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Abstract

We construct the fundamental solution of second order parabolic equations in non-divergence form under 

the assumption that the coefficients are of Dini mean oscillation in the spatial variables. We also prove 

that the fundamental solution satisfies a sub-Gaussian estimate. In the case when the coefficients are Dini 

continuous in the spatial variables and measurable in the time variable, we establish the Gaussian bounds 

for the fundamental solutions. We present a method that works equally for second order parabolic systems 

in non-divergence form.
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1. Introduction and main results

We consider second order parabolic operator P in non-divergence form

Pu = ∂tu − aij (t, x)Diju

in Rd+1. Here and below, we use the summation convention over repeated indices. We assume 

that the coefficients A = (aij ) are symmetric and satisfy the uniform parabolicity condition

λ|ξ |2 ≤ aij (t, x)ξiξj ≤ �|ξ |2, ∀ξ ∈ R
d , ∀(t, x) ∈ R

d+1. (1.1)

In this article, we are concerned with the fundamental solution of the operator P . By the funda-

mental solution, we mean a function Ŵ(t, x, s, y) formally satisfying

PŴ(·, ·, s, y) = δs,y(·, ·) in R
d+1,

or equivalently

PŴ(·, ·, s, y) = 0 in (s,∞) × R
d , lim

t→s+
Ŵ(t, ·, s, y) = δy(·) on R

d .

We show that if the coefficients A = (aij ) are of Dini mean oscillation in x, then the fundamental 

solution Ŵ(t, x, s, y) exists and satisfies certain estimates, in particular a sub-Gaussian estimate. 

Moreover, if the coefficients are Dini continuous in x, then the fundamental solution enjoys the 

usual Gaussian bounds. We emphasize that our methods are also applicable to parabolic systems 

of second order and this is one of the novelties of the paper.

Before we state our main theorems, let us introduce some basic definitions. We define the 

parabolic distance between X = (t, x) and Y = (s, y) in Rd+1 by

|X − Y | = max
(
|x − y|,

√
|t − s|

)
.

We define the (d + 1)-dimensional cylinders Qr(X), Q+
r (X), and Q−

r (X), by

Qr (X) = {Y ∈ R
d+1 : |Y − X| < r} = (s − r2, s + r2) × Br(x),

Q+
r (X) = (s, s + r2) × Br(x), and Q−

r (X) = (s − r2, s) × Br (x).

For X = (t, x) ∈ R
d+1 and r > 0, we define

ωx

A(r,X) :=
 

Q−
r (X)

|A(s, y) − Āx

x,r (s)|dyds, where Āx

x,r(s) :=
 

Br (x)

A(s, y) dy.

Then for a subset Q of Rd+1, we define

ωx

A(r,Q) := sup
{
ωx

A(r,X) : X ∈ Q
}

and ωx

A(r) := ωx

A(r,R
d+1).

558



H. Dong, S. Kim and S. Lee Journal of Differential Equations 340 (2022) 557–591

We say that A is of Dini mean oscillation in x over Q and write A ∈ DMOx(Q) if ωx

A
(r, Q)

satisfies the Dini condition

1
ˆ

0

ωx

A
(r,Q)

r
dr < +∞.

The adjoint operator P ∗ is given by

P ∗u = −∂tu − Dij (a
ij (t, x)u).

We are now ready to state the main results.

Theorem 1.1. Assume that A = (aij ) satisfies (1.1) and belongs to DMOx(R
d+1). Then, there 

exist unique fundamental solutions Ŵ(X, Y) = Ŵ(t, x, s, y) and Ŵ∗(X, Y) = Ŵ∗(t, x, s, y) for the 

operators P and P ∗, respectively, and they satisfy the symmetry relation

Ŵ(t, x, s, y) = Ŵ∗(s, y, t, x). (1.2)

The fundamental solution Ŵ is continuous in Rd+1 × R
d+1 \ {(X, X) : X ∈ R

d+1} and

Ŵ(t, x, s, y) = 0 if t < s.

Also, for each Y ∈ R
d+1, DxŴ(·, Y) and D2

xŴ(·, Y) are continuous in Rd+1 \ {Y }; if A is contin-

uous, then ∂tŴ(·, Y) is continuous in Rd+1 \ {Y } as well. Moreover, for any R0 > 0, there exist 

constants C = C(d, λ, �, ωx

A
, R0) such that we have

|Ŵ(X,Y )| ≤ C|X − Y |−d (1.3)

for any X, Y ∈ R
d+1 satisfying 0 < |X − Y | < R0.

Remark 1.2. In Theorem 1.1, in addition to (1.3), we also have pointwise bounds for the deriva-

tives of the fundamental solutions, that is,

|DxŴ(X,Y )| ≤ C|X − Y |−d−1, |∂tŴ(X,Y )| + |D2
xŴ(X,Y )| ≤ C|X − Y |−d−2

for any X, Y ∈ R
d+1 satisfying 0 < |X − Y | < R0. These estimates follow directly from (1.3)

and [3, Theorem 3.2] applied to Ŵ(·, Y) in Q−
R(X) with R = 1

2
|X − Y |.

We recall that A belongs to VMOx(R
d+1) if and only if limr→0 ωx

A
(r) = 0 (see, e.g., [13]) and 

thus VMOx(R
d+1) contains DMOx(R

d+1).

Theorem 1.3 (Sub-Gaussian estimate). Assume that A = (aij ) satisfies (1.1) and belongs to 

VMOx(R
d+1). Suppose there exists a fundamental solution Ŵ(t, x, s, y) for the operator P , which 

satisfies (1.3). Then, for any T > 0 and δ ∈ (0, 1), there exist a constant C = C(d, λ, �, ωx

A
, δ, T )

and a universal constant β > 0 such that for any x, y ∈ R
d and t , s ∈ R satisfying 0 < t − s < T

we have
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|Ŵ(t, x, s, y)| ≤
C

(t − s)d/2
exp

{
−β

(
|x − y|
√

t − s

)2−δ
}

. (1.4)

We shall say that A is uniformly Dini continuous in x over Rd+1 if its modulus of continuity 

in x defined by

̺x

A(r) := sup
{
|A(t, x) − A(t, y)| : x, y ∈ R

d , t ∈ R, |x − y| ≤ r
}

satisfies the Dini condition

1
ˆ

0

̺x

A
(r)

r
dr < +∞.

It is clear the if A is uniformly Dini continuous in x over Rd+1, then it is of Dini mean oscillation 

in x over Rd+1.

Theorem 1.4 (Gaussian estimate). Assume that A = (aij ) satisfies (1.1) and A = (aij ) is uni-

formly Dini continuous in x over Rd+1. Then the fundamental solution satisfies the Gaussian 

bounds, that is, for any T > 0, there exists C = C(d, λ, �, T , ̺ x

A
) and κ = κ(λ, �) such that for 

any x, y ∈ R
d and t , s ∈ R satisfying 0 < t − s < T we have

|Ŵ(t, x, s, y)| ≤
C

(t − s)d/2
exp

{
−κ

|x − y|2

t − s

}
. (1.5)

A few remarks are in order. The fundamental solutions are topics in many classical books. 

See, e.g., [4,8,11,16] and references therein. It is well known that the fundamental solutions of 

second order parabolic equations in divergence form have two-sided Gaussian bounds even in 

the case when the coefficients are just bounded and measurable; see [1]. In contrast to parabolic 

equations in divergence form, the fundamental solutions of parabolic equations in non-divergence 

form do not necessarily have the Gaussian bounds if the coefficients do not possess some kind 

of regularity, although certain pointwise bounds are available in terms of so-called normalized 

adjoint solutions; see [5]. As a matter of fact, even if the coefficients are continuous in t and x, 

the following weaker estimate may not hold:

|Ŵ(t, x, s, y)| ≤ C(t − s)−d/2 for 0 < t − s < T .

A counterexample is given in [10] for the equation (in one space variable) ∂u/∂t = a(t, x)∂2u/∂x2

with a coefficient a(t, x), continuous in t and x, and satisfying 1/2 ≤ a(t, x) ≤ 3/2, whose fun-

damental solution is unbounded at any given point x0 for any t > 0. See also [7] and [19] for 

examples of equations with continuous coefficients, whose fundamental solutions (as measure) 

are singular with respect to Lebesgue measure for any t > 0. On the other hand, if the coefficients 

are of Dini mean oscillation in x, then the fundamental solutions have the usual Gaussian bounds; 

see [3]. However, the proof there relies heavily on the Harnack type properties of nonnegative 

(adjoint) solutions and is not applicable to the systems setting. To the best of our knowledge, 

the Gaussian bounds for the fundamental solutions were available to the non-scalar setting if the 
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coefficients are continuous in t and x, and additionally, if they are doubly Dini continuous in x. 

See [18] and [4].

We give a brief description of the methods we use in the proofs. To show Theorem 1.1, we 

adapt an argument in [12] for non-divergence form elliptic equations, by using the pointwise 

estimates of solutions established in [3]. In the proof of Theorem 1.3, we first establish an expo-

nential decay estimate by using the W
1,2
p estimate and an iteration argument. We then improve the 

exponential decay estimate to the sub-Gaussian estimate (1.4) by exploiting the semi-group prop-

erty of the fundamental solution together with a delicate re-scaling argument. Finally, we modify 

the parametrix method of Levi [17] to prove the Gaussian estimate (1.5) in Theorem 1.4. The 

main difference between Levi’s original method and ours is that Levi’s procedure was intended 

to construct the fundamental solution and thus required more restriction on the coefficients while 

in our approach, we construct the fundamental solution by different means and prove that it is 

identical with the resulting kernel produced by our modified parametrix method, which inherits 

the Gaussian bounds from the fundamental solutions of parabolic operators with coefficients de-

pending only on t . It is also worth mentioning that in contrast to the scalar case, we are only able 

to get a one-sided Gaussian estimate.

Finally, the organization of the paper is as follows. In Section 2, we state some preliminary 

definition and lemmas. The proofs of Theorems 1.1, 1.3, and 1.4 are given in Sections 3, 4, and 

5, respectively.

2. Preliminaries

For any domain Q ⊂ R
d+1 and p ∈ [1, ∞], we shall denote by Lp(Q) the standard Lebesgue 

class. We define the function space

W 1,2
p (Q) = {u : u, ∂tu, Du, D2u ∈ Lp(Q)},

which are equipped with norm

‖u‖
W

1,2
p (Q)

= ‖u‖Lp(Q) + ‖Du‖Lp(Q) + ‖D2u‖Lp(Q) + ‖∂tu‖Lp(Q).

We deal with the adjoint problem

P ∗u = div2 g + f in (t0, t1) × R
d , u(t1, ·) = 0 on R

d , (2.1)

where g = (gkl) is a symmetric d × d matrix-valued function and div2 g = Dklg
kl .

Definition 2.1. Assume that g ∈ Lp((t0, t1) ×R
d) and f ∈ Lp((t0, t1) ×R

d), where 1 < p < ∞. 

We say that u ∈ Lp((t0, t1) × R
d) is a solution to (2.1) if u satisfies

t1
ˆ

t0

ˆ

Rd

uPv =
t1
ˆ

t0

ˆ

Rd

f v + tr(gD2v) (2.2)

for any v ∈ W
1,2
p′ ((t0, t1) × R

d) satisfying u(t0, ·) = 0, where 
1
p

+ 1
p′ = 1.
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Lemma 2.2. Assume that g ∈ Lp((t0, t1) × R
d) and f ∈ Lp((t0, t1) × R

d), where 1 < p < ∞. 

Then there exists a unique solution v of the adjoint problem (2.1) in Lp((t0, t1) × R
d) and it 

satisfies

‖v‖Lp((t0,t1)×Rd ) ≤ C
(
‖g‖Lp((t0,t1)×Rd ) + ‖f ‖Lp((t0,t1)×Rd )

)
,

where C is a constant depending only on d, λ, �, p, t0, t1, and ωx

A
.

Proof. Recall that DMOx(R
d+1) ⊂ VMOx(R

d+1). The existence and uniqueness of the so-

lution to (2.1) is simple to derive by transposition from the unique existence of a solution 

v ∈ W
1,2
p′ ((t0, t1) × R

d) to the direct problem

Pv = g in (t0, t1) × R
d , v(t0, ·) = 0 in R

d ,

and the corresponding Lp′ estimates:

‖D2v‖Lp′ ((t0,t1)×Rd ) + ‖∂tv‖Lp′ ((t0,t1)×Rd ) + ‖v‖Lp′ ((t0,t1)×Rd ) ≤ C‖g‖Lp′ ((t0,t1)×Rd ), (2.3)

where C = C(d, λ, �, t0, t1, ω
x

A
). See [13] and [6]. �

Lemma 2.3. Let R0 > 0 and g = (gij ) ∈ DMOx(Q
+
R0

(X0)). Suppose v is an L2 solution of

P ∗u = div2 g in Q+
2r (X0),

where 0 < r ≤ 1
2
R0. Then we have

‖u‖L∞(Q+
r (X0))

≤ C

⎛
⎜⎜⎝

 

Q+
2r (X0)

|u| +
r
ˆ

0

ωx
g(τ,Q

+
2r(X0))

τ
dτ

⎞
⎟⎟⎠ ,

where C = C(d, λ, �, ωx

A
, R0).

Proof. The proof is essentially given in [3, Theorem 3.3]. cf. [12, Appendix]. �

3. Proof of Theorem 1.1

By adapting the argument in [12], we shall first construct the fundamental solution Ŵ∗(Y, X) =
Ŵ∗(s, y, t, x) for the adjoint operator P ∗ in Section 3.1. We then establish in Section 3.2 that

|Ŵ∗(Y,X)| ≤ C|X − Y |−d for all X, Y satisfying 0 < |X − Y | < R0.

In Section 3.3, we construct the fundamental solution Ŵ(t, x, s, y) of the operator P and show 

the symmetry relation (1.2), which in particular implies (1.3).
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3.1. Construction of the adjoint fundamental solution

Fix a point X0 = (t0, x0) in Rd+1. We construct fundamental solution Ŵ∗(·, X0)=Ŵ∗(·, ·, t0, x0)

for the adjoint operator P ∗ with a pole at X0 = (t0, x0).

Lemma 3.1. For any r > 0, 
{

Āx

x0,2−kr
(·)
}∞

k=0
converges in L1((t0 − r2, t0)) to a function Ax0

(·), 
which is symmetric and satisfies (1.1). Moreover,

 

Q−
r (X0)

|A − Ax0
| ≤ c(d)

r
ˆ

0

ωx

A
(s)

s
ds. (3.1)

Proof. By the triangle inequality,

∞∑

k=0

|Āx

x0,2−kr
(t) − Āx

x0,2−k−1r
(t)| ≤

∞∑

k=0

2d

 

B
2−kr

(x0)

|A(t, x) − Āx

x0,2−kr
(t)|dx.

Therefore, by the Fubini theorem, we have

∞∑

k=0

t0
ˆ

t0−r2

|Āx

x0,2−kr
(t) − Āx

x0,2−k−1r
(t)|dt ≤ 2d

∞∑

k=0

t0
ˆ

t0−r2

 

B
2−kr

(x0)

|A − Āx

x0,2−kr
(t)|dxdt

≤ 2d
∞∑

k=0

22k−1∑

j=0

t0−j (2−kr)2
ˆ

t0−(j+1)(2−kr)2

 

B
2−kr

(x0)

|A − Āx

x0,2−kr
(t)|dxdt

≤ 2d
∞∑

k=0

22k−1∑

j=0

(2−kr)2ωx

A(2−kr) = 2dr2
∞∑

k=0

ωx

A(2−kr). (3.2)

In view of the proof on [15, p. 495], we have ωx

A
(t) ≃ ωx

A
(s) when t ≃ s. Thus, (3.2) implies

∞∑

k=0

t0
ˆ

t0−r2

|Āx

x0,2−kr
(t) − Āx

x0,2−k−1r
(t)|dt ≤ C(d)r2

r
ˆ

0

ωx

A
(s)

s
ds < ∞. (3.3)

Therefore, {Āx

x0,2−kr
(·)} is a Cauchy sequence in L1((t0 − r2, t0)). Let Ax0

(·) be the limit. Thus, 

from (3.3), we have

t0
ˆ

t0−r2

|Āx

x0,r
(t) − Ax0

(t)|dt ≤ C(d)r2

r
ˆ

0

ωx

A
(s)

s
ds. (3.4)

Finally, by using the triangle inequality and (3.4),
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Q−
r (X0)

|A − Ax0
| ≤

 

Q−
r (X0)

|A − Āx

x0,r
(t)| +

 

Q−
r (X0)

|Āx

x0,r
(t) − Ax0

(t)|

≤ ωx

A(r) +
t0
 

t0−r2

|Āx

x0,r
(t) − A(t, x0)|dt ≤ c(d)

r
ˆ

0

ωx

A
(s)

s
ds. �

Remark 3.2. By a slight modification of the proof above, it is easily seen that Ax0
is independent 

of t0 and r . Moreover, if A is continuous in x, then clearly Ax0
(t) = A(t, x0) for a.e. t .

We now consider the parabolic operator P0 defined by

P0u := ∂tu − a
ij
0 (t)Diju = ∂tu − tr(Ax0

(t)D2u).

Let 
(t, x, s, y) be the fundamental solution for P0. It is well known that there are positive 

constants C0 = C0(d, λ, �) and κ0 = κ0(λ, �) such that

|
(t, x, s, y)| ≤ C0(t − s)−d/2e−κ0
|x−y|2

t−s for t > s (3.5)

and 
(t, x, s, y) ≡ 0 if t < s. See, for instance, [8, Chapter 9] and [14, Chapter 2]. Since Ax0

does not depend on x, we also have


(t, x, s, y) = 
∗(s, y, t, x), (3.6)

where 
∗ is fundamental solution for the adjoint operator P ∗
0 given by

P ∗
0 u := −∂tu − Dij (a

ij
0 (t)u) = −∂tu − div2(Ax0

(t)u).

Note that, if we set v = Ŵ∗(·, X0) − 
∗(·, X0), then it would satisfy

P ∗v = P ∗Ŵ∗(·,X0) − P ∗
∗(·,X0) + P ∗
0 
∗(·,X0) − P ∗

0 
∗(·,X0)

= div2((A − Ax0
)
∗(·,X0)).

We are thus lead to consider the problem

P ∗v = div2 g in (t0 − T , t0) × R
d , v(t0, ·) = 0 on R

d , (3.7)

where T > 0 and

g := (A − Ax0
)
∗(·,X0).

By a straightforward computation using (3.5) and (3.6), for p ∈ (0, d+2
d

), we have
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t0
ˆ

t0−T

ˆ

Rd

|g|p dxdt ≤ ‖A − Ax0
‖p
∞

T̂

0

ˆ

Rd

(
C0t

−d/2e−κ0|x|2/t
)p

dxdt

= ‖A − Ax0
‖p
∞C

p
0

T̂

0

td/2−dp/2

ˆ

Rd

t−d/2e−κ0p|x|2/t dxdt

= ‖A − Ax0
‖p
∞C

p
0

ˆ

Rd

e−κ0p|x|2 dx

T̂

0

td/2−dp/2 dt = CT
2+d−dp

2 ,

where C = C(d, λ, �, p). We just proved that

g ∈ Lp((t0 − T , t0) × R
d), ∀T > 0, ∀p ∈ (0, d+2

d
). (3.8)

Therefore, for 1 < p < d+2
d

, by Lemma 2.2 there is a unique Lp solution v of the problem (3.7). 

By extending v = 0 on (t0, ∞) × R
d and letting T → ∞, we may assume that v is defined on 

the entire Rd+1.

Lemma 3.3. Let v be as above. The function Ŵ∗(·, X0) defined by

Ŵ∗(·,X0) = v + 
∗(·,X0)

is the fundamental solution of P ∗ with a pole at X0 = (t0, x0).

Proof. For any f ∈ C∞
c (Rd+1), fix a T > |t0| such that (−T , T ) × R

d contains the support 

of f . For p′ > d+2
2

, let u ∈ W
1,2
p′ ((−T , T ) × R

d) be the solution of the problem Pu = f with 

u(−T , ·) = 0. Then, by (3.7) we have

T̂

−T

ˆ

Rd

vf =
T̂

−T

ˆ

Rd

vPu =
T̂

−T

ˆ

Rd

(P ∗v)u

=
T̂

−T

ˆ

Rd

tr((A − Ax0
)
∗(·,X0)D

2u) =
T̂

−T

ˆ

Rd


∗(·,X0)(P0u − Pu)

=
T̂

−T

ˆ

Rd


∗(·,X0)P0u −
T̂

−T

ˆ

Rd


∗(·,X0)f = u(X0) −
T̂

−T

ˆ

Rd


∗(·,X0)f,

where in the last equality we use the fact that 
∗(·, X0) is the fundamental solution for P ∗
0 . 

Therefore, we have

u(X0) =
T̂

−T

ˆ

Rd

Ŵ∗(·,X0)f =
ˆ

Rd+1

Ŵ∗(·,X0)f, (3.9)
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which means that Ŵ∗(·, X0) is the fundamental solution for P ∗ with a pole at X0. �

Noting that Ŵ∗(s, y, t, s) = 0 for t < s, we actually proved the following.

Proposition 3.4. For p > d+2
2

and f ∈ Lp((t0, t1) × R
d), if u ∈ W

1,2
p ((t0, t1) × R

d) is the solu-

tion of Pu = f in (t0, t1) × R
d satisfying u(t0, ·) = 0, then we have the representation formula

u(t, x) =
t

ˆ

t0

ˆ

Rd

Ŵ∗(s, y, t, x)f (s, y) dyds.

3.2. Pointwise bound for the adjoint fundamental solution

Let R0 > 0 be fixed but arbitrary. We shall show that there exists a constant C depending R0

as well as on d , λ, �, and ωx

A
such that we have

|Ŵ∗(X,X0)| ≤ C|X − X0|−d for all X satisfying 0 < |X − X0| < R0. (3.10)

Define g1 and g2 by setting

g1 = ζ(A − Ax0
)
∗(·,X0) and g2 = (1 − ζ )(A − Ax0

)
∗(·,X0), (3.11)

where ζ is a smooth function on Rd+1 such that

0 ≤ ζ ≤ 1, ζ = 0 in QR(X0), ζ = 1 in R
d+1 \ Q2R(X0), |Dxζ | ≤ 4/R,

and R > 0 is a constant to be fixed later. Since 
∗(·, X0) vanished on (t0, ∞) × R
d , we see that

g1 = g2 ≡ 0 on (t0,∞) × R
d . (3.12)

Also, by (3.5) and (3.6), there is a positive constant C′
0 = C′

0(d, λ, �) such that

|
∗(X,X0)| ≤ C′
0|X − X0|−d , ∀X �= X0. (3.13)

In the following lemmas, we show that g1 ∈ Lp1
for p1 > d+2

d
and g2 ∈ Lp2

for 1 ≤ p2 < d+2
d

.

Lemma 3.5. For p > d+2
d

, there is a constant C = C(d, λ, �, p) such that

‖g1‖Lp(Rd+1) ≤ CR
d+2
p

−d
. (3.14)

For 1 ≤ p < d+2
d

, there is a constant C = C(d, λ, �, p) such that

‖g2‖Lp(Rd+1) ≤ C

⎛
⎝

2R
ˆ

0

ωx

A
(s)

s
ds

⎞
⎠

1/p

R
d+2
p

−d
. (3.15)
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Proof. Note that ‖A − Ax0
‖∞ ≤ C(d, �). Therefore, if p > d+2

d
, we get from (3.13) that

ˆ

Rd+1

|g1|p ≤ C

∞∑

k=0

ˆ

Q
2k+1R

(X0)\Q2kR
(X0)

|X − X0|−dp dX

≤ C

∞∑

k=0

(2kR)−dp(2k+1R)d+2 ≤ CRd+2−dp.

When 1 ≤ p < d+2
d

, by (3.12), (3.13), the properties of ζ , and (3.1), we have

ˆ

Rd+1

|g2|p ≤ C

∞∑

k=0

ˆ

Q−
21−kR

(X0)\Q−
2−kR

(X0)

|A − Ax0
|p |X − X0|−dp dX

≤ C

∞∑

k=0

(2−kR)−dp

ˆ

Q−
21−kR

(X0)

|A − Ax0
|

≤ C

∞∑

k=0

(2−kR)−dp(21−kR)d+2

21−kR
ˆ

0

ωx

A
(s)

s
ds

≤ C

∞∑

k=0

(2−kR)d+2−dp

2R
ˆ

0

ωx

A
(s)

s
ds ≤ CRd+2−dp

2R
ˆ

0

ωx

A
(s)

s
ds

and the lemma follows. �

Let v be the solution of the problem (3.7). Fix p1 ∈ ( d+2
d

, ∞) and p2 ∈ (1, d+2
d

) and let 

vi ∈ Lpi
((t0 − R2

0, t0) × R
d) be the solution of the problems

P ∗vi = div2 gi in (t0 − R2
0, t0) × R

d , vi(t0, ·) = 0 on R
d , (i = 1,2).

Then by Lemma 2.2 together with (3.14) and (3.15), respectively, we have

‖v1‖Lp1
((t0−R2

0 ,t0)×Rd ) ≤ CR(d+2)/p1−d (3.16)

and

‖v2‖Lp2
(t0−R2

0 ,t0)×Rd ) ≤ C

⎛
⎝

2R
ˆ

0

ωx

A
(r)

r
dr

⎞
⎠

1/p2

R(d+2)/p2−d . (3.17)

We note that the constant C in the above depends on R0 as well as on d , λ, �, p1, p2, and ωx

A
. 

By the same computation as in (3.8), we find g1 ∈ Lp2
((t0 − R2

0, t0) × R
d) as well, and thus 

v1 ∈ Lp2
((t0 − R2

0, t0) × R
d). Therefore, by the uniqueness, we see that

567



H. Dong, S. Kim and S. Lee Journal of Differential Equations 340 (2022) 557–591

v = v1 + v2.

We extend v1 and v2 by zero on (t0, ∞) × R
d .

Now, for any fixed Y0 = (s0, y0) with 0 < |Y0 − X0| < R0, we take

R = 1
5
|Y0 − X0|

and estimate v1(Y0) and v2(Y0) by using Lemma 2.3 as follows:

|vi(Y0)| ≤ C

 

Q+
2R(Y0)

|vi | + C

R̂

0

ωx
gi

(r,Q+
2R(Y0))

r
dr, (i = 1,2). (3.18)

By Hölder’s inequality, (3.16), and (3.17), we have

 

Q+
2R(Y0)

|v1| ≤ CR−(d+2)/p1‖v1‖Lp1
≤ CR−d ,

 

Q+
2R(Y0)

|v2| ≤ CR−(d+2)/p2‖v2‖Lp2
≤ CR−d

⎛
⎝

2R
ˆ

0

ωx

A
(r)

r
dr

⎞
⎠

1/p2

.

(3.19)

Lemma 3.6. Suppose R := 1
5
|Y0 − X0| > 0 and let η be a Lipschitz function on Rd+1 such that 

0 ≤ η ≤ 1 and |Dxη| ≤ 4/R. Set

g = η(A − Ax0
)
∗(·,X0).

Then, for any r ∈ (0, R] we have

ωx

g(r,Q
+
2R(Y0)) ≤ CR−d

⎛
⎝ωx

A(r) +
r

R

r
ˆ

0

ωx

A
(s)

s
ds

⎞
⎠ ,

where C = C(d, λ, �).

Proof. Let us denote


0(X) = 
0(t, x) = 
∗(t, x, t0, x0) = 
∗(X,X0).

For Z = (τ, ξ) ∈ Q+
2R(Y0) and 0 < r ≤ R, we have

 

Q−
r (Z)

|g − ḡx

ξ,r | =
 

Q−
r (Z)

∣∣∣η(A − Ax0
)
0 − (η(A − Ax0

)
0)
x

ξ,r

∣∣∣
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≤
 

Q−
r (Z)

∣∣∣(A − Ax0
)η
0 − (A − Ax0

)
x

ξ,r η
0

∣∣∣

+
 

Q−
r (Z)

∣∣∣(A − Ax0
)
x

ξ,r η
0 −
(
(A − Ax0

)η
0

)x
ξ,r

∣∣∣

=: I + II.

Note that by the triangle inequality, |X − X0| ≥ 2R for any X ∈ Q−
r (Z) and thus, we have

|
0(X)| + R|Dx
0(X)| ≤ CR−d , ∀X ∈ Q−
r (Z), (3.20)

where C = C(d, λ, �). Here the bound of Dx
0(X) is due to the fact that Ax0
only depends on 

t . See (3.13) and (5.1). Therefore, we have

I ≤
 

Q−
r (Z)

∣∣∣(A − Ax0
) − (A − Ax0

)
x

ξ,r

∣∣∣ |
0|

≤
 

Q−
r (Z)

CR−d
∣∣∣A − Āx

ξ,r

∣∣∣≤ CR−dωx

A(r). (3.21)

Also, we have

II =
 

Q−
r (Z)

∣∣∣∣∣∣∣

 

Br (ξ)

(A(t, y) − Ax0
(t))(η(t, x)
0(t, x) − η(t, y)
0(t, y)) dy

∣∣∣∣∣∣∣
dxdt

≤
 

Q−
r (Z)

 

Br (ξ)

|A(t, y) − Ax0
(t)| |η(t, x)
0(t, x) − η(t, y)
0(t, y)|dydxdt. (3.22)

By using (3.20), and the properties of η, for (t, x) ∈ Q−
r (Z) and y ∈ Br(ξ), we have

|η(t, x)
0(t, x) − η(t, y)
0(t, y)|

≤ |η(t, x)| |
0(t, x) − 
0(t, y)| + |η(t, x) − η(t, y)| |
0(t, y)|

≤ CrR−d−1 + C(r/R)R−d ≤ CrR−d−1. (3.23)

Plugging (3.23) into (3.22), we obtain

II ≤ CrR−d−1

 

Q−
r (Z)

|A(t, y) − Ax0
(t)|dydt.

We claim that
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Q−
r (Z)

|A(t, x) − Ax0
(t)|dxdt ≤ C

⎛
⎝Rωx

A
(r)

r
+

r
ˆ

0

ωx

A
(s)

s
ds

⎞
⎠ , (3.24)

where C = C(d, λ, �). Assume the claim for now. Then, we have

II ≤ CrR−d−1

⎛
⎝Rωx

A
(r)

r
+

r
ˆ

0

ωx

A
(s)

s
ds

⎞
⎠ . (3.25)

Combining (3.21) and (3.25), we have (recall r ≤ R)

ωx

g(r,Z) ≤ I + II ≤ CR−d

⎛
⎝ωx

A(r) +
r

R

r
ˆ

0

ωx

A
(s)

s
ds

⎞
⎠ .

The lemma is proved by taking supremum over Z ∈ Q+
2R(Y0).

It remains to prove the claim (3.24). Note that we can choose a sequence of points x1, x2, . . ., 

xN in Rd with xN = ξ so that |xi−1 − xi | ≤ r for i = 1, . . . , N and

N = ⌈7R/r⌉ ≤ 8R/r. (3.26)

Then by using the triangle inequality, we have

|A(t, x) − Ax0
(t)| ≤ |A(t, x) − Āx

ξ,r(t)| +
N∑

i=1

|Āx

xi ,r
(t) − Āx

xi−1,r
(t)| + |Āx

x0,r
(t) − Ax0

(t)|.

(3.27)

Note that by (3.4), we have

τ
 

τ−r2

|Āx

x0,r
(t) − Ax0

(t)|dt ≤ c(d)

r
ˆ

0

ωx

A
(s)

s
ds. (3.28)

Also, by averaging the following triangle inequality

|Āx

xi ,r
(t) − Āx

xi−1,r
(t)| ≤ |A(t, x) − Āx

xi ,r
(t)| + |A(t, x) − Āx

xi−1,r
(t)|

over x ∈ Br (xi−1) ∩ Br(xi) and using |xi−1 − xi | ≤ r , we find that

|Āx

xi ,r
(t)−Āx

xi−1,r
(t)| ≤ c(d)

⎛
⎜⎝

 

Br (xi )

|A(t, x) − Āx

xi ,r
(t)|dx +

 

Br (xi−1)

|A(t, x) − Āx

xi−1,r
(t)|dx

⎞
⎟⎠ .

Then, by averaging the last inequality over t ∈ (τ − r2, τ), we get
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τ
 

τ−r2

|Āx

xi ,r
(t) − Āx

xi−1,r
(t)|dt ≤ c(d)ωx

A(r), i = 1, . . . ,N. (3.29)

Finally, averaging the inequality (3.27) over X = (t, x) ∈ Q−
r (Z) and using (3.28), (3.29), and 

(3.26), we obtain

 

Q−
r (Z)

|A(t, x) − Ax0
(t)|dxdt ≤ ωx

A(r) + c(d)
8R

r
ωx

A(r) + c(d)

r
ˆ

0

ωx

A
(s)

s
ds,

from which (3.24) follows. �

Applying Lemma 3.6 with η = ζ and η = 1 − ζ , respectively, we get

R̂

0

ωx
gi

(r,Q+
2R(Y0))

r
dr ≤ CR−d

⎛
⎝

R̂

0

ωx

A
(r)

r
dr +

1

R

R̂

0

r
ˆ

0

ωx

A
(s)

s
ds dr

⎞
⎠

≤ CR−d

R̂

0

ωx

A
(s)

s
ds. (3.30)

Putting (3.30) back to (3.18) together with (3.19), we get

|v1(Y0)| + |v2(Y0)| ≤ CR−d

⎛
⎜⎝1 +

⎛
⎝

2R
ˆ

0

ωx

A
(s)

s
ds

⎞
⎠

1/p2

+
R̂

0

ωx

A
(s)

s
ds

⎞
⎟⎠

≤ C

⎛
⎝1 +

R0
ˆ

0

ωx

A
(s)

s
ds

⎞
⎠R−d ≤ CR−d . (3.31)

Therefore, by using (3.31) and recalling that v = v1 + v2 and R = 1
5
|X0 − Y0|, we have

|v(Y0)| ≤ C|X0 − Y0|−d , (3.32)

where C = C(d, λ, �, ωx

A
, R0). Since

Ŵ∗(Y0,X0) = 
∗(Y0,X0) + v(Y0)

and Y0 satisfies 0 < |Y0 − X0| < R0, the estimate (3.10) follows from (3.32) and (3.13).
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3.3. Construction of fundamental solution and the symmetry relation

We shall prove that the function Ŵ(t, x, s, y) given by the formula (1.2) is the fundamental 

solution for the operator P .

For Y = (s, y) ∈ R
d+1 and ε > 0, we first construct the approximate fundamental solution 

Ŵε(·, Y) by following the strategy in [2]. Let u = Ŵε(·, Y) be the solution of the problem

Pu =
1

|Q−
ε (Y )|

χQ−
ε (Y ) in (s − ε2, s + T ) × R

d , u(s − ε2, ·) = 0 on R
d , (3.33)

where T ≥ 1 is fixed but arbitrary. By setting Ŵε(·, Y) = 0 on (−∞, s − ε2) × R
d and letting 

T → ∞, we extend the domain of Ŵε(·, Y) to the entire Rd+1.

Then by Proposition 3.4, we have

Ŵε(X,Y ) =
 

Q−
ε (Y )

Ŵ∗(Z,X)dZ. (3.34)

We conclude from (3.34) and (3.10) that for any X, Y ∈ R
d+1 with 0 < |X − Y | < R0, we have

|Ŵε(X,Y )| ≤ C|X − Y |−d , ∀ε ∈
(
0, 1

5
|X − Y |

)
,

where C is a constant depending only on d , λ, �, ωx

A
, and R0.

We construct fundamental solution for the operator P by modifying the method in [2]. Let 

Y = (s, y) ∈ R
d+1 be fixed. For any T ≥ 1, let us denote

Rd+1
T = (s − T , s + T ) × R

d .

The following two lemmas are the adaptation of Lemmas 2.13 and 2.19 in [9] to the parabolic 

setting.

Lemma 3.7. Let p ∈ (1, ∞). For any ε ∈ (0, 1), we have

ˆ

R
d+1
T \Qr (Y )

|Ŵε(t, x, s, y)|p dxdt ≤ Cr−pd+d+2, ∀ r > 0 when p > (d + 2)/d, (3.35)

ˆ

R
d+1
T \Qr (Y )

|∂tŴε(t, x, s, y)|p + |D2
xŴε(t, x, s, y)|p dxdt

≤ Cr−(d+2)(p−1), ∀ r > 0, (3.36)

where C = C(d, λ, �, p, T , ωx

A
).

Proof. We first establish (3.36). It is enough to consider the case when r > 4ε. Indeed, if r ≤ 4ε, 

then by (2.3), we have
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ˆ

R
d+1
T

|∂tŴε(X,Y )|p + |D2Ŵε(X,Y )|p dX ≤ Cε−(d+2)(p−1) ≤ Cr−(d+2)(p−1).

For g ∈ C∞
c (Rd+1

T \ Qr(Y )), let u ∈ Lq(Rd+1
T ) be the solution of the problem

P ∗u = div2 g in R
d+1
T , u(s + T , ·) = 0 on R

d ,

where q = p/(p − 1). Then by (2.2) we have

 

Q−
ε (Y )

u =
ˆ

R
d+1
T

tr(gD2Ŵε(·, Y )). (3.37)

Since g = 0 in Qr(Y ), we see that u is continuous on Qr/2(Y ) by [3, Theorem 3.3]. Note that 

if Z ∈ Q−
ε (Y ), then Q+

r/2(Z) ⊂ Qr(Y ). It follows from Lemma 2.3 that

‖u‖L∞(Q+
r/4(Z)) ≤ Cr−d−2‖u‖L1(Q

+
r/2(Z)) ≤ Cr−d−2‖u‖L1(Qr (Y )). (3.38)

Therefore, by Hölder’s inequality and Lemma 2.2, we have

‖u‖L∞(Q−
ε (Y )) ≤ Cr

− d+2
q ‖u‖Lq (Qr (Y )) ≤ Cr

− d+2
q ‖u‖

Lq (Rd+1
T )

≤ Cr
− d+2

q ‖g‖
Lq (Rd+1

T )
.

Since g is supported in R
d+1
T \ Qr(Y ), by (3.37) and the above estimate, we have

∣∣∣∣∣∣∣∣

ˆ

R
d+1
T \Qr (Y )

tr(gD2Ŵε(·, Y ))

∣∣∣∣∣∣∣∣
≤ Cr

− d+2
q ‖g‖

Lq (Rd+1
T \Qr (Y ))

.

Therefore, by duality, we have

ˆ

R
d+1
T \Qr (Y )

|D2
xŴε(t, x, s, y)|p dxdt ≤ Cr−(d+2)(p−1).

Then the estimate (3.36) follows from the last inequality and the fact that P Ŵε(·, Y) = 0 in 

R
d+1 \ Qr(Y ).

Next, we turn to the proof of (3.35). Again, it is enough to consider the case when r > 4ε

because by (2.3) and the parabolic Sobolev embedding, we have

‖Ŵε(·, Y )‖
Lp(Rd+1

T )
≤ C‖Ŵε(·, Y )‖

W
1,2
p(d+2)/(d+2+2p)

(Rd+1
T )

≤ Cε−d+(d+2)/p ≤ Cr−d+(d+2)/p,

where in the last inequality we used the fact that −d + (d + 2)/p < 0. For f ∈ C∞
c (Rd+1

T \
Qr(Y )), let u ∈ Lq(Rd+1

T ) be the solution of the problem
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P ∗u = f in R
d+1
T , u(s + T , ·) = 0 on R

d .

Then by (2.2) we have

 

Q−
ε (Y )

u =
ˆ

R
d+1
T

f Ŵε(·, Y ). (3.39)

Similar to (3.38), for Z ∈ Q−
ε (Y ), we have

‖u‖L∞(Q+
r/4(Z)) ≤ Cr−d−2‖u‖L1(Qr (Y )). (3.40)

Let v be the solution of

−∂tv − �v = f in R
d+1
T , v(s + T , ·) = 0 on R

d .

By the Lp estimates (cf. (2.3)) and the parabolic Sobolev embedding, we have

‖v‖
Lq(d+2)/(d+2−q)(R

d+1
T )

≤ C‖v‖
W

1,2
q (Rd+1

T )
≤ C‖f ‖

Lq (Rd+1
T )

.

Note that w = u − v satisfies

P ∗w = −div2((A − I)v) in R
d+1
T , w(s + T , ·) = 0 on R

d .

Therefore, by Lemma 2.2 and the last inequality, we have

‖w‖
Lq(d+2)/(d+2−q)(R

d+1
T )

≤ C‖A − I‖∞‖v‖
Lq(d+2)/(d+2−q)(R

d+1
T )

≤ C‖f ‖
Lq (Rd+1

T )
,

which in turn implies that

‖u‖
Lq(d+2)/(d+2−q)(R

d+1
T )

≤ ‖v‖
Lq(d+2)/(d+2−q)(R

d+1
T )

+ ‖w‖
Lq(d+2)/(d+2−q)(R

d+1
T )

≤ C‖f ‖
Lq (Rd+1

T )
.

Then by (3.40) and Hölder’s inequality, we have

‖u‖L∞(Q−
ε (Y )) ≤ Cr−d+(d+2)/p‖u‖Lq(d+2)/(d+2−2q)(Qr (Y )) ≤ Cr−d+(d+2)/p‖f ‖

Lq (Rd+1
T )

.

Therefore, it follows from (3.39) and the assumption that f = 0 in Qr(Y ), that

∣∣∣∣∣∣∣∣

ˆ

R
d+1
T \Qr (Y )

f Ŵε(·, Y )

∣∣∣∣∣∣∣∣
≤ Cr−d+(d+2)/p‖f ‖

Lq (Rd+1
T \Qr (Y ))

.

Again, we obtain (3.35) from the last inequality by duality. �
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Lemma 3.8. For any ε ∈ (0, 1), we have

∣∣∣
{
(t, x) ∈ R

d+1
T : |Ŵε(t, x, s, y)| > α

}∣∣∣≤ Cα− d+2
d , ∀α > 0,

∣∣∣
{
(t, x) ∈ R

d+1
T : |∂tŴε(t, x, s, y)| + |D2

xŴε(t, x, s, y)| > α
}∣∣∣≤ Cα−1, ∀α > 0,

where C = C(d, λ, �, T , ωx

A
).

Proof. These follow from (3.35) and (3.36), respectively. See the proof of [2, Lemma 3.4]. �

With Lemmas 3.7 and 3.8 available, one can modify the argument of [2] to construct the 

fundamental solution Ŵ(X, Y) for the operator P out of the family {Ŵε(X, Y)}. We claim that for 

any p ∈ (1, ∞), r > 0, and T ≥ 1, we have

sup
0<ε<1

‖Ŵε(·, Y )‖
W

1,2
p (Rd+1

T \Qr (Y ))
< +∞. (3.41)

Indeed, by using the fact that Ŵε(s − T , ·) ≡ 0, it follows from the Poincaré inequality and 

Lemma 3.7 that

s+T
ˆ

s−T

ˆ

Rd\Br (y)

|Ŵε(t, x, s, y)|p dxdt ≤ C

s+T
ˆ

s−T

ˆ

Rd\Br (y)

|∂tŴε(t, x, s, y)|p dxdt ≤ C,

where C is a constant that depends on the parameters including p, r , and T but is independent 

of ε. Then, by the interpolation inequality, we have

s+T
ˆ

s−T

ˆ

Rd\Br (y)

|DxŴε(t, x, s, y)|p dxdt

≤ C

s+T
ˆ

s−T

ˆ

Rd\Br (y)

|Ŵε(t, x, s, y)|p + |D2
xŴε(t, x, s, y)|p dxdt ≤ C.

Let η = η(x) be a smooth function such that

0 ≤ η ≤ 1, η = 1 in Br(y), η = 0 in R
d \ B2r (y), |Dη| ≤ 2/r.

We apply the Poincaré inequality in the space variable to ηDxŴ(·, ·, s, y) on I × B2r(y) for 

I = (s − T , s − r2) and I = (s + r2, s + T ), separately, to get

ˆ

I

ˆ

Br (y)

|DxŴε(t, x, s, y)|p dxdt ≤ C

ˆ

I

ˆ

B2r (y)

|D2
xŴε(t, x, s, y)|p dxdt

+ Cr−p

ˆ

I

ˆ

B2r (y)\Br (y)

|DxŴε(t, x, s, y)|p dxdt ≤ C,
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and similarly with ηŴ(·, ·, s, y) in place of ηDxŴ(·, ·, s, y), we get

ˆ

I

ˆ

Br (y)

|Ŵε(t, x, s, y)|p dxdt ≤ C

ˆ

I

ˆ

B2r (y)

|DxŴε(t, x, s, y)|p dxdt

+ Cr−p

ˆ

I

ˆ

B2r (y)\Br (y)

|Ŵε(t, x, s, y)|p dxdt ≤ C.

Combining these together, we obtain (3.41). Therefore, by applying a diagonalization process, 

we see that there exists a sequence of positive numbers {εi}∞i=1 with limi→∞ εi = 0 and a function 

Ŵ(·, Y) on Rd+1 \ {Y }, which belongs to W
1,2
2 (Rd+1

T \ Qr(Y )) for any T ≥ 1 and r > 0, such 

that

Ŵεi
(·, Y ) ⇀ Ŵ(·, Y ) weakly in W

1,2
2 (Rd+1

T \ Qr(Y )). (3.42)

On the other hand, Lemma 3.8 implies that for 1 < p < d+2
d

, we have

sup
0<ε<1

‖Ŵε(·, Y )‖Lp(Qr (Y )) < +∞,

which together with (3.41) implies that

sup
0<ε<1

‖Ŵε(·, Y )‖
Lp(Rd+1

T )
< +∞.

Therefore, by passing to a subsequence if necessary, we see that

Ŵεi
(·, Y ) ⇀ Ŵ(·, Y ) weakly in Lp(Rd+1

T ), ∀p ∈ (1, d+2
d

).

Finally, from (3.42) and (3.33), we find that Ŵ(·, Y) belongs to W
1,2
2 (Rd+1

T \Qr(Y )) and satisfies 

P Ŵ(·, Y) = 0 in R
d+1
T \ Qr(Y ). Since we assume that A belongs to DMOx ⊂ VMOx, we see that 

for any r > 0, Ŵε(·, Y) is locally uniformly continuous in Rd+1 \ Qr(Y ) for sufficiently small 

ε’s, with a uniform modulus of continuity. Thus, by the Arzela-Ascoli theorem and passing to 

another subsequence if necessary, we see that

Ŵεi
(·, Y ) → Ŵ(·, Y ) locally uniformly on R

d+1 \ Qr(Y ), ∀ r > 0.

Recall that Ŵ∗(·, X) satisfies

P ∗Ŵ∗(·,X) = 0 in R
d+1 \ Qr(X) for any r > 0,

and thus by [3, Theorem 3.3], we see that Ŵ∗(·, X) is continuous in Rd+1 \ {X}. Therefore, we 

obtain the identity (1.2) by taking limit ε → 0 in (3.34).

Note that we have just shown that Ŵ(X, Y) is continuous in Rd+1 × R
d+1 away from the 

diagonal {(X, X) : X ∈ R
d+1}. The property that Ŵ(t, x, s, y) = 0 for t < s follows from the fact 

that Ŵε(t, x, s, y) = 0 if t ≤ s − ε2. Also, it follows from [3, Theorem 3.2] that D2
xŴ(·, Y) is 
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continuous in Rd+1 \ {Y } and that ∂tŴ(·, Y) is continuous in Rd+1 \ {Y } if A is continuous. We 

obtain (1.3) immediately from (3.10). �

4. Proof of Theorem 1.3

For the sake of simplicity, let us assume that Y = 0 and T = 1. Also, let us denote

u(t, x) = Ŵ(t, x,0,0).

In Section 4.1, we first show that u(t, x) has the exponential decay

|u(t, x)| ≤ C0t
−d/2 exp(−κ0|x|/

√
t)

for some κ0 > 0 and C0 > 1. Then in Section 4.2, by using the semigroup property

Ŵ(t, x, s, y) =
ˆ

Rd

Ŵ(t, x, τ, ξ)Ŵ(τ, ξ, s, y) dξ, for s < τ < t, (4.1)

iteratively with appropriately chosen time steps, we establish the almost Gaussian estimate (1.4).

4.1. Exponential decay of the fundamental solution

For k = 1, 2, . . ., let ηk = ηk(x) be a smooth function in Rd such that

ηk = 0 in Bk(0), ηk = 1 in R
d \ Bk+1(0), ‖Dη‖∞ ≤ 2, ‖D2η‖∞ ≤ 4.

Let v = ue−μt , where μ ≥ 1 is a constant to be specified. Note that

vk = vk(t, x) := ηk(x)v(t, x)

satisfies

Pvk + μvk = fk := −2aijDiηkDjv − vaijDijηk in (0,1) × R
d , vk(0, ·) = 0 on R

d .

Let us denote

Bk = Bk(0), Bc
k = R

d \ Bk(0).

By the W
1,2
p -estimates (see, for instance, [13]), we have

μ‖vk‖Lp((0,1)×Rd ) + √
μ‖Dvk‖Lp((0,1)×Rd ) + ‖D2vk‖Lp((0,1)×Rd )

≤ N0‖fk‖Lp((0,1)×Rd ) ≤ N0

(
‖Dv‖Lp((0,1)×(Bk+1\Bk)) + ‖v‖Lp((0,1)×(Bk+1\Bk))

)
,

where N0 = N0(d, λ, �, p, ωx

A
) is independent of μ. On the other hand, note that
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‖v‖Lp((0,1)×Bc
k+1)

+ ‖Dv‖Lp((0,1)×Bc
k+1)

≤ ‖vk‖Lp((0,1)×Rd ) + ‖Dvk‖Lp((0,1)×Rd ).

Combining the last two inequalities, we have

‖v‖Lp((0,1)×Bc
k+1)

+ ‖Dv‖Lp((0,1)×Bc
k+1)

≤ N0μ
− 1

2
(
‖v‖Lp((0,1)×(Bk+1\Bk)) + ‖Dv‖Lp((0,1)×(Bk+1\Bk))

)

≤ N0μ
− 1

2

(
‖v‖Lp((0,1)×Bc

k ) + ‖Dv‖Lp((0,1)×Bc
k )

)
. (4.2)

Taking μ so large that N0μ
−1/2 ≤ 1/2 and iterating on k = 1, 2, 3, . . . in (4.2), we get

‖v‖Lp((0,1)×Bc
k+1)

+ ‖Dv‖Lp((0,1)×Bc
k+1)

≤ 2−k
(
‖v‖Lp((0,1)×(B2\B1)) + ‖Dv‖Lp((0,1)×(B2\B1))

)
≤ C2−k (4.3)

for k = 1, 2, 3, . . ., where we used the local W
1,2
p estimate and the pointwise estimate (1.3) in the 

last inequality.

Then, by using (4.3), the fact that Pu = 0 in (0, 1) × R
d , and (1.3) we find that there are 

constants C0 > 1 and κ0 > 0 such that

|u(1, x)| ≤ C0e
−κ0|x|, ∀x ∈ R

d . (4.4)

We remark that in the proof of (4.4) above, we only used the bound (1.3) with Y = 0.

Notice that for ε ∈ (0, 1], if we set ũ and ãij by

ũ(t, x) = εdu(ε2t, εx), ãij (t, x) = aij (ε2t, εx),

and define the operator P̃ by

P̃ ũ := ∂t ũ − ãijDij ũ,

then it is easily seen that ũ(t, x) satisfies P̃ ũ = 0 in (0, 1) × R
d and that ũ satisfies the bound 

(1.3) with Y = 0, i.e.,

|ũ(t, x)| ≤ C max(
√

t, |x|)−d .

Since 0 < ε ≤ 1, we can keep the same the constants C0 and κ0 in (4.4) for ũ and obtain

|Ŵ(ε2, x,0,0)| = ε−d |εdu(ε2, εx/ε)| = ε−d |ũ(1, x/ε)| ≤ C0ε
−de−κ0|x|/ε. (4.5)

Also, since translation does not alter the constants κ0 and C0 in the estimate (4.5), for any x, 

y ∈ R
d and s ∈ R, we have

|Ŵ(s + ε2, x, s, y)| ≤ C0ε
−de−κ0

|x−y|
ε , ∀ε ∈ (0,1]. (4.6)
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4.2. Almost Gaussian estimate

For (t, x) ∈ (0, 1] × R
d , let N = N(t, x) > 1 be an integer to be chosen later. We partition the 

interval (0, 1) into N2 subintervals of equal length t/N2. Let us denote

tj = j (t/N2), j = 1,2, . . . ,N2.

By using (4.6) and (4.1), we have

Ŵ(tj+1, xj+1,0,0) =
ˆ

Rd

Ŵ(tj+1, xj+1, tj , xj )Ŵ(tj , xj ,0,0) dxj .

Inductively, we have

Ŵ(tN2 , xN2 ,0,0) =
ˆ

Rd

· · ·
ˆ

Rd

N2−1∏

j=1

Ŵ(tj+1, xj+1, tj , xj )Ŵ(t1, x1,0,0) dx1 · · ·dxN2−1.

Therefore, by using (4.6) with ε =
√

t/N , we have

|Ŵ(tN2 , xN2 ,0,0)| ≤
(

C0N
d

td/2

)N2
ˆ

(Rd )N
2−1

⎛
⎝

N2−1∏

j=1

e
−κ0

N |xj+1−xj |
√

t

⎞
⎠ e

−κ0
N |x1|√

t dx1 · · ·dxN2−1

≤ CN2

0

(
Nd

td/2

)
ˆ

(Rd )N
2−1

e
−κ0

∑N2−1
j=1 |yj |−κ0

∣∣∣∣
N√

t
x
N2 −

∑N2−1
j=1 yj

∣∣∣∣
dy1 · · ·dyN2−1,

(4.7)

where we used the change of variables

y1 =
N
√

t
x1; yj =

N
√

t
(xj − xj−1), j = 2, . . . ,N2 − 1.

By the triangle inequality, for any (y1, . . . , yN2−1) ∈ (Rd)N
2−1, we have

N2−1∑

j=1

|yj | +
∣∣∣∣
N
√

t
x −

N2−1∑

j=1

yj

∣∣∣∣≥
N2−1∑

j=1

|yj | +
∣∣∣∣
N
√

t
x

∣∣∣∣−
∣∣∣∣
N2−1∑

j=1

yj

∣∣∣∣≥
N
√

t
|x|. (4.8)

For n = 0, 1, 2, . . ., let us denote

�n =

⎧
⎨
⎩(y1, . . . , yN2−1) ∈ (Rd)N

2−1 : n
N
√

t
|x| ≤

N2∑

j=1

|yj | < (n + 1)
N
√

t
|x|,

N2∑

j=1

yj =
N
√

t
x

⎫
⎬
⎭ .
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If (y1, . . . , yN2−1) ∈ �n, then we have

N2−1∑

j=1

|yj | +
∣∣∣∣
N
√

t
x −

N2−1∑

j=1

yj

∣∣∣∣=
N2∑

j=1

|yj | ≥ n
N
√

t
|x|. (4.9)

Notice that d(N2 − 1)-dimensional Lebesgue measure |�n| is bounded by

|�n| ≤
(

2(n + 1)
N
√

t
|x|
)d(N2−1)

(4.10)

and �0 = ∅.

By taking xN2 = x and decomposing the last integral in (4.7) into the sums of integrals over 

�n, we obtain from (4.9), (4.8), and (4.10) that

|Ŵ(t, x,0,0)| ≤ CN2

0

(
Nd

td/2

)(
e
−κ0

N |x|√
t |�1| +

∞∑

n=2

e
−κ0n

N |x|√
t |�n|

)

≤ CN2

0

(
Nd

td/2

)(
2N |x|
√

t

)d(N2−1)

e
−κ0

N |x|√
t

(
2d(N2−1) +

∞∑

n=2

(n + 1)d(N2−1)e
−κ0(n−1)

N |x|√
t

)
.

(4.11)

By the integral comparison, the binomial formula, and Stirling’s formula, we have

∞∑

n=2

(n + 1)ke−α(n−1) ≤
∞∑

n=2

n−1
ˆ

n−2

(s + 3)ke−αs ds =
∞̂

0

(s + 3)ke−αs ds

=
∞̂

0

k∑

m=0

(
k

m

)
sm3k−me−αs ds =

k∑

m=0

(
k

m

)
3k−mα−m−1

∞̂

0

sme−s ds

=
k∑

m=0

(
k

m

)
3k−mα−m−1m! ≤

3k

α
k!

k∑

m=0

(
k

m

) (
1

3α

)m

=
k!
α

(
3 +

1

α

)k

≤ c0

√
k

α

(
k

e

)k (
3 +

1

α

)k

, (4.12)

where c0 is an absolute constant. By combining (4.11) and (4.12), we have

|Ŵ(t, x,0,0)| ≤
1

td/2
e
−κ0

N |x|√
t CN2

0 Nd

(
4N |x|
√

t

)d(N2−1)

+ c0
1

td/2
e
−κ0

N |x|√
t

√
d(N2 − 1)

( √
t

κ0N |x|

)
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× CN2

0 Nd

{
2d(N2 − 1)

e

(
3N |x|
√

t
+

1

κ0

)}d(N2−1)

≤
1

td/2
e
−κ0

N |x|√
t CN2

0 Nd

(
4N |x|
√

t

)d(N2−1)

+
c0

√
d

td/2
e
−κ0

N |x|√
t

( √
t

κ0|x|

)
CN2

0 Nd

{
2d(N2 − 1)

e

(
3N |x|
√

t
+

1

κ0

)}d(N2−1)

.

(4.13)

Let us write ξ = x/
√

t and take N = ⌈|ξ |1−δ⌉, where δ ∈ (0, 1) is fixed but arbitrary. Note that

|ξ |1−δ ≤ N < |ξ |1−δ + 1.

Let us consider

A = −κ0|ξ |2−δ + (logC0)(|ξ |1−δ + 1)2 + d log(|ξ |1−δ + 1)

+ d{(|ξ |1−δ + 1)2 − 1) log(4(|ξ |1−δ + 1)|ξ |),

B = −κ0|ξ |2−δ − log(κ0|ξ |) + (logC0)(|ξ |1−δ + 1)2 + d log(|ξ |1−δ + 1)

+ d{(|ξ |1−δ + 1)2 − 1) log(2d((|ξ |1−δ + 1)2 − 1)(3|ξ |(|ξ |1−δ + 1) + κ−1
0 )e−1).

Note that there exist R0 = R0(δ, C0, d, κ0) ≥ 1 such that if |ξ | > R0, then

A ≤ −β|ξ |2−δ, B ≤ −β|ξ |2−δ,

where β = κ0/2. Then, it follows from (4.13) that for any (t, x) ∈ (0, 1] × R
d with |x|/

√
t > R0, 

we have

|Ŵ(t, x,0,0)| ≤ C1t
−d/2 exp

(
−β(|x|/

√
t)2−δ

)
, where C1 = C1(d).

On the other hand, in the case when (t, x) ∈ (0, 1) × R
d satisfies |x|/

√
t ≤ R0, then we can use 

(4.5) to bound Ŵ(t, x, 0, 0).

In conclusion, we have the following: For any δ ∈ (0, 1), there exists C = C(d, λ, �, ωx

A
, δ)

such that

|Ŵ(t, x,0,0)| ≤ Ct−d/2 exp
(
−β(|x|/

√
t)2−δ

)
on (0,1] × R

d .

Finally, by translation and the semigroup property (4.1), we get (1.4). �

581



H. Dong, S. Kim and S. Lee Journal of Differential Equations 340 (2022) 557–591

5. Proof of Theorem 1.4

Let Ŵ(t, x, τ, ξ) be the fundamental solution of the operator P constructed in Section 3. Let 

y ∈ R
d be fixed and let P̄ y be given by

P̄ yu = ∂tu − aij (t, y)Diju.

Let 
y(t, x, τ, ξ) be the fundamental solution of the operator P̄ y . Notice that the coefficients of 

P̄ y depend only on t and thus one can compute 
y(t, x, τ, ξ) by using the Fourier transform. 

However, we do not need its explicit form and will just make use of the following fact. For t > τ

we have

|
y(t, x, τ, ξ)| ≤
C0

(t − τ)d/2
e−κ0

|x−ξ |2
t−τ ,

|D2
x


y(t, x, τ, ξ)| ≤
C′

0

(t − τ)d/2

(
1

t − τ
+

|x − ξ |2

(t − τ)2

)
e−κ0

|x−ξ |2
t−τ ,

(5.1)

where C0 = C0(d, λ, �), C′
0 = C′

0(d, λ, �), and κ0 = κ0(λ, �) are positive constants.

5.1. Modified parametrix method

Notice that we have

PŴ(t, x, τ, ξ) − P
y(t, x, τ, ξ)

= PŴ(t, x, τ, ξ) − P
y(t, x, τ, ξ) + P̄ y
y(t, x, τ, ξ) − P̄ y
y(t, x, τ, ξ)

= −(P − P̄ y)
y(t, x, τ, ξ) = (aij (t, x) − aij (t, y))Dij

y(t, x, τ, ξ).

In particular, by taking y = ξ and setting

v(t, x, τ, ξ) := Ŵ(t, x, τ, ξ) − 
ξ (t, x, τ, ξ), (5.2)

we have

Pv(t, x, τ, ξ) = (aij (t, x) − aij (t, ξ))Dij

ξ (t, x, τ, ξ).

We shall shortly show that the following representation formula is available:

v(t, x, τ, ξ) =
t

ˆ

τ

ˆ

Rd

Ŵ(t, x, s, y)(aij (s, y) − aij (s, ξ))Dij

ξ (s, y, τ, ξ) dyds. (5.3)

It then follows from (5.3) that v satisfies the relation
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v(t, x, τ, ξ) =
t

ˆ

τ

ˆ

Rd


y(t, x, s, y)(aij (s, y) − aij (s, ξ))Dij

ξ (s, y, τ, ξ) dyds

+
t

ˆ

τ

ˆ

Rd

v(t, x, s, y)(aij (s, y) − aij (s, ξ))Dij

ξ (s, y, τ, ξ) dyds. (5.4)

We note that both integrals in (5.4) are absolutely convergent. See (5.17). The last formula is 

reminiscent of the classical parametrix method for constructing the fundamental solutions. First, 

we set

w0(t, x, τ, ξ) =
t

ˆ

τ

ˆ

Rd


y(t, x, s, y)(aij (s, y) − aij (s, ξ))Dij

ξ (s, y, τ, ξ) dyds (5.5)

and inductively define for k = 0, 1, 2, . . .,

wk+1(t, x, τ, ξ) =
t

ˆ

τ

ˆ

Rd

wk(t, x, s, y)(aij (s, y) − aij (s, ξ))Dij

ξ (s, y, τ, ξ) dyds. (5.6)

Suppose that

w(t, x, τ, ξ) :=
∞∑

k=0

wk(t, x, τ, ξ) (5.7)

converges uniformly. Then by summing over k = 0, 1, 2, . . . in (5.6), we find

w(t, x, τ, ξ) = w0(t, x, τ, ξ) +
t

ˆ

τ

ˆ

Rd

w(t, x, s, y)(aij (s, y) − aij (s, ξ))Dij

ξ (s, y, τ, ξ) dyds.

Since we also have (5.4), it is plausible that

v(t, x, τ, ξ) = w(t, x, τ, ξ). (5.8)

We shall verify (5.8) after we establish the Gaussian estimate for w.

5.2. Gaussian estimate for w

Recall that we assume A is uniformly Dini continuous in x, that is,

̺x

A(r) := sup
{
|A(t, x) − A(t, y)| : x, y ∈ R

d , t ∈ R, |x − y| ≤ r
}

satisfies the Dini condition
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1
ˆ

0

̺x

A
(r)

r
dr < +∞.

It follows from (5.5) and (5.1) that

|w0(t, x, τ, ξ)| ≤
t

ˆ

τ

ˆ

Rd

|
y(t, x, s, y)||A(s, y) − A(s, ξ)||D2
ξ (s, y, τ, ξ)|dyds

≤
t

ˆ

τ

ˆ

Rd

C0C
′
0e

−κ0
|x−y|2

t−s

(t − s)d/2(s − τ)d/2
̺x

A(|y − ξ |)
(

1

s − τ
+

|y − ξ |2

(s − τ)2

)
e−κ0

|y−ξ |2
s−τ dyds. (5.9)

Since ̺x

A
is increasing and by the triangle inequality, we have

̺x

A(r1 + r2) ≤ ̺x

A(r1) + ̺x

A(r2), ∀r1, r2 ≥ 0,

it follows that

̺x

A
(|y − ξ |)
|y − ξ |

≤ 2
̺x

A
(
√

s − τ)
√

s − τ
for |y − ξ | ≥

√
s − τ .

Therefore, in the case when |y − ξ | ≥
√

s − τ , we have

̺x

A(|y − ξ |)
(

1

s − τ
+

|y − ξ |2

(s − τ)2

)
≤ 2

̺x

A
(
√

s − τ)

s − τ

(
|y − ξ |2

s − τ

) 1
2
(

1 +
|y − ξ |2

s − τ

)
.

On the other hand, if |y − ξ | <
√

s − τ , then we have

̺x

A(|y − ξ |)
(

1

s − τ
+

|y − ξ |2

(s − τ)2

)
≤

̺x

A
(
√

s − τ)

s − τ

(
1 +

|y − ξ |2

s − τ

)
.

In both cases, notice that for any κ ′
0 ∈ (0, κ0), there is a constant C1 = C1(κ0, κ

′
0) > 0 such that 

we have

̺x

A(|y − ξ |)
(

1

s − τ
+

|y − ξ |2

(s − τ)2

)
e−κ0

|y−ξ |2
s−τ ≤ C1

̺x

A
(
√

s − τ)

s − τ
e−κ ′

0
|y−ξ |2
s−τ . (5.10)

We recall the following identity, which is a simple consequence of the Fourier transform: For 

τ < s < t , we have

ˆ

Rd

1

(t − s)d/2
e−κ ′

0
|x−y|2

t−s
1

(s − τ)d/2
e−κ ′

0
|y−ξ |2
s−τ dy = C2

1

(t − τ)d/2
e−κ ′

0
|x−ξ |2
t−τ , (5.11)

where
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C2 =
ˆ

Rd

e−κ ′
0|y|2 dy = (π/κ ′

0)
d/2.

Therefore, by plugging in (5.10) into (5.9) and using the identity (5.11), we get

|w0(t, x, τ, ξ)| ≤ C0C
′
0C1

t
ˆ

τ

̺x

A
(
√

s − τ)

s − τ

⎛
⎜⎝
ˆ

Rd

1

(t − s)d/2
e−κ ′

0
|x−y|2

t−s
1

(s − τ)d/2
e−κ ′

0
|y−ξ |2
s−τ dy

⎞
⎟⎠ds

≤

⎛
⎝C0C

′
0C1C2

t
ˆ

τ

̺x

A
(
√

s − τ)

s − τ
ds

⎞
⎠ 1

(t − τ)d/2
e−κ ′

0
|x−ξ |2
t−τ . (5.12)

Note that

t
ˆ

τ

̺x

A
(
√

s − τ)

s − τ
ds = 2

√
t−τ
ˆ

0

̺x

A
(s)

s
ds.

Let ε0 ∈ (0, 1) be to fixed later. Take δ0 > 0 such that

2C′
0C1C2

δ0
ˆ

0

̺x

A
(s)

s
ds ≤ ε0. (5.13)

Then we find from (5.12) and (5.13) that

|w0(t, x, τ, ξ)| ≤ ε0C0
1

(t − τ)d/2
e−κ ′

0
|x−ξ |2
t−τ provided 0 < t − τ ≤ δ2

0 . (5.14)

Now using (5.6), (5.14), and (5.1), we get

|w1(t, x, τ, ξ)| ≤
t

ˆ

τ

ˆ

Rd

|w0(t, x, s, y)||A(s, y) − A(s, ξ)||D2
ξ (s, y, τ, ξ)|dyds

≤ ε0

t
ˆ

τ

ˆ

Rd

C0C
′
0e

−κ ′
0

|x−y|2
t−s

(t − s)d/2(s − τ)d/2
̺x

A(|y − ξ |)
(

1

s − τ
+

|y − ξ |2

(s − τ)2

)
e−κ0

|y−ξ |2
s−τ dyds.

By using (5.10) and repeating the same computation as in (5.12), we get

|w1(t, x, τ, ξ)| ≤ ε2
0C0

1

(t − τ)d/2
e−κ ′

0
|x−ξ |2
t−τ provided 0 < t − τ ≤ δ2

0 .

Inductively, we have
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|wk(t, x, τ, ξ)| ≤ εk+1
0 C0

1

(t − τ)d/2
e−κ ′

0
|x−ξ |2
t−τ provided 0 < t − τ ≤ δ2

0 .

Then by (5.7), we have for 0 < t − τ ≤ δ2
0 that

|w(t, x, τ, ξ)| ≤
∞∑

k=0

εk+1
0 C0

1

(t − τ)d/2
e−κ ′

0
|x−ξ |2
t−τ ≤

ε0C0

1 − ε0

1

(t − τ)d/2
e−κ ′

0
|x−ξ |2
t−τ . (5.15)

5.3. Verification of (5.3) and (5.8)

We shall prove (5.3) first. Let us denote

f (s, y) := (aij (s, y) − aij (s, ξ))Dij

ξ (s, y, τ, ξ).

Notice that in deriving (5.12), we have seen that

|f (s, y)| ≤ C
̺x

A
(
√

s − τ)

s − τ

1

(s − τ)d/2
e−κ ′

0
|y−ξ |2
s−τ . (5.16)

Write Z = (τ, ξ) and let ζ be a smooth function on Rd+1 such that

0 ≤ ζ ≤ 1, ζ = 0 in Qr/2(Z), ζ = 1 in R
d+1 \ Qr(Z), |∂tζ | + |Dζ |2 + |D2ζ | ≤ Cr−2,

where, 0 < r < 1
4
(t − τ). Then, ṽ = ζv(·, ·, τ, ξ) satisfies

P ṽ = ζf + vP ζ − 2aijDivDj ζ in (τ, t) × R
d , ṽ(τ, ·) = 0 on R

d .

Notice that ζf + vP ζ − 2aijDivDj ζ ∈ Lp((τ, t) × R
d) with p > (d + 2)/2. Therefore, by 

Proposition 3.4 and the symmetry relation (1.2), we have

v(t, x, τ, ξ) = ṽ(t, x) = I + II :=
t

ˆ

τ

ˆ

Rd

Ŵ(t, x, s, y)ζ(s, y)f (s, y) dyds

+
ˆ

Qr (Z)\Qr/2(Z)

Ŵ(t, x, s, y)
{
Pζ(s, y)v(s, y, τ, ξ) − 2aijDiζ(s, y)Djv(s, y, τ, ξ)

}
dyds.

We claim that II → 0 as r → 0. Assume the claim for now. By (5.16) and (1.4), we see that I is 

absolutely convergent, that is,

t
ˆ

τ

ˆ

Rd

|Ŵ(t, x, s, y)f (s, y)|dyds
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=

t+τ
2

ˆ

τ

ˆ

Rd

+
t

ˆ

t+τ
2

ˆ

Rd

|Ŵ(t, x, s, y)f (s, y)|dyds < +∞, (5.17)

and thus we obtain (5.3) by the dominated convergence theorem applied to I .

Now, we prove the claim that II → 0. For Y = (s, y) ∈ (τ, t) × R
d , let

r̃ = 1
5
|Y − Z|.

We set δ = αr̃ , where α > 1 is to be specified. Recall that

v(s, y, τ, ξ) = Ŵ(s, y, τ, ξ) − 
ξ (s, y, τ, ξ) = Ŵ∗(τ, ξ, s, y) − (
ξ )∗(τ, ξ, s, y),

and note that

v∗ = v∗(·, ·) = Ŵ(s, y, ·, ·) − 
ξ (s, y, ·, ·) (5.18)

satisfies

P ∗v∗ = div2((A − Ã0)
̃0) in (τ − 1, s) × R
d , v∗(s, ·) = 0 on R

d ,

where we set

Ã0 = Ã0(·) = A(·, ξ) and 
̃0 = 
̃0(·, ·) = (
ξ )∗(·, ·, s, y).

Let ζ̃ be a smooth function on Rd+1 such that

0 ≤ ζ̃ ≤ 1, ζ̃ = 0 in Qδ/2(Y ), ζ̃ = 1 in R
d+1 \ Qδ(Y ), |Dζ̃ | ≤ 4/δ,

and define g1 and g2 by (cf. (3.11))

g1 = ζ̃ (A − Ã0)
̃0 and g2 = (1 − ζ̃ )(A − Ã0)
̃0.

Noting that ‖A − Ã0‖∞ ≤ C(d, �) and using (3.13) and properties of ζ̃ , we have

ˆ

Rd+1

|g1|
2(d+2)

d ≤
∞∑

k=0

ˆ

Q
2kδ

(Y )\Q
2k−1δ

(Y )

|g1|
2(d+2)

d ≤ C

∞∑

k=0

(2kδ)−d−2 ≤ Cδ−d−2. (5.19)

Note that we have

|A − Ã0| ≤ ̺x

A(δ) + ̺x

A(5r̃) ≤ (α + 6)̺x

A(r̃) in Qδ(Y ),

and thus we have
ˆ

Rd+1

|g2|
d+1
d ≤

(
(α + 6)̺x

A(r̃)
) d+1

d

ˆ

Qδ(Y )

|g2|
d+1
d ≤ C

(
(α + 6)̺x

A(r̃)
) d+1

d δ. (5.20)
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Let vi (i = 1, 2) be the solutions of the problems

P ∗vi = div2 gi in (τ − 1, s) × R
d , vi(s, ·) = 0 on R

d (i = 1,2).

We extend v1 and v2 to be zero on (s, ∞) × R
d . By Lemma 2.2 together with (5.19) and (5.20), 

we have

‖v1‖L2(d+2)/d ((τ−1,s)×Rd ) ≤ Cδ− d
2 and ‖v2‖L(d+1)/d ((τ−1,s)×Rd ) ≤ C(α + 6)̺x

A(r̃)δ
d

d+1 . (5.21)

By (3.8), we see that both v1 and v2 also belong to Lp((τ −1, s) ×R
d) for any p ∈ (1, (d +2)/d). 

Therefore, by the uniqueness, we have

v∗ = v1 + v2. (5.22)

We now estimate v1(Z) and v2(Z). By using Lemma 2.3, we have

|vi(Z)| ≤ C

 

Q+
2r̃

(Z)

|vi | + C

r̃
ˆ

0

ωx
gi

(t̃ ,Q+
2r̃

(Z))

t̃
dt̃ (i = 1,2). (5.23)

Using (5.21) together with Hölder’s inequalities, we have

 

Q+
2r̃

(Z)

|v1| ≤ Cr̃− d
2 ‖v1‖L2(d+2)/d (Q+

2r̃
(Z)) ≤ Cr̃− d

2 δ− d
2 ,

 

Q+
2r̃

(Z)

|v2| ≤ Cr̃− (d+2)d
d+1 ‖v2‖L(d+1)/dQ+

2r̃
(Z)) ≤ Cr̃−d(α + 6)α

d
d+1 ̺x

A(r̃).

(5.24)

By using the bound of 
̃0, we have

ωx

gi
(t̃ ,Q+

2r̃
(Z)) ≤ C(d,λ,�)r̃−d̺x

A(t̃), ∀t̃ ∈ (0, r̃] (i = 1,2). (5.25)

By combining (5.22), (5.23), (5.24), and (5.25), we obtain

|v∗(Z)| ≤ Cr̃−d

⎛
⎝α− d

2 + (α + 6)α
d

d+1 ̺x

A(r̃) +
r̃
ˆ

0

̺x

A
(t̃)

t̃
d t̃

⎞
⎠ ,

where C is a constant independent of r̃ . Recall that |Y −Z| = 5r̃ . Now for any ε ∈ (0, 1), we can 

take α > 1 sufficiently large and then r̃ sufficiently small such that

|v∗(Z)| ≤ ε|Y − Z|−d . (5.26)

Therefore, we conclude from (5.26) and (5.18) that for all small r > 0,
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rd |v(s, y, τ, ξ)| = o(r), ∀(s, y) ∈ Q2r(Z) \ Qr/4(Z),

where we use o(r) to denote some bounded quantity that tends to 0 as r → 0.

To estimate Dv, we use the equation Pv = f . Notice that

|f (s, y)| ≤ C̺x

A(|y − ξ |)|Z − Y |−d−2 ≤ C̺x

A(r)r−d−2 in Q2r(Z) \ Qr/4(Z).

Therefore, by using (5.26), the local W
1,2
p estimate

∥∥∥r2|∂sv(·, ·, τ, ξ)| + r2|D2
yv(·, ·, τ, ξ)| + r|Dyv(·, ·, τ, ξ)|

∥∥∥
Lp(Qr (Z)\Qr/2(Z))

≤ C‖v(·, ·, τ, ξ)‖Lp(Q2r (Z)\Qr/4(Z)) + Cr2‖f ‖Lp(Q2r (Z)\Qr/4(Z)), p > d + 2,

and the Sobolev embedding, we have

rd+1|Dv(s, y, τ, ξ)| = o(r), ∀(s, y) ∈ Qr(Z) \ Qr/2(Z). (5.27)

Therefore, by using (5.26), (5.27), and the properties of ζ , we get II → 0 as r → 0, which 

completes the proof of (5.3).

To show (5.8), we invoke the contraction mapping theorem. For (t, x) ∈ R
d+1, let B =

L1((t − δ2
0, t) × R

d), where δ0 is as in (5.13). We shall show that the mapping T : B → B

defined by

T u(τ, ξ) = w0(t, x, τ, ξ) +
t

ˆ

τ

ˆ

Rd

u(s, y)(aij (s, y) − aij (s, ξ))Dij

ξ (s, y, τ, ξ) dyds

is a contraction. Indeed, by (5.14), (5.10), Fubini’s theorem, and (5.13), we find that

t
ˆ

t−δ2
0

ˆ

Rd

|T u(τ, ξ)|dξdτ ≤
t

ˆ

t−δ2
0

ˆ

Rd

|w0(t, x, τ, ξ)|dξdτ

+
t

ˆ

t−δ2
0

ˆ

Rd

t
ˆ

τ

ˆ

Rd

|u(s, y)|C′
0

̺x

A
(|y − ξ |)

(s − τ)d/2

(
1

s − τ
+

|y − ξ |2

(s − τ)2

)
e−κ0

|y−ξ |2
s−τ dydsdξdτ

≤
t

ˆ

t−δ2
0

ˆ

Rd

ε0C0
1

(t − τ)d/2
e−κ ′

0
|x−ξ |2
t−τ dξdτ

+
t

ˆ

t−δ2
0

ˆ

Rd

|u(s, y)|
s
ˆ

t−δ2
0

̺x

A
(
√

s − τ )

s − τ

ˆ

Rd

C′
0C1

(s − τ)d/2
e−κ ′

0
|y−ξ |2
s−τ dξdτdyds
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≤ ε0C0C2δ
2
0 + ε0

t
ˆ

t−δ0

ˆ

Rd

|u(s, y)|dyds.

Therefore, we have T u ∈ B for all u ∈ B. By a similar calculation, we also find that

‖T u1 − T u2‖B ≤ ε0‖u1 − u2‖B,

which implies T is a contraction mapping on B since we assume ε0 ∈ (0, 1). We now fix ε0 =
1/2. Note that it follows from (1.4) and (5.15), respectively, that v ∈ B and w ∈ B, which 

establishes the equality (5.8).

5.4. Conclusion

Therefore, by (5.2) (5.8), (5.15), and (5.1), we find that

|Ŵ(t, x, s, y)| ≤
C

(t − s)d/2
e−κ ′

0
|x−y|2

t−s provided 0 < t − s ≤ δ2
0 . (5.28)

We can take κ ′
0 = κ0/2 in the above and call it κ . It is clear that κ then depends only on λ and �. 

By using (4.1) and (5.28), we establish the Gaussian bound (1.5). See e.g., [2, Section 5.5] for 

the details. �
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