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Abstract: Emerging wireless technologies are envisioned to support a variety of applications that
require simultaneously maintaining low latency and high reliability. Non-orthogonal multiple access
techniques constitute one candidate for grant-free transmission alleviating the signaling requirements
for uplink transmissions. In open-loop transmissions over fading channels, in which the transmitters
do not have access to the channel state information, the existing approaches are prone to facing
frequent outage events. Such outage events lead to repeated re-transmissions of the duplicate
information packets, penalizing the latency. This paper proposes a multi-access broadcast approach
in which each user splits its information stream into several information layers, each adapted to
one possible channel state. This approach facilitates preventing outage events and improves the
overall transmission latency. Based on the proposed approach, the average queuing delay of each
user is analyzed for different arrival processes at each transmitter. First, for deterministic arrivals,
closed-form lower and upper bounds on the average delay are characterized analytically. Secondly,
for Poisson arrivals, a closed-form expression for the average delay is delineated using the Pollaczek-
Khinchin formula. Based on the established bounds, the proposed approach achieves less average
delay than single-layer outage approaches. Under optimal power allocation among the encoded
layers, numerical evaluations demonstrate that the proposed approach significantly minimizes
average sum delays compared to traditional outage approaches, especially under high arrival rates.

Keywords: broadcast approach; channel state information; latency; multiple access

1. Introduction

There is a growing need for maintaining low latency and high reliability in a wide
range of wireless communication systems [1]. Among the recently proposed techniques
for attaining the latency-reliability requirements is the power domain non-orthogonal
multiple access (NOMA) [2–6]. Uplink power domain NOMA [5] facilitates simultaneous
multi-user channel access, alleviating the traditional signaling period at the beginning of
the transmission. Furthermore, by leveraging power control and adaptive decoding order
among users, NOMA techniques enhance user fairness by taking into consideration the
dissimilarities in the channel state of each user [7,8].

A fundamental challenge that NOMA faces in wireless networks is that its power
control critically relies on the availability of full channel state information at each trans-
mitter (CSIT). This assumption is generally unfeasible under the anticipated network scale
growth. In the absence of CSIT, traditional NOMA occasionally suffers from outage events,
which necessitate repeated re-transmissions and negatively affect the overall latency. To
address this issue, we propose a non-orthogonal multi-access technique in which each
transmitter splits its stream of information into multiple encoded layers, each adapted
to a specific combination of all the network’s channel states. Each user then transmits
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the superposition of all its encoded layers to the receiver. In particular, we approach the
problem of minimizing the overall communication latency from a cross-layer resource
allocation perspective by focusing on the dominant delay factor, i.e., the queuing delay [9].
The goal of the proposed approach is to minimize the average sum-queuing delay among
users by optimally allocating power among the encoded layers at each transmitter in the
physical layer.

Outage avoidance via multi-layer superposition coding was first proposed in [10,11]
for the slowly fading single-user channels. This is generally referred to as the broadcast ap-
proach [12]. Furthermore, the studies in [13] extended the broadcast approach to the energy
harvesting settings, those in [14–20] to random and multi-access channel models, and those
in [21,22] to the multiuser interference channel. Aside from analyzing the achievable rate
regions of multi-layer superposition coding [17,23], the average delay performance has only
been studied for the single-user fading channel in [24]. However, under CSIT uncertainties,
the advantages of adaptive multi-layer superposition coding for controlling the average
queuing delay in multiple access channels are yet to be explored. Finally, we note that
the broadcast approach is related to the studies on the “rate-splitting”, the foundations of
which rely on superposition coding of the layered information messages [25].

In this paper, we consider an N-user block fading multiple access channel (MAC) in
which all transmitters are oblivious to their instantaneous channel state. Each user possesses
an infinite capacity queue, occasionally holding the arriving information packets to be
transmitted. A novel multi-layer superposition coding scheme is then employed, in which
each transmitter adapts its message to the combined network state. Based on the proposed
scheme, closed-form lower and upper bounds on the average delay are characterized
analytically for deterministic arrivals. Furthermore, a closed-form expression for the
average queuing delay is delineated for Poisson arrivals. Based on the derived bounds
on average delay, the proposed approach is shown to outperform the single-layer outage
approach. Finally, under optimal power allocation among the encoded layers, numerical
evaluations demonstrate that the broadcast approach significantly reduces the average sum
delays compared to traditional outage approaches under symmetric/asymmetric arrival
rates and channel statistics among users.

A rich literature exists on minimizing the average delay through cross-layer resource
allocation in MAC with full CSIT. Relevant studies include [26] in which the authors
provide an optimal solution for minimizing average delays of two-user MAC channels
by controlling the departure probability of each user’s queue. In [27], an information-
theoretic rate allocation policy is proposed to achieve a lower bound on the average delay
of multi-access coding schemes. Dynamic power and rate control to minimize the average
delay are studied for multi-access channels in [28]. The study in [28] provides a one-step
value iteration policy for optimal scheduling in MAC fading channels. A lower bound
on the LTE-A average delay is derived in [29] for random access channels under different
arrival processes. The random access scheduling problem is addressed in [30] using a
distributed virtual queue model facilitating a self-organizing policy. The study in [31]
proposes a joint superposition coding and scheduling policy for the uplink NOMA by
relying on user-pairing to reduce the complexity of analysis [32,33]. The accuracy of
ranking users in NOMA techniques using distance-based measures versus instantaneous
signal-to-noise ratio (SNR) is addressed in [34]. Joint scheduling and superposition coding
in fading channels is studied in [35]. The effect of unsaturated traffic in uplink NOMA is
studied in [36] using tools from queuing theory. Interaction between power control and
queuing service rates in interference-limited channels is studied in [37]. Delay analysis of
multi-point to multi-point networks is provided in [38] for spatial-temporal random arrival
traffic. The problem of power control in delay-bounded applications is considered in [39],
especially under the assumption of imperfect successive interference cancellation in uplink
NOMA. The effective capacity of two-user uplink NOMA is characterized in [40] under
quality-of-service delay constraints.
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Energy-efficient transmission in uplink NOMA is studied in [41] under statistical
delay constraints, where probabilistic upper bounds on queuing delays of NOMA are
characterized. Resorting to the concept of effective capacity, the study in [42] proposes
an optimized hybrid approach between non-orthogonal multiple access and orthogonal
multiple access with different user pairing techniques in order to maximize the effective
capacity under stringent delay constraints. Contention-based modified NOMA for uplink
access is studied in [43], showing that exploiting collisions in the power domain can greatly
reduce access delay. The throughput, access delay, and energy efficiency of NOMA uplink
random access system are studied in [44]. Joint power control and user scheduling is
considered in [45] to investigate the access delay minimization problem through an efficient
sub-optimal iterative algorithm. Optimal power level partitioning to accommodate non-
critical and high-priority messages is studied in [46]. A joint dynamic power control and
user pairing algorithm is proposed in [47] to minimize long-term time average transmit
power and queuing delay. Recent studies further includes [48] in which an adaptive rate
NOMA with full CSIT is shown to provide better ergodic capacities for mobile users than
OMA while satisfying strict local delay constraints for the internet of things (IoT) devices
in cellular IoT networks. Opportunistic NOMA schemes are proposed in [49] for short
message delivery with delay constraint based on which an upper bound on session error
probability is derived, showing the impact of NOMA on session error under Rayleigh
fading. A queuing delay analysis is presented in [50] for uplink NOMA with full CSIT,
and the impact of channel estimation imperfections for finite-length channel coding is
studied. Dynamic power allocation schemes with statistical delay quality-of-service (QoS)
guarantees are shown in [51] to significantly improve the sum effective capacity and
effective energy efficiency for an uplink NOMA system with paired users.

The rest of this paper is organized as follows. Section 2 presents the N-user multi-
access channel model. The proposed multi-layer-based multi-access approach is outlined
in Section 3 for the special case of the 2-state channel. The average delay achievable
by the proposed approach is shown to outperform the average delay of the single-layer
outage approach in Section 4 for deterministic and stochastic arrivals processes. The
proposed multi-access approach is generalized to the case of finite arbitrary `-state channel
in Section 5. Finally, numerical evaluations are provided in Section 6, and the paper is
concluded in Section 7.

2. Channel Model

Consider an N-user block fading MAC channel consisting of N transmitters and one
receiver. The channel state is assumed to remain unchanged during the period of one
transmission block of n channel uses and varies independently among consecutive blocks.
We assume that the block length n is large enough to give rise to the notion of reliable
communications but much shorter than the dynamics of the fading process [24]. Each
transmitter is assumed to know the statistics of the channel state information (CSI) of its
own link to the receiver but is oblivious to its instantaneous value. Complete CSI of all links
is assumed to be available at the receiver. The input-output relationship of this channel is
given by

Y =
N

∑
i=1

hiXi + W , (1)

where Xi denotes the transmitted signal from user i and W is the additive white Gaussian
noise with zero mean and unit variance. Finally, hi denotes the state of the fading channel
between transmitter i and the receiver. The transmitted signal Xi is subject to an average
power constraint P for all i ∈ {1, . . . , N}, i.e., E

[
|Xi|2

]
≤ P. We consider a quantized model

for the fading channel according to which h2
i takes one of two possible states, referred to

as {weak, strong}, denoted by {α1, α2}, respectively. Without loss of generality, we assume
0 < α1 < α2 < +∞. User i experiences strong or weak channel states with probabilities
pi
4
= P(h2

i = α2) and p̄i
4
= 1− pi, respectively.
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Each transmitter is assumed to possess an infinite-capacity queue. The queue at
transmitter i receives random packets with an average arrival rate λi (bits/channel use).
The size of the data queued at transmitter i at the beginning of any transmission block t
is denoted by Q̃i(t), ∀i ∈ {1, . . . , N}. We define Ai(t) as the total number of bits arriving
in the queue at transmitter i during transmission block t. Finally, ri(t) (bits/channel use)
denotes the service rate of the queue at transmitter i. Hence, the queue size at transmitter i
at the end of any transmission block can be expressed using a recursive relationship as

Q̃i(t + 1) =

{
Q̃i(t) + nAi(t)− nri(t), Q̃i(t) + nAi(t)− nri(t) ≥ 0
0, otherwise

. (2)

Accordingly, we define Qi(t) as queue size normalized by the number of transmission
blocks n, i.e.,

Qi(t + 1)
4
=

{
Qi(t) + Zi(t), Qi(t) + Zi(t) ≥ 0
0, o.w.

, (3)

where the random variable Zi(t) is defined as Zi(t)
4
= Ai(t)− ri(t), and it captures the

change in the queue size at transmitter i at the end of transmission block t. We remark
that the number of bit arrivals Ai(t) is random and does not necessarily fit into the exact
size of the transmitted packet in a given transmission block. Therefore, if the backlogged
data at any queue is less than a packet length, the data bits are zero-padded to form a
complete packet for the encoder at each transmitter. Throughout the rest of the paper, we
assume that the processing delay, i.e., encoding and decoding processes, as well as the
transmission delay, are fixed and negligible with respect to the queuing delay. We use the
concise notation C(x, y) 4= 1

2 log2(1 +
x

1
P +y

), {xi
j}k

j=1
4
= {xi

1, xi
2, . . . , xi

k}. Finally, we denote

the set of all users in the network by N 4
= {1, . . . , N}.

3. 2-State Channel Multi-Access

In this section, we present a non-orthogonal multiple-access approach based on multi-
layer encoding at each transmitter and successive interference cancellation (SIC) at the
receiver. The underlying layering approach hinges on adapting the number of encoded
layers at each transmitter to the combined fading state of the network, i.e., the fading states
of all transmitters to the receiver. Owing to the arising interference in non-orthogonal
multi-access channels with no CSIT, the channel state of each user directly affects the
decoding success probabilities of all the other users. Motivated by this, the recent work
in [17] proposed a multi-layer coding approach for the two-user multiple access channel
with no CSIT, specially adapted to the combined network state resulting in an enlarged
average achievable rate regions compared to the existing multi-layer coding approaches.
In this section, we extend the layering approach in [17] to the general case of an arbitrary
number of N-users. As shown in this paper, the proposed multi-access approach enjoys
considerable advantages in reducing the queuing delay.

3.1. Layering Approach

At the beginning of each transmission block, user i aims to transmit all the data bits
accumulated in its queue if the channel state allows it. Otherwise, it encodes a part of
its data with the maximum allowable encoding rate. Towards this goal, user i encodes
its data (fully or partially) using 2N independent messages generated from 2N Gaussian
codebooks. These messages are denoted by Ui

jk, ∀i ∈ N , j ∈ {1, 2}, k ∈ {0∪N}. Based on
this decomposition

Xi =
2

∑
j=1

N

∑
k=0

Ui
jk . (4)
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We consider an ordering of the network states based on the number of users with strong
channel states denoted by k. We define Sk as the set of k users’ indices that experience strong
channel states. Accordingly, Ek denotes the event that exactly k users are experiencing a
strong channel including.

The notation Ui
jk can be interpreted as follows. Superscript i denotes the user index

i ∈ N , subscript j ∈ {1, 2} refers to user i’s channel state, where j = 1 if h2
i = α1 and

otherwise j = 2. Finally, k ∈ {0∪N} represents the number of users in the network with a
strong channel state, possibly including user i’s channel. Therefore, for every value of k,
user i adapts the rate of two codewords, {Ui

jk}
2
j=1, based on its own channel state resulting

in a total of 2k layers. The correspondence between each channel state and the adapted
layer is shown in Table 1 and summarized below:

• Ui
10 is adapted to E0, where all channels are weak.

• Ui
2N is adapted to EN , where all channels are strong.

• When exactly k channels are strong:

– Ui
1k is adapted to N\Ek if user i’s channel is weak.

– Ui
2k is adapted to Ek if user i’s channel is strong.

The rate of codeword Ui
jk is denoted by Ri

jk. Finally, we define βi
jk as the power fraction

of the total power P allocated to codeword Ui
jk, such that

2

∑
j=1

N

∑
k=0

βi
jk = 1 .

For user i, the rate of each codebook is governed via the power allocation parameters βi
jk

such that at least one layer is successfully decoded in every possible network state.

Table 1. Layering and codebook assignments by user i.

h2
i

k 0 1 2 . . . N − 1 N

α1 Ui
10 Ui

11 Ui
12 . . . U1

1N−1
α2 Ui

21 Ui
22 . . . Ui

2N−1 Ui
2N

3.2. Decoding Approach

Corresponding to the layering approach in Section 3.1, we propose a decoding algo-
rithm with 2kN SIC stages for each combined channel state with k strong channels. The
layers’ decoding order is adapted to the combined channel states such that all the layers
adapted to channel states with less than k strong users, {Ui

j`, ∀j ∈ {1, 2}, ` < k}, are first
decoded and subtracted from the received signal. Afterwards, layers adapted to channel
state with exactly k strong users, {Ui

jk, ∀j ∈ {1, 2}}, are decoded.
When |S| = k, the receiver employs 4k + 1 decoding stages. Each of the layers for any

j ∈ {1, 2} and ` ∈ {0, . . . , k}, the set of codebooks {Ui
j` : i ∈ N} is partitioned to two sets

Pj` , {Ui
j` : i ∈ S} and Qj` , {Ui

j` : i /∈ S} , (5)

rendering a total of 4k+ 1 partitions for different j ∈ {1, 2} and ` ∈ {0, . . . , k}. The decoding
strategy decodes one message from each of these, except for the partition {Ui

2k : i /∈ S}.
The decoding strategy works as follows. We create the following two sequences of sets:

P , {P10,P11,P21, . . . ,P2(k−1),P1k, } , (6)

Q , {Q1k,Q2(k−1),Q1(k−1), . . . ,Q11,Q10, } . (7)

The decoding strategy selects codebooks by alternating between P and Q in ascending
order and decodes exactly one codebook from each. Specifically, the codebook sets are
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selected in the following order: {P10,Q1k,P11,Q2(k−1),P21, . . . ,P1k,Q10}. This results in
4k coding stages. Finally, the codebooks in {Ui

2k : i ∈ S} are decoded as the last stage,
i.e., stage 4k + 1. Next, we describe the decoding stages and the set of codebooks decoded
in each.

• Decoding stage 1: We start by decoding the layers P10 , {Ui
10 : i ∈ S}, i.e., the

codebooks Ui
10 of only the k strong users in S . We define Sk as an ordered set of these

users, in which the users are ordered in an ascending order based on their indices. The
codebooks will be decoded sequentially in this order.

• Decoding stage 2: Next, after decoding and removing the codebooks in P10, we
sequentially decode the layers in Q1k = {Ui

1k : i /∈ S}, which involves layers Ui
1k of

users with weak channels.
• Decoding stage 3: In the third stage, the codebooks in P10 and Q1k are already

decoded. We continue by sequentially decoding the set of codebooks in P11 , {Ui
11 :

i ∈ S}.
• Decoding stage 4: The decoding process continues by sequentially decoding the

codebooks in Q2(k−1) = {Ui
2(k−1) : i /∈ S}, while the codebooks of P10, Q1k, and P11

are already decoded.
• Decoding stage 5: This stage sequentially decodes the codebooks P21.
• Decoding stage 6: This stage sequentially decodes the codebooks in Q1(k−1).
• Decoding stages {2, . . . , 4k + 1}: Following the pattern of the previous decoding

stages, in general, in stage {2, . . . , 4k}, we decode the codebooks according to the
following schedule for ` ∈ {1, . . . , k}:

codebooks in Q1(k−`+1) stage 4`− 2
codebooks in P1` stage 4`− 1
codebooks in Q2(k−`) stage 4`
codebooks in P2` stage 4`+ 1

(8)

The proposed decoding approach results in decoding more layers for a channel state
with k strong users compared to a state with k− 1 strong users. In particular, the receiver
decodes one extra layer for user i in channel state Ek as compared to state Ek−1. Note
that in both states, user i experiences a weak channel. On the other hand, the receiver
decodes two extra layers for user i in channel state Ek as compared to state Ek−1, note that
user i experiences a strong channel in both states. Our intuition behind such a strategy
hinges on two factors. First, that decoding and removing additional interfering users
with strong channel states is expected to increase the achievable rate of user i. Secondly,
when user i experiences a stronger channel, the receiver can possibly decode an additional
layer from its message. The decoded layers for channel state Ek are shown in Table 2
for illustration.

Table 2. Decoded layers for channel state Ek where h2
i = αj.

Stage Stage 1 Stage 2 Stage 3 Stage 4 . . . Stage 4k + 1

Codebook P10 Q1k P11 Q2(k−1) . . . {U1
2k : i ∈ Sk}

Finally, the detailed steps of the proposed successive decoding algorithm are presented
in Algorithm 1. We remark that the effect of the precedence of users with similar channel
states within each decoding stage on the average achievable delay will be analyzed in the
subsequent sections.
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Algorithm 1: Successive Decoding for 2-state channel

1: input (h2
1, . . . , h2

N), k
2: for ` ∈ {0, . . . , k}
3: if ` = 0
4: In stage 1 successively decode {Ui

10}N
i=1

5: else if ` ∈ {1, . . . , k}
6: (1) In stage 4`− 2 successively decode Q1(k−`+1)
7: (2) In stage 4`− 1 successively decode P1`
8: (3) In stage 4` successively decode Q2(k−`)
9: (4) In stage 4`+ 1 successively decode P2`
10: end if
11: end for

Based on the multi-access approach outlined throughout this section, the service rate
of the queue at transmitter i is determined by the total rates of the successfully decoded
layers during each network state. Therefore, the service rate ri(t) during transmission block
t varies randomly and is jointly determined by the states of all users as well as the power
allocation among different layers at each transmitter, i.e., βi

jk. The achievable rates for all
the encoded layers are formally stated in the Theorem 1.

Theorem 1. For the N-user MAC channel without CSIT, when exactly k ∈ N ∪ {0} users have
strong channels, the achievable rates of the layering approach in Section 3.1 and the decoding
policy in Algorithm 1 are characterized by the set of rates

{
Ri

jk, ∀j ∈ {1, 2}, i ∈ N , ` ∈ {0∪N}
}

that satisfy

Ri
j` ≤ min

S :|S|=k
di

j`(S) , (9)

where constants
{

di
jk(S), ∀k ∈ {0∪N}, j ∈ {1, 2}

}
are defined in Appendix A.

Proof. See Appendix B.

We remark that characterizing the achievable rate region of the proposed approach in
the form of rate bounds on individual codebooks rates, rather than an average achievable
rate region, will be instrumental to characterizing the average achievable delay analysis
throughout the next section.

4. Average Queuing Delay

In this section, we investigate the average queuing delay achieved by the multi-access
approach in Section 3 compared to the conventional single-layer (outage) multi-access
approach. First, in Section 4.1, we focus on the case of the deterministic arrival process
at each queue, for which we delineate lower and upper bounds on the average queuing
delay. Furthermore, the case of stochastic arrivals is examined in Section 4.2 in which
a closed-form expression for the average delay achievable by the proposed approach is
characterized and compared to that of the single-layer transmission approach. To proceed,
we define E i

k as the event in which we have exactly k strong channels and they include
the channel of user i. Accordingly, we define Ē i

k , N\E i
k. We begin by computing the

probabilities of the events E i
k (and E(S̄ i

k)) as follows.

P
[
E i

k

]
= ∑
I⊆N
|I|=k

∏
j∈I

pj ∏
`/∈I
` 6=i

p̄` and P
[
Ē i

k

]
= ∑
I⊆N
|I|=k

∏
j∈I
j 6=i

pj ∏
`/∈I

p̄` . (10)

where I denotes a subset of user indices.
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4.1. Deterministic Arrivals

Throughout this subsection, we assume that the data arrival process at each queue is a
deterministic process with an average arrival rate λi, i.e., Ai(t) = λi, ∀i ∈ N . Note that as
a result of the zero-padding applied by the encoder, whenever the available data bits are
fewer than a transmission packet, a G/G/1 queuing model is generated at each transmitter.
A closed-form expression characterizing the average delay of the G/G/1 queuing model is,
in general, unknown. Therefore we resort to characterizing upper and lower bounds on the
average queuing delay. These bounds are formally presented in Theorem 2. Before stating
Theorem 2, we provide an outline of the main steps pertinent to deriving the characterized
bounds, where the detailed proof can be found in Appendix C.

Establishing the desired bounds hinges on characterizing the average queue size at
each transmitter i using the Laplace transform of the probability distribution function (PDF)
of the queue size Qi (moment generating function). Let the PDF of Qi be denoted by dFi(q)
and its associated Laplace transform be denoted by Li(s). Therefore, the average queue
size at transmitter i is given by

E[Qi] = lim
s→0
−dLi(s)

ds
. (11)

Recalling the recursive expression for Qi in terms of the variable Zi in (3), a recursive form
of Fi(q) can be expressed as follows [52,53]

Fi(q) =


∫ q

−∞
Fi(q− τ)dFZi (τ) , q ≥ 0

0 , q < 0
, (12)

where dFZi (z) denote PDF of Zi denoting change in queue size at user i. At the end of every
transmission block, the change in queue size i, Zi, is primarily determined by the difference
between the data arrival λi and the total rate of all the layers successfully decoded by
the receiver from user i’s message stream, which in turn is determined by the combined
network state. Consequently, dFZi (z) can be expressed as

dFZi (z) = P
[
E
(
S̄ i

0

)]
δ
(

z− λi + Ri
10

)
+ P

[
E
(
S i

N

)]
δ

(
z− λi +

2

∑
j=1

N

∑
k=1

Ri
jk

)

+
N−1

∑
`=1

P
[
E
(
S i
`

)]
δ

(
z− λi +

2

∑
j=1

`−1

∑
k=0

Ri
jk + Ri

2`

)

+
N−1

∑
`=1

P
[
E
(
S̄ i
`

)]
δ

(
z− λi +

2

∑
j=1

`−1

∑
k=0

Ri
jk + Ri

1`

)
. (13)

We remark that in order to guarantee the stability of the data queue at each transmitter, we
assume that the arrival rate λi is less than the average achievable rate (service rate of the
queue), i.e.,

λi < E[ri] , ∀i ∈ N , (14)

where the average service rate at queue i is given by

E[ri] = P
[
E
(
S̄ i

0

)]
Ri

10 + P
[
E
(
S i

N

)]
·

2

∑
j=1

N

∑
k=1

Ri
jk

+
N−1

∑
`=1

P
[
E
(
S i
`

)]
·
(

2

∑
j=1

`−1

∑
k=0

Ri
jk + Ri

2`

)
+

N−1

∑
`=1

P
[
E
(
S̄ i
`

)]
·
(

2

∑
j=1

`−1

∑
k=0

Ri
jk + Ri

1`

)
. (15)

An explicit expression for Fi(q), ∀i ∈ N , directly follows by combining (12) and (13)
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Fi(q) =


0 , ∀q ∈ R1

P
[
E
(
S i

0
)]

Fi(q− λi + ∑2
j=1 ∑N

k=0 Ri
jk) , ∀q ∈ R2

...
P
[
E
(
S̄ i

0
)]

Fi(q− λi + Ri
10) , ∀q ∈ R2N−1

, (16)

where the intervalsRi, ∀i ∈ {1, . . . , 2N − 1}, are given by

R1
4
= (−∞, 0) ,

R2
4
=

[
0, λi −

2

∑
j=1

N

∑
k=0

Ri
jk + Ri

1(N−1)

]
,

...

R2N−1
4
=
[
λi − Ri

10, ∞
)

.

Finally, the Laplace transform of the queue size PDF is computed using (16), which in turn
facilitates obtaining the average queue size at user i. Note that although Fi(q) is expressed
in (16), it is still a recursive form. Therefore, the obtained expression for the average queue
size delay contains the unknown term Fi(q), which is why a closed form cannot be obtained.
Subsequently, an upper and a lower bound on the average queue size of user i ∈ N are
formally characterized in the next theorem.

Theorem 2. The average queue size of transmitter i under the multi-access policy in Section 3 is
bounded by

1
2

2

∑
j=1

N

∑
k=0

Ri
jk −

λi
2
− Ni

Di
≤ E[Qi] ≤

2

∑
j=1

N

∑
k=0

Ri
jk − λi −

Ni
Di

, (17)

where we have defined Di
4
= 2(E[ri]− λi) and

Ni
4
= −

 2

∑
j=1

N

∑
k=0

Ri
jk − λi

2

+ P
[
E
(
S̄ i

0

)] 2

∑
j=1

N

∑
k=1

Ri
jk

2

+
N−1

∑
`=1

P
[
E
(
S i
`

)]
·

 2

∑
j=1

N

∑
k=`+1

Ri
jk + Ri

1`

2

+
N−1

∑
`=1

P
[
E
(
S̄ i

`

)]
·

 2

∑
j=1

N

∑
k=`+1

Ri
jk + Ri

2`

2

. (18)

Proof. See Appendix C.

Using Little’s law, upper and lower bounds on the average queuing delay at trans-
mitter i under deterministic arrivals can directly be obtained by normalizing the bounds
characterized in Theorem 2 E[Qi] by λi.

In order to assess the performance of the proposed multi-layer superposition coding
access approach, we compare the achievable average queuing delay to that of the conven-
tional single-layer access (outage) approach. To this end, we first summarize the single-layer
approach, and afterward, a lower bound on the average queuing delay achieved by the
single-layer approach is characterized in Lemma 1. Finally, we compare the rate of in-
crease of the average delay achieved by each policy with respect to the data arrival rate.
As the arrival rate increases, the rate of increase of the average delay with respect to λi
resulting from the proposed approach is lower than that resulting from the single-layer
(outage) approach.

According to the single-layer (outage) transmission approach, each transmitter en-
codes the available data in its queue into one layer of a fixed rate irrespective of the
unknown network state. For i ∈ N , let Rs

i denote the rate of the single encoded layer
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transmitted by user i in the outage approach. In any given transmission block, if the rate
Rs

i lies in the achievable rate region of the actual network state, it will be successively
decoded by the receiver. Otherwise, an outage occurs where the receiver fails to decode
the message of user i, and the transmitter attempts to re-transmit the same message in the
subsequent transmission block using the same encoding rate Rs

i . We define rs
i (t) as the

service rate of the queue at user i under the single-layer transmission, the encoding rate of
the codeword transmitted by user i in transmission block t and successively decoded by the
receiver, hence removed from user i’s queue. Furthermore, we denote by ps

i the probability
of successfully decoding a message of rate Rs

i from user i. Accordingly, the service rate of
the queue at transmitter i using the outage approach is given by

rs
i (t) =

{
Rs

i , with probability ps
i

0, with probability 1− ps
i

. (19)

Finally, we define Qs
i as the queuing size at transmitter i under the single-layer transmission

approach summarized above. In Lemma 1, we characterize lower and upper bounds on
the average E[Qs

i ] using an approach similar to that used to characterize the bounds in
Theorem 2.

Lemma 1. The average queue size of transmitter i under single layer (outage) approach is lower
and upper bounded according to:

1
2

Rs
i −

λi
2
−
(

Rs
i − λi

)2 − Rs
i
(
1− ps

i
)

2
(

ps
i Rs

i − λi
) ≤ E[Qs

i ] ≤ Rs
i − λi −

(
Rs

i − λi
)2 − Rs

i
(
1− ps

i
)

2
(

ps
i Rs

i − λi
) . (20)

Proof. Follows the same argument as that in Appendix C.

In Theorem 2 and Lemma 1, we remark that the characterized bounds on the aver-
age queuing delay at each transmitter depend only on the arrival rate at the same node.
Therefore, the effect of the average arrival rate on the delay bounds in (17) or (20) can be
analyzed for each node i independently. In Theorem 3, while fixing the average achievable
rates at each user among both approaches, we show that as the arrival rate λi at each user
increases, the proposed multi-access approach lower rate of increase in the average queuing
delay with respect to that achieved by the single layer approach.

Theorem 3. For the N-user multiple access channel, given that

E[ri] = E[rs
i ] , (21)

the rate of increase of average delay with respect the arrival rate under the approach in Section 3 is
lower than that achieved by single-layer outage approach, i.e., for every i ∈ N

∂E[Qi]

∂λi
≤

∂E[Qs
i ]

∂λi
. (22)

Proof. See Appendix D.

4.2. Stochastic Arrivals

In this section, we consider the proposed multi-layer superposition coding policy
presented in Section 3 under Poisson distributed random arrivals Ai ∼ Pois(λi). We
adopt the same queuing model in which each transmitter applies zero-padding in case the
available bits in its queue are fewer than the size of a transmitted packet. Therefore, under
Poisson distributed arrivals, the considered model constitutes an M/G/1 queuing model
with an average arrival rate λi and service rate ri specified in (15). Furthermore, we denote
the queue utilization at transmitter i by ρi

4
= λi

E[ri ]
. The average queue length for an M/G/1
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queue can be characterized in a closed form by directly applying the Pollaczek-Khinchin
formula. Theorem 4 formally states the average queuing size under the proposed layering
and decoding approach.

Theorem 4. According to the multi-access approach outlined in Section 3, the average queue length
at user i with Poisson distributed arrivals with the average rate λi is given by

E[Qi] = ρi +
ρ2

i + λiV[ri]

2(1− ρi)
, (23)

where the average service rate E[ri] is given by (15) and the variance of the service rate V[ri] is

V[ri] = −E[ri] + P
[
E
(
S̄ i

0

)]
(Ri

10)
2 + P

[
E
(
S i

N

)]
·
(

2

∑
j=1

N

∑
k=1

Ri
jk

)2

+
N−1

∑
`=1

P
[
E
(
S i
`

)]
·
(

2

∑
j=1

`−1

∑
k=0

Ri
jk + Ri

2`

)2

+
N−1

∑
`=1

P
[
E
(
S̄ i

`

)]
·
(

2

∑
j=1

`−1

∑
k=0

Ri
jk + Ri

1`

)2

. (24)

Proof. Follows by applying Pollaczek-Khinchin formula for the M/G/1 average queue
size [54], where the service rate of queue i is given by ri.

We remark that the proof of Theorem 3 implies that the proposed approach out-
performs the single-layer outage approach in the case of Poisson arrivals as well, under
equal average achievable rates. This result can be readily verified given that the proof
in Appendix D essentially boils down to showing that the variance of the service rate
(transmission rate) at each queue, V[ri], is higher in the case of single-layer outage approach
when compared to the proposed multi-layer approach.

5. `-State Channel Multi-Access

In this section, we generalize the multi-access encoding and decoding approach
outlined in Section 3 from the special case of 2-state channel, {weak, strong}, to channel with
an arbitrary number of states `. We denote the channel states by {α1, . . . , α`}. Without loss
of generality, we assume that 0 < α1 < · · · < α` < +∞. Similarly to Section 2, we consider
a slowly fading non-orthogonal multiple access channel model with N-transmitters and
one receiver. The channel power gain of each user i can randomly take one of `-states, i.e.,
h2

i ∈ {α1, . . . , α`}.
In the layering approach in Section 3.1, we ordered the network state according to

the number of users experiencing a strong channel state. Subsequently, each user splits its
message into 2N layers, and the receiver decodes the layers adapted to the actual network
state. Similarly, for the `-state channel, we order the combined network state according to
the number of users in the network sharing a particular state αj as well as the value of such
a state. In particular, a combined network state is degraded with respect to another state if
it has a strictly smaller sum-rate capacity. We define the column vector h 4

= [h2
1, . . . , h2

N ]
T as

the the combined network state and consider that a network state h to be degraded with
respect to network state h̃ if and only if

‖h‖1 < ‖h̃‖1 . (25)

The motivation of such ordering stems from the fact the condition in (25) indicates the
state h̃ allows higher sum-rate capacity in an N-user MAC with full CSIT. In order to
overcome the absence of full CSIT at each user, a transmitter splits its message into a
finite number of layers, each adapted to the combined network state to avoid complete
outages. Similarly to Section 3.1, user i encodes an available message using (`− 1)N + 1
independent random Gaussian codebooks. The codewords of these codebooks are denoted
by Ui

jk. For layer Ui
jk, j ∈ {1, . . . , `} denotes the channel state of user i, that is h2

i = αj, while
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k ∈ {0, . . . , N − 1} denotes the number of users in the network with stronger channel state,
i.e., k = ∑N

i=1 I(h2
i > αj) where I(x) is the indicator function.

According to the layering approach outlined above, the receiver attempts to succes-
sively decode up to N((`− 1)N + 1) depending on the exact combined network state h. In
particular, when the actual network state is h, the receiver decodes for each user i layer Ui

jk
adapted to network state h in addition to all the layers adapted to all degraded network
states h̃ such that (25) is satisfied. The number of layers decoded for user i at the receiver
increases from network state h to network state ĥ either if its own channel state becomes
stronger or if the number of users experiencing channels strictly stronger than h2

i increases.
Given a network state h, the receiver employs up to M stages of successive decoding,

where M denotes the argument of the strongest channel gain in the network, i.e., M 4
=

arg ‖ h ‖∞. In stage n ∈ {1, . . . , M}, the receiver successively decodes up to one layer for
each user according to a descending order of the channel states among users. The details of
the proposed decoding order for the `-state channel are outlined in Algorithm 2.

Algorithm 2: Successive Decoding for `-state channel

1: input h
2: set ki = ∑N

d=1 I(h2
d > αi), ∀i ∈ N , M 4

= arg ‖ h ‖∞
3: for m ∈ {1, . . . , M}
4: Successively decode {Ui

mki
: h2

i ≥ αm, ∀i ∈ N} .
5: end for

We remark that according to the proposed layering approach for the `-state channel
and decoding approach in Algorithm 2, the total number of layers decoded by the receiver
from each user i is possibly different in certain network states. Although, one possible
generalization of the layering policy in Section 3 is that each user adapts a different encoding
layer to each possible combined channel state, which in turn requires each user to encode
its message into `N layers. However, the computational complexity of the decoding process,
in addition to determining the optimal power allocation among layers, is considerable as
the number of users N grows larger. Therefore, we adopt the outlined layering approach
where each user splits its message into N(`− 1) + 1 layers instead of `N layers.

6. Numerical Evaluations

In this section, we evaluate the average achievable queuing delay for each user in
the MAC channel using the multi-access broadcast approach outlined in Section 3. In
particular, we adopt a Monte-Carlo simulation to optimally allocate the transmission power
among the encoded layers at each user such that the average queuing delay is minimized.
We divide the comparison settings into two main parts according to the arrival process
at each queue, where we set the arrival process to be the same among both users in each
setting. The first considers deterministic arrivals with value λ. The second one considers
the Poisson arrival process. Furthermore, we also consider symmetric and asymmetric
channel distributions among users. Throughout this section, we set the channel gains to
α1 = 0.5 for the weak channel and α2 = 1 for the strong channel gains. In the symmetric
case, we set the channel probability distribution for each user as p1 = p2 = 0.5, and in
the asymmetric case, we set the probabilities to p1 = 0.5 and p2 = 0.1. In the asymmetric
model, user 2 encounters a weak channel with a high probability, i.e., p̄2 = 0.9. We set the
objective function in this numerical simulation to minimize the sum average delays of users
1 and 2 for the broadcast approach. Subsequently, based on the obtained optimal power
distribution among the layers at each user, we evaluate the resulting average delay for the
outage approach such that the average rates for each user are equal across both approaches.

Figures 1 and 2 focus on deterministic arrivals in the symmetric and asymmetric
channel settings. In these figures, we compare average delay versus varying arrival rate λ
in the proposed broadcast approach (denoted by “Bc”) and in the outage approach (denoted
by “outage”). In these evaluations, we have set the SNR to P = 10 dB. Furthermore, in these
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figures, we provide upper bounds that we have characterized for the broadcast approach
(denoted by “BcUB”) and the outage approach (denoted by “OutageUB”). Figures 3 and 4
depict the counterparts of these results for Poisson arrival processes. Finally, it is observed
that introducing asymmetry in the models (i.e., unequal probabilities for encountering
strong channels) slightly improves the average latency of the broadcast approach, whereas
it does not have a notable effect in the outage approach.
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Figure 1. Deterministic: Symmetric.
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Figure 2. Deterministic: Asymmetric.
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Figure 3. Poisson: Symmetric.
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Figure 4. Poisson: Asymmetric.

The numerical evaluations support the analysis, demonstrating that the proposed
broadcast approach significantly enhances the average delays of both users in the moderate
and high SNR regimes for moderate and high arrival rates.

7. Concluding Remarks

In this paper, a non-orthogonal multi-access broadcast approach is employed, in
which each user splits its information stream into a finite number of encoded layers, each
adapted to one possible network state, serving as an outage-free low-latency transmission
scheme. In particular, the average queuing delay of each user under the proposed multi-
access approach is analyzed for different arrival processes at each transmitter. First, for
deterministic arrivals, closed-form lower and upper bounds on the average delay are
derived analytically. Secondly, for Poisson arrival rates, the average queuing delay is
characterized in a closed form. The latency advantage of the proposed approach compared
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to the single-layer transmission is shown analytically. Finally, we note that in this paper, our
focus has been on the discrete channel models since it provides a setting based on which
the key ideas (specifically information layering and decoding strategy) can be described
clearly and in detail. In order to gain insight into the behavior in the continuous channel
models, by increasing the number of channel states in the limit of an infinite number of
states, the models converge to a continuous model, and the codebook assignments and
decoding strategy converge to their counterparts for continuous channels (larger number
of codebooks with low rates).
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Appendix A. Constants of Theorem 1

∀i ∈ N :

di
10(φ)

4
= C

(
α1βi

10, Nα1 −
i

∑
j=1

α1β
j
10

)
. (A1)

∀m ∈ Sk :

dm
10(Sk)

4
= C

α2βm
10, (N − k)α1 + kα2 − ∑

j∈Sk ,j≤k(m)

α2(1− β
j
10)

 , (A2)

dm
11(Sk)

4
= C

α2βm
11, (N − k)α1 + kα2 − ∑

j∈Sk

α2β
j
10 − ∑

j/∈Sk

α1β
j
1k − ∑

j∈Sk ,j≤k(m)

α2β
j
11)

 , (A3)

dm
21(Sk)

4
= C

α2βm
21, (N − k)α1 + kα2 − ∑

j∈Sk

α2(β
j
10 + β

j
11)

− ∑
j/∈Sk

α1(β
j
1k + β

j
2(k−1))− ∑

j∈Sk ,j≤k(m)

α2β
j
21)

 (A4)

∀m ∈ Sk and ` ∈ {1, . . . , k}:

dm
1`(Sk)

4
= C

(
α2βm

1`, (N − k)α1 + kα2 − ∑
j∈Sk

α2β
j
10 − ∑

j∈Sk

`−1

∑
i=1

α2(β
j
1i + β

j
2i)

− ∑
j/∈Sk

α1

`−1

∑
i=1

(β
j
1(k−i+1) + β

j
2(k−i+1))− ∑

j∈Sk ,j≤k(m)

α2β
j
1`

 , (A5)

dm
2`(Sk)

4
= C

(
α2βm

2`, (N − k)α1 + kα2 − ∑
j∈Sk

α2β
j
10 − ∑

j∈Sk

`

∑
i=1

α2β
j
1i − ∑

j∈Sk

`−1

∑
i=1

α2β
j
2i

− ∑
j/∈Sk

α1

`

∑
i=1

(β
j
1(k−i+1) + β

j
2(k−i+1))− ∑

j∈Sk ,j≤k(m)

α2β
j
2`

 . (A6)
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∀n /∈ Sk and ` ∈ {1, . . . , k}:

dn
1(k−`+1)(Sk) , C

(
α1βn

1(k−`+1), (N − k)α1 + kα2 − ∑
j∈Sk

α2β
j
10 − ∑

j∈Sk

`−1

∑
i=1

α2(β
j
1i + β

j
2i)

− ∑
j/∈Sk

α1

`−1

∑
i=1

(β
j
1(k−i+1) + β

j
2(k−i+1))− ∑

j/∈Sk ,j≤k̄(n)

α1β
j
1(k−`+1))

 , (A7)

dn
2(k−`)(Sk) , C

(
α1βn

2(k−`), (N − k)α1 + kα2 − ∑
j∈Sk

α2β
j
10 − ∑

j∈Sk

`

∑
i=1

α2β
j
1i − ∑

j∈Sk

`−1

∑
i=1

α2β
j
2i

− ∑
j/∈Sk

`

∑
i=1

α1β
j
1(k−i+1 − ∑

j/∈Sk

`−1

∑
i=1

α1β
j
2(k−i+1) − ∑

j/∈Sk ,j≤k̄(n)

α1β
j
2(k−`))

 . (A8)

Appendix B. Proof of Theorem 1

The rate region characterized in Theorem 1 is achievable by employing the layering
scheme in Section 3.1 at each transmitter combined with the successive decoding strategy
in Algorithm 1. Recall that the maximum rate of codeword Ui

jk, for each user i ∈ N channel
j ∈ {1, 2}, and k ∈ {0∪N}, is bounded by the minimum achievable rate for that codebook
in all combined network states during which it is decoded.

We define S as the set of users’ indices that are experiencing a strong states. This set is
known to the receiver. Accordingly, we define Sk as a realization of S that contains exactly
k users, i.e., k users have strong channels and N − k users have weak channels. Next, we
discuss S0 and Sk for k ∈ N , separately.

|S| = 0: All channels are weak
In the event of a network state with all channels in the weak state, h2

i = α1, ∀i ∈ N ,
the receiver decodes only one layer per user. Specifically, it decodes {Ui

10 : i ∈ N}. It
performs successive decoding, starting from user 1 and continuing in the ascending order
of users’ indices. In order to successfully decode layers {Ui

10 : i ∈ N}, the rate of each layer
i ∈ N should satisfy:

∀i ∈ N : Ri
10 ≤ C

(
α1βi

10, Nα1 −
i

∑
j=1

α1β
j
10

)
4
= di

10(φ). (A9)

Note that the second argument C(x, y) represents the undecoded layers that will be treated
as interference for layer Ui

10. Hence, based on the successive decoding procedure, when
the receiver decodes Ui

10, layers Ui
10 for users j ∈ {1, . . . , i− 1} have already been decoded.

Thus, their interference is subtracted from the total transmitted signal, accounted by the
term 1− β

j
10. On the other hand, none of the layers transmitted by users j ∈ {i + 1, . . . , N}

have been decoded yet, which is accounted by the term (N − i)α1.
Next, we will characterize upper bounds on the achievable rates of all the layers

decoded when there are exactly k users with strong channels, i.e., |S| = k.

|S| = k: k channels are strong
As discussed earlier, when |S| = k, the receiver employs 4k + 1 decoding stages. For

this purpose, the set of codebooks {Ui
j` : i ∈ N} is partitioned to two sets

Pj` , {Ui
j` : i ∈ S} and Qj` , {Ui

j` : i /∈ S} , (A10)

rendering a total of 4k+ 1 partitions for different j ∈ {1, 2} and ` ∈ {0, . . . , k}. The decoding
strategy, decodes one message from each of these, except for the partition {Ui

2k : i /∈ S}.
The decoding strategy works as follows. We create the following two sequences of sets:

P , {P10,P11,P21, . . . ,P2(k−1),P1k, } , (A11)

Q , {Q1k,Q2(k−1),Q1(k−1), . . . ,Q11,Q10, } . (A12)
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The decoding strategy selects codebooks by alternating between P and Q an an ascending
order and decodes exactly one codebook from each. This results in 4k coding stages. Finally,
the codebooks in {Ui

2k : i ∈ S} are decoded as the last stage, i.e., stage 4k + 1.

• Decoding stage 1:
We start by decoding the layers P10 , {Ui

10 : i ∈ S}. Recall that Sk was defined as an
ordered set of these users. The codebooks will be decoded sequentially in this order.
When m ∈ Sk, we denote the position of m in Sk by k(m). Hence, ∀m ∈ Sk

Rm
10 ≤ C

α2βm
10, (N − k)α1 + kα2 − ∑

j∈Sk ,j≤k(m)

α2(1− β
j
10)

 4
= dm

10(Sk) . (A13)

• Decoding stage 2:
Next, we sequentially decode the layers inQ1k = {Ui

1k : i /∈ S}, which involves layers
Ui

1k of users with weak channels. When n /∈ Sk, we denote the position of n in the
ordered set N\Sk by k̄(n). Hence, ∀n /∈ Sk

Rn
1k ≤ C

α1βn
1k, (N − k)α1 + kα2 − ∑

j∈Sk

α2β
j
10 − ∑

j/∈Sk ,j<k̄(n)

α1β
j
1k

 4
= dn

1k(Sk) . (A14)

• Decoding stage 3:
In the third stage, the codebooks in P10 and Q1k are already decoded. We continue by
sequentially decoding the set of codebooks in P11 , {Ui

11 : i ∈ S}. Hence, ∀m ∈ Sk

Rm
11 ≤ C

α2βm
11, (N − k)α1 + kα2 − ∑

j∈Sk

α2β
j
10 − ∑

j/∈Sk

α1β
j
1k − ∑

j∈Sk ,j≤k(m)

α2β
j
11)

 4
= dm

11(Sk) . (A15)

• Decoding stage 4:
The decoding process continues by sequentially decoding the codebooks in Q2(k−1) =

{Ui
2(k−1) : i /∈ S}, while the codebooks of P10, Q1k, and P11 are already decoded.

Hence, for n /∈ Sk

Rn
2(k−1) ≤ C

(
α1βn

2(k−1), (N − k)α1 + kα2 − ∑
j∈Sk

α2(β
j
10 + β

j
11)

− ∑
j/∈Sk

α1β
j
1k − ∑

j/∈Sk ,j≤k̄(n)

α1β
j
2(k−1))

 4
= dn

2(k−1)(Sk) . (A16)

• Decoding stage 5:
This stage sequentially decodes the codebooks P21. For all m ∈ S i

k we have

Rm
21 ≤ C

(
α2βm

21, (N − k)α1 + kα2 − ∑
j∈Sk

α2(β
j
10 + β

j
11)

− ∑
j/∈Sk

α1(β
j
1k + β

j
2(k−1))− ∑

j∈Sk ,j≤k(m)

α2β
j
21)

 4
= dm

21(Sk) . (A17)

• Decoding stage 6:
This stage sequentially decodes the codebooks in Q1(k−1). Hence, ∀n /∈ Sk we have
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Rn
1(k−1) ≤ C

(
α1βn

1(k−1), (N − k)α1 + kα2 − ∑
j∈Sk

α2(β
j
10 + β

j
11 + β

j
21)

− ∑
j/∈Sk

α1(β
j
1k + β

j
2(k−1))− ∑

j/∈Sk ,j≤k̄(n)

α1β
j
1(k−1))

 4
= dn

1(k−1)(Sk) . (A18)

• Decoding stages {2, . . . , 4k + 1}:
Following the pattern of the previous decoding stages, in general in the stage {2, . . . , 4k},
we decode the codebooks according to the following schedule, for ` ∈ {1, . . . , k}:

codebooks in Q1(k−`+1) stage 4`− 2
codebooks in P1` stage 4`− 1
codebooks in Q2(k−`) stage 4`
codebooks in P2` stage 4`+ 1

(A19)

Accordingly, we obtain the following rate constraints.

• Decoding stage 4`− 2:

By sequentially decoding the messages in Q1(k−`+1), ∀n /∈ Sk we have

Rn
1(k−`+1) ≤ C

(
α1βn

1(k−`+1), (N − k)α1 + kα2 − ∑
j∈Sk

α2β
j
10 − ∑

j∈Sk

`−1

∑
i=1

α2(β
j
1i + β

j
2i)

− ∑
j/∈Sk

α1

`−1

∑
i=1

(β
j
1(k−i+1) + β

j
2(k−i+1))− ∑

j/∈Sk ,j≤k̄(n)

α1β
j
1(k−`+1))

 4
= dn

1(k−`+1)(Sk) . (A20)

• Decoding stage 4`− 1:
By sequentially decoding the messages in P1`, ∀m ∈ Sk we have

Rm
1` ≤ C

(
α2βm

1`, (N − k)α1 + kα2 − ∑
j∈Sk

α2β
j
10 − ∑

j∈Sk

`−1

∑
i=1

α2(β
j
1i + β

j
2i)

− ∑
j/∈Sk

α1

`−1

∑
i=1

(β
j
1(k−i+1) + β

j
2(k−i+1))− ∑

j∈Sk ,j≤k(m)

α2β
j
1`

 4
= dm

1`(Sk) . (A21)

• Decoding stage 4`:

By sequentially decoding the messages in Q1(k−`), ∀n /∈ Sk we have

Rn
2(k−`) ≤ C

(
α1βn

2(k−`), (N − k)α1 + kα2 − ∑
j∈Sk

α2β
j
10 − ∑

j∈Sk

`

∑
i=1

α2β
j
1i − ∑

j∈Sk

`−1

∑
i=1

α2β
j
2i

− ∑
j/∈Sk

`

∑
i=1

α1β
j
1(k−i+1 − ∑

j/∈Sk

`−1

∑
i=1

α1β
j
2(k−i+1) − ∑

j/∈Sk ,j≤k̄(n)

α1β
j
2(k−`))

 4
= dn

2(k−`)(Sk) . (A22)

• Decoding stage 4`+ 1:
By sequentially decoding the messages in P2`, ∀m ∈ Sk we have
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Rm
2` ≤ C

(
α2βm

2`, (N − k)α1 + kα2 − ∑
j∈Sk

α2β
j
10 − ∑

j∈Sk

`

∑
i=1

α2β
j
1i − ∑

j∈Sk

`−1

∑
i=1

α2β
j
2i

− ∑
j/∈Sk

α1

`

∑
i=1

(β
j
1(k−i+1) + β

j
2(k−i+1))− ∑

j∈Sk ,j≤k(m)

α2β
j
2`

 4
= dm

2`(Sk) . (A23)

Given the upper bounds on the individual achievable rates of Ui
jk, ∀i ∈ N , j ∈ 1, 2,

k ∈ {0 ∪ N}, the maximum achievable rate of Ui
jk is bounded my the minimum upper

bound among all the network states within which it is decoded.

Appendix C. Proof of Theorem 2

By applying a change of variable to each term and taking the integral
∫ ∞

0 e−sqdF1(q)
as a common factor, L1(s) can be expressed as

L1(s) =
F1(0)−

∫ (∑ij R1
ij−λ1)

0+ e−s(q+(λ1−∑ij R1
ij))dF1(q)

1− [ p̄1 p̄2e−s(λ1−∑ij R1
ij) + p̄1 p2e−s(λ1−R1

11−R1
21)) + p1 p̄2e−s(λ1−R1

11−R1
12)) + p1 p2e−s(λ1−R1

11))]
(A24)

Further, by using the definition of F1(0) = p̄1 p̄2F1(q− (λ1 −∑ij R1
ij)) and multiplying the

numerator and denominator of (A24) by a common factor, e−s(∑ij R1
ij−λ1), we have.

L1(s) =
p̄1 p̄2[

∫ (∑ij R1
ij−λ1)

0 e−s(∑ij R1
ij−λ1) − e−sqdF1(q)]

e−s(∑ij R1
ij−λ1) − [ p̄1 p̄2 + p̄1 p2e−s(R1

12+R1
22)) + p1 p̄2e−s(R1

21+R1
22)) + p1 p2e−s(R1

21+R1
12+R1

22))]

4
=

D1(s)
N1(s)

. (A25)

It can be readily noticed from (A25) that lims→0 D1(s) = lims→0 N1(s) = 0, therefore
we apply L’hopital’s limit rule on (A25) to arrive at

E[Q1] = lim
s→0

D
′′
Q1
(s)− N

′′
Q1
(s)

2D′Q1
(s)

. (A26)

Finally, we evaluate the terms D
′′
Q1
(s), N

′′
Q1
(s) and D

′
Q1
(s) where we have

lim
s→0

D
′
Q1
(s) = −(∑

ij
R1

ij − λ1) + p̄1 p2(R1
12 + R1

22) + p1 p̄2(R1
12 + R1

22) + p1 p2(R1
12 + R1

21 + R1
22) (A27)

lim
s→0

D
′′
Q1
(s) = (∑

ij
R1

ij − λ1)
2 − p̄1 p2(R1

12 + R1
22)

2 − p1 p̄2(R1
12 + R1

22)
2 − p1 p2(R1

12 + R1
21 + R1

22)
2 , (A28)

and

lim
s→0

N
′′
Q1
(s) = p̄1 p̄2

∫ (∑ij R1
ij−λ1)

0
[(∑

ij
R1

ij − λ1)
2 − q2]dF1(q) . (A29)

Finally, by using lims→0 D
′
1(s) = lims→0 N

′
1(s), the second derivative of the numerator

term can be upper bounded by replacing (∑ij R1
ij − λ1 + q) by 2(∑ij R1

ij − λ1) arriving at
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lim
s→0

N
′′
Q1
(s) ≤ 2(∑

ij
R1

ij − λ1)

(
∑
ij

R1
ij − λ1

− p̄1 p2(R1
12 + R1

22)− p1 p̄2(R1
12 + R1

22)− p1 p2(R1
12 + R1

21 + R1
22)
)

. (A30)

Next, we leverage (A26) reaching

E[Qi] ≥
1
2 ∑2

j=1 ∑N
k=0 Ri

jk −
λi
2 −

Ni
Di

,

E[Qi] ≤ ∑2
j=1 ∑N

k=0 Ri
jk − λi − Ni

Di
, (A31)

where

Ni
4
= −

(
∑2

j=1 ∑N
k=0 Ri

jk − λi

)2

+ P
[
E
(
S̄ i

0

)](
∑2

j=1 ∑N
k=1 Ri

jk

)2

+ ∑N−1
`=1 P

[
E
(
S i
`

)]
·
(

∑2
j=1 ∑N

k=`+1 Ri
jk + Ri

1`

)2

+ ∑N−1
`=1 P

[
E
(
S̄ i

`

)]
·
(

∑2
j=1 ∑N

k=`+1 Ri
jk + Ri

2`

)2

Di
4
= 2(E[ri]− λi) . (A32)

Appendix D. Proof of Theorem 3

In this Appendix, we base the proof of Theorem 3 on two main steps. First, we
characterize a lower bound on the average achievable rate of each user i using a single
layer per user (outage approach). Secondly, we derive the rate of increase of the average
achievable delay with respect to the average arrival rate λi (first-order derivative) for the
delay upper bound of the multi-layer approach to that of the delay lower bound of the
outage approach. Finally, under a fixed average achievable rate among both approaches,
we show that the proposed approach outperforms the single layer outage approach.

Recalling the recursive expression for Qi in terms of the variable Zi in (3), a recursive
form of Fi(q) can be expressed as follows [52,53]

Fi(q) =

{
0, q < 0∫ q
−∞ Fi(q− τ)dFZi (τ), q ≥ 0 ,

(A33)

where dFZi (z) denote pdf of Zi.
At the end of every transmission block, the change in queue size i, Zi, is primarily

determined by the difference between the data arrival λi and the fixed rate successfully
decoded at the receiver, which in turn is determined by the combined network state.
Consequently, dFZi (z) can be expressed by

dFZi (z) = Poutδ(z− λi + RF) . (A34)

We remark that in order to guarantee the stability of every queue i, we assume that the
arrival rate λi is less that the average achievable rate (service rate of the queue), i.e.,

λi < PoutRF, ∀i ∈ N . (A35)

Combining (12) and (13), an explicit expression for Fi(q), ∀i ∈ N is given by

Fi(q) ={
0 , ∀q < 0

PoutFi(q− λi + RF) , ∀q ≥ 0
. (A36)
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Finally, we evaluate the terms D
′′
Q1
(s) and N

′′
Q1
(s) where we have

lim
s→0

D
′′
Q1
(s) = (RF − λi)

2 − (1− Pout)R2
F , (A37)

and

lim
s→0

N
′′
Q1
(s) = Pout

∫ RF−λ1)

0
[(RF − λ1)

2 − q2]dF1(q) . (A38)

Finally, by using lims→0 D
′
1(s) = lims→0 N

′
1(s), the second derivative of the numerator

term can be lower bounded by replacing (FF − λ1 + q) by (RF − λ1) arriving at

lim
s→0

N
′′
Q1
(s) ≥ (RF − λ1)(RF − λ1 − PoutRF) . (A39)

and substitute (A26) reaching

E[Qi] ≥
1
2

RF −
λi
2
− Ni

Di
, (A40)

where

Ni
4
= −(RF − λi)

2 + (1− Pout)R2
F

Di
4
= PoutRF − λi . (A41)

By taking the derivative of the upper/lower bounds derived above we reach

∂UB
∂λi

= −1−
∑2

j=1 ∑N
k=0 Ri

jk − λi

E[ri]− λi
− 2

Ni

D2
i

, (A42)

∂LB
∂λi

= −1− RF − λi
PoutRF − λi

− 2
−(RF − λi)

2 + (1− Pout)R2
F

PoutRF − λi
. (A43)
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