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Abstract

We establish L, ,-estimates and solvability for mixed Dirichlet—conormal problems for
parabolic equations in a cylindrical Reifenberg-flat domain with a rough time-dependent
separation.

Mathematics Subject Classification 35K20 - 35B65 - 35R05

1 Introduction

Let Q7 be a cylindrical domain in R?*! of the form
Q" = (—00,T) x Q,

where T € (—o00, oo] and 2 is either a bounded or unbounded domain in RY, d > 2. The
lateral boundary of Q7 is divided into two components DT and A7 separated by I'”, which is
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Fig.1 Cylindrical domain with t
time-dependent separation

Q

allowed to be time-dependent. See Fig. 1 below. We consider mixed boundary value problems
for parabolic equations
Pu—iu=Dijgi+ f in or,
Bu = gin; on NT, (1.1)
u=20 on DT,

where the operators P and B are defined by
Pu = —u; + Di(aiiju), Bu = aiijuni,

and n = (ny,...,ng) is the outward unit normal to 9Q. The leading coefficients a'/ are
assumed to be symmetric and satisfy the uniform ellipticity condition. The boundary value
problem (1.1) arises naturally in mathematical physics and material science dealing with
metallurgical melting, combustion, and wave phenomena, etc. We refer the reader to [1, 9,
19-22, 25] and references therein. It is also partly motivated by modeling exocytosis, which
have a form of active transport mechanism. See [12].

Inarecent paper [4], we proved the unique solvability in unmixed-norm Sobolev spaces H[l)
(see (2.1) and (2.2)) for the problem (1.1) when the coefficients @' have small bounded mean
oscillation (BMO) with respect to all the variables (z, x), the base domain €2 is Reifenberg-
flat, and the separation I" is locally close to the graph of a Lipschitz function of m variables,
where

mel{0,1,...,d -2} and

. 2m +2) 2(m+2)
m+3 " m+1 )
For precise conditions on the domain and separation, see Assumption 2.2. Notice that if I is

Reifenberg-flat of codimension 2 (i.e., m = 0), such range p € (4/3, 4) is optimal even in
the stationary case, in view of the following classical example

u(x,y) =Im(x + iy)l/2
which is harmonic on the upper half space {y > 0}, and
u=0on{x>0,y=0}, du/on=0o0n {x <0,y =0}.

For other previous results on the mixed boundary value problems for parabolic equations in
unmixed-norm spaces, we refer the reader to [2, 3, 14] and the references therein. We note
that in these work, either p is assumed to be 2 or an implicit condition is imposed on the
operator so that p needs to be sufficiently close to 2.
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It is worth mentioning that here we focus on the case when d > 2 and the two types
of boundary conditions touch at an nonempty I'”. This is the case when the difficulty of
“optimal regularity” appears. When D NN = {J, we can just apply the estimates for the pure
Dirichlet and pure conormal problems and a partition of unity argument. In this case, the
solutions are smooth given the domain, the operator, and the boundary data are all smooth.
In particular, when d = 1, Q2 is actually an interval (a, b). The mixed problems just mean
that different boundary conditions are assigned at x = a and x = b.

In this paper, we extend the result in [4] by proving Lf] (L’;,) mixed-norm estimates for

Du and the H;’ » (see (2.1)) solvability when
<2(m+2) 2(m+2)> |: 2p )
€ , and ge|p, —————F— |,
m+3 m+1 m+D(p—2)+

under the same smoothness assumptions on the coefficients, domain, and separation. In the
special case when I" is time-independent, we get the solvability for all

. 2(m+2) 2(m+2)
m+3 m+1

) and ¢ € (1, 00). (1.2)

In particular, when 3 and I'” are smooth enough, we can make a change of variables to
locally flatten 92 first and then make I'” to be time-independent. Hence, the full solvability
range in (1.2) is achieved.

In [24] Savaré considered parabolic equations in a cylindrical domain with C! base
domain and separation. Under a uniform linear bound condition on the excess of the separation
with respect to 7, he proved the unique solvability in L,-based Sobolev spaces. We also refer
the reader to Hieber—Rehberg [11] for quasilinear parabolic systems of reaction-diffusion
equations in a cylindrical domain with Lipschitz base domain in R for d = 2, 3 and time-
independent separation. Assuming an implicit topological isomorphism condition on the
second-order operator, they established the solvability in mixed-norm spaces with p = 2
and g > ¢ for some ¢ depending on the operator and dimension. To the best of the authors’
knowledge, our results regarding the mixed boundary value problem are the first to deal with
mixed-norm estimates for p # 2 even in the case when 92 and I" are smooth and I is
time-independent. For other previous results on mixed-norm estimates for purely Dirichlet
or conormal derivative boundary value problems, we refer the reader to [6, 8, 10, 13, 15-17]
and references therein.

The proof in [4] relies on a decomposition argument using a carefully designed cut-off
function near the separation I" and on a level set method with the measure theoretic “crawling
of ink spots” lemma originally due to Krylov and Safonov [18, 23]. While in [4] we used
the decomposition argument and estimates in Ly-based spaces, in this paper, to prove our
main result, we refine the decomposition argument in [4] in the setting of L ,-based spaces
for p < 2 and exploit an idea of Krylov [17] to utilize the level set method in the #-variable
only. Because the decomposition argument fails for p > 2, it remains open whether the
mixed-norm estimates hold for

w1 ) TS\ mEnp -2

when I' is time-dependent. See the explanation after (4.12).

The remainder of the paper is organized as follows. In the next section, we introduce some
notation and state our main result of the paper. In Sect. 3, we derive certain local estimates,
which are used in Sect. 4 for the level set argument in the 7-variable. Finally, we complete
the proof of the main result in Sect. 5.
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2 Notation and main result

We first introduce some notation used throughout the paper. We use X = (¢, x) to denote a
generic point in the Euclidean space Rt where d > 2 and x = (x', R xd) e RY. We
also write Y = (s, y) and Xo = (f9, xo), etc. Let Q be a cylindrical domain in R?*! of the
form

Q = (—00,00) x 2,

where  is a domain in R?. We assume that the lateral boundary of Q, denoted by 9Q =
(—00, 00) x 32, is divided into two components D and A separated by T, i.e., as in [4],
D C dQ is an open set (relative to dQ) and

N=0Q\D, I'=DNN.
Note that the separation I is allowed to be time-dependent. For 7' € (—o0, co], we define
ol =(XeQ:1<T)
and similarly define DT, N7, and I'T. For R > 0, we denote the parabolic cylinders by
Or(X) = (1 = R*.1) x Bg(x),

Qr(X) = (t — R%, 1 + R?) x Bg(x),
Qr(X) = QN Qr(X),

where Bg(x) is the usual Euclidean ball of radius R centered at x. The center will be omitted
when it is the origin, i.e., for instance, we write Q g for Qg (0).
For a function # on an open set Q C RI*H we set

1
= — dX = dX,
o |Q|/Qu ][Qu

where | Q] is the d + 1-dimensional Lebesgue measure of Q. For p, ¢ € [1, 00), we define
the mixed-norm on Q by

q/p 1/q
x = PTod dt s
lullz: o) (/R (/Rd lul"Io x) )

where I is the usual characteristic function. Similarly, we define L’q L;‘,-norms with p = oo
— t : t

or c\IN— 00, and L7, L, -norms. We often write Ly, and L), for L, L7, and L), .
e set

WOLQT) = {u s u € Ly p(QT), Deu € Ly, ,(Q7)4)
with the norm

lullyor gry = ullz, o) + 1DullL, o),

and we denote by W;‘ 11) pr (Q7) the closure of C%(QT) in Wy p(QT). where C%5,(QT) is

the set of all infinitely differentiable functions on R*+! having a compact support in oT and
vanishing in a neighborhood of D”. We also set

Hy o (@) = {usuew) (@) ueH ! Q) @.1)
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with the norm
”u”H:{,p,DT(QT) = ”u”W;),},(QT) + “ut”H;lp_DT(QT)’

where by u; € H;lp DT(QT), we mean that there exist g = (g1, ..., &4) € Lq,p(QT)d and
fe Lq,p(QT) satisfying

uy=Digi+f inQ", gni=0 on NT
in the following distribution sense
g = [ —wpdx = [ abi+ forax
or or
forall ¢ € C%;(Q") vanishing at 7 = T, and that

et Nl r@h = inf {Ilglqu,p(gT) +1flL, ,r) -4 = Digi+ f in o, gini =0 on NT}
q.p,

is finite. We abbreviate
H, ,or (@) =M, 1r(Q"). (2.2)

Throughout this paper, we discuss weak solutions to the problem (1.1), which means the
following integral identity holds for all ¢ € C %OT (QT) vanishing at t = T,

/QT ug dX + /QT(—aiijuDi¢ —up)dX = /QT (—giDig+ fo)dX.  (2.3)

We also discuss “local weak solutions” as, for instance, in (3.2), in which case, we mean that
(2.3) holds with f = 0 for any test function ¢ € C°>°(Qpg) vanishing on 3Qg \ N.

2.1 Assumptions and main result

Throughout this paper, we assume that the leading coefficients a’/ of the operator P are
symmetric and satisfy the uniform ellipticity condition

a’ (X)§j& = AP, 17 (0] < A
for all X € Rt & € R?, and for some constant A € (0, 1]. Regarding the symmetric
condition, see Remark 2.6 for an explanation. We impose the following small BMO condition

on the leading coefficients, where 6 € (0, 1) is a parameter to be specified.

Assumption 2.1 (8) For any Xy € Q and R < (0, Ry], we have
][ |a" (X) = (@) gpxo) | dX < 6.
Qr(Xo)

We also impose the following regularity assumptions on the boundary of the domain and
separation, where y € (0, 1) is a parameter to be specified.

Assumption 2.2 (y;m, M) Letm € {0,1,...,d —2}and M € (0, c0).
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(a) For any xo € 92 and R € (0, Rp], there is a coordinate system depending on xo and
R such that in this coordinate system, we have
{y:y'> x5+ yRINBr(xo) C QN Br(xo0) C {y:y' > x5 — ¥R} N Br(xo).
2.4)
(b) For any Xo = (#9, x0) € I' and R € (0, Ry], there exist a spatial coordinate system
and a Lipschitz function ¢ of m variables with Lipschitz constant M, such that in the
new coordinate system, we have (2.4),
(02N Qr(X0) N{(s,y) : ¥* > (3, ..., y" )+ yR}) C D,
(0QNQr(X0) N{(s, ) 1> < ¢ ..., y" ) —yR}) CN,

and

3 +2 2
Gy, ..., x) ") = xq.

2

Here, if m = 0, then the function ¢ is understood as the constant function ¢ = xg.

Noting that Assumption 2.2 (y; 0, M) holds when 9$2 is locally given by the graph {x' =
Yx2, .., xDYand Tis locally given by its intersection with (x% = 1/7(t, xb a3, xdy,
where 1 and v are Lipschitz functions (¢ in the parabolic metric) with correspondingly
small constants. The assumption also includes certain fractal structures.

The main result in the current paper reads as follows.

Theorem 2.3 Let Ry € (0,1, m € {0, 1,...,d — 2}, M € (0, 00), and let

€<2(m+2),2(m+2)>’ q€<p7 2—1’), 2.5)
m+3 m+1 (m+1D(p—2)+

There exist constants 0,y € (0, 1) and 1y € (0, co) with

@, y)=0,y)d, AN, M,p,q), do=r(d, A, M,p,q,Ro),

such that if Assumptions 2.1 (0) and 2.2 (y; m, M) are satisfied, then we have the following.
Forany A > Ao, g = (81,...,84) € Lq,p(QT)d, and f € Lq,p(QT), there exists a unique
solution u € H; DT Q") to

Pu—ru=Dijgi+ f in QT,

Bu = gin; on NT, (2.6)
u=20 on DT
satisfying
D A2 <C cr1? 2.7
i M”L,,,,;(QT) + ”u”Lq_[,(QT) = ”g”Lq‘p(QT) + ||f||L,“,(QT)» (2.7)

where C = C(d, A, M, p, q). The same result holds for any p, q satisfying

2(m+2) 2(m+2)
m+3 " m+1

>, q € (1, 00)
instead of (2.5) when T is time-independent.

In Fig. 2, we draw a diagram to show the range of (p, ¢) in (2.5).
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Fig.2 Range of (p, q) 1/q

| 1/p

m+1 1 m+3
2(m+2) 2 2(m+2)

. . . 2(m+2
Remark 2.4 It is not clear to us if Theorem 2.3 still holds when p € (2, 51'1"“ ), q €

( (m%l(]p—Z)’ oo), and I" is time-dependent. In fact, the decomposition argument in Sect. 4.1
fails if p > 2.

Remark 2.5 (a) Based on the method of continuity, one can easily extend the results in
Theorem 2.3 to parabolic operators with bounded lower-order terms

Pu = —u; + Di(aiiju + aiu) + biDiu + cu,
Bu = (aiiju —i—aiu)ni,
at the cost of possibly increasing the constant .
(b) From Theorem 2.3, we can also obtain the solvability of the initial boundary value

problem on (0, 7') x 2 with the zero initial condition. In this case, we can take 1o = 0
with the help of the standard trick of considering ey cf. [7, Theorem 8.2 (>ii)].

Remark 2.6 In theorem 2.3 and throughout the paper, we require the symmetry of the coef-
ficients ¢’/ for the optimal range p € (4/3,4) when m = 0 for mixed boundary value
problems. We refer the reader to [5, Theorem 4.1] and [4, Proposition 4.4] for the optimal
estimates for model problems - Laplace and heat equations with flat boundary and separa-
tion. Notice that if @’/ is not symmetric, then the range of p can be more restrictive. See [3,
Example 2.8].

3 Preliminary estimates

Hereafter in this paper, we use the following notation.

Notation 3.1 For nonnegative (variable) quantities A and B, we denote A < B if there exists
a generic positive constant C such that A < CB. We add subscript letters like A <, B to
indicate the dependence of the implicit constant C on the parameters a and b.

Notation 3.2 For a given constant A > 0 and functions u, f,and g = (g1, ..., g4), we write
U =|Dul+2"2ul, F=lgl+21""2|f],

where we take f = 0 and F = |g| whenever A = 0.

The following constants in Assumptions 2.1 and 2.2 are fixed throughout the paper:

Roe(0,1], me{0,1,...,d =2}, M € (0, c0).
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3.1 H,, solvability and localization

In this section, we derive some local estimates, in the proofs of which, we shall use the
unmixed-norm L ,-estimates proved in [4]. For the reader’s convenience, we present here the
main result in [4].

Theorem 3.3 ([4, Theorem 2.4]) Let p € (M M) There exist constants 0,y €

m+3 > m+1
(0, 1) and 1y € (0, 0o) with
(07 )/)=(97 V)(d7 A7 M7 P)7 }‘-02)‘-0((19 A9 M7 )28 RO)»

such that if Assumptions 2.1 (0) and 2.2 (y; m, M) are satisfied, then the following assertions
hold.

(a) For any A > Ao, g = (g1,---,8d) € Lp(QT)d, and f € Lp(QT), there exists a
unique solution u € ’H; pr Q") to (2.6), which satisfies

10N L, oty Sdamp IFIL,or)-

(b) LetT € (0,00). Forany g = (g1,...,84) € Lp(Q)d and f € Lp(Q), there exists a
unique solution u € H; @(Q) to the initial boundary value problem

Pu=Digi+f in Q:=(0,T)xQ,

Bu = gin; on N :=((0,T) x 9Q) NN,
u=0 on D:=((0,T) x Q) N D,
u=>0 on {0} x €,
which satisfies
”u”H;j(Q) Sd,A,M,p,Ro,T ”g”LP(Q) + ”f”Lp(Q)' 3.D

Remark 3.4 Theorem 3.3 (b) still holds with f € Lq(Q) and
”u”H;.’D(Q) Sd,A,M,p,Ro,T “g”LD(Q) + ”f”Lq(Q)

instead of (3.1), if ¢ € (1, p] is such that

d+2 d+2
<1+ .

q p

If the inequality above is strict, then we can take ¢ = 1. The proof is based on a duality
argument combined with embedding result for parabolic Sobolev spaces and the standard
approximation argument. We refer the reader to [13, Lemma 3.1] for the duality argument
and [13, Theorem 5.2] for the embedding result (with mixed-norms). Notice that in [13,
Theorem 5.2], the boundedness of the domain is required. However, if unmixed-norms are
considered, then by a covering argument we can remove the boundedness condition so that
the result is applicable to our case.

From Theorem 3.3, we can obtain the following local estimates.
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2(m+2) 2(m+2)
m+3 ° m+l1

Assumptions 2.1 (0) and 2.2 (y; m, M) are satisfied with these 6 and y, then the following
assertions hold. Let (0,0) € Q, R € (0, Ry], and u H},(QR) satisfy

Lemma3.5 Let p € and 0,y be the constants from Theorem 3.3. If

Pu — Au = D,'gi in QR,
Bu = gin; on Qr NN, (3.2)
u=20 on QrND,

where g = (g1, ..., 8a) € L,(Qr)".
(a) When ), = 0, we have that

IDullL,@rn) Sdoastp R MulL,op) + I8lL,2p)-
(b) When i >0and g =0, forany p <2(m+2)/(m+ 1), we have U € L 5(Qry2) with

L
WNGR, Sanmps U)og. (3.3)

Proof The result in () is obtained by localizing the estimate in Theorem 3.3 (a). The proof
is the same as that of [4, Lemma 3.10], and hence is omitted.

To prove (), we first deal with the case A = 0. By a standard bootstrap argument with the
solvability result in Remark 3.4, we see that Du € L ;(Q,) for any p<2m+2)/(m+1)
and p € (0, R). For the estimate (3.3) (with A = 0), we prove that

5. 1/p 1/ps
(DU GP o) S (IDUIPY ST (3.4)

for p > max{p, 2} and p, € ((d+2)p/(d+2+ p), p). Here Q,(Xo) C Qr/2 and we have
one of the following four cases: Q,(Xo) C Q (interior), or Xy € dQ with Q,(X9)NdQ C D
(Dirichlet), or X € dQ with Q,(Xo) N 9Q C N (conormal), or Xy € I' (mixed).
The Dirichlet or mixed cases. From the result in (@) with p = p, we have
N —1,y,,1p\1/P
ADul") g, 0ty S 7 11") g, (xo)-

Then (3.4) can be obtained by applying the following Sobolev-Poincaré inequality in [4, (3.9)
in Lemma 3.8] with pg = go = p and p = g = p,:

p 1/p P+ 1/ p«
(lul )Qr/z(Xo)’SrﬂDu| )Qr(Xo)'

The conormal or interior cases. Note that in either cases, if u is a solution and ¢ is a
constant, then u — ¢ is also a solution. Hence, the result in (¢) with p = p and u being
replaced with u — (u) g, ,(x,) yields

51/ i b1/
(1Dul™) g, xpy S 77 (1 = )0, x0)1") Q) (x0)-

Then (3.4) can be obtained by applying the embedding [4, (3.8) in Lemma 3.8].

From (3.4), the desired estimate (3.3) with A = 0 can be proved in a standard way:
rescaling, covering, and iteration.

The case when A > 0 can be proved by using Agmon’s idea of considering
u(t, x) cos(«/Xy + m/4) with an artificial variable y € R, noting

(P + dyy) (u cos(v/Ay + 7/4)) = (P — &) (ucos(vAy + 1/4)),

cf. the proof of [4, Lemma 3.12]. The lemma is proved O
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3.2 Equations with constant coefficients and a time-independent separation

In this section, we deal with

—ut; + Di(ag Dju) = hu =0 in Qg,
ag Djun; =0 on Qg NN, (3.5)
u=0 on Qr ND,

where (aéi )i,j is a constant symmetric matrix with the elliptic constant A and the interfacial
boundary

rNQr=DNNNQr

is time-independent. In such a situation, we can differentiate both the equation and the
boundary conditions in 7. Furthermore, the usual time-average technique (the Steklov average)
is available to build test functions.

Lemma3.6 Let p € <2(n’;’7:32), 2(;:17:12)) (0,0) € T, and R € (0, Rg). For the constant
y € (0, 1) from Theorem 3.3, if Assumption 2.2 (y; m, M) is satisfied, then for any solution
u e HIP(QR) to (3.5) with .. > 0, we have U € L;LQO(QRM) and

-2
Ul tocmm S R™PIUIL @p)-

Proof Again, by Agmon’s idea, we only deal with the case when A = 0.
The case when p = 2. The lemma follows from [4, Proposition 4.1].

The case when p € (2, 2(::7:12)) Due to the time-independency, u, satisfies the same

equation and boundary conditions. Hence by Lemma 3.5 (a) with u, in place of u,
1Du Ny @nys) S R ucllL, 0ry)- (3.6)

Testing (3.5) by u,|u,|P~> and then applying Young’s inequality, where we need p > 2, we
obtain
el (@) S R IDulIL, (0p)- (3.7)

In this process, standard techniques including the mollification and iteration arguments as in
the proof of [4, Lemma 4.3] are needed. Here we omit the details. From (3.6) and (3.7), we
get

1Du Ly 0pm S R IDUIL, k) (3.8)

Now we use the Sobolev embedding (only in the ¢ variable) to obtain
IDu, )l e ((—rjay2,0) S R*2/P 1Dur G, L, (R /4)2.0))
+R72/”IIDM(',x)lle((f(R/4)2,0))'

Taking the L, norm in x, and then using (3.8), we have

-2
||D”||L§LQO(QR/4) 5 R /p”Du”Lp(QR)

The case when p ¢ (2(,1'1'%2) ,2). In this case, we first see that u € H}(Qg/2) by Lemma

3.5 (b). From Holder’s inequality and the estimate with p = 2, we obtain
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d/p—d]2 d/p—d/2—1 -2
Ul Loy S RYPPIUN L 1y S RPN a0 S RPNV L (0p0)-

In the last inequality, we applied (3.3) with p = 2 and Holder’s inequality. The lemma is
proved. O

4 Higher regularity of 7 solutions

In this section, we prove the following regularity result by a level set argument.

2(m+2)

Proposition 4.1 Let p € (=557,

and Ao € (0, 00) with

@, y)=0,y)d, AN, M,p,q), do=hro(d, A, M, p, Ry)

2] and q € (p, 00). There exist constants 0,y € (0, 1)

such that if Assumptions 2.1 (0) and 2.2 (y; m, M) are satisfied, then for any solution
u € H; r(Q7) 10 (2.6), where & > %o and gi, f € Ly(Q") N Ly ,(Q"), we have

u e Hclj,p,'DT (Q7) satisfying

2(1/q—1
WUz, o) Sa.am.pa IFlL, o+ Ro T PNUNL or). @.1)

2(m+2) 2(m+2) )

When T is time-independent, the same result is true for any p € ( i3 mE

The rest of Sect. 4 will be devoted to proving the proposition. Let us denote

Sy () = UE )L, and Pp() = [|F(, )L, @-

4.1 Decomposition

The key step in proving Proposition 4.1 is a suitable local decomposition of @y (¢).

Lemma4.2 Let p € (Q(mm:f) s 2] and p € (2, 2(3:12))_ For the constants

©,y)=0,y)d, A, M, p), ko =xo(d, A, M, p, Ro)
in Theorem 3.3, if Assumptions 2.1 (0) and 2.2 (y; m, M) are satisfied, then the following
assertion holds. For any ty € (—o0, T], R € (0, Ry], and u € 7'—[11J DT (Q7T) satisfying (2.6)

with A > hoand g, f € LP(QT), there exist nonnegative functions ®w g (t) and @y g(t)
defined on (to — (R/16)2, to), such that

Dy < dw.r+Py.r in (1o — (R/16)%, 1),

to fo to
/ Qw g dt Sanmpp O+ )/)T/ . Oy ()P dr +/
fo to—R to—

Dp()P dt,
—(R/16)? 2

R
4.2)
where t = p/2 — p/p, and
10 1/p fo 1/p
sup Dy r(t) Sd,A,M,p,ﬁ (][ , Dy ()P dt) + <f D ()P dl‘) .

re(to—(R/16)% 1) 10—R to—R2
4.3)

When T is time-independent, the same result holds with t = 1 — p/p for any p €
2(m+2) 2(m+2) A 2(m+2)
(S “mgi) and b€ (p. =3557).
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Proof Case I: time-dependent T, p € (2(;1"_:32) s 2], and p € (2, 2(,:':]2) )
The first decomposition: source terms. By Theorem 3.3, there is a unique solution
u e M 7 (Q7) to (2.6) with gill, g2 ) and fl, g2 ) in place of g; and f, which

satisfies

| 10 1/p
8 )”LP(QT) < (/ <I>F(t)pdt> . 4.4)
tofRz

Here UV = [Du®M |+ aJuV|. Let u® := u — u.
Next, for any point Xg = (xo, 7o) withxp € €2, since u® satisfies a homogeneous equation
in Qr(Xo), by Lemma 3.5 (b) we see that u?® e H;)(QR/Q(X(])) and

L
(U2 E oy S UP)apix, 4.5)

where U® = |Du® |+ /A |u®|. We claim that, for any Xo = (o, xo), we can find positive
functions W and V satisfying

UP <W+V in Qgsis(Xo), (4.6)
IWIlL,rnsxon S @+ NUD L, 0pxon- 4.7)
and
-2 2
Vs @rpecxon S RZPIUPD L, rxon- 4.8)

Let us first focus on the most complicated case — the mixed case, i.e., when X € I'.

The second decomposition: approximating ¢;; and I'. In this case, we need to approx-
imate I' by a time-independent separation and a;; by its average. Take the coordinate system
in Assumption 2.2 (y; m, M), and by translation, we may assume that Xo = (0, 0). Let
x = x (x) be the cut-off function on RY satisfying

1+ M

YR

x =0 in {x:x1<yR,x2>¢>—yR},
x=1 in R\ {x:x' <2yR, x> > ¢ —2yR)}.

0<x=<1, |Dx|l<Zua

)

Then xu® satisfies

Po(xu?®) —raxu® = Digf + f* in Qga,
Bo(xu'?) = g¥n; on (—(R/2)%,0) x Ng/2,
xu? =0 on (—(R/2)?,0) x Dga,

where B -
Pou = —u; + D;i((a”) gy, Dju) and Bou := (a"’)g,Djun;

have constant coefficients,
fr=d"Dju®Dix. g = (@V)g, —a)Dj(xu®)+d"u? Dy,

and
Drpp =930 Brp N {x:x* > ¢ — yR},

5 4.9)
Ngpp :=0QN BgpN{x:x" <¢—yR}.
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We first estimate (1 — x)u®. By Holder’s inequality and our construction of x,

(0 =0U@ PGl +(Dxu® M)l

R/4

1 1 1
S0 = 0UPIEY 4 — (Tappp @ 1" 4P

Iy VR QRr/a
s YN 1 2)py\1/P
<y /p—1/p <(|U( )|1’)QI’:/4 + ﬁ(|ﬂsupp(Dx)”( )|p)Q,f/4>
1p—1/p ) pr\1/P @) py1/P
Sy TP <(|U ") @y, + (1Du |p)QR/2) @10
s 1
< yl/p l/p(|U(2)|p)Q/£- (4.11)

Here, in (4.10), we applied the boundary Poincaré inequality in [4, Lemma 3.9] on narrow
regions, noting
dist(supp(Dx) N Qry4, Dry2 N Qrya) < CyR.

In (4.11), we used (4.5) and Holder’s inequality.
The third decomposition. Next we decompose yu® = u® 4 u™® with

Pou® —2u® = Di(gilag,) + flog, in Q°,
Bou® = (8 Lags)ni on (—00,0) x Ng/2, (4.12)
u® =0 on (—o00,0) x (02 Ngj2).

Notice that the new separation in the above problem is time-independent but may not satisfy
Assumption 2.2 (b). This is because the intersection of the boundary a small Reifenberg flat
domain and a hyperplane might not be Reifenberg flat as the x!-direction of the boundary
(cf. Assumption 2.2) at small scales might be almost parallelled to the normal direction of the
hyperplane. For such a reason, we apply [4, Lemma 3.5] which only requires the interfacial
boundary to be time-independent to obtain the solution u® in H%(QO), whereas we are not
able to utilize Theorem 3.3 to get the solution in H},(QO). This fact causes the restriction
p < 2. Clearly, u® = 0 for t < —(R/4)%. Moreover, we can test (4.12) by u® (with help
of the usual Steklov average technique) to obtain

3)2 2y1/2
(U P)ars S 187D gy

1/2
(DDA E + A uP Doy, (4.13)

where
U = 1Du® |+ Vau®.

Furthermore, by Holder’s inequality, Assumption 2.1 (6), and the boundary Poincaré inequal-
ity [4, Lemma 3.9] as above,

1/2 12 ~1/p py L/ P —/p yy?

(|g;k|2)Q/R/4 < (|M(2)DX|2)Q/R/4 +91/2 1/p(|Du(2)|P)Q/:/4 SO+'? l/p(|U(2)|p)Q/£/2'
(414)

Similarly, by Holder’s inequality and [4, Lemma 3.9], we have

12 1/2
(|f*”(3)|2)QR/4 S (|HSUPP(DX)D”(2)|2)Q/R/4(|DXM(3)|2)Q/R/4
14 5 1/p 1/2

< e l/p(|U(2)|p)Q/Z/2(|U(3)|2)Q/R/2' (4.15)

12

From (4.13) to (4.15), canceling (u® IZ)QR/2 from both sides, we have

1/2

3)2
WP,

SO+ U@ G

R/2"
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Recall that p < 2. By Holder’s inequality, the inequality above, and (4.5), we have

1 1/2 —1/p p1/p
WU gh, SAUOPIG,, S @+ 7P Ul
—1/9 1
<@+ VU@L, (4.16)
Let
W= UP |+ (1 = x)UP| + [Dxu'®|.
From (4.11) and (4.16), we obtain
Wiz, re S @+ VP IUPL 0 4.17)
Let V := [Du™®| + VAlu®|, where u® = xu® —u® e H(Qp) satisfies
P()u(4) — Xu(4) =0 in QR/4,
Bou™® =0 on (—(R/4)%,0) x Ngya,
u® =0 on (—(R/4)* 0) x Dgys,

where
DR/4 =002 N BR/4 Nix: x2 > ¢ — y R},

Ngja :=0QN Brpa Ni{x: x> < ¢ —yR).
. : “) Jr “) g s .
By [4, Proposition 4.1] (noting that [0, V| < |Du; " | ++/Alu; ’|) and Holder’s inequality, we
have
”at V ”LP(QR/S) 5 R(d+2)/P*2*(d+2) ” V ”L] (QR/4)
SRV L, @pm- (4.18)

Now we use the Sobolev embedding (in #) to obtain, for any x € Qg/16,

IV GO —ryszon S RZTHPUV G 0L (- r/s2.on
-2/
+ RTTPIVE L, ((—r/8)2.0)-

Taking the L, (£2g/g) norm in x, using (4.18), and noting

V < IDGu®)| + Vilxu® |+ U9,
we obtain
2 2
RIPIVI s @i S RYPIVILs 1t @u S IV Ly Qo)
SIDGUP) L rm + VAU L, rm + 1UP 1L,k
SNUP L, -
4.19)
In the last inequality, we used (4.11) for the estimate of D Xu(z) and also (4.16). From the
construction of W and V, (4.17), and (4.19), we complete the construction satisfying (4.6)—
(4.8) when Xg € T'.
Next, for Xo having one of the following three positions: Qr(Xo) C Q (interior),
Qr(X0) N dQ C D (pure Dirichlet), or Qr(Xo) N dQ C N (pure Neumann), the con-
struction is similar. Actually it is simpler since no approximation of I is presented. From

these, the construction centered at any point X( can be achieved by a standard scaling and
covering argument. The details are omitted.
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Now we cover (—(R/l6)2, 0) x Q with |, QR/16(X(()k)) with the number of overlapping

bounded by a number independent of R. On each Qg /16(X (()k)), we can define W® and v®
as above. Then let

1/p
Dy (1) == (ZH w® ;. Moy 160 17 @ +lUPa ||§p(9)> (4.20)
k

and 1/p
Dy (1) = (ZH v &, Mg 1609 ”i,,m)) ) (4.21)
k

We immediately have
Oy (1) < Pw.r(1) + Py.r(1) Vi € (—(R/16)>,0).
Furthermore, from (4.20), (4.7) with centers X', the fact U® < U + UM, and (4.4),

0
/ Dy ()P dt

~(R/16)2

0
—R2

R 0
<O+ y)P/Z*P/P/ ||U(2)(t, .)||€p(9) dt +/ , dr ()P dt
—R

0 0
SO+ y)rPre / TP INT o +IUE ] (o) d + / r (1) dt
2 p P —R2

0 0
<O+ y)P/Q*P/P/ Dy (1) dt +/ Op(1)P dt.
—_R2 —R2
This proves (4.2). Similarly, (4.3) can be obtained from (4.21), (4.8), U® < U + UV, and
(4.4). This finishes the proof of the time-dependent case.

Case 2: time-independent T, p € (z(r:l"jf), 25:["112)), and p € (p, 2(mmr12)). We define u"
as before and let u® = u — uD. For the local decomposition of U @) in this case, we do not
need to employ the cutoff argument with x. Hence, the proof is simpler and the restriction
p < 2isno longer needed. Let us give a sketch. We first freeze the coefficients by solving

Pou® —au® = D;i(((@V) g, —a)DjuPlg,,) in Q°,
BOM(3) = ((aij)QR - aij)Dj“(z)HQR/zt”i on NO’
u® =0 on DY.

By Theorem 3.3, the solution u® e H},(QO) exists and satisfies

NN L, rm S 1@ag —aHDjullL,@pm S O +MVPVPIUD L, 0p)-
(4.22)
In the last inequality, we use Holder’s inequality and the reverse Holder’s inequality as in
(4.16). We define
Wi=U® and V:=|Du®|+viDu?|,

where u® = u® — 43 Since v satisfies a homogeneous equation with time-independent

separation satisfying the condition (b) of Assumption 2.2 (y; m, M) in Qg/4, by Lemma 3.6
and (4.22),

2 2 3 2
R¥PIV L1y e S VL, @rm S 10D NLyem U DL ypm S 1UP L 20

The rest of the proof remains the same as the time-dependent case. O
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4.2 Level set estimates

In this section, we focus on the case when I' is time-dependent and p € (M 2]. When

m+3
I' is time-independent and p € (z(rzlirf), 2(;1112 ) ), some minor changes are needed. See Sect.

4.3. For a function h € L joc(—00, T), we define its (1 dimensional) maximal function by

b
M(h)(tg) := sup ][ [h()|L(—co,T) dt.

(a,b)>to
We will estimate the following level sets
A(s) = {t € (=00, T) : M(®})()'/7 > s},

B(s) == [t € (00, T) : M(®L)()/? + 0 + )PP M(@D) ()P > 5.
(4.23)

Lemmad4.3 Let p, p, and u be as in Lemma 4.2. There exists a constant Kk =
k(d,x, M, p, p) >5,
such that for any interval (a, b) C (—oo, T) with |b — a| < (Ro/32)? and
(@, b) N A(xs)| > 6 + y)P/*7P/P1b — al, (4.24)

we must have

(a,b) C B(s).

Proof We prove by contradiction. Suppose that for some interval (a, b) satisfying (4.24),
there exists some #; € (a, b) \ B(s), i.e.,

M@DYD)YP + (0 + ) VP12 M(@B) (i) <. (4.25)

Let
(a1,b1) :=(a—|b—al/2,min{b + |b —al/2,T}), R=16y|b1 —ail,

and observe that (ai, b1) = (b; — (R/16)2, b1). By Lemma 4.2 with tp = b; and such R,
we have the decomposition

Py < Py g+ Py, on (ar, by). (4.26)

Moreover, from (4.2), (4.3), (4.25), and the fact that #; € (a, b) C (b; — R?, by), we have

by 1/p .
(][ @W,R(z)f’dz) <Ci(0+ )2 VPs and  sup Dy () < Cis, (4.27)

aj te(ar,br)

where C| = C1~(d, AM, p, D). Novg for any 7 € (a, b) N A(ks), by definition, there exists
an interval (a, b) containing 7, with b < T and

b
][~ Dy ()P dt > (ks)P. (4.28)
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Actually, we must have Il; —al < |b — al/2, since otherwise

min{b+|b—al,T}

M@ (1) = ][ » Sy (1) di
b — al

b 1
D —— Oy )P dt > = (ks)P > sP
2|b—a|—|—|b—51|][d v 5

contradicting (4.25). Hence, (a, I;) C (a1, by). From this, (4.26)—(4.28), and the triangle

inequality, we get for any 7 € (a, b) N A(ks),

b 1/p
M(q)gv,kﬂ(ahbl))(f)l/p z (][ Dy r(1)? dt)

a

b 1/p
> <][ Dy ()P dt> — sup Dy g(t) > ks — Cys.

a te(a,b)
Hence, by the Hardy-Littlewood maximal function theorem and (4.27),

|AGes) N (@, b)| < {7+ M(®Y, gLy D)'? > ks — Cis} 0 (@, )]
<Clc—C))PCPO + y)P>PIP)b —al.

Here we also used the fact that R> & |b — a|. Choosing « large enough, we reach a contra-
diction with (4.24). The lemma is proved. O

From Lemma 4.3, the Hardy-Littlewood maximal function theorem
AGes) < NUN] gr/es)”
and a measure theoretic lemma called “crawling of the ink spot” in [18, 23], we have
Corollary 4.4 For k in Lemma 4.3, s satisfying
s 250 =k UL, on (0 + )PP~ P/PR3/32%) 717, (4.29)

and 0, y satisfying R
O+ y)PP7PP <1, (4.30)

we have R
LA(Ks)| < CO + y)P/27PIP|B(s)].

Here we omit the details, which can be found, for instance, in [4, Proof of Lemma 5.4]. The
key idea here is a stopping time argument: for any ¢ € A(xs), we shrink the interval (a, b)
containing ¢ until the first time (4.24) holds. The condition (4.29) guarantees that we can start
this procedure with |b — a| = (R/32). The condition (4.30) together with the Lebesgue
differentiation theorem guarantees that such procedure will stop.
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4.3 Proof of Proposition 4.1

Proof of Proposition 4.1 We mainly prove for general time-dependent I'. For fixed p €

( , z(r;”rlz) ), let k and so be the constants from Lemma 4.3 and Corollary 4.4, respectively.

We also let 6 and y be small numbers satisfying (4.30) to be chosen below. For § > s,

) S
/ |A(s)|s? " ds = k4 / |Acs)|s9™ ds
0 0
K S
= x4 / |AGcs)|s9™ ds + «? / |A(ks)|s9™ " ds
0 K

50 R S
<«iUy (QT)/ (Ks)*ﬂsqfldwcfcq(e+y)P/2*P/P/O IB(s)|s? ' ds.  (4.31)

Here in (4.31), we applied the Chebyshev inequality and Corollary 4.4 for the two terms,
respectively. Noting ¢ > p and

B(s) C A(s/2) U {1 : M(®L) (1) > 27PsP(6 + y)P/>~ /Py,

using the integral formula for L, norms in terms of level sets and the Hardy-Littlewood
maximal function theorem, we have

kS
/ A5 ds < CkTP U P
0

S
[ ot Cxt )PP [ s

.S
+c;<‘1(9+y)1’/2‘1’/1’f {2 M@D)(1) > 27PsP (@ + y)P/>7P/P} |59~  ds
0

2
< Copu (101 or Re"™ 7+ 10 NS (o)

Ly(Q")
N S/2

+Ck?(6 + y)p/z_”/p/ |A(s)|s97 " ds.
0

Absorbing the integral involving A(s) on the right-hand side by choosing 6 and y small
enough, passing S — oo, we reach the desired estimate.

When I is time-independent, the proof is almost the same if we change the definition of
B(s) in (4.23) to

B(s) = {t € (—00, T) : M(@I)(®)'/? + (0 + )P~ /P M@y ()17 > 5.

The details are omitted. O

5 Proof of Theorem 2.3

With Proposition 4.1 at hand, now we prove Theorem 2.3.

Proof of Theorem 2.3 We consider the following three cases.

Case 1: time-dependent I', p < 2. By approximation, we may assume that f and g; have
compact support in time, and hence f, g; € L;L“I‘, C L?;X. By Theorem 3.3, we can find
a solution u € H}]. Furthermore, by Proposition 4.1, u € H;’ P To show (2.7), we are left
with absorbing the U term on the right-hand side of (4.1). This step is standard, which can
be done by multiplying a cut-off function in the ¢ variable with sufficiently small support,
using Holder’s inequality, and then choosing A large enough. Such argument can be found in

@ Springer



Mixed boundary value problem... Page190f20 5

the proof of [5, Corollary 5.2]. The range of (p, ¢) corresponds to the shaded trapezoid area
in Fig. 2.

Case 2: time-dependent I, p > 2. In this case, we interpolate the H%,z and H}; results,
where ¢ > 2 can be sufficiently large and p € (2,2(m + 2)/(m + 1)). To be more precise,
let ¥ € (0, 1) be the number such that

1 v 1—0 1 v 1=

—= =4 — and — = —-+ ——.
p 2 p 9 q p

Then the Hé, p solvability can be obtained from the H. and H! , results by applying the
Riesz-Thorin interpolation theorem. Here we also used the folqlowing fact which can be
found, for instance, in [26, Theorem 1.18.1]:

[LL(LY). L(LE)]y = L (L5, LS1y),

where [ -, - ]y represents the complex interpolation space. The range of (p, ¢) corresponds
to the shaded triangle area in Fig. 2.

Case 3: time-independent ', p € (2(m"17:32) 2(;17-:—12)) For g > p, the proof is exactly the
same as the first case by using the last assertion of Proposition 4.1. For ¢ < p, the result can
be obtained by duality.

This finishes the proof of Theorem 2.3. O
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