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Abstract
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1. Introduction and main results
We consider second order parabolic operator P in non-divergence form
Pu=0u — aij(t, x)Djju

in R9*t!, Here and below, we use the summation convention over repeated indices. We assume
that the coefficients A = (a'/) are symmetric and satisfy the uniform parabolicity condition

MEP <d(r,x)E8; < AP, VEeRY, V(t,x) e RITL (1.1)

In this article, we are concerned with the fundamental solution of the operator P. By the funda-
mental solution, we mean a function I'(¢, x, s, y) formally satisfying

PT(, - 5,9) =85y(,-) in RITL
or equivalently

PT(-,-s,y) =0 in (s,00) x RY,  lim T(,-,5,y) =8,(-) on RY.
t—>s+

We show that if the coefficients A = (a'/) are of Dini mean oscillation in x, then the fundamental
solution I'(#, x, s, y) exists and satisfies certain estimates, in particular a sub-Gaussian estimate.
Moreover, if the coefficients are Dini continuous in x, then the fundamental solution enjoys the
usual Gaussian bounds. We emphasize that our methods are also applicable to parabolic systems
of second order and this is one of the novelties of the paper.

Before we state our main theorems, let us introduce some basic definitions. We define the
parabolic distance between X = (f,x) and ¥ = (s, y) in R¢*! by

|X — Y| =max <|x -y, VIt —s|> .
We define the (d + 1)-dimensional cylinders Q,(X), Q' (X), and Q; (X), by

0,(X)={Y eR™ |y —X| <r}=(s —r% s + %) x B, (x),
OF(X)=(s,s+7r?) x B,(x), and Q7 (X)=(s—r%5)x B (x).

For X = (¢t,x) € R4t! and r > 0, we define

o} (r, X) = ][ |AGs, y) — A% . (s)|dyds, where A ,(s):= ][ A(s, y)dy.
0r (X) Br(x)
Then for a subset Q of R+, we define
Wy (r, Q) :=sup [} (r, X): X € Q) and o} (r) =i, R,
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We say that A is of Dini mean oscillation in x over Q and write A € DMOx(Q) if o} (r, Q)
satisfies the Dini condition

1
X
/Mdr<+oo'
r

0
The adjoint operator P* is given by
P*u=—0du — Djj (@ (t, x)u).
We are now ready to state the main results.
Theorem 1.1. Assume that A = (a'/) satisfies (1.1) and belongs to DMOy (R4, Then, there

exist unique fundamental solutions T'(X,Y) =T(t,x,s,y) and T*(X,Y) =T*(, x, s, y) for the
operators P and P*, respectively, and they satisfy the symmetry relation

L, x,s,y) =T, y, ¢, x). (1.2)
The fundamental solution T is continuous in R x R4\ {(X, X) : X e R?*!} and

L, x,s,y)=0 ift<s.
Also, for each Y € RA+1 D, T'(-,Y) and D%l"(-, Y) are continuous in R4+! \{Y}; if A is contin-

uous, then 8, T(-,Y) is continuous in R4+! \ {Y'} as well. Moreover; for any Ry > 0, there exist
constants C =C(d, ,, A, a)l’;, Ro) such that we have

IPX, V)| <CIX -Y|™ (1.3)
forany X, Y € R4 satisfying 0 < | X — Y| < Ry.

Remark 1.2. In Theorem 1.1, in addition to (1.3), we also have pointwise bounds for the deriva-
tives of the fundamental solutions, that is,

ID,T(X, V)| <C|X — Y797, |1, 0(X,Y)| +|D2(X,Y)| < C|X — Y| 7972

for any X, ¥ € R4*t! satisfying 0 < |X — Y| < Ry. These estimates follow directly from (1.3)
and [3, Theorem 3.2] applied to I'(-, Y) in Q% (X) with R = %|X Y|

We recall that A belongs to VMO, (R4H1) if and only if lim, o w} (r) = 0 (see, e.g., [13]) and
thus VMOL(R?*1) contains DMOy (R4 *1).

Theorem 1.3 (Sub-Gaussian estimate). Assume that A = (a') satisfies (1.1) and belongs to
VMO, R4+, Suppose there exists a fundamental solution T'(t, x, s, y) for the operator P, which
satisfies (1.3). Then, forany T > 0 and § € (0, 1), there exist a constant C = C(d, A, A, a)l’;, 5, T)
and a universal constant B > 0 such that for any x, y € R? and t, s € R satisfying0 <t —s < T
we have
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2-8
Fxs,y)] < —Cexpl—p (222 . (1.4)
(t —s)4/2 Jt—s

We shall say that A is uniformly Dini continuous in x over R4+ if its modulus of continuity
in x defined by

Qz(}’) 1= sup {|A(t,x) — A, y)|:x,y G]Rd, teR, [x —y| §r}

satisfies the Dini condition

1
X
/—QA(r) dr < 400.
’

0

It is clear the if A is uniformly Dini continuous in x over RI+! , then it is of Dini mean oscillation
in x over R4tL,

Theorem 1.4 (Gaussian estimate). Assume that A = (a'/) satisfies (1.1) and A = (a'V) is uni-
formly Dini continuous in x over Rt Then the fundamental solution satisfies the Gaussian
bounds, that is, for any T > 0, there exists C =C(d, A, A, T, Q[’;) and k = k (,, A) such that for
any x, y € RY andt, s € R satisfying 0 <t —s < T we have

)
u} (1.5)

C

[C(, x, 5, )| < meXP {_K PR

A few remarks are in order. The fundamental solutions are topics in many classical books.
See, e.g., [4,8,11,16] and references therein. It is well known that the fundamental solutions of
second order parabolic equations in divergence form have two-sided Gaussian bounds even in
the case when the coefficients are just bounded and measurable; see [1]. In contrast to parabolic
equations in divergence form, the fundamental solutions of parabolic equations in non-divergence
form do not necessarily have the Gaussian bounds if the coefficients do not possess some kind
of regularity, although certain pointwise bounds are available in terms of so-called normalized
adjoint solutions; see [5]. As a matter of fact, even if the coefficients are continuous in 7 and x,
the following weaker estimate may not hold:

IT(t,x,5, )| <C@t—s)"9? forO<t—s<T.

[ ]

A counterexample is given in [10] for the equation (in one space variable) du /9t = a(t, x)d%u/dx
with a coefficient a(¢, x), continuous in # and x, and satisfying 1/2 < a(¢, x) < 3/2, whose fun-
damental solution is unbounded at any given point xo for any ¢ > 0. See also [7] and [19] for
examples of equations with continuous coefficients, whose fundamental solutions (as measure)
are singular with respect to Lebesgue measure for any ¢ > 0. On the other hand, if the coefficients
are of Dini mean oscillation in x, then the fundamental solutions have the usual Gaussian bounds;
see [3]. However, the proof there relies heavily on the Harnack type properties of nonnegative
(adjoint) solutions and is not applicable to the systems setting. To the best of our knowledge,
the Gaussian bounds for the fundamental solutions were available to the non-scalar setting if the
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coefficients are continuous in ¢ and x, and additionally, if they are doubly Dini continuous in x.
See [18] and [4].

We give a brief description of the methods we use in the proofs. To show Theorem 1.1, we
adapt an argument in [12] for non-divergence form elliptic equations, by using the pointwise
estimates of solutions established in [3]. In the proof of Theorem 1.3, we first establish an expo-
nential decay estimate by using the W;’z estimate and an iteration argument. We then improve the
exponential decay estimate to the sub-Gaussian estimate (1.4) by exploiting the semi-group prop-
erty of the fundamental solution together with a delicate re-scaling argument. Finally, we modify
the parametrix method of Levi [17] to prove the Gaussian estimate (1.5) in Theorem 1.4. The
main difference between Levi’s original method and ours is that Levi’s procedure was intended
to construct the fundamental solution and thus required more restriction on the coefficients while
in our approach, we construct the fundamental solution by different means and prove that it is
identical with the resulting kernel produced by our modified parametrix method, which inherits
the Gaussian bounds from the fundamental solutions of parabolic operators with coefficients de-
pending only on ¢. It is also worth mentioning that in contrast to the scalar case, we are only able
to get a one-sided Gaussian estimate.

Finally, the organization of the paper is as follows. In Section 2, we state some preliminary
definition and lemmas. The proofs of Theorems 1.1, 1.3, and 1.4 are given in Sections 3, 4, and
5, respectively.

2. Preliminaries

For any domain Q C R4+ and p € [1, oo], we shall denote by L, (Q) the standard Lebesgue
class. We define the function space

Wy2(Q)={u: u, du, Du, D*ue L,(Q)},

which are equipped with norm

lelly 1200y = lullz, @) + 1 DullL, o) + ID?ullL, o) + I13:ullL,c0)-
We deal with the adjoint problem
Pru=div’g+ f in (19.11) x RY,  u(t,-)=0 on RY, (2.1
where g = (g") is a symmetric d x d matrix-valued function and div? g = Dy g*’.

Definition 2.1. Assume that g € L, ((to, 1) x R and f € L,((t9,11) X R%), where 1 < p < co.
We say that u € L,((tp, 1) X R9) is a solution to (2.1) if u satisfies

3]

131
//qu://fvﬂr(gD%) (2.2)

o R4 o R4

for any v € W;F((zo, 1) x RY) satisfying u(ty, ) =0, where £ + L = 1.
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Lemma 2.2. Assume that g € L ,((to,11) x RY) and f € L,((to, 1) x R?), where 1 < p < o0.
Then there exists a unique solution v of the adjoint problem (2.1) in L,((t, 1) x Rd) and it
satisfies

Iz, o,y xr: =€ (||g||L,,<<zo,n>xIR<d> + ||f||Lp<<ro,n>de)) ;
where C is a constant depending only on d, A, A, p, to, 1, and a)z.
Proof. Recall that DMO,(R4+1) ¢ VMO, (R?*!). The existence and uniqueness of the so-

lution to (2.1) is simple to derive by transposition from the unique existence of a solution
vE W;,’Z((to, 1) x R9) to the direct problem

Pv=g in (ty,11) x RY, v(tg, ) =0 in RY,
and the corresponding L s estimates:
”DZUHLP/((tQ,t])x]Rd) + ”atU”Lp/((to,tl)x]Rd) + “U”Lp/((to,zl)de) < C“g“Lp/((to,tl)x]Rd)v (2.3)
where C =C(d, 1, A, 1y, 11, a)j;). See [13]and [6]. O
Lemma 2.3. Let Ry > 0 and g = (gi-/) € DMOX(Q'Ig0 (X0)). Suppose v is an Ly solution of
P*u=div’g in QF (Xo),

where 0 <r < %Ro. Then we have

,
w}(z, 03,(X0))
<C + g—rd‘[ ,
el o 07 cxon = ][ lul / .

03,(X0) 0
where C=C(d, 1, A, ), Ro).
Proof. The proof is essentially given in [3, Theorem 3.3]. cf. [12, Appendix]. O
3. Proof of Theorem 1.1

By adapting the argument in [ 12], we shall first construct the fundamental solution I'* (Y, X) =
(s, v, t, x) for the adjoint operator P* in Section 3.1. We then establish in Section 3.2 that

IT*(Y, X)| <C|X — Y|_d for all X, Y satisfying 0 < | X — Y| < Ryp.

In Section 3.3, we construct the fundamental solution I'(¢, x, s, y) of the operator P and show
the symmetry relation (1.2), which in particular implies (1.3).
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3.1. Construction of the adjoint fundamental solution

Fix a point X = (19, xo) in R?*!. We construct fundamental solution I'™*(-, Xo)=I"*(-, -, fo, x0)
for the adjoint operator P* with a pole at Xy = (¢g, xo)-

Lemma 3.1. For any r > 0, {A x0.2-kr (- )} L0 converges in L1((to — r?, 19)) to a function Ay (),
which is symmetric and satisfies (1.1). Moreover,

][ A — Ax0|<c(d)/ A6 4 3.1)
0, (Xo)

Proof. By the triangle inequality,

o0 o0
DOIAY L (=AY, (0] =2 ][ A x) =A%, (D] dx.
k=0

k=0 By, (x0)

Therefore, by the Fubini theorem, we have

k=0

Z/|Ax2k<t) SPRRRCITTEETD S B ST S VNN PR
t() r2

to—r2 By—k, (x0)

<23 / ][ A — AX iy (D dxdt

k=0 j=0 to—(i+1)(27%r)2 By, (x0)
oo 22k_q

<203 Y @ hPey et =20 22@ @ G2
k=0 j=0

In view of the proof on [15, p. 495], we have w}, (1) > w) (s) when t 5. Thus, (3.2) implies

Z / A ()~ A (t)Idth(d)rz/wA—(s)ds<oo. (3.3)
X0 xo s

to —r2 0

Therefore, {1_&;) 2—kr(')} is a Cauchy sequence in L ((fg — 2 19)). Let A, (-) be the limit. Thus,
from (3.3), we have

/ A%, (1) = Ay () di < C(d)r? / ”AT(S)ds. (3.4)

Io— r2 0

Finally, by using the triangle inequality and (3.4),

563



H. Dong, S. Kim and S. Lee Journal of Differential Equations 340 (2022) 557-591
][ A=Ayl < ][ A— A% (0] + ][ A% L(6) — Ay (1)
0, (Xo) 0r (Xo) 0r (Xo)

X (s
A( )ds. O
s

to r
< i) + ][ A, (1) — Az, x0)|dt < c(d) /
0

t()—r2

Remark 3.2. By a slight modification of the proof above, it is easily seen that A, is independent
of #o and r. Moreover, if A is continuous in x, then clearly Ay () = A(t, xo) for a.e. .

We now consider the parabolic operator Py defined by
Pou := du — ay (1) Diju = du — tr(A, (1) D?u).

Let ®(z, x, s, y) be the fundamental solution for Py. It is well known that there are positive
constants Co = Co(d, A, A) and ko = «o(A, A) such that

li—y[?

1D, x, 5, V)| < Cot — )92 0= for t > s (3.5)

and ®(t,x,s,y) =0if ¢t < s. See, for instance, [8, Chapter 9] and [14, Chapter 2]. Since A,
does not depend on x, we also have

D(t,x,5,y) =D*(s, y,t,x), (3.6)
where ®* is fundamental solution for the adjoint operator PO* given by
Piu = —d,u — Dyj(af (t)u) = —du — div (A, (1)u).
Note that, if we set v = I"*(-, Xo) — ®*(-, Xp), then it would satisfy

P*v = P*T*(-, Xo) — P*®*(-, Xo) + P ®*(, X0) — PFP*(-, Xo)
=div’((A — A))D*(-, X0)).

We are thus lead to consider the problem
P*v=div’g in (1o — T, 1) x RY, v(t,-)=0 on RY, (3.7)
where T > 0 and
g:=(A— A, )P, Xo).
By a straightforward computation using (3.5) and (3.6), for p € (0, %), we have
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fo

T
/ / lg|” dxdt < |A — Ay % / / (Cot_d/Ze_KOI"'z/t)pdxdt

to—T R4 0 R4
T
- ||A—Axo||é’oc{)’/td/2*dp/2/fd/zefkop‘xlz/’dxdt
0 Rd

T
2+d—d,
S Ry F i
R4 0

where C = C(d, A, A, p). We just proved that

geL,((to—T,10) xRY), VT >0, ¥pe (0, L) (3.8)

Therefore, for 1 < p < %, by Lemma 2.2 there is a unique L, solution v of the problem (3.7).

By extending v = 0 on (fp, 00) x R? and letting T — 0o, we may assume that v is defined on
the entire R4+,

Lemma 3.3. Let v be as above. The function T*(-, Xo) defined by
(-, Xo) = v+ @*(-, Xo)
is the fundamental solution of P* with a pole at Xo = (tg, x0).

Proof. For any f € CS"(R‘”I), fix a T > |fy| such that (=T, T) x R? contains the support
of f.For p' > %, letu Wl;z((—T, T) x R¥) be the solution of the problem Pu = f with
u(—T,-) =0. Then, by (3.7) we have

[ [or=[ [oru= [ [

—TRd —TRd —TRd
T T
://tr((A—AXO)QD*(-,Xo)Dzu)z//CD*(-,XO)(Pou—Pu)
—T Rd —T R
T T T
=//<D*(',X0)Pou—//CD*(',Xo)f:u(Xo)—//<I>*(',Xo)f,
—T R4 —T R4 —T R4

where in the last equality we use the fact that ®*(-, X) is the fundamental solution for PJ.
Therefore, we have

T
M(Xo)Z//F*(-,Xo)fZ / (., Xo) f, (3.9

—T R4 Rd+1
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which means that I'™*(-, X¢) is the fundamental solution for P* with a pole at Xog. O
Noting that I'*(s, y, 7, s) = 0 for t < s, we actually proved the following.

Proposition 3.4. For p > T2 and f € L,((19,11) x RY), if u € Wy (19, 11) x RY) is the solu-
tion of Pu = f in (t9, 1) X Rd satisfying u(to, -) = 0, then we have the representation formula

t
u(t,x) =//1"*(s, v,t,x)f(s,y)dyds.

1 R4

3.2. Pointwise bound for the adjoint fundamental solution

Let Ry > 0 be fixed but arbitrary. We shall show that there exists a constant C depending R
aswellasond, A, A, and w’fA such that we have

IT*(X, Xg)| <C|X — X0|_d for all X satisfying 0 < |X — Xo| < Rp. (3.10)
Define g; and g, by setting
g1 =¢0(A—A)P"(, Xo) and g =(1—0)(A—A)P"(, Xo), (3.11)
where ¢ is a smooth function on R?*! such that
0<¢<1. ¢=0in Qr(Xo). ¢=1nR™ N\ Qsr(Xo). |Dsl<4/R,
and R > 0 is a constant to be fixed later. Since ®*(-, X¢) vanished on (z9, 00) x R?, we see that
gi=g=0 on (f,o00) x RY. (3.12)

Also, by (3.5) and (3.6), there is a positive constant C;y = C(d, A, A) such that

|®*(X, X0)| < ColX — Xo| ™%, VX # Xo. (3.13)
In the following lemmas, we show that g € L, for p; > M and gy € Ly, for1 < ps < ;’2
Lemma 3.5. For p > d+2 , there is a constant C = C(d, \, A\, p) such that
gl Rty <CRT . (3.14)
For1<p< d+2 , there is a constant C = C(d, \, A\, p) such that
2R 1/p
) (5) d+2 _
lg2llr, ra+y = C ds R» ~°. (3.15)

0
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Proof. Note that [|A — A, [l < C(d, A). Therefore, if p > <52, we get from (3.13) that
0
/|g1|f’scz |1X — Xol~* dX
Rd+! k=00 11 p (XO\ Qo  (X0)

oo
S C Z(sz)fdp(2k+1R)d+2 S CRd+27dp.
k=0

When 1 < p < €52 by (3.12), (3.13), the properties of ¢, and (3.1), we have

o
[rer=cy / A — Al [X — Xo| % dX
k=0

R+ 05k (X0ONQ  (X)
o
<CY @ Ry~ / IA— Ayl
=0 0} 4, (X0)
o 2kR
—k py—dp 41—k prd+2 w, (5)
<CY @ Ry @R —Ads
k=0 0 §
[} 2R X 2R «
< CZ(z—kR)d+2—dp / a)A—(s)dS < CRd-‘rZ—dp / a)A—(S)dS
k=0 0 N 5 N

and the lemma follows. O

Let v be the solution of the problem (3.7). Fix p; € (%, oo) and pr € (1, ddiz) and let
v; € Ly, ((t0 — Ré, tg) X Rd) be the solution of the problems

P*v; =div’g in (to — R}, 10) x R,  v;(f0,-) =0 on R, (i=1,2).

Then by Lemma 2.2 together with (3.14) and (3.15), respectively, we have

d+2 —d
101l (o—R2.0)xRY) < CRET/P! (3.16)
and
2R 1/p2
wy (r)
A d+2)/pa—d
”02”141)2(,0_133’[0))(]1@?) <C / . dr R . (3.17)
0

We note that the constant C in the above depends on Ry as well as on d, A, A, p1, p», and a)g.
By the same computation as in (3.8), we find gy € L, ((fo — Rg, 1) x R?) as well, and thus
v € Ly, ((to — Rg, 10) x R%). Therefore, by the uniqueness, we see that
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V=v] + V).

We extend v; and v, by zero on (ty, 00) X RA.
Now, for any fixed Yy = (sg, yo) with 0 < |Yp — Xo| < R, we take

R = 1Yo — Xol

and estimate v1(Yp) and v2(Yp) by using Lemma 2.3 as follows:

R +
X (r, Y
lv;(Yo)| < C ][ |v[|+C/Mdr, i=12). (3.18)
r

03 (Y0) 0

By Holder’s inequality, (3.16), and (3.17), we have

il =cR D, < cR

03z (Y0)
R 1/p2 (3.19)
][ v2] < CR™D/P g, < CR™ / ‘”AT(’)dr
07z (Y0) 0

Lemma 3.6. Suppose R := %|Y0 — Xo| > 0 and let n be a Lipschitz function on R4+ such that
0<n<land|Dxn| <4/R. Set

g=1(A — Ay) P (-, Xo).

Then, for any r € (0, R] we have

.
- r [ @}(s)
wy(r, 03 (Y0)) < CR™ wz(r)+E/ATds ,
0

where C =C(d, 1, A).
Proof. Let us denote
Qo (X) = o(t, x) = O*(1, x, 19, x0) = P* (X, Xo).
For Z = (1,£) € 07p(Yp) and 0 < r < R, we have
f lg—g 1= ][ ‘H(A —A)Po— (n(A— Axo)q’o);,

0, (2) 0, (2)
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———X
= @A - E=ALT, o)
0, (2)

R — —_——X
+ ][ (A=A, 1%0 — (A= Ando), |
0, (2)
=1+11I.

Note that by the triangle inequality, | X — Xo| > 2R for any X € Q,7(Z) and thus, we have
|@0(X)| + R|D, o(X)| <CR™, VX e Q;(2), (3.20)

where C = C(d, A, A). Here the bound of D, ®((X) is due to the fact that A, only depends on
t. See (3.13) and (5.1). Therefore, we have

1< ][ A~ A~ BA| 90l
07 2

< ][ CR‘d‘A—AX,, < CR™ (). (3.21)
07 2

Also, we have

1= ][ ][(A(t,y)—Axo(t))(n(t,x)%(t,X)—n(t,y)CDo(t,y))dy dxdt
07 (Z) Br)

< ][ ][IA(t,y)—Axo(t)lIn(t,X)Cbo(t,x)—n(t,y)fbo(t,y)ldydxdt- (3.22)
05 (2) Br (&)

By using (3.20), and the properties of n, for (t,x) € @, (Z) and y € B,(§), we have
In(t, x)Po(r, x) —n(t, y)Po(t, y)I

< In(, )| |Po(t, x) — Po(r, V)| + |9t x) — 0, y)| [Po(z, y)
<CrR 'y cu/RMR 4 <CrrR4". (3.23)

Plugging (3.23) into (3.22), we obtain

11 <CrR™4! ][ IA(1,y) — Ay, ()| dydt.
0, (2)

We claim that
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][ A1, x) — Ay, (1) dxdt < C Rw"}(r)Jr/wA(s) ds | | (3.24)

s
0r(2) 0

where C = C(d, 1, A). Assume the claim for now. Then, we have

.

R X X

I1<CrR—! ‘“A(r)+/wA(s) ds | . (3.25)
r S

0

Combining (3.21) and (3.25), we have (recall r < R)

,
X (s
w§(r.Z) <I+11 <CR™ [ wi(r) + r / ﬁds
R )
0
The lemma is proved by taking supremum over Z € Q2+ r(Y0).
It remains to prove the claim (3.24). Note that we can choose a sequence of points xp, x2, ...,

xy in R with xy = £ so that |xj_; — x;| <r fori=1,..., N and

N =T[7R/r] <8R/r. (3.26)

Then by using the triangle inequality, we have

A 0) = Ay (D] < JAG ) — AL O+ DA () = A% (O] + A% (1) — Ay (D).

3.27)
Note that by (3.4), we have

7[ A%, (1) = Ay (D] dt < c(d) / AW, (3.28)

Also, by averaging the following triangle inequality

AL () =A% ()] <IAGx) — AL (O] + AGx) — A% (0]

over x € B, (x;j—1) N Br(x;) and using |x;_1 — x;| <r, we find that

IAY (=A% (D] <cd) ][|A(t,x)—1_&§i’r(t)|dx+ ][ A(t,x) — A% (D)|dx

- (xi) By (xi-1)
Then, by averaging the last inequality over ¢ € (r — r2, 7), we get
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][|A§i,,(t)— X L0ldt <ca(r), i=1,...,N. (3.29)

Finally, averaging the inequality (3.27) over X = (¢, x) € Q, (Z) and using (3.28), (3.29), and
(3.26), we obtain

X0

from which (3.24) follows. O

Applying Lemma 3.6 with n = ¢ and n = 1 — ¢, respectively, we get

R + R R r
/Mdr<CR—d /wA<r) 1//wA<s)
- <
0

0 0

R
SCR*d/wA—(s)ds. (3.30)

N
0

Putting (3.30) back to (3.18) together with (3.19), we get

2R 1/p2 R
lv1 (Yo)| + [v2(Y)| <CR™ | 1+ /@ds +/@d
0 0
Ro «
<C 1+/wAT(s)ds R4 <CR™. (3.31)

0

Therefore, by using (3.31) and recalling that v = v 4+ v2 and R = §|X0 — Y|, we have
[v(Yo)| < C|Xo — Yol ™, (332)
where C = C(d, A, A, w}, Ro). Since
I (Yo, Xo) = ®* (Yo, X0) + v(Yo)

and Yy satisfies 0 < | Yy — Xo| < Ro, the estimate (3.10) follows from (3.32) and (3.13).
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3.3. Construction of fundamental solution and the symmetry relation

We shall prove that the function I'(¢, x, s, y) given by the formula (1.2) is the fundamental
solution for the operator P.

For Y = (s, y) € R%*t! and ¢ > 0, we first construct the approximate fundamental solution
I'c (-, Y) by following the strategy in [2]. Let u = "¢ (-, Y) be the solution of the problem

1

. 2 d 2 d
U=——x,- in (s—¢e,s+7T) xR u(s—e,-)=0 on R%, (3.33)
105 (¥)] 0™

where T > 1 is fixed but arbitrary. By setting I’z (-, ¥) = 0 on (—o0, s — £2) x R? and letting
T — 00, we extend the domain of I’z (-, ¥) to the entire R4*!,
Then by Proposition 3.4, we have

r.(X,Y)= ][ r“(zZ,X)dz. (3.34)
Qs (Y)
We conclude from (3.34) and (3.10) that forany X, Y € R4 with 0 < |X — Y| < Rg, we have
T(X. V)| <CIX-Y[™, Vee(0, 11X -Y]),
where C is a constant depending only on d, A, A, wz, and Ry.

We construct fundamental solution for the operator P by modifying the method in [2]. Let
Y=(s,y) € R4+ be fixed. For any T > 1, let us denote

RIT' =(s—T,s+T) x RY.

The following two lemmas are the adaptation of Lemmas 2.13 and 2.19 in [9] to the parabolic
setting.

Lemma 3.7. Let p € (1, 00). For any ¢ € (0, 1), we have
/ T (2, x, 5, Y)|Pdxdt < Cr=PaF4¥2 vr >0 when p>(d+2)/d, (3.35)
R$TNOQ, (1)

/ O Tet, x5, )7 + DTt x, 5. )P dxdi
RITNQ, (V)

< Cr@G-D_ vy, (3.36)
where C=C(d, A, A, p, T, @}).

Proof. We first establish (3.36). It is enough to consider the case when r > 4¢. Indeed, if r < 4¢,
then by (2.3), we have
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/ 19:T(X, Y)|? + |D’Te(X, Y)|P dX < Ce~{@TDP=D < ¢p =@+ (=),
R;{+l
Forge C¥ (]R‘;+1 \@,(Y)), letueLy (R‘;H) be the solution of the problem
Pru=div’g in RS, wu(s+7T,)=00nR?,
where ¢ = p/(p — 1). Then by (2.2) we have
][ u= / tr(gD’T (-, Y)). (3.37)
Q- (v)  R4H

Since g=01n Q,(Y), we see that u is continuous on Er/z(Y) by [3, Theorem 3.3]. Note that
if Ze Q. (Y), then Q:'/2(Z) C Q,(Y). It follows from Lemma 2.3 that

lall o = Cr ™l o 2y = €7 ullLaco, 000 (3.38)

Therefore, by Holder’s inequality and Lemma 2.2, we have

_d+2 _d+2 _d+2
”u”Lw(QQ(Y)) <Cr ¢ ||M||Lq(Qr(Y)) <Cr ¢ ”M”Lq(]R‘frl) <Cr 1 “g”Lq(]R‘;“)'

Since g is supported in R‘;‘Ll \ O, (Y), by (3.37) and the above estimate, we have

2 _d+2
/ tI'(gD FS('v Y)) SCV g ”g”Lq(]R‘;“\E,(Y))'

40, (1)

Therefore, by duality, we have

|D§l"g(t,x, s, Y|P dxdt < Cr~@+2(r=1,
R{TNQ, (1Y)

Then the estimate (3.36) follows from the last inequality and the fact that PT';(-,Y) = 0 in
R\ Q,(Y).

Next, we turn to the proof of (3.35). Again, it is enough to consider the case when r > 4¢
because by (2.3) and the parabolic Sobolev embedding, we have

ITeC, Y, gty < CITeC V) —AHAED/P < CpmdHdtDp
4 T

2 a1, < Ce
p(d+2)/(d+2+2p)(RT )

where in the last inequality we used the fact that —d + (d +2)/p < 0. For f € C° (]R‘;+1 \
0,(Y)),letu e Lq(R‘;H) be the solution of the problem
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Pru=f in RS, u(s+T,)=00onR".

Then by (2.2) we have

][ U= / (Y. (3.39)
0:(v) R

Similar to (3.38), for Z € Q_ (Y), we have
Il oo,z = Cr ™ P llLycorry- (3.40)
Let v be the solution of
—dv—Av=f in RET" w(s+T,-)=0 on R

By the L, estimates (cf. (2.3)) and the parabolic Sobolev embedding, we have

< <
”v||Lq(d+2)/(d+27q)(R?+]) = C||U||W{]1,2(R(;+1) = C”f”Lq(R‘;'H)‘

Note that w = u — v satisfies
P*w=—div’*(A —Dv) in R, w(s+7,)=0 on RY.

Therefore, by Lemma 2.2 and the last inequality, we have

n L < ClIA ~Tlllvl, ) S CIS N, gy

w d+1 d+1
”Lq<d+z>/<at+z—q>(Rr+ 4@+ d+2-q) RE

which in turn implies that

R‘ﬁr‘)"'”w”[‘ )fC”f”Lq(RI;“)-

<v
10 Lz amay R S WML ) i @12 /@r2-g R

Then by (3.40) and Holder’s inequality, we have

Cr7d+(d+2)/P||u||L )y =< Cr7d+<d+2)/p||f||[‘

lellz 07 vy = q(d+2)/(d+2-29)(Cr (Y) JRETD”

Therefore, it follows from (3.39) and the assumption that f =0 in Q,(Y), that

—d+(d+2)/ _
fFE('a Y)|<Cr p||f||Lq(RdT+]\Qr(Y))'

770, (1)
Again, we obtain (3.35) from the last inequality by duality. O
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Lemma 3.8. For any ¢ € (0, 1), we have
d+1 . —dx2
“(t,x) e RS |Le(t, x, 5, ¥)| >a” <Ca 4, Ya>0,
H(t,x) € RE 9, Te (2, x, 5. 9)] + | DTt x, 5. y)| > a” <Ca~!, Va>o0,

where C =C(d, 1, A, T, w}).
Proof. These follow from (3.35) and (3.36), respectively. See the proof of [2, Lemma 3.4]. O

With Lemmas 3.7 and 3.8 available, one can modify the argument of [2] to construct the
fundamental solution I'(X, Y) for the operator P out of the family {I"¢ (X, Y)}. We claim that for

any p € (1,00),r >0,and T > 1, we have

sup [T (-, V)l

O<e<l

wi2RENG, (v)) < 400. (3.41)

Indeed, by using the fact that I';(s — 7, -) = 0, it follows from the Poincaré inequality and
Lemma 3.7 that

s+T s+T
/ / |Fg<t,x,s,y>|”dxdrsc/ / 9T (6, %, 8, ) [P dxdi < C,
s=T R4\B,(y) s—T R4\B,(y)

where C is a constant that depends on the parameters including p, r, and T but is independent
of €. Then, by the interpolation inequality, we have

s+T

/ / |DyTe(t, x,s, y)|P dxdt

S=T RIN\B,(y)
s+T
gc/ / ITe(z,x, 5, 9)|P + |D>Te(t, x, 5, y)|” dxdt < C.
S=TRIN\B,(y)

Let n = n(x) be a smooth function such that
0O<n=<1l, n=1in B (y), n=0inR'\By(y), [Dyl=<2/r.

We apply the Poincaré inequality in the space variable to nD,I'(-,-,s,y) on I X Ba.(y) for
I=G6-=T,s—rHand I =(s+r%s+T), separately, to get

//IDsz(t,x,s,y)lpdxdtSC/ / |D2T:(t, x, 5, y)|P dxdt

I B.(y) I By (y)

+Cr7p/ / |D,Te(t,x,s, y)|Pdxdt <C,
1 BZr(y)\Br(y)
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and similarly with nI"(-, -, s, y) in place of nD,T'(:, -, 5, ), we get

//|F€(t,x,s,y)|pdxdt§C/ / |DyTe(t, x,s, y)|P dxdt

I B,(y) I By (y)
—I—Cr_'"/ / ITe(t, x,s, y)|P dxdt <C.
I BZr(y)\Br(y)

Combining these together, we obtain (3.41). Therefore, by applying a diagonalization process,

we see that there exists a sequence of positive numbers {¢; };’i] with lim; _, o0 &; = 0 and a function

['(-,Y) on R4\ {Y}, which belongs to W;’Z(R?H \ 0,(Y)) forany T > 1 and r > 0, such
that

Te (-, Y) = T(-, Y) weakly in W, >(REF1\ 0, (Y)). (3.42)
On the other hand, Lemma 3.8 implies that for 1 < p < ddiz, we have

sup [T (s Y)”Lp(ar(y)) < +o00,

O<e<l

which together with (3.41) implies that

sup [IT (-, Y)”L,,(R‘;“) < +o0.

O<e<l

Therefore, by passing to a subsequence if necessary, we see that
e, (-, Y) = T(,Y) weaklyin L,(RET, Vpe(l, L2).

Finally, from (3.42) and (3.33), we find that I'(-, ¥) belongs to W, *(R%+!\ 0, (Y)) and satisfies

PT(-,Y)=0in R4\ Q,(Y). Since we assume that A belongs to DMOy C VMOy, we see that
for any r > 0, ['s(-, Y) is locally uniformly continuous in R?*!\ Q,(Y) for sufficiently small
&’s, with a uniform modulus of continuity. Thus, by the Arzela-Ascoli theorem and passing to
another subsequence if necessary, we see that

I, (-, Y) = I'(-, Y) locally uniformly on R \ O,(Y), Vr>0.
Recall that I'*(-, X) satisfies
P*T*(-, X) =0 in R\ 0,(X) forany r >0,

and thus by [3, Theorem 3.3], we see that I'*(-, X) is continuous in RA+! \ {X}. Therefore, we
obtain the identity (1.2) by taking limit ¢ — 0 in (3.34).

Note that we have just shown that I'(X, Y) is continuous in R4*! x R4*! away from the
diagonal {(X, X): X € R4*1}. The property that I'(¢, x, s, y) =0 for < s follows from the fact
that T, (¢, x,s,y) = 0 if t <5 — &2. Also, it follows from [3, Theorem 3.2] that D2T'(-, ¥) is
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continuous in R4+1 \ {¥} and that 3, I'(-, ¥) is continuous in R4+ \ {Y} if A is continuous. We
obtain (1.3) immediately from (3.10). O

4. Proof of Theorem 1.3
For the sake of simplicity, let us assume that ¥ =0 and T = 1. Also, let us denote
u(t,x)="I(,x,0,0).
In Section 4.1, we first show that u(¢, x) has the exponential decay
Ju(t, x)| < Cot ="/ exp(—kolx| /1)

for some kg > 0 and C¢ > 1. Then in Section 4.2, by using the semigroup property

', x,s,y)= / e, x,t,8)(r,&,s,y)dé, for s <t <t, “.1)
Rd

iteratively with appropriately chosen time steps, we establish the almost Gaussian estimate (1.4).
4.1. Exponential decay of the fundamental solution

Fork=1,2,...,let ny = ni(x) be a smooth function in R4 such that

M =0 in Bi(0), mr=11in R\ Bi11(0), [IDnllec <2, [D*nllec <4

Let v=ue ", where u > 1 is a constant to be specified. Note that
Vg = (1, x) := e (x)v(t, x)
satisfies
Pu + pvg = fi := —2a" Ding Djv —va" Dijmg in (0,1) x R, v(0,-) =0 on RY,
Let us denote
By = By(0), Bf =R\ By (0).
By the W;’z—estimates (see, for instance, [13]), we have
IRl 0.1y xRy + v/ BI Dkl L 0,1y xRe) + ||D2Uk||L,,((o,1)de)
< Noll fillL,0.1yxRd) < No 1DV Ly (0.1) % Bes 1\ Be)) + I1VI1L, (0.1 (Biy1\Be))) -
where No = No(d, A, A, p, a)[’;) is independent of . On the other hand, note that
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lvllz,«0.nx8g, ) F DL, 1xB, ) = 1kllL,0.1)xRd) + 1DV L, (0.1)xR4)-

Combining the last two inequalities, we have

Ivllz,.nx8g, ) + I1DVIL, 1B, )

1
< Noi™ 2 (0112, (0, 1)x Bis1\ B + IDVIIL, (0.1 x (Bes1\Be)))

< Nou™ 2 (||U||L,,((o,1)x3,§) + ||DU||L,,((0,1)xB,§)) . 4.2)

Taking 1 so large that Nou~'/? < 1/2 and iterating on k = 1,2, 3, ... in (4.2), we get

iz, 0%, ) FIDVIL,1)xBE, )

<27k (01120, 1)x (B\BY) + 1DV L, (0. 1) x (B\B1Y)) < c27% 4.3)
fork=1,2,3, ..., where we used the local W;’z estimate and the pointwise estimate (1.3) in the
last inequality.

Then, by using (4.3), the fact that Pu =0 in (0, 1) x R4, and (1.3) we find that there are
constants Cy > 1 and «( > 0 such that

[u(l,x)] < Coe 0 vx e RY. (4.4)

We remark that in the proof of (4.4) above, we;_only used the bound (1.3) with ¥ = 0.
Notice that for € € (0, 1], if we set # and a'/ by

u(t,x)= 8du(82t, ex), al(,x)y=ad" (82t, £x),

and define the operator P by

Pu = 3;1/7 — le]Dijﬁ,

then it is easily seen that u(f, x) satisfies Pii=01in (0,1) x R and that i satisfies the bound
(1.3) with Y =0, i.e.,

lii(t, x)| < Cmax(v/1, [x)™7.
Since 0 < € < 1, we can keep the same the constants Cy and «q in (4.4) for # and obtain
IT(2,x,0,0)| = ¢|e%u(e?, ex/e)| = e~ iu(1, x/e)| < Coe~de 0II/e, 4.5)

Also, since translation does not alter the constants ko and Cy in the estimate (4.5), for any x,
yE R and s € R, we have

ol
IT(s + 62, x, 5, y)| < Coe— e 0" Ve e (0, 1]. (4.6)
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4.2. Almost Gaussian estimate

For (t,x) € (0,1] x R4, let N = N(t, x) > 1 be an integer to be chosen later. We partition the
interval (0, 1) into N subintervals of equal length 7/N?. Let us denote

t;=j@/N%, j=1,2,...,N2

By using (4.6) and (4.1), we have

F(tj+1,xj+1,0,0)=/F(tj+1,xj+1,tj,xj)F(tj,xj,O,O)dxj.

Rd
Inductively, we have
N2-1
F(th,xNz,O,O)Z/-”/ 1_[ F(t.,'+1,x.,~+1,tj,x.,)F(tl,xl,O,O)dxl~~-dez,1.
R4 R4 j=1

Therefore, by using (4.6) with ¢ = /t/N, we have

N? N%-1 I
C Nd _ Nixjypp—+jl _Nixgl
IT(ty2, xp2,0,0)] < [ -2 O T eV dxy - daye
N N 1d/2 N-—1
(Rd)Nz—] j=1
2 2
N4 =0 X0 yjl=wo| exya =Ny
SCévz(W> / e T RN Ty oy,
(R4)N?-1
“.7
where we used the change of variables
N N ) 5
y1=$xu yjzﬁ(xj—xj_l), j=2,...,N°-—1.
By the triangle inequality, for any (y1, ..., yy2_1) € (Rd)Nz_l, we have
N2-1 N2—1 N2-1 NZ-1
N N N
Zmﬂ—x— > yil= Z|yj|+‘—x 1Y vi| = =kl (4.8)
j=1 Vi j=1 j=1 Vi j=1 Vi

Forn=0,1,2,...,letus denote

N N N N2 N
Q, = R _ eRsz_l:n—x< il<m+1)—|x]|, = —x
p =101 yy2y) € (RY) 7 |_;|y,| (n+ 1)=Ix] ;y, 7
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If (y1, ..., yn2_1) € 24, then we have

N2-1 N2—1

N
;ijlJr‘ﬁx— ]2:; yj

N2 N
=) |yjl=zn—Ix|. 4.9)
L=

Notice that d(N? — 1)-dimensional Lebesgue measure |£2,| is bounded by

d(N?-1)
|2, < (2(n + 1)$|x|) (4.10)

and Qo =40.
By taking x,2 = x and decomposing the last integral in (4.7) into the sums of integrals over
2,,, we obtain from (4.9), (4.8), and (4.10) that

N2 Nd KONH Kon
0, x, 0,00 = Co" (75 ) (e f|91|+Ze 1

n=2

2
2N \4N D d(N2—1) d(N?~1) ,~K0(n— l)N‘X‘
o (B e

@11

By the integral comparison, the binomial formula, and Stirling’s formula, we have

0 0o N1 00
Yt e < B / (s +3)e ™ ds = /(s +3)ke ¥ ds
n=2 n=2%", 0

m=0 m=0
k k k m
m T a 3u
m=0 m=0
k! 1\F & (k\* 1\F
=—<3+—) <Yk (—) <3+—> , 4.12)
o o o e o

where ¢ is an absolute constant. By combining (4.11) and (4.12), we have

271)
1 M oo (4N]x] Y

i N d
IT(t,x,0,0) < —75e c'N ( 7

+co—— d/2 Kof\/d(Nz—l < lel)
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2
2d(N2—1) (3N 1\ 9V D
el (i, 1)

e \/Z K0
) 2_7)
1 Ml o (4N
- 7
Std/ze Cy N NG
2_
OV ¥ (VT v ya [ 24N = 1) NI, 1 di==l)
1d/2 olx|) © e Jt Ko '

4.13)
Let us write £ = x/+/f and take N = [|&|'~%7], where § € (0, 1) is fixed but arbitrary. Note that

61" <N <1§I"° + 1.

Let us consider

A=—kol&P° + (log Co)([&'° + 1)* + dlog(l&|'° + 1)
+d{(E]'"° + 1? = Dlog(d(I&]"~° + D).
B = —rol&[*~° —log(kol&) + (log Co)([&]'° + 1)* + dlog(|&|'° + 1)
+d{(E"° + D7 = DlogQd((E]'° + 1D = DBIEINEN ™ + D) + x5 Ve,

Note that there exist Ry = Ro (8, Co, d, kg) > 1 such that if |€| > Rg, then
A<—BIEP, B=<—pEP,

where 8 = ko/2. Then, it follows from (4.13) that for any (¢, x) € (0, 1] x R4 with |x|/+/t > Ry,
we have

Pt x,0,0 = Cir =P exp (=B(IxI//DP™), where € =Ci(d).

On the other hand, in the case when (z, x) € (0, 1) x R¥ satisfies |x|/+/f < Ry, then we can use
(4.5) to bound I'(¢, x, 0, 0).

In conclusion, we have the following: For any § € (0, 1), there exists C = C(d, A, A, wl’;, 8)
such that

IT(t, x,0,0)] < Ct~42 exp (—ﬂ(|x|/ﬁ)2—5) on (0,1] x RY.

Finally, by translation and the semigroup property (4.1), we get (1.4). O
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5. Proof of Theorem 1.4

Let I'(7, x, 7, §) be the fundamental solution of the operator P constructed in Section 3. Let
y € R? be fixed and let P* be given by

PYu=d,u —d’, y)Djju.

L_et DY (t, x, 7, &) be the fundamental solution of the operator PY. Notice that the coefficients of
P?Y depend only on ¢ and thus one can compute ®Y (¢, x, 7, &) by using the Fourier transform.
However, we do not need its explicit form and will just make use of the following fact. For ¢ > t
we have

Co g
|©y(t,x,f,§)|§me KT

5.1)

C! 1 lx — &2 =g 2
DIOV(t,x,7,8)| < — T,
Dt x. w0l = (t—t * (t—r)2>e
where Co = Co(d, A, A), Cjy = Cy(d, A, A), and ko = ko (%, A) are positive constants.
5.1. Modified parametrix method

Notice that we have

Pr(t,x,7,§) — P®V(t,x,1,§)
=PI(t,x,7,&) — POV (t,x,7,6) + PP OV (t,x,7,6) — PP DV (t,x,7,€)
- _(P - Py)q)y(tvxv Tsé) - (aij(tvx) _aij(tv y))Dijq)y(taxv Tsé)'

In particular, by taking y = £ and setting
v(t,x,7,8) =T, x,7,§) = 9 (1, x, 7, ), (5.2)
we have

Pu(t,x,7,&) = (aij(t,x) —a,-j(t,é))D,-jQE(t,x,r,E).

We shall shortly show that the following representation formula is available:

t
v(z,x,r,s>=//F(r,x,s,yxai,-(s,y)—ai,-(s,s»Di,-cbf(s,y,r,é)dyds. (53)

T Rd
It then follows from (5.3) that v satisfies the relation
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t
U(fsx,Tsf)=//¢}'(f’xs57)’)(aij(s,y)_aij(ss‘5))Dijcbs(s,yvf,§)dyds
T Rd

t
# [ [ ot 3@, - a6 6008 6.y m O dyds. (5
T R4
We note that both integrals in (5.4) are absolutely convergent. See (5.17). The last formula is

reminiscent of the classical parametrix method for constructing the fundamental solutions. First,
we set

t
wo(t,x,f,$)=//CDy(t,x,&y)(aij(s,y)—aij(s,é))DijCD"’%(S,y,T,é)dyds (5.3)
T R

and inductively define for k =0, 1,2, ...,

t
wk+1(t,x,f,$)=//wk(t,x,s,y)(aij(s,y)—aij(s,é))Di,/CDE(S’y,T,?E)dde- (5.6)
T R

Suppose that

w(t,x, 1,6) =Y wilt,x,7.§) (5.7)

k=0

converges uniformly. Then by summing over k =0, 1,2, ... in (5.6), we find

t
w(f,x,f,é'):wo(t,x,f,é)+//w(f,x,S,y)(aij(S,y)—aij(S,E))Dij‘PE(S,yJ,i")dde-

T Rd
Since we also have (5.4), it is plausible that
v(t,x,1,8)=w(t,x,1,8). (5.8)
We shall verify (5.8) after we establish the Gaussian estimate for w.
5.2. Gaussian estimate for w
Recall that we assume A is uniformly Dini continuous in x, that is,
0% (r) = sup {|A(t,x) —AG ) :x,yeRY tER, [x—y|<r }
satisfies the Dini condition
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1
X
/QA—(r)dr<+oo.

r
0

It follows from (5.5) and (5.1) that

t
wo(t, x, 7. )| s//|<1>y<r,x,s,y>||A(s,y> — AGs, 8)[| D2 (s, y, 7, £)| dyds
T Rd
)'\2

/ —KO ; S 1 | $|2 i ly—g]2
// (f—S)d/z(S )d/ng(b) $|)( g + (y ‘L')2> 05— dyds (59)
T R4

Since ) is increasing and by the triangle inequality, we have

0x(r1 +12) <0y (r1) + 0y (1), Vri, 12 >0,
it follows that

QZ(Iy—%‘I) QA(Vs—)
ly—&1 —  Js—1

Therefore, in the case when |y — £| > /s — T, we have

for |y —&|>+/s —T.

ELAPS QA<J—s—r><|y—s|2>%<l+|y—s|2>_

T (s—1)2 s—T s—T s—T

1
quy—sn(s_

On the other hand, if |y — &| < +/s — 7, then we have

L= Slz) QA(Vs—r)< Iy—élz).

. 1
oy —&D) (S —t oo

S—T S—T

In both cases, notice that for any K(/) € (0, kp), there is a constant C; = C(xo, K(’)) > ( such that
we have

1 2
ok (y — D) (sf - u) o

T (s—1)2

QA(V )

(5.10)

We recall the following identity, which is a simple consequence of the Fourier transform: For
T <s <t,wehave

1 — ey 1 — =t dy— — = 2 1
(—oant T Gopant T =CrT e T G.1D)
d

where
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Cy= /e—K()IyIZ dy = (ﬂ/K(/))d/2_
R4

Therefore, by plugging in (5.10) into (5.9) and using the identity (5.11), we get

QA(\/S—‘E) / o = 1 o b=t
1,x,7,8)| < CoCyC o= o= dy | d
lwo(t, x, T,8)| < CoCy 1/ T (t—s)d/2 ' (s—‘c)d/2 Y|
T
t
X sS—T 1 ; |x—¢&
< c()c(’)clcz/gf"(;_t ) as P~ i (5.12)

T

Note that

S§—=T

t Ji—t
/QA(«/s—r_) sz | o)

Let gg € (0, 1) be to fixed later. Take §p > O such that

80
2C)C) / ds <ep. (5.13)
0
Then we find from (5.12) and (5.13) that
1 _ ot =t . >
lwo(t, x,7,8)| <e0Co———75€¢ 0 == provided 0 <t —1 < 4. (5.14)

(t — -L-)d/z

Now using (5.6), (5.14), and (5.1), we get
t
w1 (%, 7, 8)] < //|wo<r,x,s, WIAG. y) — Als, &I D0 (s, v, 7, &)| dyds

T Rd
x—y[?

CoCle 0= 1 P
80//(r—s)d/2<s )d/zQA('y_é')<s—r+(s—r>2>e dvds.

By using (5.10) and repeating the same computation as in (5.12), we get

1 / lx—&[?
lwi (7, x, 7, 6)| < sgcome—% = provided 0 <7 — 7 < 82.

Inductively, we have
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/=g

lwi (t, x, T, 8)| §£§+1C0 %o 7=  provided0 <t —t 583.

(i — T)d/z"’

Then by (5.7), we have for 0 <t — 7 < 88 that

w(t,x,7,86)| < i RPN = S L L e = S PN
wll,x, T, = £ ¢ — < — ¢ — .
=" Y-y 1—go (t—1)¥2
5.3. Verification of (5.3) and (5.8)
We shall prove (5.3) first. Let us denote
f(s,y) = (aij(s, ) — aij(s, ) Dij D5 (s, y, 7, £).
Notice that in deriving (5.12), we have seen that
AWs—1T 1 s ly=£2
Ilfs,n=C QA(S g ) (s — )i IO (5.16)

Write Z = (t, ) and let ¢ be a smooth function on R4*! such that
0<¢=<1, ¢=0in Q;p(2), ¢ =1nR™N\Q.(2), |8,¢|+ D¢ +|D*| < Cr72,
where, 0 <r < %(t —1). Then, v = ¢v(., -, T, &) satisfies
Pi=¢f +vP¢—24"DivDj¢ in (r,1) x RY,  #(z,-) =0 on R

Notice that {f + vP¢ — 2a’.le~qu,~§ € L,((t,1) x R?) with p > (d + 2)/2. Therefore, by
Proposition 3.4 and the symmetry relation (1.2), we have

t
v(t,x,t,é):f)(t,x)=1+111=//F(fvxs&Y)g(SaY)f(SaY)dyds
T R4

b [ s [Peeiyuei e 2 Dic6, D6y )| dys.
Qr(Z2\Qr2(2)

We claim that /1 — 0 as r — 0. Assume the claim for now. By (5.16) and (1.4), we see that [ is
absolutely convergent, that is,

t

//Il“(t,x,s,y)f(s,y)ldyds

T R4
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t+r
2 t

://+//|F(t,x,s,y)f(s,y)|dyds<+oo, (5.17)

T Rd t-i—Tf]Rd

and thus we obtain (5.3) by the dominated convergence theorem applied to /.
Now, we prove the claim that /7 — 0. For ¥ = (s, y) € (1, 1) x R, let

F=1iY -2Z|
We set § = ar, where o > 1 is to be specified. Recall that
V(s 7. 7. 6) =Ty, 7.6) = P (5,3, 1.6) =T (1.6.5,3) — () (1,5, y),
and note that
VR =0t () =Ty, — (s, y, ) (5.18)
satisfies
P*v* =div}((A — A9)®g) in (r —1,5) x RY,  v¥(s,) =0 on R,
where we set
Ao=A)()=A(,€) and Bg=do(,-) = (®)*C,s,y).
Let £ be a smooth function on R4*! such that
0<{<1 §=0in Qo). ¢=1nR™N\Qs¥). |DII<4/s,
and define g; and g> by (cf. (3.11))
g1={(A-A)P) and g =(1-)(A Ay

Noting that ||A — KO”oo < C(d, A) and using (3.13) and properties of E we have

o0 o0
/ gl <Y / g1 T <CY @ <05 (519)

RU+ k=00 s (N Qi1 (1) k=0

Note that we have

A — Kol <04 (8) + 0} (57) < (@ + 6)Q} (F) in Qs(Y),

and thus we have

d+1 d+

d+l X o~y d+1 X 1
/ 821 < (@ +6)a4®) T / g2l < C (@ + 6L )T 5. (5.20)
Rd+1 05(Y)
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Let v; (i =1, 2) be the solutions of the problems
P*vj=div’g in (t —1,5) xRY, vi(s,)=0o0n RY (i=1,2).

We extend v and v, to be zero on (s, 00) X R, By Lemma 2.2 together with (5.19) and (5.20),
we have

_d N
”vl||L2(d+2)/d((t*1,s)><Rd) < Cé2 and ”v2||L(d+l)/d((f*1sS)><Rd) < C(Ol + 6)QZ(V)(S‘1+1 . (521)

By (3.8), we see that both vy and v; also belong to L ,((t — 1, 5) x RY) for any p € (1, (d+2)/d).
Therefore, by the uniqueness, we have

v = + ;. (5.22)
We now estimate v{(Z) and v>(Z). By using Lemma 2.3, we have

;X~+~Z
Iw@NSC‘f|m+C/Y3&%EL2ﬁ (=12 (523)

03.(2) 0

Using (5.21) together with Holder’s inequalities, we have

~_d ~_d _d
< 2 < 2 2
][ il = €72 Mvill 1) a0 (20) S CF 2072,

03:(2)
(5.24)
<C”*% <ci 6 7 X (7
lvz| < Cr ||v2||L(d+1)/dQ;r;(Z))_ F=% (o + 6)a a1 gy (r).
01.(2)
By using the bound of ®, we have
wy (F, 03:(2)) <C(d, 1, AF o5 (D), VYie(0,F] (i=12). (5.25)

By combining (5.22), (5.23), (5.24), and (5.25), we obtain

.
t -
v 2) < i~ [t Al

’

;
d -
+ (a0 + 6)a T+ o) (F) +/
0

where C is a constant independent of 7. Recall that |Y — Z| = 57. Now for any ¢ € (0, 1), we can
take o > 1 sufficiently large and then 7 sufficiently small such that

W (2) <ely — 2z (5.26)
Therefore, we conclude from (5.26) and (5.18) that for all small » > 0,
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rus, y, T, &) = 0(r), V(s,y) € 02,(2)\ Q,4(2),

where we use o(r) to denote some bounded quantity that tends to 0 as r — 0.
To estimate Dv, we use the equation Pv = f. Notice that

If(s, )] < Col(ly —EDIZ = Y7972 < CoX(r)r 472 in Q2,(2)\ Qra(Z).

Therefore, by using (5.26), the local W;’Z estimate

218,00, 7. &)1+ P2ID2uC, - 7. &)+ 71Dy T 8|

Lp(Qr(D\Qyr2(2))

<ClIvC - T L, 00 200 a2 + CrP I F L, 0 20\0 a2y, P >d+2,

and the Sobolev embedding, we have

ritDu(s, y, 1,8 =0(r), V(s,y) € O (2)\ Qr2(Z). (5.27)

Therefore, by using (5.26), (5.27), and the properties of ¢, we get I — 0 as r — 0, which
completes the proof of (5.3).

To show (5.8), we invoke the contraction mapping theorem. For (¢, x) € Rt let B =
Li((t — 82,1) x RY), where & is as in (5.13). We shall show that the mapping T : B — B
defined by

t
Tu(‘c’g):wo(t7xsr9s)+//u(svy)(aij(s7y)_aij(s9s))Dijch(s1y7ng)dyds
T Rd

is a contraction. Indeed, by (5.14), (5.10), Fubini’s theorem, and (5.13), we find that

t t
//|Tu<r,s>|d5drs//|wo<r,x,r,s)|dsdr

-8 R4 1—83 R4
ORIy —ED 1y =P bt
////|u( N (= e or)¢ " dydsdédt
— SZR‘{ T ]Rd
c 0= e
sCo—an )d/2 — dédr
— 62]Rd
Js— c/\C | e
(s, )| QA( i t) 0=l "= gedrdyds
(s—t)d/2
-8 Rd 1—82

589



H. Dong, S. Kim and S. Lee Journal of Differential Equations 340 (2022) 557-591

t
< £0CoC283 + &0 / /Iu(s,y)ldyds-
t—38p R4

Therefore, we have Tu € 2 for all u € 2. By a similar calculation, we also find that

1Tuy — Tuzllz < eollur —uzll,

which implies T is a contraction mapping on Z since we assume &g € (0, 1). We now fix g9 =
1/2. Note that it follows from (1.4) and (5.15), respectively, that v € Z and w € %, which
establishes the equality (5.8).

5.4. Conclusion

Therefore, by (5.2) (5.8), (5.15), and (5.1), we find that

s =yl

c
IT(r, x, 5, y)| < me—xo = provided 0 <7 —s <&3. (5.28)

We can take k( = ko/2 in the above and call it k. It is clear that « then depends only on A and A.
By using (4.1) and (5.28), we establish the Gaussian bound (1.5). See e.g., [2, Section 5.5] for
the details. O
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