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Abstract

We consider the Vlasov–Poisson–Landau system, a classical model for a di-
lute collisional plasma interacting through Coulombic collisions and with its self-
consistent electrostatic field. We establish global stability and well-posedness near
the Maxwellian equilibrium state with decay in time and some regularity results
for small initial perturbations, in any general bounded domain (including a torus
as in a tokamak device), in the presence of specular reflection boundary condition.
We provide a new improved L2 → L∞ framework: L2 energy estimate combines
only with S p estimate for the ultra-parabolic equation.

1. Introduction and Set-Up

1.1. The Vlasov–Poisson–Landau system

In this paper, we are interested in the global well-posedness and stability of the
Vlasov–Poisson–Landau (VPL) system in three dimensions, which is considered
as a fundamental collisional plasma model. In the absence of magnetic effects, the
dynamics of dilute charged particles (e.g. electrons and ions) can be described by
the Vlasov–Landau equations:

∂t F+ + v · ∇x F+ + e+
m+

E · ∇vF+ = Q [F+, F+] +Q [F−, F+],

∂t F− + v · ∇x F− − e−
m−

E · ∇vF− = Q [F+, F−] +Q [F−, F−],
F±(0, x, v) = F0,±(x, v).

(1.1)

Here the unknowns F±(t, x, v) ≥ 0 are the (real-valued) density distribution func-
tions for ions (+) and electrons (−), respectively, at time t ≥ 0, near the position
x = (x1, x2, x3) ∈ � ⊂ R

3
x , and having the velocity v = (v1, v2, v3) ∈ R

3
v , where
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� denotes a bounded domain in R
3. The function E(t, x) is the self-consistent

electrostatic field created by all plasma particles, which depends in a complex
way on the distribution functions F±(t, x, v). The constants e±, m± represent the
magnitude of the particles’ electric charges and masses.

The classical VPL system models the dynamics of a collisional plasma inter-
acting with its own electrostatic field as well as its grazing collisions. Such grazing
collisions are given by the famous Landau (Fokker-Planck) collision operator, pro-
posed by Landau in 19361:

Q [F1, F2](v)
:= c12

m1
∇v ·
{∫

R3
�(v−v′)

[
1

m1
F1(v

′)∇vF2(v)− 1

m2
F2(v)∇vF1(v

′)
]
dv′
}
,

where the (generalized) Landau collision kernel � is defined as

�(v):=
{

I3 − v

|v| ⊗
v

|v|
}
· |v|γ+2, γ ∈ [−d, 1 ]. (1.2)

This is a non-negative symmetric 3 × 3 matrix, and we will focus on the original
physical case for Coulomb interaction corresponding to γ = −d = −3.

Since theVlasov–Poisson equations are an approximationof theVlasov–Maxwell
equations in the non-relativistic zero-magnetic field limit, the self-consistent elec-
tric field E(t, x) is determined by a scalar electric potential φ(t, x) :

E = −∇xφ, (1.3)

and the electric potential φ satisfies the Poisson equation for electrostatics, which
is

−�xφ = 4πρ:=4π
∫
R3

[
e+F+ − e−F−

]
dv, (1.4)

with a Dirichlet or Neumann boundary condition (and some additional conditions
to guarantee the solvability). Here ρ(t, x) stands for the electric charge density.

The coupled system (1.1) with (1.3) and (1.4) is called a Vlasov–Poisson–
Landau (VPL) system. For notational simplicity, from now on we will consider a
model system (for single-species particles, e.g. ions (+)) with all constants normal-
ized to be one (The analysis of the full two-species case is similar):

∂t F + v · ∇x F + E · ∇vF = Q [F, F],
F(0, x, v) = F0(x, v),

(1.5)

1 The constant c12 = 2πe21e22 ln
, ln
 = ln
(λD

b0

)
, where λD = ( T

4πnee2
)1/2 is the

Debye shielding distance and b0 = e2
3T a typical “distance of closest approach” for a

thermal particle.
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where the distribution function F(t, x, v) ≥ 0 is defined for (t, x, v) ∈ [ 0,∞) ×
�×R

3, and the Landau collision operator (for Coulomb interaction) takes the form

Q [G, F](v):=∇v ·
{∫

R3
�(v−v′) [G(v′)∇vF(v)− F(v)∇vG(v′)

]
dv′
}

= ∂i

∫
R3
�i j (v−v′) [G(v′)∂ j F(v)− F(v)∂ j G(v

′)
]
dv′

with the Landau collision kernel (γ = −3)

�i j (v):=
{
δi j − viv j

|v|2
}
· |v|−1. (1.6)

The electrostatic field E(t, x) = −∇xφ(t, x), and the potential φ(t, x) satisfies the
Poisson equation:

−�xφ(t, x) = ρ(t, x)− ρ0:=
∫
R3

F(t, x, v) dv − ρ0, (1.7)

where the background density ρ0 is a constant number (to be specified later). The
prescribed boundary condition for the Poisson equation is either of Dirichlet type
(if we fix values of the potential at the boundary, for example,)

φ(t, x) = 0 for x ∈ ∂� and t ≥ 0,

or of Neumann type (if we are given fixed normal component of the electric field
across the surface)

∂φ(t, x)

∂n
= ∇xφ(t, x) · nx = 0 for x ∈ ∂� and t ≥ 0,

which means that the electric field at the surface (of a perfect magnetic conductor)
can only have a tangential component:

E⊥ = E(t, x) · nx = 0 for x ∈ ∂� and t ≥ 0.

For the Dirichlet boundary condition, no extra restriction is needed; while solving
Poisson equation for the potential φ with a Neumann boundary condition requires
the neutral condition to ensure the existence:∫

�

[∫
R3

F(t, x, v) dv − ρ0

]
dx = 0 for all t ≥ 0,

which follows by setting ρ0:= 1
|�|
∫∫

�×R3 F0(x, v) dvdx and the conservation law
of mass (1.22). Also a zero-mean condition

∫
�

φ(t, x) dx = 0 for all t ≥ 0

guarantees the uniqueness of solutions.
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1.1.1. Maxwellian and equations for the perturbation Our goal in this article
is to construct unique global solutions for the Vlasov–Poisson–Landau system (1.5)
and (1.7) near equilibrium state—the (normalized) global Maxwellian:

μ(v) = e−|v|2 .

Accordingly, we define the standard perturbation f (t, x, v) to μ by

F(t, x, v) = μ(v)+√μ(v) f (t, x, v).

Letting f (t, x, v) be our new unknown, the Vlasov–Poisson–Landau system for
the perturbation now reads as follows (see the definitions of L and 
 in (1.10) -
(1.13)):

∂t f + v · ∇x f + E f · ∇v f + L f = 
[ f, f ] + {E f · v
}

f + 2
{
E f · v

}√
μ,

f (0, x, v) = f0(x, v),
(1.8)

where E f = −∇xφ f is determined by

−�xφ f =
∫
R3

√
μ f dv (1.9)

with the Dirichlet BC

φ f = 0 on ∂�

or the Neumann BC

∂φ f

∂n
= 0 on ∂�

with
∫
�
φ f dx = 0, ∀ t ≥ 0, and the neutral condition for solvability now becomes

∫∫
�×R3

f (t, x, v)
√
μ(v) dvdx = 0 for all t ≥ 0,

which is automatically satisfied from the conservation of mass (1.23) under the
assumption that the initial data F0 has the same mass as the Maxwellian μ, i.e.∫

R3
μ dv = 1

|�|
∫∫

�×R3
F0(x, v) dvdx = ρ0.

By expanding the bilinear collision operator Q [G, F] = Q [μ +√μg, μ +√
μ f ] and noting that Q [μ,μ] = 0, we can decompose it into a linear part and a

nonlinear part:

Q [μ+√μg, μ+√μ f ] = Q [μ,μ]
+Q [μ,√μ f ] +Q [√μg, μ ] +Q [√μg,

√
μ f ]

=: μ1/2{A f + K g + 
[g, f ]}.
We define the linear operator

L:= − A − K (1.10)
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with the expressions

A f := μ−1/2Q [μ,μ1/2 f ] = μ−1/2 ∂i

{
μ1/2σ i j [∂ j f + v j f ]

}

= ∂i

[
σ i j∂ j f

]
− σ i jviv j f + ∂iσ

i f

= ∇v · (σ∇v f )+ (∇v − v) · (σv) f,

(1.11)

K f :=μ−1/2Q [μ1/2 f, μ ] = −μ−1/2 ∂i

{
μ

[
�i j ∗
{
μ1/2[∂ j f + v j f

]} ]}
,

(1.12)

and the nonlinear operator


[g, f ]:=μ−1/2Q [μ1/2g, μ1/2 f ]
= ∂i

[{
�i j ∗[μ1/2g

]}
∂ j f
]
−
{
�i j ∗[viμ

1/2g
]}
∂ j f

− ∂i

[{
�i j ∗[μ1/2∂ j g

]}
f
]
+
{
�i j ∗[viμ

1/2∂ j g
]}

f.

(1.13)

Here we introduce notation for the diffusion matrix (collision frequency) that cap-
tures the dissipation of the Landau collision kernel:

σ
i j
u (v):=

[
�i j ∗ u

]
(v) =

∫
R3
�i j (v − v′) u(v′) dv′, (1.14)

σu(v):=
(
σ

i j
u (v)
)
, σ :=σμ = � ∗ μ, (1.15)

σ i :=σ i jv j =
[
�i j ∗ μ

]
v j = �i j ∗ [v jμ]. (1.16)

The last equality is due to the property that for any fixed i ,∑
j

�i j (w)w j ≡ 0, w:=v − v′ (1.17)

using the specific structure (1.6) of the Landau kernel �.

1.1.2. Domain and boundary condition Throughout this paper, our domain
�:={x ∈ R

3 : ζ(x) < 0 } is connected and bounded with ζ(x) being a smooth
function. We also assume that ∇ζ(x) �= 0 on the boundary ∂� = {x : ζ(x) = 0}.
The outward unit normal vector nx at x ∈ ∂� is given by

nx := ∇ζ(x)
|∇ζ(x)| ,

and it can be extended smoothly near the boundary ∂�. Additionally, we say that
� has a rotational symmetry if there exists a point x0 and a vector ω such that[

(x − x0)× ω
] · nx = 0 (1.18)

for all x ∈ ∂�. It is worth noting that our results and methods apply to a general
class of “non-convex” and “non-simply connected” domains.
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We denote also by γ :=∂�× R
3 the phase boundary, and then we split γ into

an outgoing boundary γ+, an incoming boundary γ−, and the singular boundary γ0
(i.e., the “grazing set”) for grazing velocities, respectively defined as

γ+:={(x, v) ∈ γ : nx · v > 0 },
γ−:={(x, v) ∈ γ : nx · v < 0 },
γ0:={(x, v) ∈ γ : nx · v = 0 }.

Our problem concerns the specular-reflection boundary condition, which in
terms of the density distribution function F , can be formulated as

F(t, x, v)|γ− = F(t, x,Rxv)|γ+ (1.19)

for all t ≥ 0, where for (x, v) ∈ γ ,

Rxv:=v − 2(nx · v)nx .

This is equivalent to a specular-reflection boundary condition satisfied by the per-
turbation f :

f (t, x, v)|γ− = f (t, x,Rxv)|γ+ , ∀ t ≥ 0. (1.20)

1.1.3. Conservation laws and H-theorem The conservation laws will play cru-
cial role in the energy estimates.

The conservation of electric charge is described by the continuity equation

∂tρ + ∇x · j = 0, (1.21)

where ρ(t, x) := ∫
R3 F dv is the charge density, and j(t, x) := ∫

R3 v F dv is called
the current density. In terms of the perturbation f , we may take

ρ[ f ](t, x) :=
∫
R3

√
μ f dv,

j[ f ](t, x) :=
∫
R3
v
√
μ f dv.

Under the specular-reflection boundary condition (1.19), It is well-known that
both total mass and total energy are conserved for the Vlasov–Poisson–Landau
system (1.5):

d

dt

∫∫
�×R3

F(t) dvdx ≡ 0,

d

dt

{∫∫
�×R3

|v|2F(t)dvdx +
∫
�

|E(t)|2dx

}
≡ 0. (1.22)
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Assuming (without loss of generality, by some rescaling) that initially F0 has the
same mass and total energy as the Maxwellian μ, we can then rewrite the mass-
energy conservation laws for the system (1.8) - (1.9) with (1.20), in terms of the
perturbation f :

∫∫
�×R3

f (t)
√
μ dvdx ≡ 0, (1.23)

∫∫
�×R3

|v|2 f (t)
√
μ dvdx ≡ −

∫
�

∣∣E f (t)
∣∣2dx . (1.24)

Through the coupled Poisson equation, we may further deduce

d

dt

∫
∂�

E f (t) · n dS = − d

dt

∫
∂�

∂φ f

∂n
(t) dS

= − d

dt

∫
�

�φ f (t) dx = d

dt

∫
�

(∫
R3

√
μ f (t) dv

)
dx

= d

dt

∫∫
�×R3

√
μ f (t) dvdx ≡ 0,

(1.25)

which means that the flux of the self-consistent electric field is conserved as well.
This property will be used in the energy estimate in Section 4. Under the same
assumption, we also have

∫
∂�

E f (t) · n dS ≡ 0.

Moreover, if the domain � has a rotational symmetry (1.18), then we will
assume additionally that the corresponding conservation of angular momentum is
valid for all t ≥ 0:

∫∫
�×R3

[
(x − x0)× ω

] · v f (t, x, v)
√
μ(v) dvdx = 0. (1.26)

We also recall the celebrated H-Theorem of Boltzmann—the “entropy”

H(t):=
∫∫

�×R3
F(t) lnF(t) dvdx

for the system (1.5)(1.7) is non-increasing as time passes:

d

dt
H(t) ≤ 0, ∀ t ≥ 0.

This suggests the asymptotic stability of the Maxwellian μ, for which the entropy
is minimized (cf. [28]).
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1.2. Linearization and reformulation

To apply the Picard iteration argument, in the equation (1.8) we replace the
nonlinear dependence on f (t, x, v) with a given g(t, x, v):

∂t f + v · ∇x f + Eg · ∇v f + L f = 
[g, f ] + {Eg · v
}

f + 2
{
E f · v

}√
μ,

f (0, x, v) = f0(x, v),
(1.27)

where Eg = −∇xφg and φg is solved from

−�xφg =
∫
R3

√
μ g dv (1.28)

with either Dirichlet BC or Neumann BC and
∫
�
φg dx = 0, ∀ t ≥ 0.

Next we rearrange the terms −L f = (A + K ) f and 
[g, f ] as
−L f + 
[g, f ] = Āg f + K̄g f

with

Āg f := ∂i

[{
�i j ∗[μ+ μ1/2g

]}
∂ j f
]

−
{
�i j ∗[v jμ

1/2g
]}
∂i f −

{
�i j ∗[μ1/2∂ j g

]}
∂i f

=:∇v ·
(
σG∇v f

)+ ag · ∇v f

and

K̄g f := K f + ∂iσ
i f − σ i jviv j f

− ∂i

{
�i j ∗[μ1/2∂ j g

]}
f +
{
�i j ∗[viμ

1/2∂ j g
]}

f,
(1.29)

so that all the terms of Āg f contain at least one v-derivatives of f , while K̄g f has
no v-derivatives of f . Notice that the v-derivatives ∂ j f in K f can always bemoved
to μ1/2 via integration by parts and then outside the convolution by the property
(1.17) of the Landau kernel.

Combining terms of the same order in v, we reformulate the Eq. (1.27) as

∂t f + v · ∇x f = ∇v ·
(
σG∇v f

)+ {ag − Eg
} · ∇v f

+
{

K̄g f + (v · Eg
)

f + 2
√
μv · E f

}
, (1.30)

where

σG :=� ∗ G = � ∗ [μ+ μ1/2g
]
, (1.31)

ai
g:= − �i j ∗ [v jμ

1/2g + μ1/2∂ j g
]
, (1.32)

Eg:=∇x �
−1
x

∫
R3

√
μ g dv,
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and the operator K̄g is defined in (1.29). This equation can be viewed as a kinetic
Fokker–Planck equation of the form (cf. [11])

∂t f + v · ∇x f = ∇v ·
(
A∇v f

)+ B · ∇v f + C f, (1.33)

where g appears only in the coefficients of the operator for f . We can also fit it
into a more general class of hypoelliptic/ultraparabolic operators of Kolmogorov
type (with rough coefficients), which allows us to apply some known estimates and
results regarding this kind of operators (see Section 5).

When the size of g (e.g. ‖g‖∞,ϑ ∼ ε) is sufficiently small, the coefficients in
(1.33) have the following basic properties (see Section 3 for more details):

A(t, x, v):= σG(t, x, v)

=
{
� ∗ [μ+ μ1/2g(t, x, v)

]}
(v)

is a 3× 3 non-negative matrix, retaining the same analytical properties (e.g. eigen-
values/spectrum) as σ : (cf. Lemma 2.4 in [25])

0 < (1+|v|)−3 I � A(v) � (1+|v|)−1 I.
This makes the second-order v-derivatives ∇v ·

(
A∇v ◦

)
an elliptic operator (but

not uniformly elliptic in v). Moreover,

B(t, x, v):=ag(t, x, v)− Eg(t, x)

is a uniformly bounded 3-dimensional vector with (cf. AppendixA in [11])

‖B[g]‖∞ ≤ ‖ag‖∞ + ‖Eg‖∞ � ‖g‖∞ < ε.

Finally,

C f :=K̄g f + (v · Eg
)

f + 2
√
μv · E f

is an operator bounded in some weighted L p space (cf. Lemmas 2.9 and 7.1 in
[25]).

1.3. Definition and notation

Throughout the paper, C will generally denote an universal constant that may
vary from line to line. The notation A � B means that A ≤ C B for some universal
constantC > 0;wewill use� and� in a similar standardway. Below is a collection
of definitions and notation:

1.3.1. Weighted norms For w(v):=〈v〉 = √1+ |v|2,
| f |p,ϑ :=

∣∣〈v〉ϑ f
∣∣
L p(R3)

=
(∫

R3
〈v〉pϑ | f (v)|p dv

) 1
p

,

‖ f ‖p,ϑ :=
∥∥〈v〉ϑ f

∥∥
L p(�×R3)

=
(∫∫

�×R3
〈v〉pϑ | f (x, v)|p dvdx

) 1
p

,

| f |∞,ϑ :=
∣∣〈v〉ϑ f

∣∣
L∞(R3)

= ess supR3 〈v〉ϑ | f (v)|,
‖ f ‖∞,ϑ :=

∥∥〈v〉ϑ f
∥∥

L∞(�×R3)
= ess sup�×R3 〈v〉ϑ | f (x, v)|.
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1.3.2. Dissipation and energy

〈 f, g〉:=
∫
R3

f g dv,

( f, g):=
∫∫

�×R3
f g dvdx,

〈 f, g〉σ :=
∫
R3

[
σ i j∂i f ∂ j g + σ i jviv j f g

]
dv,

( f, g)σ :=
∫∫

�×R3

[
σ i j∂i f ∂ j g + σ i jviv j f g

]
dvdx,

| f |2σ,ϑ = 〈 f, f 〉σ,ϑ :=
∫
R3
〈v〉2ϑ
[
σ i j∂i f ∂ j f + σ i jviv j f 2

]
dv,

‖ f ‖2σ,ϑ = ( f, f )σ,ϑ :=
∫∫

�×R3
〈v〉2ϑ
[
σ i j∂i f ∂ j f + σ i jviv j f 2

]
dvdx,

• Instant Energy:

Iϑ [ f (t)]:= ∥∥ f (t)
∥∥2
2,ϑ +
∥∥E f (t)

∥∥2
L2

x
,

• Dissipation Rate:

Dϑ [ f (t)]:= ∥∥ f (t)
∥∥2
σ,ϑ
+ ∥∥E f (t)

∥∥2
L2

x
,

• Total Energy (Instant+Accumulative):

Eϑ [ f (t)]:= Iϑ [ f (t)] +
∫ t

0
Dϑ [ f (τ )] dτ.

1.3.3. Trace and integral over phase-boundary

γ f := f |γ , γ± f := f |γ± ,

‖γ± f ‖L p(γ±) :=
(∫∫

γ±

∣∣γ± f (x, v)
∣∣p|v ·nx |dvdSx

) 1
p

.

2. Main Results and Ideas

2.1. Background and motivation

Despite the important role kinetic theory plays for describing a plasma, we are
not aware any global well-posed theory for classical kinetic models in a “donut
shape” torus, which resembles a tokamak device. The fundamental difficulty lies
in the singularity for kinetic equations near the grazing set γ0. Even for the linear
free streaming operator ∂t + v · ∇x , the grazing set γ0 is always characteristic but
not uniformly characteristic, the most challenging case in the regularity study of
hyperbolic PDE in a bounded domain. In general, singularity and discontinuity is
expected to develop from the grazing set γ0, and propagate inside for a non-convex
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domain [12,18,24], and the solutions are of BV at the best. On the other hand,
regularity is expected to deteriorate near the grazing set γ0, but could be confined
and localized in a convex domain [19,22].

Since the regularity plays an important role in establishing uniqueness in the
kinetic theory, such a loss of regularity creates fundamental difficulties in the PDE
study. Many techniques with Sobolev norms developed for the free space are not
suitable, and completely new mathematical frameworks need to be developed. Fur-
thermore, such a loss of regularity can even alter our basic understanding of classical
boundary behavior for kinetic theory [31].

Thanks to the possibility of regularity in a convex domain for kinetic the-
ory, there have been important advances in various kinetic models for a plasma
in convex domains. In [22,23], global well-posedness is established for the colli-
sionless Vlasov–Poisson system. In recent work of [3,4], global well-posedness is
established for the collisionalVlasov–Poisson–Boltzmann systemnearMaxwellian
distributions.

An L2 → L∞ framework for the Boltzmann equation is developed in [14]
for study of well-posedness in bounded domains, which is based on the basic L2

energy estimate and a bootstrap to L∞ bound thanks to an interaction between free
streaming characteristics and averaging in velocity in the collision operator. See
subsequent developments along this direction in [2,9,10]. In particular, a quantita-
tive estimate of macroscopic part P f in terms of the microscopic part (I − P) f
for the L2- elliptic/positivity estimate is established in [8].

Our paper continues the recent program to study an L2 → L∞ framework
for studying the Landau equation [17,25]. It should be noted that due to nonlinear
diffusion in the velocity space, L∞ is not quite enough to ensure uniqueness as in the
Boltzmann equation; some control of ∇v f is needed. The framework relies on L2

energy estimate, and a recent novel De Giorgi–Nash–Moser theory for the Landau
equation, which is developed in [11]. Finally, De Giorgi–Nash–Moser theory leads
to application of S p estimates (counterpart of W 2,p estimates for parabolic PDEs)
to control ∇v f for the uniqueness. The main novelty of our paper is to give a
more direct and simplified approach with only L2 energy and S p estimates in the
perturbative regime, bypassing the recent De Giorgi–Nash–Moser theory for the
Landau equation.

2.2. Statement of the main theorem

We are now ready to state our main theorem, which is a low-regularity global
well-posedness and stability result for the model Vlasov–Poisson–Landau system
(1.5) and (1.7).

Theorem 2.1. (Main Theorem) Assume that for some sufficiently large velocity-
weight exponent ϑ0 ∈ R, the initial data f0(x, v) : � × R

3 → R satisfies the
smallness assumption

‖ f0‖∞,ϑ0 + ‖∇x f0‖∞,ϑ0 + ‖∇v f0‖∞,ϑ0 + ‖∇2
v f0‖∞,ϑ0 ≤ ε0 (2.1)

for a sufficiently small constant ε0 � 1. Let F0(x, v) = μ+√μ f0(x, v) ≥ 0 and
has the same mass as the Maxwellian μ. Then we have the following conclusions:
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• (Existence&Uniqueness).There exists a unique global solution f (t, x, v) to the
Vlasov–Poisson–Landau system (1.8)–(1.9) for perturbation with the specular-
reflection boundary condition (1.20) and the conservation laws (1.23)–(1.24).
Also,

F(t, x, v) = μ+√μ f (t, x, v) ≥ 0

satisfies the system (1.5)–(1.7) with (1.19).
• (Energy estimates & L2 decay). Moreover, the solution f (t, x, v) satisfies the

uniform weighted energy bounds, for ϑ < ϑ0 − 3
2 ,

sup
t∈[0,∞)

Eϑ [ f (t)] ≤ Cϑ Eϑ [ f (0)] � ε 20 , (2.2)

and the (almost exponential) time-decay, if ϑ + k < ϑ0 − 3
2 ,

‖ f (t)‖2,ϑ +
∥∥E f (t)

∥∥
H1

x
� ε0

(
1+ t

2k

)−k

(2.3)

for any t ≥ 0.
• (L∞ bounds & pointwise decay). For any k ≥ 0, there is an increasing function
ϑ ′ = ϑ ′(k) such that when ϑ +ϑ ′ ≤ ϑ0, the weighted pointwise decay bounds
hold:

‖ f (t)‖∞,ϑ + ‖E f (t)‖∞ � ε0 (1+ t)−k (2.4)

for all t ≥ 0.
• (Regularity results). In addition, it holds that for any t > 0

‖ f (t)‖C0,α(�×R3) + ‖E f (t)‖C1,α(�) � ε0 (2.5)

for some α ∈ (0, 1], and

‖∇v f ‖L∞((0,∞)×�×R3) � ε0. (2.6)

• ∂t f and ∂tE f also satisfy all the estimates above.

Remark 2.1. (1) There exists ϑ̄0 such that the system is globally well-posed for
initial data satisfying ϑ0 ≥ ϑ̄0.

(2) For fixed ϑ0, this theorem guarantees that the solution decays at least in
the rate of k(ϑ0), which goes to infinity as ϑ0 → ∞. Hence, if we desire a faster
decaying solution, we should require that the initial data belongs proper weighted
L∞ space. As [20] states, this is called the almost exponential decay. Better data,
faster decay.
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2.3. Bootstrap proposition

We implement the following bootstrap scheme:

Proposition 2.2. (Bootstrap Estimates) Let f (t, x, v) be a solution to the VPL-
specular problem (1.8), (1.9), and (1.20) (or (1.27), (1.28), and (1.20)) on some
time interval [0, T ], T ≥1, with initial data f0 satisfying the assumption (2.1).

Assume also that, for any t ∈ [0, T ], the solution f (and g) satisfies the boot-
strap hypothesis:

〈t〉k1∥∥ f (t)
∥∥
2,ϑ1

+ 〈t〉k1∥∥∂t f (t)
∥∥
2,ϑ1

� ε1, (2.7)

〈t〉k2∥∥ f (t)
∥∥∞,ϑ2

+ 〈t〉k2∥∥∂t f (t)
∥∥∞,ϑ2

� ε1, (2.8)

and

‖ f ‖S p((0,T )×�×R3) + ‖∂t f ‖S p((0,T )×�×R3) � ε1, (2.9)

‖Dv f ‖L∞((0,T )×�×R3) + ‖Dv∂t f ‖L∞((0,T )×�×R3) � ε1, (2.10)

where 〈t〉:=√1+ t2, ϑ1, ϑ2 are two sufficiently large constants, ki ≥ 0 (i = 1, 2),
p > 14, ε0 = ε

q
1 � 1 for some q > 1, and see (5.3) for the definition of the S p

norm.
Then the following improved bounds hold for any t ∈ [0, T ]:

〈t〉k1∥∥ f (t)
∥∥
2,ϑ1

+ 〈t〉k1∥∥∂t f (t)
∥∥
2,ϑ1

� ε r
1 , (2.11)

〈t〉k2∥∥ f (t)
∥∥∞,ϑ2

+ 〈t〉k2∥∥∂t f (t)
∥∥∞,ϑ2

� ε r
1 , (2.12)

and

‖ f ‖S p((0,T )×�×R3) + ‖∂t f ‖S p((0,T )×�×R3) � ε s
1 , (2.13)

‖Dv f ‖L∞((0,T )×�×R3) + ‖Dv∂t f ‖L∞((0,T )×�×R3) � ε s
1 , (2.14)

and

‖ f (t)‖C 0,1(�×R3) + ‖Dv f (t)‖C 0,α(�×R3) � ε s
1 , α = 1− 14/p, (2.15)

for some r, s > 1, where the implicit constants in (2.11)–(2.14) are independent of
ε1.

Remark 2.2. Given that the bootstrap proposition above holds true, Theorem 2.1
follows from a local existence result combined with a continuity argument (see
Section8 for the proof). The local existence is presented in Theorem 8.1 and it can
be obtained by using the well-posedness for the linear equation (cf. [17, Section2–
5] and [6]) with a standard iteration argument under the initial assumption (2.1).
The majority of the rest of this paper is devoted to the proof of Proposition 2.2.

The bounds (2.7)–(2.8) and (2.11)–(2.12) are our (low-order) weighted energy
and pointwise decay estimates, which guarantees existence. They are essentially
Sobolev-type estimates, which can be obtained through the so-called “two-tier”
energy method. It is presented in Section 4.

The bounds (2.9)–(2.10) and (2.13)–(2.14) provide uniform control on the
velocity-derivatives, which ensures the uniqueness. Also, it provides further regu-
larity results. The proof is based on the ultra-parabolic equations and the S p theory.
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2.4. Overview and idea of the proof

We now discuss the strategy for our proofs and some of the main features of
our arguments.

U pshots o f the Proof :
• Bootstrap scheme: The control of various norms in our paper is tangled together:
(weighted)-L2 decay→ S p→Cα & Dv regularity→ (weighted)-L∞ decay→
(weighted)-L2 decay. In fact, each step requires almost all the other estimates.
In particular, the justification of uniqueness relies on (weighted)-L2, Dv and
(weighted)-L∞ bounds.

• Energy estimate:We delicately implement the celebrated “macro-micro decom-
position method” (kernel estimate by contradiction argument) to the Vlasov–
Poisson–Landau system to obtain the weighted L2 decay:
– In order to handle the problematic nonlinear term containing the electric
field, we need tomultiply eφ to combine it with v ·∇x f . This further requires
the estimates of ∂tφ ∼ ∂t f .

– Since the σ -norm is not strong enough to control the L2 norm, we need
to introduce weights and use interpolation, leading to almost exponential
decay. Also, we require decay of ∂t f to be sufficiently fast.

– “Two-tier energy method”: decay→ energy bound→ decay
– ∂t f estimate: combine the counterpart of f

• S p estimate:We greatly simplify the L2–L∞–Cα framework in [17,25]. Instead
of the De Giorgi-Nash-Moser method, we use S p embedding theorem to obtain
Hölder continuity.

• Specular boundary problem: The S p estimate is based on an extension of the
domain� beyond the boundary, which is achievable for the specular case, using
the flattening-reflection technique in [17].

2.5. Organization of the paper

Our paper is organized as follows. In Section 3, we present some preliminary
lemmas about the Landau operators. The proof of Proposition 2.2 is given in Sec-
tions 4–7. In Section 4, we justify the weighted energy estimate (2.11). In Sections
5–7, we apply the S p theory in order to justify the uniqueness. In particular, in
Sections 5 and 6, we adapt the general S p theory to our equations. In Section 7, we
prove the S p bounds (2.13), the L∞ bounds (2.14) for Dv f and Dv∂t f , and the
Hölder estimates (2.15). We then justify the weighted L∞ estimates (2.12), which
is also necessary for the uniqueness proof. Finally, in Section 8, we prove the main
theorem.

3. Preliminaries: Basic Properties and Estimates

For convenience, we collect some basic facts and estimates in this subsection,
including the structure of the Landau collision kernel, from which we may charac-
terize the σ -norm of dissipation and hereby estimate the Landau operators in terms
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of this norm. We will omit some of those proofs but instead refer the reader to
[13, Section2, 3], [25, Section2], and [5, Section2] for more details. Moreover, we
prepare some preliminary L p and elliptic estimates for our proofs of the energy and
S p bounds in later sections. Throughout this subsection, if not otherwise stated, f ,
g, and gi represent general functions of certain variables.

Lemma 3.1. (Embedding of Weighted Spaces) Let f be a function defined for
(x, v) ∈ �×R

3, and p ∈ (1,∞). For any ϑ ∈ R and l > 3/p, there is a uniform
constant C p > 0 (depending only on the domain �, p, and l) such that

‖ f ‖p,ϑ ≤ C p‖ f ‖∞,ϑ+l .

Remark 3.1. As a corollary when p = 2, we see that the weighted L∞ spaces can
be embedded into weighted L2 spaces at the cost of (at least) a finite

( 3
2

)+
order of

velocity-weight loss. In particular, for initial data, our assumption on weighted L∞
norm guarantees control of L2 norm.

Proof. We estimate

‖ f ‖p
p,ϑ =

∫∫
�×R3

〈v〉pϑ | f (x, v)|p dvdx

=
∫∫

�×R3
〈v〉−pl

∣∣∣〈v〉ϑ+l f (x, v)
∣∣∣p dvdx

≤ ‖ f ‖p
∞,ϑ+l ·

∫∫
�×R3

〈v〉−pl dvdx

= C p
p ‖ f ‖p

∞,ϑ+l ,

where the constant

C p = C p(�, l):= |�|1/p
(∫

R3
〈v〉−pl dv

) 1
p

<∞

for l > 3/p, and C p ∼ |�|1/p
( 1

pl−3
)1/p. ��

Next is an estimate to be applied repeatedly in the following lemmas about the
properties related to theLandaukernel (cf. [5, Proposition2.2–2.4], [13,Lemma2,3]
and [25, Lemma2.2–2.5]).

Lemma 3.2. Let ϑ > −3, k(v) ∈ C∞
(
R
3\{0}) and m(v) ∈ C∞

(
R
3
)
. Assume that

for any multi-index β ≥ 0,
∣∣Dβk(v)

∣∣ ≤ C ′β |v|ϑ−|β|,∣∣Dβm(v)
∣∣ ≤ C ′β e−τβ |v|2

(3.1)

for some C ′β > 0 and τβ > 0. Then there is Cβ > 0 such that

∣∣Dβ
[
k ∗ m
]
(v)
∣∣ ≤ Cβ 〈v〉ϑ−|β|. (3.2)
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Corollary 3.2.1. (Pointwise Estimate of σ i j
G and ai

g) Let the (generalized) Landau

kernel �(v) be given by (1.2) for −3 ≤ γ ≤ 1. Then σ i j (v) and σ i (v) defined in
(1.14)–(1.16) are smooth functions of v such that

∣∣Dβ
v σ

i j (v)
∣∣ + ∣∣Dβ

v σ
i (v)
∣∣ ≤ Cβ 〈v〉γ+2−|β| (3.3)

for some Cβ > 0 with |β| ∈ N ∪ {0}.
In our case of the Coulomb interaction ( i.e. γ = −3), if G = μ +√μg with

supt ‖g‖∞ ≤ ε � 1, then

∣∣Dβ
v σ

i j
G (t, x, v)

∣∣ � 〈v〉−1−|β| ≤ 1 (3.4)

for |β| = 0, 1, and
∣∣ai

g(t, x, v)
∣∣ � sup

t
‖g‖∞ · 〈v〉−1 ≤ ε, (3.5)

where σ i j
G is given in (1.31) and ai

g in (1.32).

Proof. Applying Lemma 3.2 to k = �i j with
∣∣Dβ�i j (v)

∣∣ ≤ C ′β |v|γ+2−|β| for v �= 0

and m = μ, v jμ satisfying (3.1), the bound (3.3) follows immediately from (3.2).
For (3.4) and (3.5), from the definitions we clearly have

∣∣Dβ
v σ

i j
G (t, x, v)

∣∣ ≤ ∣∣Dβ
v σ

i j (v)
∣∣ + ∣∣Dβ

v σ
i j√
μg(t, x, v)

∣∣
≤ Cβ

(
1+ sup

t
‖g‖∞
)· 〈v〉−1−|β|,

by following the proof of Lemma 3.2 with slight modification, and
∣∣ai

g(t, x, v)
∣∣ ≤ ∣∣�i j ∗[v jμ

1/2g
]∣∣+ ∣∣�i j ∗[μ1/2∂ j g

]∣∣ � sup
t
‖g‖∞· 〈v〉−1,

where (for the second term) we transfer the derivatives on g using integration by
parts. ��
Lemma 3.3. (Structure of the DiffusionMatrix) Let σ = [σ i j

]
1≤i, j≤3 be the diffu-

sion matrix in (1.15). For any v ∈ R
3, σ(v) is a 3×3 real symmetric matrix. Thus it

can be diagonalized by an orthogonal matrix consisting of associated eigenvectors.
The spectrum of σ(v) consists of a simple eigenvalue λ1(v) > 0 associated

with the eigenvector v, and a double eigenvalue λ2(v) > 0 associated with the
eigenspace v⊥. Furthermore, the eigenvalues can be written explicitly as

λ1(v) =
∫
R3

{
1− |v̂ · ŵ|2

}
μ(v−w) |w|γ+2 dw, (3.6)

λ2(v) =
∫
R3

{
1− 1

2
|v̂ × ŵ|2

}
μ(v−w) |w|γ+2 dw, (3.7)
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where v̂:= v
|v| , ŵ:= w

|w| . Asymptotically, as |v| → ∞,

λ1(v) ∼ c1〈v〉γ , λ2(v) ∼ c2〈v〉γ+2

for some constants c1, c2 > 0.
For γ = −3, and G = μ +√μg with supt ‖g‖∞ ≤ ε � 1, the matrix

σG(t, x, v) has three positive eigenvalues satisfying that for all t ≥ 0, x ∈ �, and
for any v ∈ R

3,

1

C
〈v〉−3 ≤ λG(t, x, v) ≤ C〈v〉−1 (3.8)

for some constant C > 0, meaning that σG is positive-definite/elliptic (but not
uniformly elliptic in v ∈ R

3, i.e. does not have a strictly positive lower bound
independent of v).

Corollary 3.3.1. (Lower Bound for the σ -norm) For any 3d-vector field g(v) =
〈g1, g2, g3〉, let qσ [g](v):= gTσg = ∑3

i, j=1σ i j gi g j denote the quadratic form
associated with the diffusion matrix σ(v). Denote also by Pv g := (g · v̂) v̂ the
projection of g(v) onto the subspace spanned by the vector v. Then

qσ [g](v) = λ1(v)
∣∣Pv g∣∣2 + λ2(v)

∣∣[I−Pv] g
∣∣2,

where λ1(v), λ2(v) are eigenvalues of σ(v) given by (3.6) and (3.7).
Let | · |σ,ϑ and ‖ · ‖σ,ϑ be the weighted σ -norms defined in Section 1.3.2. Then

there exists Cϑ > 0 such that

|g|2σ,ϑ ≥ Cϑ

{ ∣∣∣〈v〉ϑ− 3
2
∣∣Pv(∇vg)

∣∣∣∣∣2
2
+
∣∣∣〈v〉ϑ− 1

2
∣∣[I−Pv](∇vg)

∣∣∣∣∣2
2
+
∣∣∣〈v〉ϑ− 1

2 g
∣∣∣2
2

}

� |g|2
2,ϑ− 1

2
,

and therefore,

‖g‖σ,ϑ � ‖g‖2,ϑ− 1
2
.

Remark 3.2. Although the σ -norm contains first-order velocity derivatives, it is
still not strong enough to control the L2 norm. However, we manage to bound the
L2 by this σ -norm at the cost of a minimal half power of weight loss.

The next two lemmas on the Landau operators are useful in the energy estimates
in Sections 4 and 8). We first record a basic estimate about the linear collision
operator L (cf. the proofs of [13, Lemma6] and [25, Lemma2.7]).

Lemma 3.4. (Linear Estimate for L) Let L = −A− K be given by (1.10)–(1.12),
and let ϑ ∈ R. For any small δ > 0, there exists Cϑ,δ = Cϑ(δ) > 0 such that

(1− δ)|g|2σ,ϑ − Cϑ,δ |μg|22 ≤ −
〈
w2ϑ Ag, g

〉 ≤ (1+ δ)|g|2σ,ϑ + Cϑ,δ |μg|22
and ∣∣〈w2ϑ K g1, g2

〉∣∣ ≤ (δ|g1|σ,ϑ + Cϑ,δ|μg1|2
) |g2|σ,ϑ .
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Here the Maxwellian μ is a convenient choice of a mollified characteristic function
of a ball, which can be replaced by any function of v with sufficiently fast decay at
infinity. As a consequence (by taking δ ≤ 1

4 ), we have

1

2
|g|2σ,ϑ − Cϑ |g|2σ ≤

〈
w2ϑ Lg, g

〉 ≤ 3

2
|g|2σ,ϑ + Cϑ |g|2σ , (3.9)

and

1

2
|g|2σ,ϑ − Cϑ |g|22,ϑ ≤

〈
w2ϑ Lg, g

〉 ≤ 3

2
|g|2σ,ϑ + Cϑ |g|22,ϑ . (3.10)

For the nonlinear collision operator
, we estimate
(
w2ϑ
[g1, g2], g3

)
in terms

of ‖ · ‖∞, ‖ · ‖2,ϑ , and ‖ · ‖σ,ϑ without higher-order regularity. Note that 
[g1, g2]
is non-symmetric, so we need to estimate this nonlinear term in two different ways,
with the energy norm on two variables respectively (cf. [13, Theorem3] and [25,
Theorem2.8]).

Lemma 3.5. (Nonlinear Estimate for 
) Let 
 be defined as in (1.13), then for
every ϑ ∈ R, there exists Cϑ > 0 such that∣∣∣(w2ϑ
[g1, g2], g3

)∣∣∣ ≤ Cϑ ‖g1‖∞‖g2‖σ,ϑ‖g3‖σ,ϑ . (3.11)

Moreover, for any ϑ ≤ −2, we have∣∣∣(w2ϑ
[g1, g2], g3
)∣∣∣ ≤ Cϑ

(‖g2‖∞+‖Dvg2‖∞
)

·min
{‖g1‖2,ϑ , ‖g1‖σ,ϑ

} ‖g3‖σ,ϑ . (3.12)

The following estimates will be used in the proof of the S p bound in Section 7.1.

Lemma 3.6. (L p Estimate of K̄g f ) Let K̄g f be defined as in (1.29)with g satisfying
the assumption (2.8). Then for every ϑ ≥ 0 and 1 ≤ p ≤ ∞, it holds that
∥∥K̄g f
∥∥

L p
t,x,v (|v|∼n) � n−ϑ

(
‖ f ‖L p

t,x,v
+ ∥∥Dv f

∥∥
L p

t,x,v
+ ∥∥〈v〉ϑ f

∥∥
L p

t,x,v (|v|∼n)

)

� n−ϑ
(∥∥Dv f

∥∥
L p

t,x,v
+ ∥∥〈v〉ϑ f

∥∥
L p

t,x,v

) (3.13)

for any n ∈ N.

Proof. We split the operator as K̄g = K + Jg , where

K f := − μ−1/2 ∂i

{
μ

[
�i j ∗
{
μ1/2[∂ j f + v j f

]} ]}

= 2viμ
1/2
[
�i j ∗
{
μ1/2[∂ j f + v j f

]} ]− μ1/2
[
∂i�

i j ∗
{
μ1/2[∂ j f + v j f

]} ]
,

Jg f := ∂iσ
i f − σ i jviv j f − ∂i

{
�i j ∗[μ1/2∂ j g

]}
f +
{
�i j ∗[viμ

1/2∂ j g
]}

f.

We will first estimate K f as∥∥K f
∥∥

L p(|v|∼n) � n−ϑ
( ‖ f ‖L p + ∥∥Dv f

∥∥
L p

)
. (3.14)
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Note that for α ∈ (0, 1), ϑ ≥ 0, and k = 0, 1,

〈v〉kμα∣∣|v|∼n � n−ϑ 〈v〉ϑ+kμα � n−ϑ .

Also, in light of Lemma 3.3 which provides spectrum of the Landau kernel �(v),
it suffices to show that

∥∥μα · {|v|λ ∗ [μγ h
]}
(v)
∥∥

L p
v

� ‖h‖L p
v
,

where α, γ ∈ (0, 1), λ ∈ [−3,−1], and h(t, x, v) represents either f or ∂vi f .
Using the Hölder inequality, the p-th power of LHS above is bounded by

∫
R3
μαp(v)

∣∣∣∣
∫
R3

∣∣v − v′
∣∣λμγ (v′)h(v′) dv′

∣∣∣∣
p

dv

≤
∫
R3
μαp(v)

(∫
R3

∣∣v − v′
∣∣λp′

μγ p′(v′)dv′
) p

p′
(∫

R3

∣∣h(v′)∣∣pdv′
)
dv

� ‖h‖p
L p
v
·
∫
R3
μαp(v)〈v〉λp dv

� ‖h‖p
L p
v
.

The second inequality above follows in a similar manner as the proof of Lemma 3.2
(cf. [13, Lemma2]) with obvious modifications.

Now for the other part, we have

∥∥Jg f
∥∥

L p(|v|∼n) ≤
(
C + sup

t
‖g‖∞
) ‖ f ‖L p(|v|∼n) � n−ϑ

∥∥〈v〉ϑ f
∥∥

L p(|v|∼n). (3.15)

Here for the third term in Jg f , we use the fact that ∂i∂ j�
i j is a multiple of the Dirac

delta function. Finally, combining (3.14) and (3.15) gives us the first inequality of
(3.13), which immediately yields the second one. ��

The last estimate for the electric field will be used repeatedly across the paper.

Lemma 3.7. (L p Estimate of E f ) Let E f := −∇xφ f = ∇x �
−1
x

∫
R3
√
μ f dv be

the electric field with the potential φ f solved from the Poisson equation

−�xφ f (t, x) =
∫
R3

√
μ f dv =: ρ[ f ](t, x)

with either zero-Dirichlet or zero-Neumann BC, then for 1 < p <∞, it holds that
for any t ≥ 0,

∥∥E f (t)
∥∥

W 1,p
x

�
∥∥ f (t)
∥∥

L p
x,v
.

Moreover, when p = ∞, we have

‖E f ‖L∞t,x � ‖ f ‖L∞t,x,v . (3.16)



352 Hongjie Dong, Yan Guo & Zhimeng Ouyang

Proof. For 1 < p <∞, based on the L p estimate for elliptic equations, we have

∥∥E f (t)
∥∥

W 1,p
x

�
∥∥φ f (t)

∥∥
W 2,p

x
�
∥∥ρ[ f ](t)∥∥L p

x
=
∥∥∥∥
∫
R3

√
μ(v) f (t, ·, v) dv

∥∥∥∥
L p

x

≤
∫
R3

∥∥∥√μ(v) f (t, ·, v)
∥∥∥

L p
x
dv =

∫
R3

√
μ(v)
∥∥ f (t, ·, v)∥∥L p

x
dv

≤ ∥∥ f (t)
∥∥

L p
x,v
· |√μ |

L p′
v

�
∥∥ f (t)
∥∥

L p
x,v
.

The third and fourth inequalities are due to Minkowski’s integral inequality and
Hölder’s inequality, respectively.

Additionally, in view of the continuous embedding W 1,p
x (�) ↪→ L∞x (�) for

p > 3, we also have

∥∥E f (t)
∥∥

L∞x
�
∥∥E f (t)

∥∥
W 1,p

x
�
∥∥ρ[ f ](t)∥∥L p

x
=
∥∥∥∥
∫
R3

√
μ(v) f (t, ·, v) dv

∥∥∥∥
L p

x

≤ ∥∥ f (t)
∥∥∞· |�|

1
p

∫
R3

√
μ dv

�
∥∥ f (t)
∥∥∞ ≤ sup

t≥0
∥∥ f (t)
∥∥∞

for any t ≥ 0, then (3.16) follows. ��

4. Energy Estimates: Weighted L2 Decay

In this section we establish uniform weighted energy estimates and L2 time-
decay for theVPL-specular problem (1.8), (1.9), and (1.20) assuming smallweighted
L∞ norms and decay of the solutions f and its time-derivative ∂t f .

Our strategy is to adapt arguments in [3,17,25]. In addition, we will utilize
techniques in [3, Section7] to control the extra terms related to the electric field.

To start with, we rearrange the Vlasov–Landau equation (1.8) as

∂t f + v · ∇x f + L f − 2
√
μv · E f = 
[ f, f ] − E f · ∇v f + (v · E f

)
f,

(4.1)

so that LHS has purely linear terms, leaving all the nonlinear terms on RHS.
Throughout this section, we will focus on the a priori estimates of the solution.

Theorem 4.1. (Energy Estimates and L2 Time-Decay) Let f (t, x, v) be a solution
to the VPL-specular problem (1.8), (1.9), and (1.20) (or (1.27), (1.28), and (1.20)
with g = f ) and additional conservation law of angular momentum (1.26) if �
has a rotational symmetry on some time interval [0, T ], T ≥ 1, with initial data
f0 satisfying (2.1). Suppose also the bootstrap decay bounds (2.7)–(2.8), and in
particular that

sup
t∈[0,T ]

‖ f (t)‖∞,ϑ̄ + sup
t∈[0,T ]

‖∂t f (t)‖∞,ϑ̄ + sup
t∈[0,T ]

∥∥∇v∂t f (t)
∥∥∞ � ε1
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for some ϑ̄ ≥ 3, and where ε1 � 1 is small enough.
Then the uniform weighted energy bound holds

sup
t∈[0,T ]

Eϑ [ f (t)]

:= sup
t∈[0,T ]

(∥∥ f (t)
∥∥2
2,ϑ +
∥∥E f (t)

∥∥2
L2

x
+
∫ t

0

∥∥ f (τ )
∥∥2
σ,ϑ

dτ +
∫ t

0

∥∥E f (τ )
∥∥2

L2
x
dτ

)

� ε20 .

(4.2)

Furthermore, the solution decays almost exponentially with respect to time:

‖ f (t)‖2,ϑ +
∥∥E f (t)

∥∥
H1

x
� ε0〈t〉−k (4.3)

for any t ∈ [0, T ], where k was introduced in (2.3). Moreover, we also have

Eϑ [∂t f (t)] � ε20,

and

‖∂t f (t)‖2,ϑ +
∥∥∂tE f (t)

∥∥
H1

x
� ε0〈t〉−k .

Remark 4.1. The time-decay result (4.3) is called almost-exponential decay, in the
sense that the solution decays with any polynomial rate in time. This decay rate
is optimal for the Landau-Poisson system in view of our current setting as well as
method, and the reason is twofold:

(1) On one hand, the instant energy functional at each time is stronger than the
dissipation rate due to the particular structure of Landau operator, so we have
to perform interpolation between hierarchies of weighted energy norms such
that dissipation can bound a power of energy, which yields only algebraic decay.

(2) On the other hand, in comparison to periodic domains, where more regular ini-
tial assumption grants faster decay (for example, exponential decay, cf. [30]),
we can only resort to low-regularity techniques in the presence of specular-
reflection boundary, which at best yield algebraic decay. When the domain is
rotational invariant, the conservation of angular momentum is necessary to en-
sure the validity of this theorem.This ismainly owing to the proof ofLemma4.3,
which leads to the positivity of L in Corollary 4.3.1.

It is known that the linear Landau operator L given by (1.10) is a self-adjoint
nonnegative operator on L2

v(R
3). Its null space (kernel) is a five-dimensional sub-

space of L2
v(R

3) spanned by
{√

μ, v
√
μ, |v|2√μ }, which are called collision

invariants. We introduce the following notation:

Definition 4.1. (Projection onto the null space of L) Let N(L) := { h ∈ L2
v(R

3) :
Lh = 0

}
denote thenull spaceof the linear operator L withbasis e0 := c0

√
μ, ei :=

civi
√
μ (i = 1, 2, 3), e4 := c4|v|2√μ (with suitable normalization constants

c0, . . . , c4), and write

N(L) = span
{√

μ, vi
√
μ (i = 1, 2, 3), |v|2√μ

}
.
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For the function f (t, x, v)with fixed (t, x), we define the projection of f in L2
v(R

3)

onto N(L) as

P f (t, x, v) :=
4∑

i=0

〈
f (t, x, · ), ei

〉
ei

=:
{
a f (t, x)+ v · b f (t, x)+ |v|2 c f (t, x)

}√
μ,

where

a f (t, x) := 〈 f (t, x, · ), e0
〉

= c0

∫
R3

f (t, x, · )√μ dv,

bi
f (t, x) := 〈 f (t, x, · ), ei

〉 = ci

∫
R3

f (t, x, · )vi
√
μ dv,

c f (t, x) := 〈 f (t, x, · ), e4
〉 = c4

∫
R3

f (t, x, · )|v|2√μ dv.

We then recall a basic property of L (see [13, Lemma5] for the proof).

Lemma 4.2. (Semi-Positivity of L) There exists δ > 0 such that
〈
Lh, h
〉 ≥ δ

∣∣(I − P)h∣∣2
σ

for a general function h(v).

4.1. Positivity of L

A crucial step toward proving the L2 decay is to estimate P f in terms of
(I − P) f . The following lemma is an adaptation of [14, Proposition1] and [16,
Proposition2]. Since most of the proof is identical to that of [16], we will skip the
details and only provide the key ideas and steps. The new terms related to the fields
can be controlled in an obvious way.

Lemma 4.3. Under the same assumptions as in Theorem 4.1, we have∫ t

s

∥∥P f (τ )
∥∥2
σ
dτ +

∫ t

s

∥∥E f (τ )
∥∥2

L2
x
dτ �

∫ t

s

∥∥(I − P) f (τ )
∥∥2
σ
dτ (4.4)

for all 0 ≤ s < t with |t − s| ∈ Z
+.

As an immediate consequence of the lemma above, we obtain the positivity of
L with Landau dissipation, a key ingredient in the proof of Theorem 4.1.

Corollary 4.3.1. (Coercivity Estimate on L) With the same assumptions above, we
have a sufficiently small constant δ′ > 0 such that∫ t

s

(
L f (τ ), f (τ )

)
dτ ≥ δ′

{∫ t

s

∥∥ f (τ )
∥∥2
σ
dτ +

∫ t

s

∥∥E f (τ )
∥∥2

L2
x
dτ

}
(4.5)

for all 0 ≤ s < t with |t − s| ∈ Z
+.
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Proof. (Sketch of Proof ) Recalling that L is semi-positive by Lemma 4.2, we
clearly have

(
L f, f
) ≥ δ

∥∥(I − P) f
∥∥2
σ

for some δ > 0. Then it suffices to bound the remaining part on P f by the coun-
terpart of (I − P) f using Lemma 4.3. ��
Proof of Lemma 4.3. This proof is an adaptation of the proof of [16, Proposi-
tion2], so we only point out the main difference.

We consider the Eq. (4.1). To handle the most problematic nonlinear term
(v · E) f , we combine it with the linear streaming term v ·∇x f (which also contains
an extra v factor) by multiplying both sides of (4.1) by eφ , so we can rewrite the
equation as

∂t
(
eφ f
)+ v · ∇x

(
eφ f
)+ L
(
eφ f
)− 2eφ

√
μv · E

= eφ 
[ f, f ] − eφ E · ∇v f + eφ f ∂tφ. (4.6)

We first justify the lemma for s = 0, t = 1. If the estimate (4.4) is not true no
matter how small ε1 is, then there exist a sequence of solutions fn to (4.1) with
f = fn such that for any n,

∫ 1

0
‖(I − P) fn(τ )‖2σ dτ ≤

1

n

∫ 1

0
‖P fn(τ )‖2σ dτ, (4.7)

and ‖ fn‖∞,ϑ <
1
n for given ϑ > 3

2 .
We first prove the weak compactness of fn . For any fixed ϑ < 0, we multiply

(4.6) for f = fn by eφn 〈v〉2ϑ fn and integrate both sides of the resulting equation.
Similar to the argument in [16, Proposition2] and using the fact that eφn ∼ 1 by
the bootstrap assumption, we obtain

‖ 〈v〉ϑ fn(t)‖2L2 +
∫ t

t0
‖ fn(τ )‖2σ,ϑ dτ ≤ Cet−t0‖ 〈v〉ϑ fn(t0)‖2L2

and

d

dt

∫ t

t0
‖ fn(τ )‖2σ dτ = ‖ fn(t)‖2σ ≥ C

∥∥∥〈v〉− 1
2 fn(t0)

∥∥∥2
L2
− C ′
∫ t

t0
‖ f (τ )‖2σ dτ

for someC,C ′ > 0. By the bootstrap assumption (2.8) and theGrönwall inequality,
we obtain that∫ t

t0
‖ fn(τ )‖2σ dτ ≥ C(1− e−C ′(t−t0))‖ 〈v〉− 1

2 fn(t0)‖2L2 .

Now we define the normalized term Zn of fn as

Zn := fn

Cn
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with

Cn :=
√∫ 1

0
‖P fn(τ )‖2σ dτ .

Then Zn satisfies the equation

∂t
(
eCnφn Zn

)+ v · ∇x
(
eCnφn Zn

)+ L
(
eCnφn Zn

)− 2eCnφn
√
μv · En

= eCnφn 
[ fn, Zn] − CneCnφn En · ∇vZn + CneCnφn Zn ∂tφn,

where Cn are uniformly bounded by a small constant, and En := −∇xφn with φn

determined by the Poisson equation

−�xφn =
∫
R3

√
μ Zn dv =: ρ[Zn].

Thus, following a similar argument in [16, Proposition2], we obtain the uniform
bound

sup
0≤τ≤1

‖ 〈v〉− 1
2 Zn(τ )‖2L2 ≤ C

for some C > 0. Also, by the normalization we already have
∫ 1
0 ‖Zn(τ )‖2σ dτ = 1.

Since the eigenvalues λ(v) of the matrix σ(v) satisfies the bound (3.8), the normed
vector space with the norm ‖·‖σ can be understood as a weighted L2 Sobolev space
and is reflexive. Therefore, there exists the weak limit Z of Zn in

∫ 1
0 ‖ ·‖2σ dτ . Also,

by (4.7), we have
∫ 1

0
‖(I − P)Zn(τ )‖2σ dτ ≤

1

n
→ 0.

By the triangle inequality,we alsohave that
∫ 1
0 ‖PZn(τ )‖2σ dτ is uniformlybounded

from above. In addition, the norm ‖·‖σ is an anisotropic Sobolev normwith respect
to the direction of the velocity v by definition. Then by Alaoglu’s theorem and
Eberlein-Šmulian’s theorem, PZn converges weakly to PZ in

∫ 1
0 ‖ · ‖2σ dτ up to a

subsequence. Thus, we conclude that (I − P)Z = 0 and Z = PZ .
Also, by taking the limit n →∞, we note that the limit Z satisfies

∂t Z + v · ∇x Z − 2
√
μv · EZ = 0 (4.8)

in the sense of distribution.
Now our main strategy has two steps:

• Step 1: Show that the convergence Zn → Z is actually strong in
∫ 1
0 ‖ · ‖2σ dτ

by proving the compactness. This is almost the same as the argument in [16,
Proposition2], so we omit the details. The basic idea is to show the compactness
in the interior and rule out the possibility of concentration near t = 0, t = 1,
or x ∈ ∂�.

• Step 2: We use the Eq. (4.8) and conservation laws to show that Z is actually
zero. This will be our focus below.
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Eventually, we confirm that this leads to a contradiction and thus Lemma 4.3 must
holds in [0, 1]. Finally, we extend the domain to arbitrary [s, t] with |t − s| ≥ 1.
Z is indeed zero.

The limit equation for Z is (since all nonlinear terms in the equation for f
vanish after normalization)

∂t Z + v · ∇x Z + 2
√
μv · E = 0. (4.9)

Here assume that

Z = √μ
(

a + b · v + c |v|2
)
, (4.10)

and

E = ∇x�
−1
x

∫
R3

√
μZdv := −∇xφ,

with either DBC or NBC on φ.
The conservation laws for mass and energy are as follows:

∂t

∫
�×R3

√
μZ = 0, ∂t

∫
�×R3

|v|2√μZ = 0. (4.11)

Also, combined with the normalized initial condition, we have∫
�×R3

√
μZ(t) =

∫
�×R3

√
μZ(0) = 0, (4.12)

∫
�×R3

|v|2√μZ(t) =
∫
�×R3

|v|2√μZ(0) = −
∫
�

|E|2 (0). (4.13)

If the domain � is rotational invariant

[(x − x0)× ω] · n = 0,

then the angular momentum is conserved∫
�×R3

[(x − x0)× ω] · v√μZ = 0.

This is essentially
∫
�×R3[(x − x0)× v

√
μZ ] ·ω = 0, which is consistent with the

classical definition of angular momentum. Note that all conservation laws can be
directly derived from the Eq. (4.9) itself, with the normalization (4.12) on initial
data.

We can analyze Z as follows: Step 1: We insert (4.10) into (4.9) and compare
the coefficients of v for each order. It is easy to check that ∂t a = 0 (at lowest order)
and ∇x c = 0 (at highest order). Hence, we have a = a(x) and c = c(t). Using
conservation of mass (4.11), we know ∂t c = 0, which means c is a constant.

Based on (4.12), we know ∫
�

a = 0. (4.14)
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Step 2: Inserting (4.10) into (4.9) and checking the terms of order vi , we get

∂t bi + ∂xi (a − φ) = 0. (4.15)

Inserting (4.10) into (4.9) and checking the terms of order v2i and viv j , we get

∂xi bi = 0, ∂x j bi + ∂xi b j = 0 for i �= j.

Hence, ∇x b is a skew-symmetric matrix. Hence, using the Helmholtz decomposi-
tion (or direct computation), b must take the form

b = b̄(t)+ ω̄(t)× x

for some b̄(t) and ω̄(t).
From (4.15), we know that

∂t (∂x j bi ) = ∂t (∂xi b j ).

Hence, ∂t∇x b is a symmetric matrix. From the last step, we know ∂t∇x b is a
skew-symmetric matrix. These two requirements imply that ∂t∇x b is a zero matrix.
Hence, ∇x b is time-independent. Therefore, ω̄ = const. Thus, we get

b = b̄(t)+ ω̄ × x .

Considering (4.15), we know that ∂t b is independent of time. Hence, b̄ = b1+b0t .
At the boundary, due to the specular reflection boundary, we always have b ·n = 0.
Hence, by taking a boundary point x at which nx is parallel to b0, we get b0 = 0.
In summary, we have

b = b1 + ω̄ × x .

Step 3: Since b is independent of time, from (4.15) we have

∂xi (a − φ) = 0,

which implies

a − φ = const. (4.16)

Considering the definition

�xφ = a, (4.17)

we know

�xφ = φ + const.

– For NBC case, using the normalization condition
∫
�

φ = 0, a directly energy

estimate yields ∫
�

|∇xφ|2 +
∫
�

|φ|2 = 0.

Hence, we knowφ = 0 and thus a is a constant. Based on (4.14), such a constant
must be zero. Hence, a = 0.
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– For DBC, taking the Laplacian in (4.16), we obtain

�x a −�xφ = 0.

Considering (4.17), we have

�x a − a = 0.

The DBC implies φ = 0 on ∂�, which implies a = const on ∂�. Due to the
maximum principle of the elliptic equation, we see that a does not change sign
in �. Then using the average property (4.14), we know the constant must be
zero. Hence, a = 0 and φ = const.

All in all, in both cases, we confirm that φ is a constant and a = 0. This further
implies E = 0 and thus c = 0 from (4.13).

Step 4: So far, we have confirmed that a = c = 0 and b = b1+ ω̄× x . Based on
[14, pp. 748–749] and [16], and using the conservation of angular momentum, we
obtain that b = 0. In detail, we may deduce that Z = ω̄ × (x − x0)v

√
μ in � and

[ω̄ × (x − x0)] · n = 0 on ∂� by decomposing b1. If the domain is not rotational
invariant, then there is no nonzero ω̄ to make the above true. On the other hand, if
the domain is rotational invariant, we need an additional conservation of angular
momentum to justify ω̄ = 0.

In summary, we conclude that Z = 0 and this leads to a contradiction.
Generali zing to arbitrary 0 ≤ s < t wi th |t − s| ∈ Z

+.
Let t − s = N for some positive integer N . We split

[s, t] =
⎛
⎝N−1⋃

j=0
[s + j, s + j + 1]

⎞
⎠ .

On each interval [s+ j, s+ j +1] for j = 0, 1, ..., N −1,we define f j (r, x, v)
def=

f (r+s+ j, x, v).Then clearly f j (r, x, v) is a solution on the time interval r ∈ [0, 1]
with the new initial condition f j (0, x, v) = f (s + j, x, v). Note that due to the
bootstrap assumption, Eϑ( f j (t)) is uniformly (in j) bounded from above (which is
used to show the boundedness of sequence Zn).Hence, using the previous argument,
we obtain the positivity estimates.

Hence, by assembling all these intervals, the positivity estimate holds for the
full interval [s, t] with |t − s| = N .

4.2. Weighted L2 Bound and Decay

We are now ready to prove the main theorem of this section.

Proof of Theorem 4.1. The proof is a modification of [25, Theorem1.4], whose
idea is brought from [29, Theorem5.1]. Our main observation based on the rela-
tionship

‖h‖σ,ϑ � ‖h‖2,ϑ− 1
2

(4.18)
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is that even though ‖ · ‖σ,ϑ is not stronger than ‖ · ‖2,ϑ (but instead dominates the
energy norm at the cost of losing some weight), it is still possible to bound the
instant energy by a fractional power of the dissipation rate via interpolations with
stronger energy norms of higher weight powers. This leads to the result of almost
exponential decay.

It is also worth pointing out that our coupled electric field poses considerable
difficulty in the energy-decay estimate. To overcome this, we combine various
delicate techniques and tricks in [15, Sections3&4] and [3, Section7] to handle
the extra terms related to the electric field.

If t ∈ [0, 1), then by the local well-posedness result, the estimates naturally
follow since the initial data is sufficiently small, so we focus on the case when
t ≥ 1.

Step 1. Energy Estimatewi thout W eight (ϑ = 0) . Throughout this proof,
we consider at a rearrangement of the Vlasov–Landau equation (1.8) with all linear
terms on the left and nonlinearities on the right:

∂t f + v · ∇x f + L f − 2
√
μv · E = 
[ f, f ] − E · ∇v f + (v · E) f, (4.19)

where E := E f = −∇xφ f with φ := φ f determined by the Poisson equation

−�xφ =
∫
R3

√
μ f dv =: ρ[ f ]. (4.20)

To handle the most problematic nonlinear term (v · E) f , we combine it with the
linear streaming term v ·∇x f (which also contains an extra v factor) by multiplying
both sides of (4.19) by eφ , so we can rewrite the equation as

∂t
(
eφ f
)+ v · ∇x

(
eφ f
)+ L
(
eφ f
)− 2eφ

√
μv · E

= eφ 
[ f, f ] − eφ E · ∇v f + eφ f ∂tφ. (4.21)

Multiplying eφ f on both sides of (4.21) and integrating in (x, v) ∈ � × R
3, we

get

1

2

d

dt

∥∥eφ f
∥∥2
2 +

1

2

∫∫
�×R3

∇x ·
{
v
(
eφ f
)2}

+
∫∫

�×R3

(
eφ f
)

L
(
eφ f
) −
∫∫

�×R3
2
(
e2φ f
)√

μv · E

=
∫∫

�×R3

(
e2φ f
)

[ f, f ] − 1

2

∫∫
�×R3

e2φ E · ∇v
(

f 2
) +
∫∫

�×R3

(
eφ f
)2
∂tφ.

(4.22)

We need to estimate every term of (4.22) in terms of the energy norm ‖ · ‖2 or
dissipation rate ‖ · ‖σ , for which we will use repeatedly eφ ∼ 1 with ‖φ‖∞ �
‖ f ‖∞ � 1 (see the proof of Lemma 3.7).
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First we observe that the following two terms vanish by using integration by
parts (divergence theorem) :

1

2

∫∫
�×R3

e2φ E · ∇v
(

f 2
)
dvdx = 0, (4.23)

1

2

∫∫
�×R3

∇x ·
{
v
(
eφ f
)2} dvdx = 1

2

∫∫
∂�×R3

(
eφ f
)2
(v · nx ) dvdSx

= 1

2

∫
∂�

e2φ
[(∫

{v·nx>0}
−
∫
{v·nx<0}

)
f 2|v · nx | dv

]
dSx

= 0. (4.24)

Here the boundary terms cancel each other in view of the specular-reflection bound-
ary condition (1.20).

For the other nonlinear terms, we have

∫∫
�×R3

(
e2φ f
)

[ f, f ] � ‖ f ‖∞

∥∥eφ f
∥∥2
σ

� ‖ f ‖∞‖ f ‖2σ (4.25)

by (3.11) in Lemma 3.5, and

∫∫
�×R3

(
eφ f
)2
∂tφ � ‖∂tφ‖∞

∥∥eφ f
∥∥2
2 � ‖∂t f ‖2‖ f ‖22, (4.26)

where for the last inequality, we modify the proof of Lemma 3.7. Note that we
cannot bound this term in terms of ‖ f ‖2σ , which ultimately leads to an extra term
on the RHS in (4.35) not being absorbed, because the σ -norm is not strong enough
to control the L2 norm.

The last term on the LHS of (4.22) is more troublesome to deal with. We first
manipulate this term as follows:

−
∫∫

�×R3
2
(
e2φ f
)√

μv · E =
∫∫

�×R3
2
(
e2φ f
)√

μv · ∇xφ

=
∫∫

�×R3
f
√
μv · ∇x

(
e2φ
)

=
∫∫

�×R3
∇x ·
{
v
√
μ
(
e2φ f
)}− e2φ

√
μv · ∇x f

=
∫∫

∂�×R3

(
e2φ f
)√

μ (v · nx ) dvdSx −
∫∫

�×R3
e2φ
√
μv · ∇x f

= −
∫∫

�×R3
e2φ
√
μv · ∇x f,

(4.27)

where again, we use integration by parts (divergence theorem), and the boundary
term on the third line vanishes by the specular boundary condition. Then we want
to control − ∫∫

�×R3e2φ
√
μv · ∇x f from the original equation itself : this time



362 Hongjie Dong, Yan Guo & Zhimeng Ouyang

multiplying both sides of (4.19) by the factor e2φ
√
μ and integrating over�×R

3,
we obtain
∫∫

�×R3
e2φ
√
μ∂t f +

∫∫
�×R3

e2φ
√
μv · ∇x f +

∫∫
�×R3

e2φ
√
μ L f

−
∫∫

�×R3
2 e2φμ v · E

=
∫∫

�×R3
e2φ
√
μ
[ f, f ] −

∫∫
�×R3

e2φ
√
μE · ∇v f

+
∫∫

�×R3
e2φ
√
μ
(
v · E) f.

(4.28)

Obviously, the last term on the LHS vanishes due to symmetry/oddness, and by the
orthogonality to the Landau operators, we see that

∫∫
�×R3

e2φ
√
μ L f =

∫∫
�×R3

e2φ
√
μ
[ f, f ] = 0.

Also, integrating by parts gives

−
∫∫

�×R3
e2φ
√
μE · ∇v f +

∫∫
�×R3

e2φ
√
μ
(
v · E) f = 0.

To sum up, we may equate the following two terms from (4.28) and further deduce
that

−
∫∫

�×R3
e2φ
√
μv · ∇x f =

∫∫
�×R3

e2φ
√
μ∂t f

=
∫
�

e2φ ∂t

(∫
R3

√
μ f dv

)
dx

= −
∫
�

e2φ∂t�xφ dx

=
∫
�

2 e2φ(∇xφ) · (∇x∂tφ) dx

−
∫
∂�

e2φ ∂t

(
∂xφ

∂nx

)
dSx

=
∫
�

e2φ∂t |∇xφ|2 dx

=
∫
�

∂t

(
e2φ |∇xφ|2

)
−
∫
�

2e2φ |∇xφ|2∂tφ

= d

dt

∫
�

e2φ |E|2 −
∫
�

2e2φ |E|2∂tφ,

(4.29)

by using the Poisson Eq. (4.20) on the second line, followed by integration by
parts (divergence theorem). Note also that the boundary term on the third line
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vanishes under either the zero -Neumann BC ( ∂φ
∂n

∣∣
∂�
≡ 0) or the zero -Dirichlet

BC (φ|∂� ≡ 0), in which case this term reduces to

d

dt

∫
∂�

∂φ

∂n
(t) dS = − d

dt

∫
∂�

E(t) · n dS ≡ 0,

thanks to the conservation of flux for the self-consistent electric field (see (1.25)).
Hence, combining (4.27) and (4.29) reveals that

−
∫∫

�×R3
2
(
e2φ f
)√

μv · E = d

dt

∫
�

e2φ |E|2 −
∫
�

2e2φ |E|2∂tφ. (4.30)

We will combine the first term above with the first term of (4.22). After moving the
second to the other side, we bound it as∫

�

2e2φ |E|2∂tφ � ‖∂tφ‖∞
∥∥eφE∥∥22 � ‖∂t f ‖2‖ f ‖2σ . (4.31)

Here we justify the last inequality by modifying the proof of Lemma 3.7:

∥∥eφE∥∥2 � ‖E‖2 �
∥∥ρ[ f ]∥∥2 =

∥∥∥∥
∫
R3

√
μ f dv

∥∥∥∥
L2

x

≤
∫
R3

∥∥√μ f
∥∥

L2
x
dv =

∫
R3
〈v〉 12√μ ∥∥〈v〉− 1

2 f
∥∥

L2
x
dv

≤ ∥∥〈v〉− 1
2 f
∥∥

L2
x,v
· ∣∣〈v〉 12√μ ∣∣L2

v

� ‖ f ‖2,− 1
2

� ‖ f ‖σ .

(4.32)

Now in (4.22) we are left with the third term on the LHS, which at first can be
bounded below as∫∫

�×R3

(
eφ f
)

L
(
eφ f
) = (L(eφ f

)
, eφ f
)

≥ δ
∥∥eφ(I − P) f

∥∥2
σ

�
∥∥eφ(I − P) f

∥∥2
σ
, (4.33)

due to the semi-positivity of L (see Lemma 4.2).
Summarizing all above, inserting (4.23), (4.24), (4.25), (4.26), (4.30) ,(4.31),

(4.33) into (4.22), we arrive at

d
dt

(
1
2

∥∥eφ f
∥∥2
2 +
∥∥eφE∥∥22

)
+ ∥∥eφ(I − P) f

∥∥2
σ

�
( ‖ f ‖∞ + ‖∂t f ‖2

)‖ f ‖2σ + ‖∂t f ‖2‖ f ‖22,
and it naturally follows that

d

dt

(
1

2

∥∥eφ f
∥∥2
2 +
∥∥eφE∥∥22

)
+ ∥∥eφ(I − P) f

∥∥2
σ

�
( ‖ f ‖∞ + ‖∂t f ‖2

)‖ f ‖2σ + ‖∂t f ‖2
(
1

2

∥∥eφ f
∥∥2
2 +
∥∥eφE∥∥22

)
.

(4.34)
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Define

ψ(t) := −
∫ t

0

∥∥∂t f (τ )
∥∥
2 dτ.

From the bootstrap assumption (2.7), we know |ψ(t)| � 1, and thus eψ ∼ 1. Then
multiplying both sides of (4.34) above by the integrating factor eψ , we have

d

dt

[
eψ
(
1

2

∥∥eφ f
∥∥2
2 +
∥∥eφE∥∥22

)]
+ eψ
∥∥eφ(I − P) f

∥∥2
σ

�
( ‖ f ‖∞ + ‖∂t f ‖2

)‖ f ‖2σ .
In order to get the coercivity bound (4.5), we need to first integrate over time (for
any 0 ≤ s < t) and obtain(

1

2

∥∥eψ(t)eφ(t) f (t)
∥∥2
2 +
∥∥eψ(t)eφ(t)E(t)∥∥22

)

−
(
1

2

∥∥eψ(s)eφ(s) f (s)
∥∥2
2 +
∥∥eψ(s)eφ(s)E(s)∥∥22

)

+
∫ t

s
eφ(τ)eφ(τ)

∥∥(I − P) f (τ )
∥∥2
σ
dτ

�
(
sup
τ≥0
‖ f ‖∞ + sup

τ≥0
‖∂t f ‖2

)
·
∫ t

s

∥∥ f (τ )
∥∥2
σ
dτ .

Since 1 � eφ(t) � 1 and 1 � eψ(t) � 1 uniformly for any t , applying
Lemma 4.3 (following the proof of Corollary 4.3.1) yields( ∥∥eψ(t)eφ(t) f (t)

∥∥2
2 +
∥∥eψ(t)eφ(t)E(t)∥∥22

)

+ δ′
{∫ t

s

∥∥ f (τ )
∥∥2
σ
dτ +

∫ t

s

∥∥E(τ )∥∥22 dτ
}

�
( ∥∥eψ(s)eφ(s) f (s)

∥∥2
2 +
∥∥eψ(s)eφ(s)E(s)∥∥22

)

+
(
sup
τ≥0
‖ f ‖∞ + sup

τ≥0
‖∂t f ‖2

)
·
∫ t

s

∥∥ f (τ )
∥∥2
σ
dτ

for all 0 ≤ s < t with |t − s| ∈ Z
+.

Finally, under the a priori assumption

sup
t
‖ f ‖∞ + sup

t
‖∂t f ‖2 � 1,

this corresponding term can be absorbed into the LHS, and therefore we end up
with

( ∥∥eψ(t)eφ(t) f (t)
∥∥2
2 +
∥∥eψ(t)eφ(t)E(t)∥∥22

)
+ δ′
{∫ t

s

∥∥ f (τ )
∥∥2
σ
dτ +

∫ t

s

∥∥E(τ )∥∥22 dτ
}

≤ ∥∥eψ(s)eφ(s) f (s)
∥∥2
2 +
∥∥eψ(s)eφ(s)E(s)∥∥22 . (4.35)
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Step 2.W eighted Energy Estimate (ϑ > 0) .Multiplyingboth sides of (4.21)

by 〈v〉2ϑeφ f for ϑ > 0 and integrating over �× R
3, we get

1

2

d

dt

∥∥〈v〉ϑeφ f
∥∥2
2 +

1

2

∫∫
�×R3

∇x ·
{
v〈v〉2ϑ(eφ f

)2}

+
∫∫

�×R3
〈v〉2ϑ(eφ f

)
L
(
eφ f
) −
∫∫

�×R3
2 〈v〉2ϑ(e2φ f

)√
μv · E

=
∫∫

�×R3
〈v〉2ϑ(e2φ f

)

[ f, f ] − 1

2

∫∫
�×R3

〈v〉2ϑe2φ E · ∇v
(

f 2
)

+
∫∫

�×R3
〈v〉2ϑ(eφ f

)2
∂tφ.

(4.36)

This time we aim to estimate every term of (4.36) in terms of the weighted energy
norm ‖ · ‖2,ϑ or (weighted) dissipation rate ‖ · ‖σ,ϑ .

For the LHS, using the divergence theorem, the second term vanishes since

1

2

∫∫
�×R3

∇x ·
{
v〈v〉2ϑ(eφ f

)2}

= 1

2

(∫∫
γ+
−
∫∫

γ−

)(
eφ f
)2〈v〉2ϑ |v · nx | dvdSx = 0, (4.37)

again by symmetry/oddness with the specular boundary condition on f . As for the
third term, we instead use (3.9) in Lemma 3.4 to bound it below as∫∫

�×R3
〈v〉2ϑ(eφ f

)
L
(
eφ f
) = (〈v〉2ϑ L

(
eφ f
)
, eφ f

)

�
∥∥eφ f
∥∥2
σ,ϑ
− Cϑ

∥∥eφ f
∥∥2
σ
. (4.38)

Also, for the fourth term, the trick in ϑ = 0 case does not apply, so we move
this term to the RHS and bound it directly using Hölder’s inequality as well as the
Cauchy-Schwarz inequality with a small parameter ε > 0:∫∫

�×R3
2 〈v〉2ϑ(e2φ f

)√
μv · E �

∣∣〈v〉ϑ+ 3
2
√
μ
∣∣∞
∥∥eφ f
∥∥
2,ϑ− 1

2

∥∥eφE∥∥2
≤ Cϑ

∥∥eφ f
∥∥
σ,ϑ
‖ f ‖σ

≤ ε ‖ f ‖2σ,ϑ + Cϑ,ε ‖ f ‖2σ .
(4.39)

Here the second inequality holds because of the relation ‖ · ‖2,ϑ−1/2 � ‖ · ‖σ,ϑ ,
and also due to the same reason as in (4.32).

For the RHS, we estimate (similarly to the case without weight)∫∫
�×R3

〈v〉2ϑ(e2φ f
)

[ f, f ] � ‖ f ‖∞

∥∥eφ f
∥∥2
σ,ϑ

� ‖ f ‖∞‖ f ‖2σ,ϑ (4.40)

by (3.11), and

− 1

2

∫∫
�×R3

〈v〉2ϑe2φ E · ∇v
(

f 2
) = 1

2

∫∫
�×R3

E · ∇v
(
〈v〉2ϑ
)

e2φ f 2

� ‖E‖∞
∥∥eφ f
∥∥2
2,ϑ− 1

2
� ‖ f ‖∞‖ f ‖2σ,ϑ

(4.41)
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via integration by parts in v, and
∫∫

�×R3
〈v〉2ϑ(eφ f

)2
∂tφ � ‖∂tφ‖∞

∥∥eφ f
∥∥2
2,ϑ � ‖∂t f ‖2‖ f ‖22,ϑ , (4.42)

where in the last inequality we modify the proof of Lemma 3.7.
Collecting all the estimates in (4.37)–(4.42) above and inserting them into

(4.36), we obtain

d

dt

∥∥eφ f
∥∥2
2,ϑ +

∥∥eφ f
∥∥2
σ,ϑ

�
(‖ f ‖∞ + ε

)‖ f ‖2σ,ϑ + Cϑ

∥∥eφ f
∥∥2
σ

+Cϑ,ε ‖ f ‖2σ + ‖∂t f ‖2‖ f ‖22,ϑ ,
which further yields

d

dt

∥∥eφ f
∥∥2
2,ϑ + ‖ f ‖2σ,ϑ � Cϑ‖ f ‖2σ + ‖∂t f ‖2‖ f ‖22,ϑ

by choosing ε > 0 small enough and assuming supt ‖ f ‖∞ � 1 so the correspond-
ing term can be absorbed into the LHS. Hence, multiplying eψ on both sides (to
kill the last term on RHS), then integrating over time (for 0 ≤ s < t), we finally
get

∥∥eψ(t)eφ(t) f (t)
∥∥2
2,ϑ +

∫ t

s

∥∥ f (τ )
∥∥2
σ,ϑ

dτ

�
∥∥eψ(s)eφ(s) f (s)

∥∥2
2,ϑ + Cϑ

∫ t

s

∥∥ f (τ )
∥∥2
σ
dτ.

(4.43)

Step 3.Uni f orm W eighted Energy Bounds. The idea of the following two
steps is inspired by the so-called “Two-tier” energy method in [21]. The uniform
energy bound (4.2) and time-decay result (4.3) follow from weighted energy esti-
mates with arbitrarily strong velocity-weight and sufficiently fast decay-rate. To be
specific, we need to obtain a weighted energy inequality (ϑ ′, ϑ ∈ N):

( 2ϑ∑
ϑ ′=0

∥∥eψ(t)eφ(t) f (t)
∥∥2
2,ϑ ′/2 +

∥∥eψ(t)eφ(t)E(t)∥∥22
)

+ δ′
{ 2ϑ∑
ϑ ′=0

∫ t

s

∥∥ f (τ )
∥∥2
σ,ϑ ′/2 dτ +

∫ t

s

∥∥E(τ )∥∥22 dτ
}

�
2ϑ∑
ϑ ′=0

∥∥eψ(s)eφ(s) f (s)
∥∥2
2,ϑ ′/2 +

∥∥eψ(s)eφ(s)E(s)∥∥22

(4.44)

by summing up (4.35) and (4.43) from previous two steps over ϑ ′ ∈ [0, 2ϑ] ∩ N

(for any given ϑ ∈ N) with proper weight (summation factor), such that the term∑
ϑ ′ Cϑ ′
∫ t

s

∥∥ f (τ )
∥∥2
σ
dτ can be absorbed to LHS. Alternatively, we may derive this

energy inequality in a more rigorous way via induction on the weight-power ϑ ∈ N

(in a similar fashion to the proof of [25, Theorem1.4] ). Note that we cannot absorb
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RHS here into LHS because σ -norm cannot control the L2 norm for fixed ϑ (at
least for the largest ϑ).

The estimate (4.44) only holds when t−s ∈ Z
+ due to Lemma 4.3. For general

interval (s, t), we write

t − s = N + r,

where N ∈ N and r ∈ [0, 1). Then for the interval [s + r, t], using the similar
argument as (4.44), and consider eφ ∼ 1 and eψ ∼ 1, we have

( 2ϑ∑
ϑ ′=0

∥∥ f (t)
∥∥2
2,ϑ ′/2 +

∥∥E(t)∥∥22
)

+ δ′
{ 2ϑ∑
ϑ ′=0

∫ t

s+r

∥∥ f (τ )
∥∥2
σ,ϑ ′/2 dτ +

∫ t

s+r

∥∥E(τ )∥∥22 dτ
}

�
2ϑ∑
ϑ ′=0

∥∥ f (s + r)
∥∥2
2,ϑ ′/2 +

∥∥E(s + r)
∥∥2
2.

(4.45)

Based on the local well-posedness result (see Theorem 8.1), we obtain the bounds
in the interval [s, s + r ]:

( 2ϑ∑
ϑ ′=0

∥∥ f (s + r)
∥∥2
2,ϑ ′/2 +

∥∥E(s + r)
∥∥2
2

)

+
{ 2ϑ∑
ϑ ′=0

∫ s+r

s

∥∥ f (τ )
∥∥2
σ,ϑ ′/2 dτ +

∫ s+r

s

∥∥E(τ )∥∥22 dτ
}

�
2ϑ∑
ϑ ′=0

∥∥ f (s)
∥∥2
2,ϑ ′/2 +

∥∥E(s)∥∥22.

(4.46)

Note that the initial condition (8.1) and the bootstrap assumptions ensure a universal
time extension for all s ≥ 0. Therefore, it is valid to apply Theorem 8.1 as long as
we have the smallness of ‖ f (s)‖∞,ϑ for s > 0.

Summingup (4.45) and (4.46) and absorbing
∑2ϑ

ϑ ′=0
∥∥ f (s + r)

∥∥2
2,ϑ ′/2 +

∥∥E(s + r)
∥∥2
2

to the LHS, we obtain the bounds in the interval [s, t]
( 2ϑ∑

ϑ ′=0

∥∥ f (t)
∥∥2
2,ϑ ′/2 +

∥∥E(t)∥∥22
)

+ δ′
{ 2ϑ∑
ϑ ′=0

∫ t

s

∥∥ f (τ )
∥∥2
σ,ϑ ′/2 dτ +

∫ t

s

∥∥E(τ )∥∥22 dτ
}

�
2ϑ∑
ϑ ′=0

∥∥ f (s)
∥∥2
2,ϑ ′/2 +

∥∥E(s)∥∥22.

(4.47)
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Define an instantaneous weighted energy functional

Wϑ(t) :=
2ϑ∑
ϑ ′=0

∥∥ f (t)
∥∥2
2,ϑ ′/2 +

∥∥E(t)∥∥22
� ∥∥ f (t)

∥∥2
2,ϑ +

∥∥E(t)∥∥22,
and the weighted dissipation rate

Vϑ(t) :=
2ϑ∑
ϑ ′=0

∥∥ f (t)
∥∥2
σ,ϑ ′/2 +

∥∥E(t)∥∥22
� ∥∥ f (t)

∥∥2
σ,ϑ

+ ∥∥E(t)∥∥22.
Then the estimate (4.47) above is actually

Wϑ(t) + Cϑ

∫ t

s
Vϑ(τ ) dτ ≤ Wϑ(s). (4.48)

As the first portion of our theorem, we show that the weighted energy (defined
in Section 1.3.2)

Eϑ [ f (t)] := Iϑ [ f (t)] +
∫ t

0
Dϑ [ f (τ )] dτ � Wϑ(t) +

∫ t

0
Vϑ(τ ) dτ

is uniformly bounded for arbitrarily large ϑ (under the assumption of integrable
decay for ‖∂t f ‖2). Taking s = 0 in (4.48) results in

Eϑ [ f (t)] � Wϑ(t) +
∫ t

0
Vϑ(τ ) dτ �ϑ Wϑ(0) � Eϑ [ f (0)] � ε 20 , (4.49)

which concludes the uniform weighted energy bound (4.2).
Step 4. L2 T ime − Decay.With theboundedness,wenowshow that theweighted

L2 norms decay at any algebraic rate.
Based on the observation that for fixed ϑ , the dissipation rate ‖ · ‖σ,ϑ is not

stronger than the instant energy ‖ · ‖2,ϑ by (4.18), we shall perform interpolation
for 〈v〉2ϑ between the weight functions 〈v〉2ϑ−1 and 〈v〉2ϑ+k for any given k ∈ N,
then bound the stronger norm by using the result (4.49) of last step. This yields

∥∥ f (t)
∥∥
2,ϑ ≤

∥∥ f (t)
∥∥ 1

k+1
2,ϑ+ k

2

∥∥ f (t)
∥∥ k

k+1
2,ϑ− 1

2
≤
(

Cϑ,k ‖ f0‖2,ϑ+ k
2

) 1
k+1 ∥∥ f (t)

∥∥ k
k+1
2,ϑ− 1

2

� ε
1

k+1
0

∥∥ f (t)
∥∥ k

k+1
σ,ϑ ,

which further implies the dissipation rate

Vϑ(t) ≥ Cϑ,k ε
− 2

k
0 Wϑ(t)

k+1
k . (4.50)

Let

Zϑ(s) := Cϑ,k ε
− 2

k
0

∫ ∞
s

Wϑ(τ )
k+1

k dτ.
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Then we get

Z ′ϑ(s) = −Cϑ,k ε
− 2

k
0 Wϑ(s)

k+1
k . (4.51)

From (4.48) with t = ∞ and (4.50), we have

Zϑ(s) � Wϑ(s). (4.52)

Combining (4.51) and (4.52) yields

Z ′ϑ(s)+ C̄ϑ,k ε
− 2

k
0 Zϑ(s)

k+1
k ≤ 0.

This is a Bernoulli-type differential inequality for Zϑ(s). We solve it over [0, s] by
standard ODE method with integrating factor − 1

kZ
− k+1

k
ϑ to obtain

Zϑ(s) �ϑ,k ε 20

(
1+ s

k

)−k
. (4.53)

On the other hand, raising both sides of (4.48) to the power k+1
k , we have that for

any s ≤ t with |t − s| ≥ 1,

Wϑ(t)
k+1

k ≤ Wϑ(s)
k+1

k .

Integrating the above inequality over s ∈ [ t
2 , t − 1

]
with for t > 2, we obtain

(
t

2
− 1

)
Wϑ(t)

k+1
k �ϑ,k ε

2
k
0 Zϑ

(
t

2

)
. (4.54)

Therefore, combining (4.54) with (4.53), we have (for t large)

Wϑ(t)
k+1

k �ϑ,k ε
2+ 2

k
0 〈t〉−1

(
1+ t

k

)−k

,

which further yields

Wϑ(t) �ϑ,k ε 20

(
1+ t

k

)−k

.

Finally, with
∥∥E(t)∥∥H1 �

∥∥ f (t)
∥∥
2 by Lemma 3.7, we conclude (4.3) in our theo-

rem.
Step 5. ∂t f Estimates. Lastly, to close the a priori estimates, we still need to

prove the similar L2 decay bound for ∂t f . We follow the same procedure as before
in this section.

Let ḟ := ∂t f and Ė := ∂tE. Taking ∂t derivative of (4.19), we get the equation

∂t ḟ + v · ∇x ḟ + L ḟ − 2
√
μv · Ė

=
{

[ ḟ , f ] + 
[ f, ḟ ]

}
−
{
Ė · ∇v f + E · ∇v ḟ

}
+
{(
v · Ė) f + (v · E) ḟ

}
,
(4.55)
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where Ė := ∂t E f = E ḟ = −∇xφ ḟ with φ̇ := ∂t φ f = φ ḟ satisfying

−�x φ̇ =
∫
R3

√
μ ḟ dv =: ρ[ ḟ ].

First of all, we check that the kernel estimate and coercivity result hold by
replacing f with ḟ of Lemma 4.3 and Corollary 4.3.1 for the new equations with
harmless temporal derivatives. The argument is almost identical, so we omit the
details.

Next, similar to the (weighted) energy estimate for f , upon multiplying (4.55)
by the factor eφ , the last term (v·E) ḟ is cancelled.Wefirstmultiply eφ ḟ (resp. 〈v〉2ϑ
eφ ḟ for the weighted case) on both sides and integrate over �× R

3 to get

1

2

d

dt

∥∥eφ ḟ
∥∥2
2 +

1

2

∫∫
�×R3

∇x ·
{
v
(
eφ ḟ
)2} +

∫∫
�×R3

(
eφ ḟ
)

L
(
eφ ḟ
)

−
∫∫

�×R3
2
(
e2φ ḟ
)√

μv · Ė

=
∫∫

�×R3

(
e2φ ḟ
)

[ ḟ , f ] +

∫∫
�×R3

(
e2φ ḟ
)

[ f, ḟ ] −

∫∫
�×R3

e2φ ḟ Ė · ∇v f

− 1

2

∫∫
�×R3

e2φ E · ∇v
(

ḟ 2
)

+
∫∫

�×R3
e2φ
(
v · Ė) f ḟ +

∫∫
�×R3

(
eφ ḟ
)2
φ̇,

and then we examine this resulting equation term by term. The estimates from
Step1 to Step3 of similar form are valid for ḟ with only a few changes in the proof
which we point out below.

In the case without weight (ϑ = 0): For the fourth term on the LHS, in order to
avoid producing higher-order derivatives terms (whichwe cannot control), wemod-
ify our previous argument in a more direct way. Extracting the main contribution
of this term, we deduce that

−
∫∫

�×R3
2 ḟ
√
μv · Ė =

∫∫
�×R3

2 ḟ
√
μv · ∇x φ̇ = −

∫∫
�×R3

2 φ̇
√
μv · ∇x ḟ

= −
∫
�

2 φ̇ ∇x ·
(∫

R3
v
√
μ ḟ dv

)
dx =

∫
�

2 φ̇ ∂t

(∫
R3

√
μ ḟ dv

)
dx

= −
∫
�

2 φ̇ ∂t�x φ̇ dx =
∫
�

2 (∇x φ̇) · (∇x∂t φ̇) dx = d

dt

∫
�

|Ė|2.

Here the four equality is due to the continuity equation (1.21) of conservation laws,
which is essentially the same kind of conserved quantity derived in a similar way
from the Eq. (4.19) in Step1. Then the remainder can be easily controlled by

−
∫∫

�×R3
2
(
e2φ− 1

)
ḟ
√
μv · Ė �

∥∥e2φ− 1
∥∥∞
∥∥v√μ ḟ

∥∥
2 ‖Ė‖2

� ‖φ‖∞‖ ḟ ‖2σ ,
and thus can be absorbed as ‖φ‖∞ � ‖ f ‖∞ � 1.
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Another difficulty is that, the nonlinearity generates two more terms containing
‖ f ‖22 and ‖ f ‖2σ related to f rather than ḟ (which cannot be estimated directly, but
requires some special treatment). To be specific,∫∫

�×R3

(
e2φ ḟ
)

[ ḟ , f ] � ‖ ḟ ‖∞‖ f ‖σ‖ ḟ ‖σ � ‖ ḟ ‖∞

(‖ f ‖2σ + ‖ ḟ ‖2σ
)
,

and

−
∫∫

�×R3
e2φ ḟ Ė · ∇v f =

∫∫
�×R3

e2φ f Ė · ∇v ḟ � ‖∇v ḟ ‖∞‖ f ‖2‖Ė‖2
� ‖∇v ḟ ‖∞‖ f ‖2‖ ḟ ‖σ � ‖∇v ḟ ‖∞

(‖ f ‖22 + ‖ ḟ ‖2σ
)
,

which requires the additional assumption of smallness of ‖∇v ḟ ‖∞ Also, the third
extra term∫∫

�×R3
e2φ
(
v · Ė) f ḟ �

∥∥〈v〉 12 v f
∥∥∞‖ ḟ ‖σ‖Ė‖2 � ‖ f ‖∞, 32

‖ ḟ ‖2σ
needs the smallness of weighted L∞ norm.

In summary, under the assumption that

sup
t
‖ f ‖∞,ϑ̄ + sup

t
‖ ḟ ‖∞,ϑ̄ + sup

t
‖∇v ḟ ‖∞ � 1

for some ϑ̄ ≥ 3 and using the same technique to multiply eψ on both sides, we
have

( ∥∥eψ(t)eφ(t) ḟ (t)
∥∥2
2 +
∥∥eψ(t)eφ(t)Ė(t)∥∥22

)
+ δ′
{∫ t

s

∥∥ ḟ (τ )
∥∥2
σ
dτ +

∫ t

s

∥∥Ė(τ )∥∥22 dτ
}

�
( ∥∥eψ(s)eφ(s) ḟ (s)

∥∥2
2 +
∥∥eψ(s)eφ(s)Ė(s)∥∥22

)

+
∫ t

s

∥∥ ḟ (τ )
∥∥∞
∥∥ f (τ )

∥∥2
σ
dτ +

∫ t

s

∥∥∇v ḟ (τ )
∥∥∞
∥∥ f (τ )

∥∥2
2 dτ

≤
( ∥∥eψ(s)eφ(s) ḟ (s)

∥∥2
2 +
∥∥eψ(s)eφ(s)Ė(s)∥∥22

)

+ sup
τ≥0
‖ ḟ ‖∞ ·

∫ t

s

∥∥ f (τ )
∥∥2
σ
dτ + sup

τ≥0
‖∇v ḟ ‖∞ ·

∫ t

s

∥∥ f (τ )
∥∥2
2 dτ

(4.56)

for any 0 ≤ s < t with |t − s| ∈ Z
+.

For the weighted case (ϑ > 0), most of the estimates are similar to those of
weighted version for f in Step2 simply replacing certain norms on f with those
on ḟ , except for the three additional terms from nonlinearity. In particular,

−
∫∫

�×R3
〈v〉2ϑe2φ ḟ Ė · ∇v f =

∫∫
�×R3

e2φ Ė · ∇v
(
〈v〉2ϑ
)

f ḟ

+
∫∫

�×R3
〈v〉2ϑe2φ f Ė · ∇v ḟ

� ‖Ė‖∞‖ f ‖σ,ϑ‖ ḟ ‖σ,ϑ + ‖∇v ḟ ‖∞‖ f ‖2,2ϑ‖Ė‖2
� ‖ f ‖σ,ϑ‖ ḟ ‖2σ,ϑ + ‖∇v ḟ ‖∞

(‖ f ‖22,2ϑ + ‖ ḟ ‖2σ,ϑ
)
.
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The rest of this substep is a simple modification of the ϑ = 0 case. Eventually,
under the assumption that

sup
t
‖ f ‖σ,ϑ + sup

t
‖ f ‖∞,ϑ+ 3

2
+ sup

t
‖ ḟ ‖∞ + sup

t
‖∇v ḟ ‖∞ � 1

and using the techniques of multiplying eψ on both sides, we obtain the weighted
energy estimate

∥∥eψ(t)eφ(t) ḟ (t)
∥∥2
2,ϑ +

∫ t

s

∥∥ ḟ (τ )
∥∥2
σ,ϑ

dτ

�
∥∥eψ(s)eφ(s) ḟ (s)

∥∥2
2,ϑ + Cϑ

∫ t

s

∥∥ ḟ (τ )
∥∥2
σ
dτ

+ sup
τ≥0
‖ ḟ ‖∞ ·

∫ t

s

∥∥ f (τ )
∥∥2
σ,ϑ

dτ + sup
τ≥0
‖∇v ḟ ‖∞ ·

∫ t

s

∥∥ f (τ )
∥∥2
2,2ϑ dτ.

(4.57)

Now we use these two inequalities (4.56) and (4.57) to conclude
( ϑ∑

ϑ ′=0

∥∥eψ(t)eφ(t) ḟ (t)
∥∥2
2,ϑ ′/2 +

∥∥eψ(t)eφ(t)Ė(t)∥∥22
)

+ δ′
{ ϑ∑
ϑ ′=0

∫ t

s

∥∥ ḟ (τ )
∥∥2
σ,ϑ ′/2 dτ +

∫ t

s

∥∥Ė(τ )∥∥22 dτ
}

�
( ϑ∑

ϑ ′=0

∥∥eψ(s)eφ(s) ḟ (s)
∥∥2
2,ϑ ′/2 +

∥∥eψ(s)eφ(s)Ė(s)∥∥22
)

+ sup
τ≥0
‖ ḟ ‖∞·

ϑ∑
ϑ ′=0

∫ t

s

∥∥ f (τ )
∥∥2
σ,ϑ ′/2 dτ + sup

τ≥0
‖∇v ḟ ‖∞·

ϑ∑
ϑ ′=0

∫ t

s

∥∥ f (τ )
∥∥2
2,ϑ ′ dτ,

(4.58)

by summing up over ϑ ′ ∈ [0, ϑ] ∩ N for any given ϑ ∈ N with proper weight.
Due to Lemma 4.3, the above result only holds for t − s ∈ Z

+. Using a similar
argument as in Step 3, with the help of local well-posedness result, we can extend
the estimate to arbitrary t − s ≥ 1.

Notice that there is an extra term of f with the highest-power weight (serving
as a “source term”), which forces us to combine the two weighted inequalities for
f and ḟ with different range (summation limits) so that this term can be absorbed.
Defining

W̃ϑ(t) :=
2ϑ+1∑
ϑ ′=0

∥∥ f (t)
∥∥2
2,ϑ ′/2 +

ϑ∑
ϑ ′=0

∥∥ ḟ (t)
∥∥2
2,ϑ ′/2 +

∥∥E(t)∥∥22 +
∥∥Ė(t)∥∥22

� ∥∥ f (t)
∥∥2
2,ϑ+ 1

2
+ ∥∥ ḟ (t)

∥∥2
2, ϑ2

+ ∥∥E(t)∥∥22 +
∥∥Ė(t)∥∥22,

and

Ṽϑ(t) :=
2ϑ+1∑
ϑ ′=0

∥∥ f (t)
∥∥2
σ,ϑ ′/2 +

ϑ∑
ϑ ′=0

∥∥ ḟ (t)
∥∥2
σ,ϑ ′/2 +

∥∥E(t)∥∥22 +
∥∥Ė(t)∥∥22

� ∥∥ f (t)
∥∥2
σ,ϑ+ 1

2
+ ∥∥ ḟ (t)

∥∥2
σ, ϑ2

+ ∥∥E(t)∥∥22 +
∥∥Ė(t)∥∥22.
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Then (4.58) together with (4.47) leads to

W̃ϑ(t) +
∫ t

s
Ṽϑ(τ ) dτ � W̃ϑ(s).

Finally, mimicking the derivation of (4.2) and (4.3), the desired bounds for ∂t f
follow. Therefore we complete the proof of the theorem.

5. Preliminaries for the Ultraparabolic Equations

In the following, we will discuss the setup of S p estimates. Since this theory
is developed for the whole space, we will temporarily write x ∈ R

3 in this section
and introduce the extension �→ R

3 in the next section.

5.1. Structure of the ultraparabolic operator

In order to prove the S p estimates and further regularity results, we rewrite the
linearized equation (1.30) so that it takes the form of an ultraparabolic equation (cf.
[1,7,27]):

∂t f + v · ∇x f − σ
i j

G ∂viv j f = S, (5.1)

where the source term

S(t, x, v) := ∂viσ
i j

G ∂v j f + {ag − Eg
} · ∇v f +

{
K̄g f + (v · Eg

)
f + 2

√
μv · E f

}
.

Our Eq. (5.1) corresponds to a special case of the class of ultraparabolic operators

L :=
m0∑

i, j=1
ai j (z) ∂xi x j +

N∑
i, j=1

bi j xi∂x j − ∂t

with m0 = 3, N = 6, z := (x, t) ∈ R
6+1, x := (xi )1≤i≤6 = (v, x) ∈ R

3
v × R

3
x ,

and

ai j (z) = σ
i j

G (t, x, v) =
{
�i j ∗ [μ+ μ1/2g(t, x, v)

]}
(v),

b14 = b25 = b36 = −1 and the rest of bi j are zeros, so that

Y :=
N∑

i, j=1
bi j xi∂x j − ∂t = −

(
∂t + v · ∇x

)
.

We now verify that the hypotheses made on the coefficients of L are satisfied
in our case:

(H.1) The matrix of the second-order coefficients

A(z) := [ai j (z)
]
1≤i, j≤3 = σG(t, x, v)
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is symmetric, and if ‖g‖∞ < ε is sufficiently small, there are constants c1, c2 > 0
such that

c1
1(v) |η|2 ≤ ηTA(z) η ≤ c2
2(v) |η|2

for every z = (t, x, v) ∈ R
6+1 and η ∈ R

3. Here
1(v),
2(v) > 0 are equivalent
to the eigenvalues of σG , satisfying


1(v) � (1+ |v|)−3, 
2(v) � (1+ |v|)−1.
Therefore, the principal part of L is an elliptic operator on R

3
v , also it is uniformly

elliptic restricted on a bounded subset of v ∈ R
3 (see Lemma 3.3 in Section 3).

(H.2) The constant matrix

B := [bi j
]
1≤i, j≤6 =

[
0 B1
0 0

]
, B1 =

⎛
⎝−1 0 0

0 −1 0
0 0 −1

⎞
⎠

is upper triangular with r = 1, m0 = m1 = 3, and B1 is a 3 × 3 block matrix of
rank 3.

It is known that under the conditions (H.1) and (H.2), the operator Lz0 obtained
by freezing the coefficients ai j at anyfixed point z0 ∈ R

N+1 is called “hypoelliptic”.
In our case, the equation (5.1) is parabolic only in the velocity variable, while the
(Liouville) transport operator Y has a mixing effect in the position-velocity phase
space.

We now introduce a quasi-distance in the space Rt×R
3
x×R

3
v and R

3
x×R

3
v .

Definition 5.1. (Quasi-Distance) For every z := (t, x, v), w := (τ, ξ, ν) ∈ R
6+1,

define

d(z,w) := max{|t − τ |1/2, |x − ξ − (t − τ)ν|1/3, |v − ν|}.
Let d̂ (ẑ, ŵ) denote the restriction of the quasi-distance d on the phase-space R

3
x ×

R
3
v , where ẑ := (x, v), ŵ := (ξ, ν).

The quasi-distance d̂ induces a topology on R
3
x×R

3
v in a natural way, which

allows us to define the Hölder space Cα .

Definition 5.2. (C0,α Space) Let � be an open set in R
6. We say a real-valued

function f on� satisfies the Hölder condition, or has (uniform) Hölder continuity,
if there exist constants α ∈ (0, 1] and M > 0 such that

∣∣ f (ẑ)− f (ŵ)
∣∣ ≤ M

∣∣d̂(ẑ, ŵ)∣∣α
for every ẑ, ŵ ∈ �. In this case, f can be equipped with a semi-norm

| f |C 0,α(�) := sup
z �=w∈�

| f (ẑ)− f (ŵ)|∣∣d̂(ẑ, ŵ)∣∣α .
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To get the desired a priori estimates, we need to make an additional regularity
assumption on the second-order coefficients of L:

(H.3) For eachn ≥ 0 andv0 ∈ R
3 such that |v0| ∈ [2n−1, 2n+1−1), there exists

a constant R0 = R0(n) ∈ (0, 1) such that the coefficients ai j (z) := σ
i j

G (t, x, v)
satisfy for any z0 = (t0, x0, v0) and r ∈ (0, R0],

oscx,v(a, Qr (z0)) ≤ γ�, where γ� = 2−3nκ(p)γ̃�(p), (5.2)

oscx,v(a, Qr (z0))

= r−(4d+2)
∫ t0

t0−r2

∫
Dr (z0,t)×Dr (z0,t)

|a(t, x1, v1)− a(t, x2, v2)| dx1dv1dx2dv2 dt,

and

Qr (z0) = {(t, x, v) : t0 − r2 < t < t0, |x − x0 − (t − t0)v0|1/3 < r, |v − v0| < r},
Dr (z0, t) = {(x, v) : |x − x0 − (t − t0)v0|1/3 < r, |v − v0| < r}.

Here κ(p) and γ̃�(p) are positive constants depending on p, but are independent
of n.

5.2. Definition of S p space

Definition 5.3. (S p Space) Let � ⊂ R
6+1 be an open set. For p ∈ (1,∞), we

define the S p space

S p(�) :=
{

f ∈ L p(�) : ∂vi f, ∂viv j f, Y f ∈ L p(�), i, j = 1, 2, 3
}
,

and assign the norm

‖ f ‖S p(�) :=
(∥∥ f
∥∥p

L p(�)
+ ∥∥Dv f

∥∥p
L p(�)

+ ∥∥D2
vv f
∥∥p

L p(�)
+ ∥∥Y f

∥∥p
L p(�)

) 1
p
,

(5.3)

where Y = −(∂t + v · ∇x
)
, and we use the simplified notation

∥∥Dv f
∥∥p

L p(�)
:=

3∑
i=1

∥∥∂vi f
∥∥p

L p(�)
,

∥∥D2
vv f
∥∥p

L p(�)
:=

3∑
i, j=1

∥∥∂viv j f
∥∥p

L p(�)
.

Finally, we conclude this section by a Gagliardo-Nirenberg type interpolation
inequality, which gives the bound on the intermediate derivatives Dvu from the
control of the highest derivatives D2

vvu and additional information on the function
u itself.

Lemma 5.1. (Interpolation) Let u ∈ S p(�) with p ∈ (1,∞), and � be a smooth
open set in R

6+1. For any 0 < ε < 1, there exists a constant Cε = C
ε
> 0

(depending only on p and �) such that∥∥Dvu
∥∥

L p(�)
≤ ε
∥∥D2

vvu
∥∥

L p(�)
+ Cε ‖u‖L p(�).
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6. Extension Across the Specular-Reflection Boundary

For the later use of S p theory, we need to extend the domain � to the whole
space.

6.1. Extension of solutions to the whole space

In this subsection, we will show step by step the way of extending our equa-
tion satisfied on a bounded domain with specular-reflection BC to a whole space
problem.

6.1.1. “Boundary-flattening” transformation Let

� : �× R
3 → H−× R

3

(x, v) �→ (y, w)
def= (ψ(x), Av

)
(6.1)

be the (local) transformation that flattens the boundary, where

A
def=
[ ∂y

∂x

]
= Dψ

is a non-degenerate 3×3 Jacobian matrix, and the explicit definition of y=ψ(x)
will be given below. Let

f̃ (t, y, w)
def= f
(
t,�−1(y, w)

) = f
(
t,ψ−1(y), A−1w

) = f (t, x, v) (6.2)

denote the solution under the new coordinates.

Remark 6.1. It is crucial that we define our transformation � for both (x, v) vari-
ables in this certain form so that it preserves the characteristics and the transport
operator as explained below (see also the subsection of 6.1.3 below for more de-
tails).

Suppose the boundary ∂� is (locally) given by the graph x3 = ρ(x1, x2), and{
(x1, x2, x3) ∈ R

3 : x3 < ρ(x1, x2)
} ⊆ �. Inspired by Lemma 15 in [19],2 we

define y=ψ(x) explicitly as follows:

ψ−1 :
⎛
⎝y1

y2
y3

⎞
⎠ �→ η(y1, y2)+ y3 · n(y1, y2)

=
⎛
⎝ y1

y2
ρ(y1, y2)

⎞
⎠+ y3 ·

⎛
⎝−ρ1−ρ2

1

⎞
⎠ =

⎛
⎝y1 − y3 · ρ1

y2 − y3 · ρ2
ρ + y3

⎞
⎠ =:
⎛
⎝x1

x2
x3

⎞
⎠ ,

2 The authors used spherical-type coordinates to make the map almost globally defined;
here we just prefer the standard coordinates for simplicity.
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where we denote by ρ = ρ(y1, y2), ρi = ∂iρ(y1, y2), i=1, 2, and

η(y1, y2)
def= (y1, y2, ρ(y1, y2)

) ∈ ∂�,
∂1η

def= ∂η

∂y1
= 〈1, 0, ρ1〉,

∂2η
def= ∂η

∂y2
= 〈0, 1, ρ2〉.

Then the (outward) normal vector at the point η(y1, y2) ∈ ∂� is chosen to be

n(y1, y2)
def= ∂1η × ∂2η = 〈−ρ1,−ρ2, 1〉.

From the above definition, we can see that the transformation ψ is “boundary-
flattening” because it maps the points on the boundary {x3 = ρ(x1, x2)} to the
plane {y3=0}. We also remark that the map is locally well defined and is a smooth
homeomorphism in a tubular neighborhood of the boundary (see Lemma 15 of [19]
for the rigorous proof).

Directly we compute the Jacobian matrix

A−1 = Dψ−1 =
[∂x

∂y

]
= [∂1η + y3 ·∂1n; ∂2η + y3 ·∂2n; n

]

=
⎛
⎝1−y3 ·ρ11 −y3 ·ρ12 −ρ1
−y3 ·ρ12 1−y3 ·ρ22 −ρ2

ρ1 ρ2 1

⎞
⎠

on ∂�: y3=0−−−−−−−→ [∂1η; ∂2η; n] =
⎛
⎝ 1 0 −ρ1

0 1 −ρ2
ρ1 ρ2 1

⎞
⎠ .

Thus we can write out �−1 as

�−1 : (y, w) �→ (x, v)
def= (ψ−1(y), A−1w

)
,

⎛
⎝w1
w2
w3

⎞
⎠ �→

⎛
⎝1−y3 ·ρ11 −y3 ·ρ12 −ρ1
−y3 ·ρ12 1−y3 ·ρ22 −ρ2

ρ1 ρ2 1

⎞
⎠
⎛
⎝w1
w2
w3

⎞
⎠

=
⎛
⎝ (1−y3ρ11) · w1 − y3ρ12 · w2 − ρ1 · w3
−y3ρ12 · w1 + (1−y3ρ22) · w2 − ρ2 · w3

ρ1 · w1 + ρ2 · w2 + w3

⎞
⎠ =:
⎛
⎝v1v2
v3

⎞
⎠ .

Restricted on the boundary ∂�, i.e., {y3=0}, the map becomes
⎛
⎝v1v2
v3

⎞
⎠ = w1 · ∂1η + w2 · ∂2η + w3 · n

=
⎛
⎝ 1 0 −ρ1

0 1 −ρ2
ρ1 ρ2 1

⎞
⎠
⎛
⎝w1
w2
w3

⎞
⎠ =
⎛
⎝ w1 − ρ1 ·w3

w2 − ρ2 ·w3
ρ1 ·w1 + ρ2 ·w2 + w3

⎞
⎠ .
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Nowwe are ready to show the key feature of the transformation�—preserving
the “specular symmetry” on the boundary: it sends any two points (x, v), (x, Rxv)

on the phase boundary γ = ∂�×R
3 with specular-reflection relation to two points

on {y3=0} × R
3 which are also specular-symmetric to each other.

In other words, we have the following commutative diagram (when x ∈∂� i.e.,
y3=0):

(y, w)
�−1 ��

Ry

��

(x, v)

Rx

��
(y, Ryw)

�−1 �� (x, Rxv)

from which we can equivalently write

A−1
(
Ryw
) = Rx

(
A−1w
)

if y3=0.

This can be verified by noticing that n = ∂1η × ∂2η, so

A−1
(
Ryw
) = A−1〈w1, w2,−w3〉 = w1 · ∂1η + w2 · ∂2η − w3 · n
= Rx
(
w1 · ∂1η + w2 · ∂2η + w3 · n

) = Rx
(

A−1w
)
.

Having this property, the specular reflection boundary condition on the solutions
is also preserved:

f̃ (t, y, w) = f̃ (t, y, Rw) on {y3=0},

where R
def=diag{1, 1,−1}, which allows us to construct the mirror extension (as in

the next subsection) that is consistent with this restriction and thus is automatically
satisfied.

To conclude this part, we carry out more computations for later use:

D�−1 =
[
∂(x, v)

∂(y, w)

]
=
⎛
⎜⎝

∂x
∂y

∂x
∂w

∂v
∂y

∂v
∂w

⎞
⎟⎠ =
⎛
⎝ A−1 03×3

B A−1

⎞
⎠ , (6.3)

B
def=
[∂v
∂y

]

=

⎛
⎜⎜⎜⎜⎝

−y3ρ111 ·w1−y3ρ112 ·w2 −y3ρ112 ·w1−y3ρ122 ·w2 −ρ11 ·w1−ρ12 ·w2
−ρ11 ·w3 −ρ12 ·w3

−y3ρ112 ·w1−y3ρ122 ·w2 −y3ρ122 ·w1−y3ρ222 ·w2 −ρ12 ·w1−ρ22 ·w2
−ρ12 ·w3 −ρ22 ·w3

ρ11 ·w1 + ρ12 ·w2 ρ12 ·w1 + ρ22 ·w2 0

⎞
⎟⎟⎟⎟⎠ ,
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A = 1

det
(

A−1
) · (A−1

)∗

=
[

y23 ·
(
ρ11ρ22−ρ212

)
+ y3 ·
(
2ρ1ρ2ρ12−ρ22ρ11−ρ21ρ22−ρ11−ρ22

)
+
(
ρ21+ρ22+1

)]−1

·

⎛
⎜⎜⎝

(1+ρ22 )− y3 ·ρ22 − ρ1ρ2 + y3 ·ρ12 ρ1 + y3 ·(ρ2ρ12−ρ1ρ22)
−ρ1ρ2 + y3 ·ρ12 (1+ρ21 )− y3 ·ρ11 ρ2 + y3 ·(ρ1ρ12−ρ2ρ11)

−ρ1 + y3 ·(ρ1ρ22−ρ2ρ12) − ρ2 + y3 ·(ρ2ρ11−ρ1ρ12) 1− y3 ·(ρ11+ρ22)
+ y23 ·(ρ11ρ22−ρ212)

⎞
⎟⎟⎠ ,

C
def= A−T A−1 =

⎛
⎜⎜⎜⎜⎝

y23 ·(ρ211+ρ212) y23 ·ρ12(ρ11+ρ22) y3 ·(ρ1ρ11+ρ2ρ12)
−y3 ·2ρ11 + (ρ21+1) − y3 ·2ρ12 + ρ1ρ2

y23 ·ρ12(ρ11+ρ22) y23 ·(ρ212+ρ222) y3 ·(ρ1ρ12+ρ2ρ22)
−y3 ·2ρ12 + ρ1ρ2 − y3 ·2ρ22 + (ρ22+1)
y3 ·(ρ1ρ11+ρ2ρ12) y3 ·(ρ1ρ12+ρ2ρ22) ρ21+ρ22+1

⎞
⎟⎟⎟⎟⎠ ,

C−1 = AAT = 1

det(C)
· C∗.

Remark 6.2. Here we just assume ρ is (locally) smooth enough and its derivatives
remain uniformly bounded, so that all the coefficients of transformed equations
where the above matrices appear will keep roughly the same size as the original
ones.

6.1.2. Mirror extension across the specular-reflection boundary After flatten-
ing the boundary, we then “flip over” f̃ to the upper half space by setting

f̄ (t, y, w)
def=
{

f̃ (t, y, w), if y∈ H−
f̃ (t, Ry, Rw), if y∈ H+

, (6.4)

where R
def= diag{1, 1,−1}. The similar notation also applies to other variables.

Combined with the corresponding partition of unity, we are able to define our
solutions in the whole space (locally).

Remark 6.3. The above construction of extension coincides with the specular re-
flection boundary condition, which in turn makes it a well-defined and continuous
extension across the boundary. This observation suggests that, unfortunately, we
cannot apply the same kind of extension to other boundary condition cases.

Also, it is worth pointing out the necessity of “continuity of f̄ across the boundary”
lies in that, on one hand, it ensures f̄ is indeed a solution (at least) in the weak
sense in the whole space (see Section 6.2); on the other hand, g will appear in the
coefficients of the ultra-parabolic form, and we require some kind of continuity of
the second-order coefficient for the S p estimate.

6.1.3. Transformed equations By using the chain rule with our definitions (6.1)
and (6.2) of the transformation �, we first compute the transformed equation sat-
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isfied by f̃ in the lower half space:3

∂t f = ∂t f̃ ,

v · ∇x f = (A−1w)T {AT∇y f̃ + [ ∂w
∂x

]T∇w f̃
}

= wT (A−T AT )∇y f̃ + (A−1w)T (A[ ∂v
∂y

]
A
)T∇w f̃

= w · ∇y f̃ + (ABw
) · ∇w f̃ ,

ag · ∇v f = ãg ·
(

AT∇w f̃
) = (Aãg

) · ∇w f̃ ,

Eg · ∇v f = Ẽg ·
(

AT∇w f̃
) = (AẼg

) · ∇w f̃ ,

and

∇v ·
(
σG∇v f

) = ∇w ·
([

Aσ̃G AT ]∇w f̃
)
.

See (6.3) for explicit definition of A, B, and

ãg(t, y, w)
def= ag
(
t,�−1(y, w)

) = ag(t, x, v),

Ẽg(t, y)
def= Eg
(
t,ψ−1(y)

) = Eg(t, x),

σ̃G(t, y, w)
def= σG
(
t,�−1(y, w)

) = σG(t, x, v).

Based on our construction of the extension (6.4), we then go on deriving the
equation satisfied by f̄ for the upper half space:

∂t f̄ (t, y, w) = ∂t f̃ (t, Ry, Rw),

w · ∇y f̄ (t, y, w) = wT (RTRT )∇y f̄ (t, y, w) = (Rw)T RT∇y f̄ (t, y, w)

= w · ∇y f̃ (t, Ry, Rw),(
R ĀB̄ Rw

) · ∇w f̄ (t, y, w) = ( Ā B̄ Rw
) · RT∇w f̄ (t, y, w) = (ABw

) · ∇w f̃ (t, Ry, Rw),(
R Āag
) · ∇w f̄ (t, y, w) = ( Āag

) · RT∇w f̄ (t, y, w) = (Aãg
) · ∇w f̃ (t, Ry, Rw),(

R ĀEg
) · ∇w f̄ (t, y, w) = ( ĀEg

) · RT∇w f̄ (t, y, w) = (AẼg
) · ∇w f̃ (t, Ry, Rw),

∇w ·
([

R ĀσG ĀTR
]∇w f̄ (t, y, w)

)
= ∇w ·

([
Aσ̃G AT ]∇w f̃ (t, Ry, Rw)

)
,

where

Ā(y)
def= A(Ry), B̄(y, w)

def= B(Ry, Rw),

and ag , Eg , σG are ag , Eg , σG defined with (t, y, w), respectively.

3 We use the column vector convention in the following matrix operation expressions.
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Summing up the above computations, we now obtain that f̄ satisfies the fol-
lowing equation in the lower and upper space, respectively:

∂t f̄ + w · ∇y f̄ = ∇w ·
(
A∇w f̄

)+ B · ∇w f̄ + C f̄ , (6.5)

where the coefficients A, B, and C are piecewise-defined:

A(t, y, w)
def=
{

Ã
def= Aσ̃G AT , if y∈ H−

A
def= R ĀσG ĀTR, if y∈ H+

, (6.6)

B(t, y, w)
def=
{

B̃
def= ABw + Aãg − AẼg, if y∈ H−

B
def= R ĀB̄ Rw + R Āag − R ĀEg, if y∈ H+

, (6.7)

C(t, y, w)
def=
{

C̃
def= ˜̄Kg f + (A−1w)T Ẽg + 2

√
μ(w)(A−1w)T Ẽg, if y∈ H−

C
def= K̄g f + ( Ā−1Rw)TEg + 2

√
μ(w)( Ā−1Rw)TEg, if y∈ H+

.

(6.8)

Remark 6.4. Thanks to our design of the form of transformation (6.1) and exten-
sion (6.4), the transport operator of the equation remains invariant after change of
variables, which is vital for our future analysis.

It is also worth noting that the new second-order coefficient A preserves the posi-
tivity of σG , and thus the hypo-ellipticity of the equation, since A and R are non-
degenerate.

6.2. Weak formulation of extended equations

After doing the extension, it is important to make sure that across the boundary
the Eq. (6.5) is satisfied by f̄ in some proper sense (at least in the weak sense).
That means f̄ should satisfy the following weak formation of equation (6.5) in the
whole space:∫∫

R3×R3

[
( f̄ ϕ)(t)− ( f̄ ϕ)(0)

]
dydw

=
∫ t

0

∫∫
R3×R3

{
f̄
[
(∂s + w ·∇y)ϕ − B · ∇wϕ

]+ C f ϕ − ∇w f̄ · (A∇wϕ)
}
dydwds.

Normally a weak formation is obtained by multiplying the equation by some
suitable test function ϕ and then integrating by parts over the domain where the
equation(s) are defined i.e., (0, t)× (H−∪H+)× R

3. This process yields∫∫
�̃×R3

[
( f̄ ϕ)(t)− ( f̄ ϕ)(0)

]
dydw

=
∫ t

0

∫∫
�̃×R3

{
f̄
[
(∂s + w ·∇y)ϕ − B · ∇wϕ

]+ C f ϕ −∇w f̄ · (A∇wϕ)
}
dydwds

−
∫ t

0

∫
γ̃

f̄ ϕdγ̃ ds.

Here �̃
def= H−∪H+, γ̃

def= ∂�̃×R
3 = (∂H−∪∂H+)×R

3, and dγ̃
def= (w·ny)d Sydw.



382 Hongjie Dong, Yan Guo & Zhimeng Ouyang

Remark 6.5. The only boundary-integral term Iγ̃
def= ∫ t

0

∫
γ̃

f̄ ϕdγ̃ ds above comes
from integration by parts in y. Note that integration by parts in w does not produce
any boundary terms.

Compared with the above definition, this is equivalent to saying that we have
to be sure the boundary term vanishes:∫

γ̃

f̄ ϕdγ̃ =
(∫∫

∂H−×R3
+
∫∫

∂H+×R3

)
f̄ ϕ(w · ny)d Sydw = 0,

which is indeed true since

f̄ (t; y1, y2, 0−;w) = f̄ (t; y1, y2, 0+;w)
due to continuity of f̄ across the boundary, while the normal vectors at same point
of outer and inner boundary are of opposite directions

ny(y3=0−)|∂H− = −ny(y3=0+)|∂H+ ,
plus the coincidence of y-derivative term (transport operator) on two sides.

Therefore, we can now conclude that f̄ is a (weak) solution to the Eq. (6.5) in
the whole space.

6.3. Continuity of the coefficients across the boundary

The S p estimate is based on a reformulation of the equation, which is of the
form of a class of kinetic Fokker-Planck equations (also called hypoelliptic or
ultraparabolic of Kolmogorov type) with rough coefficients:

∂t f + v · ∇x f = ∇v · (A∇v f )+ B · ∇v f + C f.

The properties of the coefficients used in [25] for the estimates to hold are as
follows: if ‖g‖∞ is sufficiently small,

A(t, x, v)
def= σG : 3×3 non-negative matrix, but not uniformly elliptic, 0 <

(1+|v|)−3 I � A(v) � (1+|v|)−1 I (Lemma 2.4 in [25]); continuous.
B(t, x, v)

def= ag−Eg : essentially bounded 3d-vector, ‖B[g]‖∞ � ‖g‖∞ � 1.
The ellipticity and boundedness of the new coefficients after extension are easy

to check (look back the transformed equations in Section 6.1.3). Thus we are left
with one main task—checking the continuity of the second-order coefficient A

across the boundary, which is necessary only for the S p estimate (see Theorem 7.2
and Lemma 7.5 in [25]). A direct computation on (6.6) gives

σ̃G =
∣∣∣det(A−1

)∣∣∣ · ψ̃ ∗ (μ̃+μ̃1/2 g̃
)
,

ψ(v) = |v|−1 · I − |v|−3 ·
(
vvT
)
,

ψ̃(y, w) = (wTA−TA−1w)−1/2 · I − (wTA−TA−1w)−3/2 ·
[

A−1wwT A−T
]
,

= (wTCw)−1/2 · I − (wTCw)−3/2 ·
[

A−1wwT A−T
]
, and

μ̃(y, w) = e−wTCw, μ̄(y, w) = e−wTRC̄ Rw.
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Then we have (see also [6])

Ã = Aσ̃G AT

=
∣∣∣det(A−1

)∣∣∣· {(wTCw)−1/2 ·
[

AAT
]
− (wTCw)−3/2 ·

[
wwT
]}
∗
(
μ̃+μ̃1/2 g̃

)
,

A = R ĀσG ĀTR

=
∣∣∣det( Ā−1

)∣∣∣· {(wTRC̄ Rw)−1/2 ·
[

R Ā ĀTR
]
− (wTRC̄ Rw)−3/2 ·

[
wwT
]}

∗
(
μ̄+μ̄1/2 ḡ

)
.

Based on our definition of the extension, since we have continuity of Ā and C̄ ,
and decay of G (i.e., vanishing at infinity), the continuity of A in (x, v) naturally
follows.

6.4. Conclusion

By designing a suitable “boundary-flattening” transformation, we are able to
extend our solutions to a neighborhood � for the specular reflection boundary
condition case while preserving the form of transformed equation to the largest
extent.

In order to utilize S p theory,weonlyneed tomake sure the transformed/extended
equation of

∂t f̄ + w · ∇y f̄ − σ̄
i j
G ∂w′iw′j f̄ = S̄,

where

S̄ = ∂w′i σ̄
i j
G ∂w′j f̄ + B · ∇w f̄ + C f̄ (6.9)

for B and C defined in (6.7) and (6.8), also satisfies

• (H.1): Ellipticity (eigenvalue bounds) of A = σG : remain equivalent.
• (H.2): Structure of transport operator: the structure of operator is invariant.
• (H.3): A = [σ̄ i j

G ] is continuous across the boundary.
This makes it available to implement S p techniques in this extended domain. Since
the electric field does not change the structure/property of the ultra-parabolic oper-
ator, and the construction of flattening/reflection-transformation only depends on
the geometry of domain �, our extension trick should preserve these properties
above.

Remark 6.6. For the S p estimates,we need to estimate the L p normof (6.9) termby
term (in the transformed variable (t, y, w)). Compared to using the original variable
(t, x, v), for most terms there is no essential difference. The only exception is that
we need to raise one more power of weight in estimating B · ∇w f̄ due to the extra
w factor coming from the transformation.
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Remark 6.7. Denote �̃ to be an extension of �:

�̃ =
{

x ∈ R
3 : dist(x,�) < δ

}
,

and denote ∂̃� to be an extension of ∂�:

∂̃� =
{

x ∈ R
3 : dist(x, ∂�) < δ

}
,

where δ > 0 is sufficiently small. Also, define the δ-interior of �:

�̂ = {x ∈ � : dist(x,�) < δ/2} .
Consider a partition of unity of �̃: {χk(x)}nk=0

n∑
k=0

χk(x) = 1,

satisfying

suppχ0 ⊂ �̂,

n⋃
k=1

supp (χk) ⊂ ∂̃�,

where in each suppχk , we may locally flatten the boundary as described in this
section. Denote a C∞c cutoff function

χ̃ (x) =
{
1 if dist(x,�) < δ/2,
0 if dist(x,�) > δ.

It is also natural to write χk and χ̃ in the (y, w) chart when we consider the
near-boundary region. In order to study the extended f , it suffices to consider the
following:

f I (t, x, v) =χ0(x) f (t, x, v), (6.10)

fk(t, y, w) =χ̃ (ψ−1(y))χk(ψ
−1(y)) f̄k(t, y, w) for 1 ≤ k ≤ n, (6.11)

where f̄k is the corresponding locally extended solution in suppχk . In particular,
f I satisfies

∂t f I + v · ∇x f I − σ
i j

G ∂viv j f I = S0, (6.12)

where

S0 = ∂viσ
i j
G χ0∂v j f + χ0B · ∇v f + χ0C f − v · ∇xχ0 f,

and fk satisfies

∂t fk + w · ∇y fk − σ̄
i j
G ∂w′iw′j fk = Sk, (6.13)

where

Sk = ∂wi σ̄
i j
G χk∂w j f + χkB · ∇w f + χkC f − w · ∇y(χ̃(ψ

−1(y))χk(ψ
−1(y))) f̄k .



The Vlasov–Poisson–Landau System 385

7. S p Estimates, Hölder Continuity, and weighted L∞ estimates

7.1. S p Bound

In this section we prove the S p bound in (2.13).

Proposition 7.1. With the notation and hypothesis in Proposition 2.2, we have

‖ f ‖S p((0,T )×�×R3) � ε s
1

for some s > 1.

Proof. Denote� = (0, T )×R
3×R

3. Based on the discussion in Section 6, (after
extension) A(z) = σG(t, x, v) or σ̄G(t, y, w) satisfies the conditions (H.1)–(H.3).

We recall the localization (6.10), (6.11), (6.12), (6.13), and apply the S p estimate
for each fk . We may apply the similar argument as in the proof of [6, Proposition
5.9, Theorem 1.11] to obtain∥∥ fk

∥∥p
S p(�)

� ‖ 〈v〉ϑ Sk‖p
L p(�) + ‖ 〈v〉ϑ fk‖p

L p(�) + ‖ f0‖p
O (7.1)

and a similar estimate for f I , where

‖ f0‖O :=
∥∥〈v〉ϑ v · ∇x f0

∥∥
L p(�×R3)

+ ∥∥〈v〉ϑ Dvv f0
∥∥

L p(�×R3)
+ ∥∥〈v〉ϑ γ f0

∥∥
L p
γ−

+ ‖ f0‖L p(�×R3) � ε0.

Here in view of (5.2), by taking ε1 in (2.9) sufficiently small and the S p embedding
into Hölder spaces, we may choose R0 and the implicit constant in (7.1) to be
uniform. Also ϑ(< ϑ1) in Proposition 2.2 is a sufficiently large constant depending
on the constant κ(p) in (5.2).

For 1 ≤ k ≤ n, the above estimate is written in (y, w) chart, so we further need
to pull back to (x, v) chart. This will not change the form of estimates based on the
extension in previous section.

For notational simplicity, from now on, we denote f for f I and each fk , and
only use (x, v) to represent the variables. The final estimate of f will rely on a
summation over k. The similar convention also applies to other quantities.

In this fashion, we have the bound∥∥ f
∥∥p

S p(�)
� ‖ 〈v〉ϑ S‖p

L p(�) + ‖ 〈v〉ϑ f ‖p
L p(�) + ‖ f0‖p

O , (7.2)

where

S := ∂viσ
i j

G ∂v j f + {ag − Eg
} · ∇v f +

{
K̄g f + (v · Eg

)
f + 2

√
μv · E f

}
.

Therefore, by (7.2)

‖ f ‖p
S p(�) � ε

p
0 + ‖ 〈v〉ϑ S‖p

L p(�) + ‖ 〈v〉ϑ f ‖p
L p(�)

� ε
p
0 +
∥∥ 〈v〉ϑ ∂vi σ

i j
G ∂v j f

∥∥p
L p(�)

+ ∥∥ 〈v〉ϑ (ag − Eg
) · ∇v f

∥∥p
L p(�)

+ ∥∥ 〈v〉ϑ K̄g f
∥∥p

L p(�)
+ ∥∥ 〈v〉ϑ (v · Eg

)
f
∥∥p

L p(�)

+ ∥∥ 〈v〉ϑ 2
√
μv · E f

∥∥p
L p(�)

+ ‖ 〈v〉ϑ f ‖p
L p(�).

(7.3)
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Since
∥∥∂viσ

i j
G

∥∥∞ � 1, ‖ag‖∞ � ‖g‖∞ (Corollary 3.2.1), and ‖Eg‖∞ � ‖g‖∞
(Lemma 3.7), we have∥∥ 〈v〉ϑ ∂viσ

i j
G ∂v j f

∥∥p
L p(�)

+ ∥∥ 〈v〉ϑ (ag − Eg
) · ∇v f

∥∥p
L p(�)

�
∥∥ 〈v〉ϑ Dv f

∥∥p
L p(�)

� ε
∥∥ 〈v〉ϑ D2

vv f
∥∥p

L p(�)
+ ε−1 ‖ 〈v〉ϑ f ‖p

L p(�).

(7.4)

Similarly, by Lemma 3.6 as well as Lemma 5.1,∥∥ 〈v〉ϑ K̄g f
∥∥p

L p(�)

� ‖ 〈v〉ϑ f ‖p
L p(�) +

∥∥ 〈v〉ϑ Dv f
∥∥p

L p(�)

� ε
∥∥ 〈v〉ϑ D2

vv f
∥∥p

L p(�)
+ ε−1‖ 〈v〉ϑ f ‖p

L p(�).

(7.5)

Using ‖Eg‖∞ � ‖g‖∞ and ‖E f ‖L p � ‖ f ‖L p (see Lemma 3.7), we also have∥∥ 〈v〉ϑ (v · Eg
)

f
∥∥p

L p(�)
� ‖g‖p∞

∥∥〈v〉ϑ+1 f
∥∥p

L p(�)

� ε
p
1

∥∥〈v〉ϑ+1 f
∥∥p

L p(�)
,

(7.6)

and ∥∥ 〈v〉ϑ 2√μv · E f
∥∥p

L p(�)
�
∥∥E f
∥∥p

L p((0,T )×R3)
· ∣∣ 2〈v〉ϑ+1√μ ∣∣pL p(R3)

� ‖ f ‖p
L p(�).

(7.7)

Combining (7.3)–(7.7), we obtain

‖ f ‖p
S p(�) � ε−1

∥∥〈v〉ϑ f
∥∥p

L p(�)
+ o
(
ε

p
1

)
. (7.8)

Finally, it remains to bound the weighted L p norm: using the standard inter-
polation (for 2 < p < ∞, by Hölder inequality), followed by the strong (almost-
exponential) L2 decay (Theorem4.1,which allows us to utilize the “stronger” initial
condition (2.1) with sufficiently large weight, as well as the bootstrap assumption
(2.8) ), we see that

∥∥〈v〉ϑ f
∥∥p

L p((0,T )×�×R3)
=
∫ T

0

∥∥ f (t)
∥∥p

p,ϑ dt ≤
∫ T

0

∥∥ f (t)
∥∥2
2,ϑ

∥∥ f (t)
∥∥p−2
∞,ϑ

dt

� ε
p−2
1

∫ T

0
〈t〉−2k‖ f0‖22,ϑ+k dt

� ε
p−2
1 ε 20

∫ T

0
〈t〉−2k dt

� ε
p−2+2q
1 = ε

p
(
1+ 2q−2

p

)
1 .

(7.9)

Note that for any k > 1
2 , the time integral above is uniformly bounded with respect

to T . Hence, upon letting s′ = 1+ 2q−2
p > 1 and ε′ = ε

p
(

s′−1
2

)
1 = ε

q−1
1 , we deduce

from (7.8) and (7.9) that ‖ f ‖p
S p((0,T )×�×R3)

� ε
sp
1 with s = s′+1

2 = 1+ q−1
p > 1,

which completes the proof. ��
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7.2. Hölder Continuity and L∞ bound

As a direct corollary of the S p bound (Proportion 7.1) and the embedding
theorem (see also [6, Theorem 1.11, Proposition 5.9]), we deduce the following
uniform Hölder continuity results, which imply (2.15), as well as the bound for
‖∇v f ‖L∞ in (2.14), a crucial element to ensure the uniqueness (see Section 8 for
the proof).

Corollary 7.1.1. With the notation and hypothesis in Proposition 2.2, we have that

1. if p > 7, then with α1 = min
{
1, 2− 14

p

}
∈ (0, 1],

‖ f (t)‖C 0,α1(�×R3) � ε s
1 ; (7.10)

2. if p > 14, then with α2 = 1− 14
p ∈ (0, 1),

‖dv f (t)‖C 0,α2(�×R3) � ε s
1 , (7.11)

where s > 1 can be chosen the same as in Proportion 7.1. In particular, we have

‖Dv f ‖L∞((0,T )×�×R3) � ε s
1 .

We only note that the last assertion follows because if we take t = τ, x =
ξ, v j = ν j ( j �= i), then d̂(ẑ, ŵ) = |vi − νi |, and so

∣∣∂vi f
∣∣ =
∣∣∣∣ limνi→vi

f (t, x, v)− f (· · · , νi , · · · )
vi − νi

∣∣∣∣
≤ sup

z �=w
| f (t, ẑ)− f (t, ŵ)|∣∣d̂(ẑ, ŵ)∣∣ = | f |C 0,1 .

As a byproduct, we have the following result.

Corollary 7.1.2. With the notation and hypothesis in Proposition 2.2, we have

‖E f (t)‖C1,α(�) � ε s
1

for some s > 1, and where α takes the same values as α1 in (7.10).

Remark 7.1. This regularity result actually includes the bound of ‖E f ‖W 1,∞
t,x

for f

being a solution to the coupled system, which is an improvement compared to the
L∞ estimate for the Poisson equation in Lemma 3.7.

Proof. Since

E f := −∇xφ f = ∇x �
−1
x

∫
R3

√
μ f dv =: ∇x �

−1
x ρ[ f ],
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we apply the standard Schauder estimates for elliptic equations (cf. [26, Sec-
tion4.1]) to get

∥∥E f (t)
∥∥

C1,α
x

�
∥∥φ f (t)

∥∥
C2,α

x
�
∥∥ρ[ f ](t)∥∥C0,α

x
=
∥∥∥∥
∫
R3

√
μ(v) f (t, ·, v) dv

∥∥∥∥
C0,α

x

≤
∫
R3

√
μ(v)
∥∥ f (t, ·, v)∥∥C0,α

x
dv

≤ ‖ f ‖C 0,α ·
∫
R3

√
μ(v) dv � ‖ f ‖C 0,α

for any t ≥ 0. ��

7.3. Weighted L∞ Decay (completion of the proof of Proposition 2.2)

So far we have gained control of the energy (L2 norm) of our solutions (Theo-
rem 4.1) and have known that they are Hölder continuous (Corollary 7.1.1).

We further prove the weighted L∞ decay bound in (2.12) based on our known
weighted L2 decay and Hölder continuity results, and thus complete the proof of
Proposition 2.2. The heuristics is that a continuous function with small L2 norm
should havemagnitude of comparable size. In fact, it suffices to show the following.

Proposition 7.2. For any δ > 0, there exists ε = ε(δ) > 0 such that if 〈t〉k1‖ f (t)‖2,ϑ1
< ε for some k1, ϑ1 ≥ 0, and | f (t)|C0,α ≤ M with some α ∈ (0, 1) and M > 0,

then 〈t〉k2‖ f (t)‖∞,ϑ2 < δ, where
(
1+ 6

α

)
k2 ≤ k1 and

(
1+ 6

α

)
ϑ2 ≤ ϑ1.

Proof. We use the method of contradiction. Assuming the contrary, there exists
δ0 > 0 such that no matter how small ε > 0 is, we always have 〈t〉k2‖ f (t)‖∞,ϑ2 ≥
δ0. In other words, without loss of generality, there is a point z = (t, x, v) where
〈t〉k2〈v〉ϑ2 f (t, x, v) ≥ δ0, or, equivalently,

f (t, x, v) ≥ δ0

〈t〉k2〈v〉ϑ2 . (7.12)

From | f (t)|C0,α ≤ M we have for any point w = (t, ξ, ν) = (t, ŵ),

∣∣ f (t, ẑ)− f (t, ŵ)
∣∣ ≤ M

∣∣d̂(ẑ, ŵ)∣∣α.
For fixed t , consider a d̂-disk

Dt
r (ẑ) :=

{
ŵ ∈ R

3
x × R

3
v : d̂ (ẑ, ŵ) < r

}

in the phase-space centered at ẑ = (x, v) with radius r =
(

δ0
2M〈t〉k2 〈v〉ϑ2

) 1
α
. Then

for every point (t, ξ, ν) with ŵ = (ξ, ν) ∈ Dt
r (ẑ), we have

∣∣ f (t, x, v)− f (t, ξ, ν)
∣∣ ≤ δ0

2 〈t〉k2〈v〉ϑ2 ,
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which, together with (7.12), implies

f (t, ξ, ν) ≥ δ0

2 〈t〉k2〈v〉ϑ2 . (7.13)

Also, it is easy to check that 〈v〉 ∼ 〈ν〉 in Dt
r (ẑ) up to an error of O(δ0).

Now we estimate the weighted L2 norm with (given) time-growth. By using
(7.13),

〈t〉k1‖ f (t)‖2,ϑ1 ≥ 〈t〉k1
(∫∫

Dt
r (ẑ)
〈ν〉2ϑ1 ∣∣ f (t, ξ, ν)∣∣2dνdξ

) 1
2

� 〈t〉k1〈v〉ϑ1 δ0

〈t〉k2〈v〉ϑ2 ·
∣∣Dt

r (ẑ)
∣∣ 12

� 〈t〉k1〈v〉ϑ1 δ0

〈t〉k2〈v〉ϑ2
(

δ0

〈t〉k2〈v〉ϑ2
) 6

α

= δ
1+ 6

α

0 〈t〉k1−
(
1+ 6

α

)
k2 〈v〉ϑ1−

(
1+ 6

α

)
ϑ2
.

Letting k1 −
(
1+ 6

α

)
k2 ≥ 0 and ϑ1 −

(
1+ 6

α

)
ϑ2 ≥ 0, we obtain

〈t〉k1‖ f (t)‖2,ϑ1 � δ
1+ 6

α

0 .

Note that this lower bound is a fixed positive number. However, on the other hand,
our assumption is that 〈t〉k1‖ f (t)‖2,ϑ1 < ε for arbitrarily small ε > 0. We thus get
a contradiction. ��

In a similar manner as Step5 in the proof of Theorem 4.1 and using the same
notation, we take ∂t derivative of the equation (5.1) (treated as nonlinear equation),
and arrange the resulting equation in the desired ultraparabolic form for ḟ . Then
we may redo everything for ḟ with apparent modifications. Eventually, we arrive
at the bounds (2.12), (2.13), and (2.14) for ḟ .

8. Proof of the Main Theorem: Global Well-posedness

In this final section, we will prove the global well-posedness of solutions stated
in Theorem 2.1, including global existence, uniqueness, and the bounds (2.2)–(2.6)
global in time. Additionally, by a similar argument as [17,25], we can show the
non-negativity of the density-distribution function F .

8.1. Global regularity

We start with the construction of global solutions to the Vlasov–Poisson–
Landau system (1.8)–(1.9).

Step 1. Local Existence. The proof of this result is an obvious modification
of the argument in [17, Sections2–5] and [6] combined with the standard approxi-
mation technique. Since this is not the major emphasis of this paper, we will simply
record the result.
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Theorem 8.1. (Local well-posedness) There exists a sufficiently small constant
ε0 � 1 such that for some large velocity-weight exponent ϑ0 ∈ R, the initial data
f0(x, v) : �× R

3 → R satisfies the smallness assumption

‖ f0‖∞,ϑ0 + ‖∇x f0‖∞,ϑ0 + ‖∇v f0‖∞,ϑ0 + ‖∇2
v f0‖∞,ϑ0 ≤ ε0. (8.1)

Let F0(x, v) = μ + √μ f0(x, v) ≥ 0 and has the same mass as the Maxwellian
μ. Then we have the following conclusions:

• (Existence & Uniqueness). There exists a unique solution f (t, x, v) on [0, 1]×
� × R

3 to the Vlasov–Poisson–Landau system (1.8)–(1.9) for perturbation
with the specular-reflection boundary condition (1.20) and the conservation
laws (1.23)–(1.24). Also, F(t, x, v) = μ + √μ f (t, x, v) ≥ 0 satisfies the
system (1.5)–(1.7) with (1.19).

• (Energy estimates).Moreover, the solution f (t, x, v) satisfies the uniform weighted
energy bounds, for ϑ < ϑ0 − 3

2 ,

sup
t∈[0,1]

Eϑ [ f (t)] ≤ Cϑ Eϑ [ f (0)] � ε 20 .

• (L∞ bounds). There is ϑ ′ > 0 such that when ϑ ≤ ϑ0 − ϑ ′, the weighted
pointwise bounds hold:

‖ f (t)‖∞,ϑ + ‖E f (t)‖∞ � ε0

for all t ∈ [0, 1].
• (S p bounds). For the S p norm defined in (5.3) we have

‖ f ‖S p((0,1)×�×R3) � ε0.

• (Regularity results). In addition, it holds that for any t ∈ (0, 1)
‖ f (t)‖C0,α(�×R3) + ‖E f (t)‖C1,α(�) � ε0

for some α ∈ (0, 1], and

‖∇v f ‖L∞((0,1)×�×R3) � ε0.

• ∂t f also satisfies all the estimates above.

Step 2. Bootstrapping. The global regularity part of the theorem is a conse-
quence of Proposition 2.2 and the local existence result, via a standard bootstrap-
continuity argument.

Define

T∗(ε) = sup

{
T > 0 : for every choice of initial data satisfying Eϑ [ f (0)] < ε,

there existsa solution on [0, T ] achieving the initial data and satisfying

Eϑ [ f (t)] ≤ ε1 for 0 < t ≤ T

}
.
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Local well-posedness theorem justifies that such T∗ > 0 is well-defined. Also, T∗
is non-increasing with respect to ε. Now we claim that there exists 0 < ε0 < ε

such that T∗(ε0) = ∞.
If this is not true, then 0 < T∗(ε0) < ∞. We will show the contradiction that

actually the solution can be extended pass T∗(ε0). For every T1 ∈ (0, T∗), we know
there exists a solution achieving the initial data Eϑ [ f (0] < ε0 < ε and satisfying
Eϑ [ f (t)] < ε1 for any 0 < t ≤ T1. The bootstrapping theorem justifies that
now we actually have the improved estimate Eϑ [ f (T1)] < εs

1. Let T1 be the new
initial time. The local well-posedness theorem implies that now we have extended
solution to t ∈ [T1, T1 + T̃ ]. Since we can always take T1 sufficiently close to T∗,
such that T1 + T̃ > T∗. Then it remains the verify that for t ∈ [T1, T1 + T̃ ], we
have Eϑ [ f (t)] < ε1. Local well-posedness theorem tells us now in the extended
interval, we have Eϑ [ f (t)] ≤ CϑEϑ [ f (T1)] ≤ Cϑε

s
1. Since s > 1, for sufficiently

small ε1, we always have Cϑε
s
1 < ε1. Hence, the estimate also holds.

All in all, we extend the solution beyond T∗ which achieves the initial data
and satisfies the estimate Eϑ [ f (t)] < ε1. Then this is clearly a contradiction to the
definition of T∗. Therefore, the claim is proved and the solution exists globally.

8.2. Uniqueness

We now prove that the solution is unique.

Proof. Suppose that ( f1,E1) and ( f2,E2) are two global solutions to the VPL-
specular problem (1.8), (1.9), and (1.20) with bounds (2.2)–(2.6) holding true glob-
ally. Then for i = 1, 2, ( fi ,Ei ) satisfies

∂t fi + v · ∇x fi + L fi − 2
√
μv · Ei = 
[ fi , fi ] − Ei · ∇v fi +

(
v · Ei
)

fi ,

(8.2)

where Ei := E fi = −∇xφ fi with φi := φ fi solved from the Poisson equation

−�xφi =
∫
R3

√
μ fi dv =: ρ[ fi ].

Note that (8.2) has all the linear terms on its LHS, while terms on RHS are the
nonlinearities. Let f̃ := f1 − f2 be the difference of two solutions and so Ẽ :=
E1 − E2 = E f̃ . Then from (8.2) we get the equation

∂t f̃ + v · ∇x f̃ + L f̃ − 2
√
μv · Ẽ

=
{

[ f̃ , f1] + 
[ f2, f̃ ]

}
−
{
Ẽ · ∇v f1 + E2 · ∇v f̃

}
+
{(
v · Ẽ) f1 +

(
v · E2
)

f̃
}
.

For a similar reason as in the proof of Theorem 4.1 (in the energy estimate), we
multiply eφ2 on both sides of the equation above, so that the last term on RHS can
be merged into the second term on LHS. This way the equation becomes

∂t
(
eφ2 f̃
)+ v · ∇x

(
eφ2 f̃
)+ L
(
eφ2 f̃
)− 2eφ2

√
μv · Ẽ

= J1 + J2 + J3 + J4,
(8.3)
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where

J1 := eφ2 
[ f̃ , f1] + eφ2 
[ f2, f̃ ],
J2 := −

{
eφ2 Ẽ · ∇v f1 + eφ2 E2 · ∇v f̃

}
,

J3 := eφ2
(
v · Ẽ) f1,

J4 := eφ2 f̃ ∂tφ2.

Multiplying both sides of (8.3) by 〈v〉2ϑeφ2 f̃ for ϑ ≤ −2 (the same weight
power as in Lemma 3.5, in order to apply the estimate (3.12) for 
[ ·, · ] term) and
integrating over (x, v) ∈ �× R

3, we get

1

2

d

dt

∥∥eφ2 f̃
∥∥2
2,ϑ +

1

2

∫∫
�×R3

〈v〉2ϑ∇x ·
{
v
(
eφ2 f̃
)2}

+
∫∫

�×R3
〈v〉2ϑ(eφ2 f̃

)
L
(
eφ2 f̃
) −
∫∫

�×R3
2 〈v〉2ϑ(e2φ2 f̃

)√
μv · Ẽ

=
∫∫

�×R3
〈v〉2ϑ(eφ2 f̃

)
J1 +
∫∫

�×R3
〈v〉2ϑ(eφ2 f̃

)
J2

+
∫∫

�×R3
〈v〉2ϑ(eφ2 f̃

)
J3 +
∫∫

�×R3
〈v〉2ϑ(eφ2 f̃

)
J4.

(8.4)

Nowwe estimate termby term in (8.4).Wefirst observe that eφ2 ∼ 1 since ‖φ2‖∞ �
‖ f2‖∞ � 1 (see the proof of Lemma 3.7).

On the LHS, the second term vanishes since

1

2

∫∫
�×R3

〈 v〉2ϑ∇x ·
{
v
(
eφ2 f̃
)2}

= 1

2

(∫∫
γ+
−
∫∫

γ−

)
〈v〉2ϑ(eφ2 f̃

)2|v · nx | dvdSx = 0 (8.5)

using the divergence theorem alongwith the specular boundary condition. By (3.10)
in Lemma 3.4, the third term can be bounded below as

∫∫
�×R3

〈v〉2ϑ(eφ2 f̃
)

L
(
eφ2 f̃
) = (〈v〉2ϑ L

(
eφ2 f̃
)
, eφ2 f̃

)

�
∥∥eφ2 f̃

∥∥2
σ,ϑ
− Cϑ

∥∥eφ2 f̃
∥∥2
2,ϑ . (8.6)

also, we move the fourth term to the other side and bound it above using Hölder’s
inequality:

∫∫
�×R3

2 〈v〉2ϑ(e2φ2 f̃
)√

μv · Ẽ �
∣∣〈v〉ϑ+1√μ ∣∣∞

∥∥eφ2 f̃
∥∥
2,ϑ

∥∥eφ2 Ẽ∥∥2
�
∥∥eφ2 f̃

∥∥2
2,ϑ . (8.7)
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The last inequality is valid because

∥∥eφ2 Ẽ∥∥2 � ‖Ẽ‖2 �
∥∥ρ[ f̃ ]∥∥2 =

∥∥∥∥
∫
R3

√
μ f̃ dv

∥∥∥∥
L2

x

≤
∫
R3

∥∥√μ f̃
∥∥

L2
x
dv =

∫
R3
〈v〉−ϑ√μ ∥∥〈v〉ϑ f̃

∥∥
L2

x
dv

≤ ∥∥〈v〉ϑ f̃
∥∥

L2
x,v
· ∣∣〈v〉−ϑ√μ ∣∣L2

v

� ‖ f̃ ‖2,ϑ �
∥∥eφ2 f̃

∥∥
2,ϑ ,

by modifying the proof of Lemma 3.7 with ϑ ≤ −2.
For the RHS, we estimate
∫∫

�×R3
〈v〉2ϑ (eφ2 f̃

)
J1 =

∫∫
�×R3

〈v〉2ϑ (eφ2 f̃
){

eφ2 
[ f̃ , f1] + eφ2 
[ f2, f̃ ]
}

�
(‖ f1‖∞ + ‖Dv f1‖∞

) ∥∥eφ2 f̃
∥∥2
σ,ϑ
+ ‖ f2‖∞

∥∥eφ2 f̃
∥∥2
σ,ϑ

� ε0
∥∥eφ2 f̃

∥∥2
σ,ϑ

,

(8.8)

where we applied (3.12) to the first term and (3.11) to the second (see Lemma 3.5).
Also,

∫∫
�×R3

〈v〉2ϑ (eφ2 f̃
)

J2

= −
∫∫

�×R3
〈v〉2ϑ (eφ2 f̃

){
eφ2 Ẽ · ∇v f1 + eφ2 E2 · ∇v f̃

}

= −
∫∫

�×R3
〈v〉2ϑ (eφ2 f̃

)
eφ2 Ẽ · ∇v f1 + 1

2

∫∫
�×R3

E2 · ∇v
(
〈v〉2ϑ
)(

eφ2 f̃
)2

� ‖Dv f1‖∞‖Ẽ‖∞
∥∥eφ2 f̃

∥∥
2,ϑ

∣∣〈v〉ϑ ∣∣2 + ‖E2‖∞
∥∥eφ2 f̃

∥∥2
2,ϑ

�
∥∥eφ2 f̃

∥∥2
2,ϑ ,

(8.9)

noting that with ϑ ≤ −2 we have
∣∣〈v〉ϑ ∣∣2 <∞. In addition,

∫∫
�×R3

〈v〉2ϑ(eφ2 f̃
)

J3 =
∫∫

�×R3
〈v〉2ϑ(eφ2 f̃

)
eφ2
(
v · Ẽ) f1

� ‖ f1‖∞,ϑ+1
∥∥eφ2 f̃

∥∥
2,ϑ

∥∥eφ2 Ẽ∥∥2
�
∥∥eφ2 f̃

∥∥2
2,ϑ ,

(8.10)

and ∫∫
�×R3

〈v〉2ϑ(eφ2 f̃
)

J4 =
∫∫

�×R3
〈v〉2ϑ(eφ2 f̃

)
eφ2 f̃ ∂tφ2

� ‖∂tφ2‖∞
∥∥eφ2 f̃

∥∥2
2,ϑ

� ‖∂t f2‖2
∥∥eφ2 f̃

∥∥2
2,ϑ �

∥∥eφ2 f̃
∥∥2
2,ϑ .

(8.11)
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Collecting all the estimates in (8.5)–(8.11) above and plugging them into (8.4),
we then absorb ε0

∥∥eφ2 f̃
∥∥2
σ,ϑ

from (8.8) into LHS and obtain

d

dt

∥∥eφ2 f̃
∥∥2
2,ϑ ≤ C

∥∥eφ2 f̃
∥∥2
2,ϑ .

Hence, by the Gronwall inequality, we have that for every t ∈ [ 0,∞),

∥∥eφ2 f̃ (t)
∥∥2
2,ϑ ≤ eCt

∥∥eφ2 f̃ (0)
∥∥2
2,ϑ = 0,

noticing that f1(0) = f2(0) = f0 and thus f̃ (0) ≡ 0. This implies that f̃ (t) ≡ 0 for
all t ≥ 0, since eφ2 > 0 and also due to the continuity of the solutions. Therefore,
we conclude that the solution exists uniquely. ��
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