 outlines the graph

recurrent Q-learning algorithm used to learn the parameters

θ of the behaviour GRQN(·, ·|θ) to facilitate the discovery

of the S number of FC sequences of interest. During the

initial few iterations, since the sequential experience buffer is

empty, we allow the agent to explore and fill the buffer with

FC sequences for Explore number of iterations offline (more

details in Section V-A1). Subsequently, the real-time algorithm

is initiated. Initially, the agent lacks any information about

the cascading failure dynamics. Hence, it relies on the prior

knowledge to construct Uj,i, for any fault chain j in each stage

i ∈ [P ], as the agent is unable to evaluate the LL associated

with removing an arbitrary component `i ∈ Uj\{∪
i−1

k=1
Uj,k}

in any stage of the FC Vj . Gradually, Algorithm 1 learns

to construct the sets Uj,i by leveraging the learned latent
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Algorithm 1 Graph Recurrent Q-learning (GRQN)

1: procedure GRAPH RECURRENT Q-LEARNING

2: Initialize behaviour network with random θ GRQN(·, ·|θ)
3: Initialize target network with weights θ

− = θ GRQN(·, ·|θ−)
4: Initialize Buffer← 〈〉
5: Initialize Z0 ← 0 ∈ R

N×H

6: for Episode s = 1, . . . , S do

7: Episode← 〈〉
8: Vs ← 〈〉
9: Reset power-flow according to initial state S0,O0

10: for Stage i = 1, . . . , P do

11: ,Zi ← GRQN(Oi,Zi−1|θ)

12: ai ←

{

explore if rand(0, 1) ≤ ε

exploit otherwise

13: Take action ai and determine Ui
14: Vs ← Vs ∪ Ui
15: Update power-flow and obtain Oi+1

16: Calculate load loss ri from (7)
17: Episode← Episode ∪ (Oi, ai, ri,Oi+1, end(Oi+1))
18: if s ≥ Explore then

19: count(Si, ai)← count(Si, ai) + 1
20: for training n = 1, . . . , κ do

21: Sample B FC sequences from Buffer
22: tj , ← GRQN(Oj+1,0|θ

−) from (15)
23: Q(Yj , aj |θ), ← GRQN(Oj ,0|θ)
24: Calculate ∇θ (tj −Q(Yj , aj |θ))

2

25: Update θ as in (16)
26: Update ε as in (19)
27: end for

28: end if

29: Update availability of actions backwards
30: end for

31: Buffer← Buffer ∪ Episode
32: Z0 ← ZP

33: if TLL(Vs) ≥M then

34: Store risky FC
35: end if

36: θ
− = θ

37: end for

38: end procedure

39: Find the accumulated risk due to all the S FCs {V1, . . . ,VS}.

graphical feature representations. These representations are

obtained by optimizing the look-ahead target function (15)

characterized by the behavior network GRQN(·, ·|θ) since

the parameters θ of this network determine the Q-values

influencing the actions ai ∈ Ai taken by the agent. Therefore,

when choosing actions ai ∈ Ai, the agent should make a

trade-off between exploration and exploitation throughout the

training of the GRQNs. Next, we discuss an exploration-

exploitation search strategy that the agent employs to make

the real-time search of FCs of interest more efficient.

D. Fault Chain Search Strategy

We employ the standard ε-greedy search strategy with an

adaptive exploration schedule. Initially, the agent is compelled

to take actions based on prior knowledge to find FCs with

maximum expected TLL. Typically, since an outage of a

component carrying higher power makes the remaining com-

ponents vulnerable to overloading, a reasonable exploration

strategy of the agent would be to remove components carrying

maximum power-flow. Therefore, we follow a power-flow

weighted (PFW) exploration strategy (also adopted in [12])

such that, in any stage i of the FC, the agent chooses the jth

available component `ji ∈ Ai according to the rule

ai = argmax
`
j
i

PF(`ji )/
√

count(Si, `
j
i ) + 1

∑|Ai|
k=1

PF(`ki )/
√

count(Si, `ki ) + 1
, (17)

with probability ε where we denote PF(`ji ) as the absolute

value of the power flowing through component `ji and denote

count(Si, `
j
i ) as the number of times the component `ji was

chosen when the agent was in POMDP state Si in the past.

On the other hand, as the agent gains more experience, the

agent should choose actions based on the Q-values learned

via the behaviour network GRQN(·, ·|θ). Accordingly, a strat-

egy based on Q-values learned by the agent is designed.

Specifically, actions are chosen proportional to the Q-values

normalized by each POMDP state-action visit count to avoid

repetitions of FC sequences discovered earlier. Accordingly,

the agent chooses action ai

ai = argmax
`
j
i

Q(Yi, `
j
i |θ)

√

count(Si, `
j
i ) + 1

, (18)

with probability 1− ε.
In order to balance the exploration-exploitation trade-off

between (17) and (18) during the training of the GRQN, it is

important to dynamically alter the probability ε so that, with

more experience, the agent chooses actions based on (18).

Appropriately, we follow the exploration schedule given by

ε = max





∑|A1|
j=1

PF(`j1)/
√

count(S0, `
j
1) + 1

∑|A1|
k=1

PF(`k1)
, ε0



 ,

(19)

where ε0 ensures a minimum level of exploration.

V. CASE STUDIES AND DISCUSSION

In this section, extensive simulations are performed to

validate the proposed graphical framework to find FCs that

incur large TLLs. While we employ the DC power-flow model

to simulate FCs, other models such as the AC power-flow can

be easily integrated within our framework. In order to generate

FCs, we employ PYPOWER a port of MATPOWER [38] to

Python and leverage PyTorch [39] to train the behavior and

target GRQNs.

A. Algorithm Initialization and Evaluation Criteria

1) Offline Sequential Buffer Initialization: To initiate the

parameter update of the behavior GRQN via gradient de-

scent (16), there must exist at least B FC sequences in the

experience buffer. However, unlike in the case of (17), the

buffer can be populated offline for any loading condition.

Therefore, the agent can afford to take actions greedily with

respect to components conducting maximum power and, ac-

cordingly, backtrack to update the availability of actions to

avoid repeating FCs discovered previously. Hence, prior to the

start of our real-time FC search Algorithm 1, we let the agent

explore offline for Explore iterations where the agent, in any

stage i, chooses actions according to the rule

ai = argmax
`
j
i

PF(`ji )
∑|Ai|

k=1
PF(`ki )

, (20)

with probability 1 to fill the sequential experience buffer. Note

that this needs to be done only once offline for any loading

condition. This is important since the quality of the sequences

in the buffer greatly affects the efficiency of the search.
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Evaluation Metrics Accuracy Metrics

Algorithm

Range for Accumulative TLL
∑S

i=1
TLL(Vi) (in MWs)

Range for the No. of Risky

FCs
∑S

i=1
1(TLL(Vi) ≥M) Range for Regret(S) (in MWs) Range for Precision(S)

Algorithm 1 (κ = 3) 110.42× 103 ± 37% 199 ± 71 765.33× 103 ± 5.3% 0.169 ± 35%

Algorithm 1 (κ = 2) 96.18× 103 ± 38% 173 ± 59 779.57× 103 ± 4.7% 0.144 ± 34%

Algorithm 1 (κ = 1) 86.43× 103 ± 35% 161 ± 48 789.32× 103 ± 3.87% 0.134 ± 29%

PFW + RL + TE [12] 60.63× 103 ± 3.4% 109 ± 5 815.12× 103 ± 0.26% 0.0909 ± 4.8%

PFW + RL [12] 57.18× 103 ± 3.1% 101 ± 9 818.57× 103 ± 0.22% 0.084 ± 3.7%

TABLE I: Performance comparison for the IEEE-39 New England test system.

2) Accuracy Metrics and Evaluation Criteria: We aim

to identify FCs with the largest TLLs. Hence, one natural

evaluation metric is the accumulated TLL due to the set

of FCs {V1, . . . ,VS}. Besides that, we also consider the

total number of risky FCs discovered as a function of FC

sequence iterations s ∈ [S], as considered in [12], to further

perform comparisons. A FC sequence Vs is deemed risky

if it’s associated TLL exceeds a pre-specified level M , i.e.,

TLL(Vs) ≥ M . These two metrics are useful for evaluating the

relative performance of Algorithm 1 compared to alternative

approaches. For evaluating the accuracy of Algorithm 1, we

adopt the following two metrics that quantify the accuracy in

load loss and risky fault chain discovery rates.

a) Load Loss Accuracy: We define a regret term that

quantifies the gap between the accumulated TLL discovered

by Algorithm 1 and the optimal accumulated TLLs of the

ground truth FCs with the maximum TLL given by the set

{V∗
1 , . . . ,V

∗
S}. Specifically, for s ∈ [S] we define

Regret(s)
4

=

S
∑

i=1

TLL(V∗
i )−

s
∑

i=1

TLL(Vi) . (21)

A lower regret value indicates a higher accuracy.

b) Risky FC Discovery Rate: We define a precision

metric that quantifies the fraction of FCs that are deemed risky

in the set of discovered FC. Specifically, for s ∈ [S] we define

Precision(s)
4

=
1

s

s
∑

i=1

1(TLL(Vi) ≥ M) , (22)

where 1(·) denotes the indicator function. A higher precision

value indicates higher accuracy.

B. IEEE-39 New England Test System

This test system comprises of N = 39 buses and |U| = 46
components, including 12 transformers and 34 lines. We con-

sider a loading condition of 0.55×base load, where base load

denotes the standard load data for the New England test case

in PYPOWER after generation-load balance to quantify the

performance of our approach. These loading conditions were

chosen since it is relatively difficult to discover FCs with large

TLLs in a lightly loaded power system as there are fewer such

FCs in comparison to the space of all FC sequences |F|.
1) Parameters and Hyper-parameters: The hyper-

parameters of the GRQNs are chosen by performing hyper-

parameter tuning. Accordingly, we choose H = G = 12
hidden and output number of features when computing both

the hidden system state (13) and the output system state (14).

We use K = 3 graph-shift operations for the graph-filter (11)

that is used to compute (13) and (14). We use both ρ and

σ as the hyperbolic tangent non-linearity σ = ρ = tanh
and the ReLU non-linearity for the fully-connected NN that

approximates the Q-values. For other parameters, we choose

F = 1 since we employ voltage phase angles as the only

input system state parameter f , choose γ = 0.99 since large

LLs mostly occur in the last few stages of the FC sequence,

an ε0 = 0.01 to ensure a minimum level of exploration during

the FC search process, a batch size B = 32, Explore = 250,

a risk assessment horizon P = 3, FC sequence iteration

S = 1200 (excluding the initial Explore iterations), learning

rate α = 0.005, and κ ∈ [3] that controls the frequency of

the learning update (16) and also governs the computational

complexity of the graph recurrent Q-learning algorithm.

We consider M equal to 5% of total load (where the total

load is 0.55 × base load). To quantify the regret (21), we

need to compute the TLL associated with the S most critical

FC sequences (ground truth) V∗
s , ∀s ∈ [S]. This is carried

out by generating all possible FC sequences (i.e., set F) with

a target horizon of P = 3 for the considered total load of

0.55× base load. By leveraging the pre-computed set F , we

observe a total of 3738 risky FCs for the loading condition

0.55× base load using our developed FC simulator.

2) Accuracy and Efficiency - Performance Results: Prior to

the start of Algorithm 1, we let the agent fill the experience

buffer for Explore iterations following the strategy (20) and

subsequently, initiate Algorithm 1. Table I illustrates the results

obtained. The first column specifies the algorithm employed

for evaluation. The second and third columns show the mean

and standard deviation of the evaluation metrics and the forth

and fifth columns show the mean and standard deviation of

the accuracy metrics defined in (21) and (22) for S = 1200.

It is observed that Algorithm 1 with a greater κ discovers FC

sequences that incur larger accumulated TLL and also discov-

ers more number of risky FCs, on average. This indicates that

the accuracy metrics improve as κ increases. This is expected

since the weights of the behaviour GRQN are updated more

frequently resulting in a more accurate prediction of the Q-

values associated with each POMDP state Si. For instance, the

average regret of Algorithm 1 for κ = 3 is 765.33×103 MWs,

which is 3.04% lower than the average regret when κ = 1.

Similarly, the average precision for κ = 3 is 0.169, which is

26% higher than the average precision when κ = 1. To further

assess how the accuracy metrics scale with s ∈ [S], figures 3

and 4 illustrate the accuracy versus s ∈ [S]. The observations

are consistent with Table I, where it is observed that a higher κ
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Fig. 3: Regret(s) versus s for the IEEE-39 bus system.

results in a lower average regret and greater average precision.

It is noteworthy that the advantage of the setting κ = 3 is

viable at the expense of incurring a higher computational cost.

This is due to more frequent weight updates rendering an

inevitable accuracy-complexity trade-off.

3) Comparison with Baselines: To further illustrate the

merits of the proposed graphical framework, we compare it

with two state-of-the-art baseline approaches proposed in [12].

We label the first approach in [12] based on the ordinary Q-

learning algorithm without prior knowledge as PFW + RL

and label their best performing approach based on transition

and extension of prior knowledge from other power system

snapshots by PFW + RL + TE. To ensure a fair comparison,

we employ the same exploration schedule for ε discussed

in Section IV-D with the same parameters and the same

discount factor γ for all the approaches. Note that, in the

PFW + RL + TE approach, we first run their proposed Q-

learning based approach offline, for a loading condition of

0.6×base load (bringing in the prior knowledge). This is run

for S = 5000 iterations to ensure the convergence of their

Q-learning algorithm. Subsequently, we store its extensive

Q-table to run its PFW + RL + TE approach in real-time

for the considered loading condition of 0.55 × base load,

signifying a transition from the power system snapshot loaded

at 0.6 × base load and an extension to the current power

system snapshot loaded at 0.55× base load. Note that, when

performing comparisons, we set the parameters and hyper-

parameters associated with Algorithm 1 the same as that

described in Section V-B1.

a) Comparison under Unbounded Computational Bud-

get: In parallel to Algorithm 1, we simultaneously run the Q-

learning update discussed in [12] for both the PFW+RL and

PFW+RL+TE approaches to perform comparisons. Table I

compares the accuracy metrics for S = 1200, showing that

Algorithm 1 consistently outperforms both the other baseline

approaches by a wide margin. For instance, Algorithm 1

with κ = 3 renders an average regret that is 6.2% smaller

than the regret associated with the best preforming baseline

PFW + RL + TE approach. Furthermore, we have two more

key observations. First, Algorithm 1 with κ = 3 finds FC

sequences whose accumulated TLL is almost double than that

of the two baseline approaches.

Secondly, even though our approach is designed to optimize

the accumulated TLLs (4) that is quantified via regret (21), it
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Fig. 4: Precision(s) versus s for the IEEE-39 bus system.

also finds a larger number of risky FCs (on average). This is

reflected in Table I and Fig. 4. It is noteworthy that the baseline

approach PFW + RL + TE outperforms Algorithm 1 for the

first fifty search iterations as shown in Fig. 4. This is expected

since our approach does not assume any prior knowledge of the

failure dynamics while the PFW + RL + TE approach brings in

prior knowledge via the extensive Q-table computed offline for

the power system snapshot loaded at 0.6×base load. However,

as S increases, Algorithm 1 learns the failure dynamics more

accurately, resulting in improved accuracy metrics than that

of baseline approaches. For example, the average precision of

Algorithm 1 with κ = 3 is roughly 86% more than that of

PFW + RL + TE and 99% more than PFW + RL.

b) Comparison under Bounded Computational Budget:

The previous subsection focused on the performance, sans the

computational complexity of performing each FC sequence

iteration s ∈ [S]. For real-time implementation, the compu-

tational complexity of the FC search should be within the

period of a dispatch cycle. Hence, we evaluate all the above

approaches considering a given computational budget. Specif-

ically, we consider the same evaluation and accuracy metrics

as discussed in Section V-A2 and evaluate them considering

a strict run-time of five minutes for the algorithms, averaged

over 50 Monte Carlo iterations. Table II illustrates the relative

performance of different algorithms under budget. There are

three main observations. First, within the 5 minute computa-

tional time budget, for κ = 3, the number of FC sequences

discovered is considerably smaller than other algorithms. This

is reflected in the second column of Table II. This observation

is expected since a large value of κ necessitates a larger

computation time per FC search iteration due to the gradient

update (16), and hence, affords fewer search iterations. Sec-

ondly, when comparing the evaluation metrics, Algorithm 1

with κ = 2 finds the greatest accumulated TLL and also the

largest number of risky FCs, on average. Although both PFW

+ RL and PFW + RL + TE approaches find the most number

of FC sequences, S = 1608 and S = 1611, respectively, the

quality of the FCs found are inferior compare to Algorithm 1

with κ = 2 since their accumulative TLL and the number of

risky FCs are smaller. Third, when comparing the accuracy

metrics, the average regret and precision for Algorithm 1 with

κ = 3 outperform other algorithms. Although this approach

only finds S = 575 FCs on average, it yields the most quality

FC sequences since the frequent update of the behavior GRQN
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Evaluation Metrics Accuracy Metrics

Algorithm

Average No. of FC
Sequences S Discovered

Range for Accumulative TLL
∑S

i=1
TLL(Vi) (in MWs)

Range for the No. of Risky

FCs
∑S

i=1
1(TLL(Vi) ≥M) Range for Regret(S) (in MWs) Range for Precision(S)

Algorithm 1 (κ = 3) 575 63.484× 103 ± 36.7% 104 ± 33 457.09× 103 ± 5.9% 0.1791 ± 31%

Algorithm 1 (κ = 2) 700 79.792× 103 ± 39% 123 ± 38 521.47× 103 ± 7.5% 0.1752 ± 31.5%

Algorithm 1 (κ = 1) 937 70.848× 103 ± 33.3% 117 ± 34 673.56× 103 ± 4.76% 0.1249 ± 29.1%

PFW + RL + TE [12] 1608 68.74× 103 ± 3.4% 112 ± 4 965.41× 103 ± 1.61% 0.0698 ± 2.91%

PFW + RL [12] 1611 65.35× 103 ± 3.9% 105 ± 5 969.78× 103 ± 2.27% 0.0653 ± 5.07%

TABLE II: Performance comparison for a computational time of 5 minutes for the IEEE-39 New England test system.

weights results in a more accurate Q-value prediction that

optimize (4) better per search iteration s ∈ [S]. Compared

to non-graphical algorithm counterparts, although it can find

fewer FC sequences S, it has been able to identify the more

relevant sequences of interest.

It is noteworthy that we have evaluated all the algorithms

on a standard computer with no Graphics Processing Units

(GPUs). By leveraging GPUs, our approach can accelerate the

risky FC search process even further as GPUs are designed

to facilitate the operations involving matrix and vectors for

efficient training of the GRQNs, as opposed to other two

baselines approaches that, cannot be accelerated for a given

computation time.

C. IEEE-118 Test System

This test system consists of N = 118 buses and |U| =
179 components. We consider a loading condition of 0.6 ×
base load, where base load denotes the standard load data

for the IEEE-118 test case in PYPOWER after generation-

load balance to quantify the performance of our approach.

1) Parameters and Hyper-parameters: We choose H =
G = 48 hidden and output number of features when computing

both the hidden system state (13) and the output system

state (14). We use K = 3 graph-shift operations for the

graph-filter (11), use both ρ and σ as the hyperbolic tangent

non-linearity σ = ρ = tanh and the ReLU non-linearity for

the fully-connected NN to approximate Q-values. For other

parameters, we choose F = 1 since we employ voltage phase

angles as the only input system state parameter f , choose

γ = 0.99, ε0 = 0.01, a batch size B = 32, Explore = 250,

a risk assessment horizon P = 3, FC sequence iteration

S = 1600 (excluding the initial Explore iterations), learning

rate α = 0.0005, and κ ∈ [3]. We set M to 5% of total load

(where the total load is 0.6× base load).

2) Accuracy and Efficiency – Performance Results: Al-

gorithm 1 is initiated after the experience buffer is filled

for Explore search iterations. Table III illustrates the results

obtained. Similar to 39-bus system, we observe that Algo-

rithm 1 with a greater κ discovers FC sequences with larger

accumulated TLLs and discovers more number of risky FCs

leading to superior accuracy metrics for larger κ. For instance

the average regret of Algorithm 1 with κ = 3 is 321.90× 103

MWs and it is 0.4% lower the average regret when κ = 1.

Similarly, the average precision when κ = 3 is 11.7% higher

that of κ = 1. Figures 5 and 6 illustrate the average accuracy

metrics for Algorithm 1 as a function of s ∈ [S].

3) Comparison with Baselines: We perform comparisons

with the two baselines approaches in [12], i.e., the PFW + RL

and PFW+RL+TE. For the PFW+RL+TE approach, we

first run their proposed Q-learning-based approach offline, for

a loading condition of 1.0× base load (bringing in the prior

knowledge) for S = 5000 iterations and store its extensive Q-

table to run the PFW+RL+TE approach in real-time for the

considered loading condition of 0.6× base load, signifying a

transition from 1.0× base load to an extension to the current

system loaded at 0.6× base load. We set the parameters and

hyper-parameters as described in Section V-C1.

a) Comparison under Unbounded Computational Bud-

get: Table III compares the accuracy metrics for S = 1600,

showing that Algorithm 1 consistently outperforms both the

other baseline approaches. Figure 5 shows how the average

regret scales as a function of search iterations s ∈ [S]. Fur-

thermore, even though our approach is designed to optimize

the accumulated TLLs (4) that is quantified via regret (21), it

also finds a larger number of risky FCs.

b) Comparison under Bounded Computational Budget:

We next evaluate all the above approaches considering a run-

time computational budget of five minutes, averaged over 25
MC iterations, and Table IV illustrates the relative perfor-

mance. All the observations corroborate those observed for

the 39-bus system.

D. Discussion

1) Performance Comparisons: The ordinary Q-learning

algorithm performs only one Q-value update for every ac-

tion taken by the agent due to the intrinsic design of the

algorithm illustrated in [12]. On the other hand, the graph

recurrent Q-learning algorithm discussed in section IV-C can

perform multiple gradient updates (κ in the inner loop in

Algorithm 1) that directly influence the Q-values learned

by the agent, via the GRQN. This is possible due to the

availability of a sequential experience buffer. This, in turn,

facilitates learning more efficient strategies in fewer search

trials. We also emphasize the approach in [12] models each

permutation of component outages as a unique MDP state,

and as a result, it stores the Q-values for a combinatorial

number of resulting MDP state-action pairs in an extensive

Q-table, rendering it not scalable. However, by judiciously

leveraging the graphical structure of each POMDP state and

appropriately modeling the dependencies across the various

stages of the FC, we have bypassed the storage challenge with

fewer modeling assumptions while, at the same time, achieving

better performance.
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Evaluation Metrics Accuracy Metrics

Algorithm

Range for Accumulative TLL
∑S

i=1
TLL(Vi) (in MWs)

Range for the No. of Risky

FCs
∑S

i=1
1(TLL(Vi) ≥M) Range for Regret(S) (in MWs) Range for Precision(S)

Algorithm 1 (κ = 3) 45.73× 103 ± 16% 302 ± 49 321.90× 103 ± 2.3% 0.19 ± 17%

Algorithm 1 (κ = 2) 40.42× 103 ± 17% 254 ± 39 327.22× 103 ± 2.4% 0.16 ± 15%

Algorithm 1 (κ = 1) 44.62× 103 ± 12% 274 ± 28 323.02× 103 ± 1.7% 0.17 ± 10%

PFW + RL + TE [12] 34.23× 103 ± 2.7% 208 ± 6 333.40× 103 ± 0.28% 0.13 ± 3%

PFW + RL [12] 35.50× 103 ± 2.4% 174 ± 8 332.14× 103 ± 0.25% 0.11 ± 5%

TABLE III: Performance comparison for the IEEE-118 test system.
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Fig. 5: Regret(s) versus s for the IEEE-118 bus system.

2) Scalability: For large networks, we can further leverage

the structure of our GRNN by following an approach based

on distributed processing. Specifically, we partition the system

into smaller subsystems following the conventional approaches

for other monitoring purposes (e.g., estate estimation). The

size of subsystems can be decided based on the computational

complexity the system operator can afford. The FCs are

subsequently identified within each subsystem. The identified

risky FCs can be subsequently concatenated to form the FCs

for the entire system. This approach, of course, might induce

suboptimality in the overall performance of identifying the

risky fault chains. Nevertheless, the level of suboptimality

induced is expected to be negligible by noting that a fault

with a high probability will lead to other faults in its locality.

3) Model Adaptation: The computational complexity of

learning the failure dynamics can vary across different cascad-

ing failure models. The agent’s role is to learn the underlying

failure dynamics via repeated interactions with the cascading

failure simulator. Under different models (e.g., DC power flow

model, AC power flow model, transient stability model), the

complexity of the learning environment changes. As expected,

the transient stability-related models are more challenging

to learn than DC power flow-based models under the same

number of search iterations S. When S is small, the difference

in accuracies can be considerable, and the simpler models

(e.g., DC power flow-based) will exhibit better performance.

Nevertheless, the performance gap diminishes as the S in-

creases, and the complex models also get a chance to be

learned accurately. When prediction accuracies are compared

over an arbitrary number of search iterations S (each model

can have different search iterations S), then we expect all the

models to render similar performance since the latent feature
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Fig. 6: Precision(s) versus s for the IEEE-118 bus system.

representation of the GRNN will be able to better learn the

underlying failure dynamics.

4) Robustness to Different Cascade Triggers: This paper

focuses on triggering mechanisms that fall within the general

framework of topological changes, i.e., component failures and

their subsequent failures. However, other types of triggering

mechanisms such as inappropriate power system control de-

cisions and hidden failures in protection systems, to name a

couple, also influence the final load loss. As a result, the type

of triggering mechanism directly influences the complexity

of the learning problem and the agent decision process. One

commonality, however, across the different types of triggering

mechanisms is that the underlying topology of the network is

bound to change as the cascading failure evolves. Therefore,

our framework (which explicitly takes into account the topo-

logical changes) can be readily customized to accommodate

other triggers. For instance, in cases where power system

control decisions trigger the initial failures, the actions space

Ai can be modeled as continuous, resulting in a more complex

agent learning problem. In such cases, an obvious modification

would be to augment the input system state Xi to include

more nodal features (e.g., net power injection and voltage

magnitudes). This results in a greater amount of information

propagated across the hidden layers Zi. Subsequently, this

results in a more complex objective that is a function of

the output Yi of the time-varying GRNN architecture, and

the action space Ai. Optimizing this objective can potentially

incur failure paths resulting in maximum load shed. This way,

the proposed framework can be robust to the initial fault event

type by appropriate re-formulation.
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Evaluation Metrics Accuracy Metrics

Algorithm

Average No. of FC
Sequences S Discovered

Range for Accumulative TLL
∑S

i=1
TLL(Vi) (in MWs)

Range for the No. of Risky

FCs
∑S

i=1
1(TLL(Vi) ≥M) Range for Regret(S) (in MWs) Range for Precision(S)

Algorithm 1 (κ = 3) 186 11.46× 103 ± 16.2% 92 ± 10 175.63× 103 ± 3.4% 0.201 ± 15%

Algorithm 1 (κ = 2) 239 18.32× 103 ± 18% 101 ± 12 212.22× 103 ± 4.1% 0.17 ± 14%

Algorithm 1 (κ = 1) 301 19.86× 103 ± 13% 115 ± 7 256.75× 103 ± 2.6% 0.18 ± 13%

PFW + RL + TE [12] 527 18.56× 103 ± 3% 102 ± 3 436.22× 103 ± 0.98% 0.096 ± 5%

PFW + RL [12] 522 17.98× 103 ± 3% 97 ± 4 439.13× 103 ± 1.1% 0.092 ± 6%

TABLE IV: Performance comparison for a computational time of 5 minutes for the IEEE-118 bus test system.

VI. CONCLUSION

In this paper, we have considered the problem of real-time

risky fault chain identification in a limited number of search

trials. We have proposed a data-driven graphical framework

that can dynamically predict the chains of risky faults a power

system faces. First, the search for risky fault chains is modeled

as a partially observed Markov decision process. Then a graph

recurrent Q-learning algorithm is designed to leverage the

grid’s topology to discover new risky fault chains efficiently.

Test results on the IEEE standard systems demonstrate the

effectiveness and efficiency of the proposed approach.
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