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ABSTRACT

We consider Stokes systems with measurable coefficients and Lions-
type boundary conditions. We show that, in contrast to the Dirichlet
boundary conditions, local boundary mixed-norm Ls, q-estimates hold
for the spatial second-order derivatives of solutions, assuming the
smallness of the mean oscillations of the coefficients with respect to
the spatial variables in small cylinders. In the un-mixed norm case
with s ¼ q ¼ 2, the result is still new and provides local boundary
Caccioppoli-type estimates. The main challenges in the work arise
from the lack of regularity of the pressure and time derivatives of
the solutions and from interaction of the boundary with the nonlocal
structure of the system. To overcome these difficulties, our approach
relies heavily on several newly developed regularity estimates for
both divergence and non-divergence form parabolic equations with
coefficients that are only measurable in the time variable and in one
of the spatial variables.
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1. Introduction and main results

In this article, we investigate local boundary mixed-norm Ls, q-estimates for solutions to

time-dependent Stokes systems. In particular, we show that for time-dependent Stokes

systems with the Lions boundary conditions (see [1, 2] and (1.2) below), the local

boundary Ls, q-estimates for the solutions hold. Our results are established for a general

class of Stokes systems in non-divergence form with measurable coefficients, so they

could therefore be useful, for example, for studying flows of inhomogeneous fluids with

density-dependent viscosity [3, 4]. Precisely, we investigate the following Stokes system:

ut � aijðt, xÞDijuþrp ¼ f , div u ¼ g inQþ
1 , (1.1)

with the Lions boundary conditions on fxd ¼ 0g :

Dduk ¼ ud ¼ 0 on ð�1, 0��B0
1 � f0g, k ¼ 1, 2, :::, d � 1: (1.2)

The Lions boundary conditions are a special case of the Navier (or slip) boundary condi-

tions introduced in [5]. In the above equations, Qþ
1 is the unit upper half-parabolic cylin-

der and B0
1 is the unit ball in Rd�1: See Section 2.1 for their definitions. In (1.1),
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u ¼ ðu1ðt, xÞ, u2ðt, xÞ, :::, udðt, xÞÞ 2 R
d, where ðt, xÞ 2 Qþ

1 ,

is an unknown vector-valued function representing the velocity of the considered fluid,

p ¼ pðt, xÞ is an unknown fluid pressure, f ¼ ðf1, f2, :::, fdÞ is a given measurable vector-

valued function, and g ¼ gðt, xÞ is a given measurable function. In addition, aij ¼

aijðt, xÞ is a given measurable symmetric matrix of the viscosity coefficients. Throughout

the article, we assume that aij satisfies the following boundedness and ellipticity condi-

tions with the ellipticity constant � 2 ð0, 1Þ : for a.e. (t, x),

�jnj2 � aijðt, xÞninj and jaijj � ��1 for n ¼ ðn1, n2, :::, ndÞ 2 R
d: (1.3)

As a regularity assumption on the coefficients, we impose the following vanishing mean

oscillation in x (VMOx) condition on aij, which was introduced in [6], with a con-

stant d 2 ð0, 1Þ:

Assumption 1.1 (d). There exists R0 2 ð0, 1=4Þ such that for any ðt0, x0Þ 2 Qþ
2 and r 2

ð0,R0Þ, there exists âijðtÞ satisfying (1.3) and
ð

6

Qþ
r ðt0 , x0Þ

jaijðt, xÞ � âijðtÞj dx dt � d for i, j ¼ 1, 2, :::, d:

For the definitions of Qþ
r ðt0, x0Þ and various function spaces, we refer the reader to

Section 2.1. We say that ðu, pÞ 2 W1, 2
1 ðQþ

1 Þ
d �W0, 1

1 ðQþ
1 Þ is a strong solution of (1.1) on

Qþ
1 if (1.1) holds for a.e. ðt, xÞ 2 Qþ

1 and (1.2) holds in the sense of trace. The main

result of the article on the local Ls, q-estimate for solutions to (1.1) is now stated as the

following theorem.

Theorem 1.2. Let s, q 2 ð1,1Þ. There exists d ¼ dðd, �, s, qÞ 2 ð0, 1Þ such that the follow-

ing statement holds. Suppose that Assumption 1.1 ðdÞ holds. Then, if ðu, pÞ 2

W1, 2
s, q ðQ

þ
1 Þ

d �W0, 1
1 ðQþ

1 Þ is a strong solution to (1.1) in Qþ
1 with the boundary conditions

(1.2), f 2 Ls, qðQ
þ
1 Þ

d, and Dg 2 Ls, qðQ
þ
1 Þ

d, it follows that

kD2ukLs, qðQþ
1=2

Þ � Nðd, �, s, qÞ kf kLs, qðQþ
1 Þ
þ kDgkLs, qðQþ

1 Þ

h i

þ Nðd, �, s, qÞR�2
0 kukLs, qðQþ

1 Þ
:

(1.4)

Remark 1.3.

i. By using interpolation and a standard iteration argument, it is easily shown that

(1.4) still holds if we replace the term R�2
0 kukLs, qðQþ

1 Þ
on the right-hand side

with R
�2�dþd=q
0 kukLs, 1ðQþ

1 Þ
:

ii. The estimate (1.4) holds trivially for d¼ 1. Therefore, throughout the article, we

set d � 2:
Even in the un-mixed norm case with s ¼ q ¼ 2, the estimate (1.4) is new. In this

case, local boundary estimates as in (1.4) are known as Caccioppoli-type estimates. See

[7–10], for instance. However, in contrast to the case we consider, the local boundary

Caccioppoli-type estimates for non-stationary Stokes systems do not hold under the

homogeneous Dirichlet boundary conditions, as demonstrated in a recent work [11].

Therefore, besides other interests, finding a right class of boundary conditions so that

(1.4) holds is an interesting question, which this article answers.

COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 1701



We emphasize that the boundary conditions (1.2) are essential to the validity of (1.4).

Observe that unlike some known local regularity estimates (see [12], for instance), (1.4)

does not contain the pressure on the right-hand side, and thus it requires only very

mild regularity of the pressure. To the best of our knowledge, it is new even for the

classical Stokes system, i.e., when aij ¼ dij: As such, (1.4) might be useful in applica-

tions. For more information regarding estimates without the pressure, see [13, Remark

IV.4.2] and [14–16] for stationary equations with constant coefficients, [7] for time-

dependent equations with constant coefficients, and [8] for time-dependent equations

with measurable coefficients.

The Lq-estimates for solutions of Stokes systems are a research topic of great math-

ematical interest. See the monographs [12, 13, 15], as well as a survey paper [17] and

the references therein. The earliest work on equations with constant coefficients can be

found in [18]. See also [19–21]. In these works, global estimates are proved either using

fundamental solutions and potential analysis techniques, or using a functional analytic

approach. Local estimates are more delicate and cannot be derived from these methods.

In recent work [22, 23], the local and global Lq and weighted Lq theory are established

for divergence form stationary Stokes systems with measurable coefficients using a per-

turbation method and localization technique. However, this approach does not work for

non-stationary Stokes systems owing to the lack of local regularity in the time variable

of solutions and the pressure. This problem is considered in a recent work [8], in which

local interior estimates in mixed-norm Lebesgue spaces are established by combining

the perturbation argument with several regularity estimates for equations in divergence

and non-divergence form applied to the vorticity equations. In this article, we study the

corresponding local boundary estimates.

The proof of Theorem 1.2 is based on the perturbation technique using the

Fefferman–Stein sharp functions developed in [6, 24, 25] and in [8, 22, 23]. There are

several additional difficulties. First, as we already mentioned, the localization technique

typically used in the study of stationary Stokes systems [22, 23] is not applicable owing

to the lack of regularity in the time variable for the Stokes system. Second, the structure

of the system is nonlocal in view of the pressure term, and its complicated interaction

with the boundary is not very well understood. Finally, the usual local energy estimates

that are essential in perturbation methods are not known in the literature for the time-

dependent Stokes system (1.1). To overcome these difficulties, we modify the ideas used

in [8] and take the boundary conditions (1.2) into account to derive boundary estimates

for the solutions of the vorticity equations and divergence equations. Several new inter-

mediate results on the solvability and regularity estimates for the Stokes system and the

vorticity equations near the boundary are developed.

In the rest of this section, we briefly discuss a result on the solvability of the Stokes

system with the Lions boundary conditions. The result is not only intrinsically interest-

ing, but is also an essential ingredient that we develop to prove Theorem 1.2. Consider

the following Stokes system in the upper half-space:

ut � aijðtÞDijuþrp ¼ f in ð0,T� � Rd
þ,

div u ¼ g in ð0,T� � Rd
þ,

uð0, xÞ ¼ 0 for x 2 Rd
þ,

8

>

<

>

:

(1.5)
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with the Lions boundary conditions

Dduk ¼ ud ¼ 0 on ð0,T��Rd�1 � f0g for k ¼ 1, 2, :::, d � 1, (1.6)

where T> 0 is some given number and Rd
þ ¼ R

d�1 � ð0,1Þ: In (1.5), we assume that

aij is a measurable function depending only on the time variable, i.e., aij : ð0,TÞ ! R,

and that (1.3) holds.

Theorem 1.4. Let T> 0 and q0 2 ð1,1Þ. Let f 2 Lq0ðð0,TÞ � R
d
þÞ

d and g : ð0,TÞ �

R
d
þ ! R such that g 2 Lq0ðð0,TÞ � R

d
þÞ, Dg 2 Lq0ðð0,TÞ � R

d
þÞ

d, gð0, �Þ ¼ 0, and gt ¼

divG for some vector field

G ¼ ðG1,G2, :::,GdÞ 2 Lq0ðð0,TÞ � R
d
þÞ

d

in the sense that
ð

ð0,TÞ�Rd
þ

gut dx dt ¼

ð

ð0,TÞ�Rd
þ

GiDiu dx dt (1.7)

for any u 2 C1
0 ðð0,TÞ � RdÞ. Then there exists a unique strong solution (u, p) of

(1.5)–(1.6) such that

u 2 L1 ð0,TÞ, Lq0ðR
d
þÞ

� �

, ut,Du,D
2u 2 Lq0ðð0,TÞ � R

d
þÞ,

p 2 Lq0ðð0,TÞ, Lq0, locðR
d
þÞÞ, rp 2 Lq0ðð0,TÞ � R

d
þÞ:

Moreover, (u, p) satisfies the estimates

kDukLq0 ðð0,TÞ�R
d
þÞ

� N1kf kLq0 ðð0,TÞ�R
d
þÞ
þ N2kgkLq0 ðð0,TÞ�R

d
þÞ
,

kD2ukLq0 ðð0,TÞ�R
d
þÞ

� N2 kf kLq0 ðð0,TÞ�R
d
þÞ
þ kDgkLq0 ðð0,TÞ�R

d
þÞ

h i

,

krpkLq0 ðð0,TÞ�R
d
þÞ

� N2 kf kLq0 ðð0,TÞ�R
d
þÞ
þ kDgkLq0 ðð0,TÞ�R

d
þÞ
þ kGkLq0 ðð0,TÞ�R

d
þÞ

h i

,

(1.8)

and

kutkLq0 ðð0,TÞ�R
d
þÞ

� N2 kf kLq0 ðð0,TÞ�R
d
þÞ
þ kGkLq0 ðð0,TÞ�R

d
þÞ

h i

, (1.9)

for some constants N1 ¼ N1ð�, d, q0,TÞ > 0 and N2 ¼ N2ð�, d, q0Þ > 0:

Although the Stokes system with the Lions boundary conditions appeared some time

ago [1, 2], Theorem 1.4 seems new. To carry out the proof, we use the boundary condi-

tions and carefully use odd/even extensions to look for a solution in the whole space.

To avoid the complication due to the pressure, we first solve for the vorticity, from

which we recover the solution using the divergence equation and the fundamental solu-

tion of the Laplace equation. Because of the odd and even extensions, the new coeffi-

cients of the Stokes system in the whole space are merely measurable with possibly very

large oscillation in the xd direction. Therefore, solving for and estimating the solutions

in Sobolev spaces are quite involved. Several recent results developed in [24, 26] on the

existence, uniqueness, and regularity results for equations with coefficients only measur-

able in t and one of the spatial directions are carefully applied to obtain the

desired results.
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The rest of the article is organized as follows. In Section 2, we introduce the notation

and recall several known inequalities and estimates that are needed in the article. In

Section 3, we study the Stokes system with coefficients depending only on the time vari-

able. Several regularity estimates of solutions near the boundary are proved using the

divergence and vorticity equations. In Section 4, we prove Theorem 1.4 on the existence

and uniqueness of strong solutions to the Stokes system in the upper half-space with

the Lions-type boundary conditions. In the last section, Section 5, Theorem 1.2

is proved.

2. Notation and preliminary estimates

2.1. Notation

We denote the upper half-ball in Rd of radius q centered at x0 ¼ ðx00, xd0Þ 2 R
d�1 � R

as

Bþ
q ðx0Þ ¼ fx ¼ ðx0, xdÞ 2 R

d�1 � R : jx� x0j < q, xd > 0g

and the upper half-parabolic cylinder centered at z0 ¼ ðt0, x0Þ 2 R
dþ1 with radius q > 0

as

Qþ
q ðz0Þ ¼ ðt0 � q2, t0��Bþ

q ðx0Þ:

For brevity, when z0 ¼ ð0, 0Þ, we write Qþ
q ¼ Qþ

q ð0, 0Þ and Bþ
q ¼ Bþ

q ð0Þ: We also denote

by B0
q the unit ball in Rd�1 centered at the origin with radius q > 0:

For each s, q 2 ½1,1Þ and each parabolic cylinder Q ¼ C� X � R� Rd, the

Lebesgue mixed (s, q)-norm of a measurable function h defined in Q is

khkLs, qðQÞ ¼

ð

C

ð

X

jhðt, xÞjq dx

� �s=q

dt

" #1=s

,

and we denote the mixed-norm Lebesgue spaces as

Ls, qðQÞ ¼ fh : Q ! R : khkLs, qðQÞ < 1g:

We also denote the parabolic Sobolev space as

W1, 2
s, q ðQÞ ¼ fu : u,Du,D2u 2 Ls, qðQÞ, ut 2 L1ðQÞg,

which is slightly different from the usual parabolic Sobolev spaces as it does not require

ut 2 Ls, qðQÞ: We also set

W0, 1
s, q ðQÞ ¼ fu : u,Du 2 Ls, qðQÞg:

When s¼ q, we omit one of these two indices and write

LqðQÞ ¼ Lq, qðQÞ, W1, 2
q ðQÞ ¼ W1, 2

q, qðQÞ, W0, 1
q ðQÞ ¼ W0, 1

q, qðQÞ:

To express the average of a function g over a set D in Rdþ1, we use the notation ðgÞD
defined by

ðgÞD ¼

ð

6

D

gðt, xÞ dx dt ¼
1

jDj

ð

D

gðt, xÞ dx dt, (2.1)
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where jDj is the nþ 1-dimensional Lebesgue measure of D � R
dþ1: For a function g

defined on a parabolic cylinder Q ¼ C� X � R� Rd, we denote the average of g over

X, as a function of t, by

g½ �
X
ðtÞ ¼

ð

6

X

gðt, xÞ dx ¼
1

jXj

ð

X

gðt, xÞ dx, t 2 C, (2.2)

where jXj is the n-dimensional Lebesgue measure of X � R
d:

2.2. Sharp function estimates

The following result is a special case of [27, Theorem 2.3 (i)]. Let X � R
dþ1 be a space

of homogeneous type, which is endowed with the parabolic distance and a doubling

measure l that is naturally inherited from the Lebesgue measure. As in [27], we take a

filtration of partitions of X (cf. [28]) and, for any f 2 L1, loc, we define its dyadic sharp

function f #dy in X associated with the filtration of partitions. In addition, for each q 2
½1,1�, Aq denotes the Muckenhoupt class of weights.

Theorem 2.1. Let s, q 2 ð1,1Þ, K0 � 1, and x 2 Aq with ½x�Aq
� K0. Suppose that

f 2 LsðxdlÞ. Then,

kf kLsðxdlÞ � N kf #dykLsðxdlÞ þ lðXÞ�1
xðsuppðf ÞÞ

1
skf kL1ðlÞ

h i

,

where N> 0 is a constant depending only on s, q, K0, and the doubling constant of l,

and the second term on the right-hand side is understood to be zero if lðXÞ ¼ 1:
As a direct consequence of Theorem 2.1, we have the following lemma, where f #dy is

the dyadic sharp function of f on Qþ
R associated with a filtration of partitions of Qþ

R sat-

isfying the properties in, for instance, [27, Theorem 2.1]. Note that, as for Qþ
R , the con-

stants in [27, Theorem 2.1] depend only on the dimension d.

Lemma 2.2. For any s, q 2 ð1,1Þ, there exists a constant N ¼ Nðd, s, qÞ > 0 such that

kf kLs, qðQþ
R
Þ � N kf #dykLs, qðQþ

R
Þ þ R

2
sþ

d
q�d�2kf kL1ðQþ

R
Þ

h i

for any R> 0 and f 2 Ls, qðQ
þ
R Þ:

Proof. For t 2 ð�R2, 0Þ, let

wðtÞ ¼ kf ðt, �ÞkLqðBþ
R
Þ and /ðtÞ ¼ kf #dyðt, �Þ þ ðjf jÞQþ

R
kLqðBþ

R
Þ:

Moreover, for any x 2 Aqðð�R2, 0ÞÞ with ½x�Aq
� K0, we write ~xðt, xÞ ¼ xðtÞ for all

ðt, xÞ 2 Qþ
R : Then, by applying Theorem 2.1 with X ¼ Qþ

R , we obtain

kwkLqðð�R2, 0Þ,xÞ ¼ kf kLqðQþ
R
, ~xÞ � Nkf #dy þ ðjf jÞQþ

R
kLqðQþ

R
, ~xÞ ¼ Nk/kLqðð�R2, 0Þ,xÞ,

where N ¼ Nðd,K0, sÞ: Then, by the extrapolation theorem (see, for instance, [27,

Theorem 2.5]), we see that

kwkLsðð�R2 , 0Þ,xÞ � 4Nk/kLsðð�R2, 0Þ,xÞ, 8x 2 As, x½ �As
� K0:

Note that in the special case of x 	 1, kwkLsðð�R2, 0Þ,xÞ ¼ kf kLs, qðQþ
R
Þ and
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k/kLsðð�R2, 0Þ,xÞ � kf #dykLs, qðQþ
R
Þ þ R

2
s
þd

qðjf jÞQþ
R
:

Therefore, the desired estimate follows. �

3. Stokes systems with simple coefficients

In this section, we consider the time-dependent Stokes system with coefficients depend-

ing only on the time variable:

ut � aijðtÞDijuþrp ¼ 0, div u ¼ 0 in Qþ
1 : (3.1)

The system (3.1) is equipped with the Lions boundary conditions on fxd ¼ 0g \ B1 : for

k ¼ 1, 2, :::, d � 1,

Ddukðt, x
0, 0Þ ¼ udðt, x

0, 0Þ ¼ 0 for a:e: ðt, x0Þ 2 ð�1, 0��B0
1, (3.2)

where aij ¼ ðaijðtÞÞ is a given symmetric matrix of coefficients depending only on the

time variable t and satisfying the ellipticity condition (1.3). This section provides key

estimates that are needed for the proof of Theorem 1.2. We begin with the following

estimates of the second derivatives of solutions.

Lemma 3.1. Let q0 2 ð1,1Þ, and ðu, pÞ 2 W1, 2
q0

ðQþ
1 Þ

d �W0, 1
1 ðQþ

1 Þ be a strong solution

to (3.1) in Qþ
1 with the boundary conditions (3.2). Then we have

kD2ukLq0 ðQ
þ
1=2

Þ � Nðd, �, q0Þ
X

d�1

i¼1

�

kDx0ui � Dx0ui½ �Bþ
1
ðtÞkLq0 ðQ

þ
1 Þ
þ kDduikLq0 ðQ

þ
1 Þ

�

þ Nðd, �, q0ÞkDx0udkLq0 ðQ
þ
1 Þ
,

(3.3)

where, as in (2.2), ½Dui�Bþ
1
ðtÞ is the average of Duiðt, �Þ in Bþ

1 . Moreover, (3.3) also holds

if the second equation in (3.1) is replaced with

div u ¼ gðtÞ inQþ
1

for some given measurable function g : ð�1, 0Þ ! R, which is independent of the spa-

tial variables.

Proof. We prove (3.3) when the second equation in (3.1) is replaced with

div u ¼ gðtÞ inQþ
1 :

Let ðxklÞ
d
k, l¼1 be a matrix-valued function defined in Qþ

1 as

xkl ¼ @kul � @luk inQþ
1 for k, l 2 f1, 2, :::, dg: (3.4)

Then xkl 2 H1
q0
ðQþ

1 Þ for k, l 2 f1, 2, :::, dg: See [29, p. 362] for the definition of

H1
q0
ðQþ

1 Þ: We set

~aijðtÞ ¼ aijðtÞ, ~add ¼ addðtÞ

for i, j 2 f1, :::, d � 1g and

~adjðtÞ ¼ 2adjðtÞ, ~ajd ¼ 0

for j ¼ 1, :::, d � 1: We observe that for every k, l 2 f1, 2, :::, dg, xkl 2 H1
q0
ðQþ

1 Þ is a

weak solution to the parabolic equation
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@txkl � div ð~aðtÞ>rxklÞ ¼ 0 inQþ
1 (3.5)

with the homogeneous Dirichlet or homogeneous conormal derivative boundary condi-

tion on fxd ¼ 0g: Precisely,

X

d

j¼1

~ajdðtÞDjxkl ¼ addðtÞDdxkl ¼ 0 on fxd ¼ 0g \ B1 if k, l 2 f1, 2, :::, d � 1g,

xkl ¼ 0 on fxd ¼ 0g \ B1 if k ¼ d or l ¼ d:

8

>

>

<

>

>

:

(3.6)

From this, we apply the local boundary H1
p-estimate for linear parabolic equations in

divergence form (cf. [29]) to obtain

kDxkLq0 ðQ
þ
2=3

Þ � Nðd, �, q0ÞkxkLq0 ðQ
þ
3=4

Þ: (3.7)

Since div u ¼ gðtÞ and g is independent of the x-variable, we have

Dui ¼ �Di

X

d

k¼1

Dkuk þ
X

d

k¼1

Dkkui ¼
X

d

k¼1

Dkxki a:e: in Qþ
1 : (3.8)

Then, upon using the boundary conditions (3.2) and (3.6), for a.e. t 2 ð�1, 0Þ, one can

view (3.8) as the following Poisson equations in non-divergence form with the

Neumann and Dirichlet boundary condition, respectively. Precisely, for a.e. t 2 ð�1, 0Þ,

the function ui ¼ uiðt, �Þ satisfies

D ui � ui½ �Bþ
1

ðtÞ
� �

¼
X

d

k¼1

Dkxki inBþ
1 ,

Dd ui � ui½ �Bþ
1

ðtÞ
� �

¼ 0 on fxd ¼ 0g \ B1

8

>

>

>

<

>

>

>

:

for i ¼ 1, :::, d � 1, where ½u�Bþ
1
ðtÞ is the average of uðt, �Þ in Bþ

1 , and

Dud ¼
X

d

k¼1

Dkxkd inBþ
1 ,

ud ¼ 0 on fxd ¼ 0g \ B1:

8

>

<

>

:

We apply the local boundary W2
p-estimate for the Laplace operator and then integrate it

over the time variable to obtain

kD2ukLq0 ðQ
þ
1=2

Þ � NkDxkLq0 ðQ
þ
2=3

Þ þ N
X

d�1

i¼1

kui � ui½ �Bþ
1

kLq0 ðQ
þ
2=3

Þ þ NkudkLq0 ðQ
þ
2=3

Þ:

From this inequality and (3.7) we obtain that

kD2ukLq0 ðQ
þ
1=2

Þ � NkxkLq0 ðQ
þ
3=4

Þ þ N
X

d�1

i¼1

kui � ui½ �Bþ
1

kLq0 ðQ
þ
2=3

Þ þ NkudkLq0 ðQ
þ
2=3

Þ

� ekD2ukLq0 ðQ
þ
3=4

Þ þ Ne�1
X

d�1

i¼1

kui � ui½ �Bþ
1

ðtÞkLq0 ðQ
þ
3=4

Þ þ Ne�1kudkLq0 ðQ
þ
3=4

Þ,

where in the second inequality we used multiplicative inequalities. It then follows from
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a standard iteration argument that

kD2ukLq0 ðQ
þ
1=2

Þ � N
X

d�1

i¼1

kui � ui½ �Bþ
1

ðtÞkLq0 ðQ
þ
1 Þ
þ NkudkLq0 ðQ

þ
1 Þ
:

By the multiplicative inequalities again, we arrive at

kDukLq0 ðQ
þ
1=2

Þ � N
X

d�1

i¼1

kui � ½ui�Bþ
1
ðtÞkLq0 ðQ

þ
1 Þ
þ NkudkLq0 ðQ

þ
1 Þ
: (3.9)

Now by using the method of finite-difference quotient in the x0 direction and taking

the limit, from (3.9), we get

kDDx0ukLq0 ðQ
þ
1=2

Þ � N
X

d�1

i¼1

kDx0ui � Dx0ui½ �Bþ
1
ðtÞkLq0 ðQ

þ
1 Þ
þ NkDx0udkLq0 ðQ

þ
1 Þ
, (3.10)

where N ¼ Nðd, �, q0Þ: Using the condition that div u is independent of x, we also have

kD2
dudkLq0 ðQ

þ
1=2

Þ � N
X

d�1

i¼1

kDx0ui � Dx0ui½ �Bþ
1
ðtÞkLq0 ðQ

þ
1 Þ
þ NkDx0udkLq0 ðQ

þ
1 Þ
: (3.11)

It remains to estimate D2
dui for i ¼ 1, :::, d � 1: Since

D2
dui ¼ Ddxdi þ DdDiud,

it follows from (3.7) and (3.10) that

kD2
duikLq0 ðQ

þ
1=2

Þ � N
X

d�1

i¼1

kDx0ui � Dx0ui½ �Bþ
1
ðtÞkLq0 ðQ

þ
1 Þ
þ kxdikLq0 ðQ

þ
1 Þ

� �

þ NkDx0udkLq0 ðQ
þ
1 Þ
:

(3.12)

Combining (3.10), (3.11), (3.12), and the triangle inequality, we obtain (3.3). The lemma

is proved. �

Now, recall that for each a 2 ð0, 1� and each parabolic cylinder Q � R
dþ1, the para-

bolic H€older semi-norm of the function u defined in Q is

u½ �½ �Ca=2, aðQÞ ¼ sup
ðt, xÞ, ðs, yÞ 2 Q
ðt, xÞ 6¼ ðs, yÞ

juðt, xÞ � uðs, yÞj

jt � sja=2 þ jx� yja
,

and its H€older norm is

kukCa=2, aðQÞ ¼ kukL1ðQÞ þ u½ �½ �Ca=2, aðQÞ:

The following lemma is needed later in this article.

Lemma 3.2. Under the assumptions of Lemma 3.1, we have

kxkC1=2, 1ðQþ
1=2

Þ � Nðd, �, q0ÞkxkLq0 ðQ
þ
1 Þ
, (3.13)

and for any a 2 ð0, 1Þ,
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kDxkCa=2, aðQþ
1=2

Þ � Nðd, �, a, q0ÞkDxkLq0 ðQ
þ
1 Þ
,

where x ¼ ðxklÞ
d
k, l¼1 is defined in (3.4).

Proof. Let ~ukðt, xÞ be the even extensions of ukðt, xÞ with respect to xd, k ¼ 1, :::, d � 1,

and ~udðt, xÞ be the odd extension of udðt, xÞ with respect to xd. Further, let ~p be the

even extension of p in xd. Set

�aij ¼ aijðtÞ for i, j ¼ 1, :::, d � 1, �add ¼ addðtÞ,

�ajd ¼ �adj ¼
ajdðtÞ xd > 0,
�ajdðtÞ xd < 0,

for j ¼ 1, :::, d � 1:

�

Then by the boundary conditions on u, we have ~u 2 W1, 2
q0

ðQ1Þ
d, ~p 2 W0, 1

1 ðQ1Þ, and

~ut � �aijðt, xdÞDij~u þr~p ¼ 0 inQ1:

We again denote by xkl the extensions of those xkl defined in the proof of Lemma

3.1 with respect to xd. That is, xkl, k, l 2 f1, :::, d � 1g, is even and xdl, l 2 f1, :::, d �

1g, is odd with respect to xd, so

xkl ¼ @k~ul � @l~uk

in Q1 for k, l 2 f1, 2, :::, dg: It is easily seen that xkl satisfies the following equation in

divergence form:

@txkl � div ð~a>rxklÞ ¼ 0

in Q1, k, l 2 f1, 2, :::, dg, where

~adj ¼ ~adjðt, xdÞ ¼

�

2adjðtÞ xd � 0,
�2adjðtÞ xd < 0,

~ajd ¼ ~ajdðt, xdÞ ¼ 0,

for j ¼ 1, 2, :::, d � 1, and

~aij ¼ aijðtÞ, and ~add ¼ addðtÞ

for i, j 2 f1, 2, :::, d � 1g:
If we know a priori that xkl is sufficiently smooth, then xkl also satisfies the non-

divergence form equation

@txkl � �aijðt, xdÞDijxkl ¼ 0 (3.14)

in Q1. While checking this, we use the identity

Dd �adjðt, xdÞDdj~ul

� �

¼ �adjðt, xdÞDdjDd~ul (3.15)

for l ¼ 1, :::, d � 1, which follows from the definition of �adj and the evenness of ~ul with

respect to xd. Indeed, one can show that xkl belongs to W1, 2
q0

ðQrÞ for any r 2 ð0, 1Þ and

satisfies (3.14) in Qr by using the W1, 2
p solvability of parabolic equations in non-diver-

gence form with coefficients being measurable functions of ðt, xdÞ except for add, which

is a measurable function of t only (cf. [24, 26]), as well as the unique solvability of the

divergence form equation for xkl (cf. [29]).

Once we check that xkl 2 W1, 2
q0

ðQrÞ, r 2 ð0, 1Þ, satisfies (3.14), we use the parabolic

Sobolev embedding theorem combined with bootstrap and iterations to obtain (3.13).
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Since the coefficients in (3.14) are independent of x0, by differentiating (3.14) in x0

(in fact, using finite-difference quotients), we find that Dx0xkl 2 W1, 2
q0

ðQrÞ, r 2 ð0, 1Þ,
also satisfies (3.14). This together with (3.13) shows that

kDx0xkC1=2, 1ðQþ
1=2

Þ � Nðd, �, q0ÞkDx0xkLq0 ðQ
þ
1 Þ
:

It remains to estimate Ddx: For k, l 2 f1, :::, d � 1g, using the evenness of xkl and

the unique solvability of the non-divergence and divergence form equations as above,

we notice that Ddxkl belongs to W1, 2
q0

ðQrÞ, r 2 ð0, 1Þ, and satisfies

@tDdxkl � �aijðt, xdÞDijDdxkl ¼ 0

in Qr. Then, by the same reasoning as above, we obtain

kDdxklkC1=2, 1ðQþ
1=2

Þ � Nðd, �, q0ÞkDdxklkLq0 ðQ
þ
1 Þ
:

Finally, for l ¼ 1, :::, d � 1, xdl satisfies (3.14) in Qþ
1 with the Dirichlet boundary con-

dition on Q1 \ fðt, x0, xdÞ 2 R
dþ1

: xd ¼ 0g: Thus, by the boundary W1, 2
p estimate with

p > ðd þ 2Þ=ð1� aÞ, the parabolic Sobolev embedding theorem, and the boundary

Poincar�e inequality, we have

kDdxdlkCa=2, aðQþ
1=2

Þ � NkxdlkLq0 ðQ
þ
1 Þ

� NkDdxdlkLq0 ðQ
þ
1 Þ
,

where N ¼ Nðd, �, a, q0Þ: The lemma is proved. �

Remark 3.3. Lemma 3.2 can also be proved by using the boundary W1, 2
q -estimate with

either the Dirichlet or Neumann boundary condition. We give a sketch below. Recall

that xkl satisfies the divergence form Eq. (3.5) with either the conormal or Dirichlet

boundary condition. Since the coefficients are independent of x, we can use the unique-

ness of strong solutions in the half-space to show that xkl is also in W1, 2
q ðQþ

1=2Þ for any
q < 1: See, for instance, [24]. To obtain the estimates in Lemma 3.2, it remains to use

the parabolic Sobolev embedding theorem.

4. A solvability result: proof of Theorem 1.4

In this section, we prove Theorem 1.4, which demonstrates the existence of a solution

to the system (1.5) with the boundary conditions (1.6). Henceforth, we denote

R
d
T ¼ ð0,TÞ � Rd:

We first give a lemma.

Lemma 4.1. Let T> 0, q0 2 ð1,1Þ, q1 2 ð1, dÞ, h 2 Lq0ðR
d
TÞ \ Lq1ðR

d
TÞ, and

k 2 f1, :::, dg. We define

vkðt, xÞ ¼

ð

R
d
DkUðx� yÞhðt, yÞ dy

in Rd
T , where Uð�Þ is the fundamental solution of the Laplace equation in Rd. Then we

have the following.
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a.
Ð T

0
kvkðt, �Þk

q1

Lq

1
ðRdÞ

dt < 1 and Dxvk 2 Lq0ðR
d
TÞ with the estimates

ðT

0

kvkðt, �Þk
q1

Lq

1
ðRdÞ

dt

 ! 1
q1

� Nðd, q1ÞkhkLq1 ðR
d
TÞ
, (4.1)

kDxvkkLq0 ðR
d
TÞ
� Nðd, q0ÞkhkLq0 ðR

d
TÞ
, (4.2)

where q
1 ¼ dq1=ðd � q1Þ. We also have

X

d

k¼1

Dkvkðt, xÞ ¼ hðt, xÞ inRd
T : (4.3)

b. If Dxh 2 Lq0ðR
d
TÞ, then D2

xvk 2 Lq0ðR
d
TÞ with

Dvkðt, xÞ ¼ Dkhðt, xÞ inRd
T , (4.4)

and the following estimate holds:

kD2
xvkkLq0 ðR

d
TÞ
� Nðd, q0ÞkDkhkLq0 ðR

d
TÞ
: (4.5)

c. If Dxh 2 Lq0ðR
d
TÞ \ Lq1ðR

d
TÞ, it holds that

Dvkðt, xÞ ¼

ð

R
d

DkUðx� yÞDhðt, yÞ dy inRd
T : (4.6)

Proof. For a.e. t 2 ½0,T�, hðt, �Þ 2 Lq1ðR
dÞ: Thus, for a.e. t 2 ½0,T�, by the

Hardy–Littlewood–Sobolev theorem of fractional integration (see [30, Chapter V]), we

have

kvkðt, �ÞkLq

1
ðRdÞ � Nðd, q1Þkhðt, �ÞkLq1 ðR

dÞ:

By integrating both sides of the above inequality with respect to t 2 ½0,T�, we

obtain (4.1).

Now we find hmðt, xÞ 2 C1
0 ð½0,T� � RdÞ such that

khm � hkLq1 ðR
d
TÞ
þ khm � hkLq0 ðR

d
TÞ
! 0 (4.7)

as m ! 1: For each m ¼ 1, 2, :::, we set

vmk ðt, xÞ :¼

ð

R
d
DkUðx � yÞhmðt, yÞ dy: (4.8)

Then, again by the Hardy–Littlewood–Sobolev theorem, we have
ðT

0

kvmk ðt, �Þ � vkðt, �Þk
q1

Lq

1
ðRdÞ

dt ! 0 (4.9)

as m ! 1: Integration by parts applied to (4.8) gives

vmk ðt, xÞ ¼

ð

R
d
Uðx� yÞDkh

mðt, yÞ dy, (4.10)

from which it follows that

Dvmk ðt, xÞ ¼ Dkh
mðt, yÞ: (4.11)
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Note that

vmk ðt, xÞ ¼ Dk

ð

R
d
Uðx � yÞhmðt, yÞ dy (4.12)

and

Dvmk ðt, xÞ ¼

ð

R
d
DkUðx � yÞDhmðt, yÞ dy ¼ DDk

ð

R
d
Uðx� yÞhmðt, yÞ dy: (4.13)

Thus,

X

d

k¼1

Dkv
m
k ðt, xÞ ¼ D

ð

R
d
Uðx � yÞhmðt, yÞ dy ¼ hmðt, xÞ (4.14)

in Rd
T : By applying to (4.12) the fact that the double Riesz transform is bounded in

LpðR
dÞ, 1 < p < 1, (see [30, Chapter III]) and by integrating both sides of the

obtained inequality in t, we arrive at

kDxv
m
k kLq0 ðR

d
TÞ
� Nðd, q0Þkh

mkLq0 ðR
d
TÞ
:

Then, (4.2) and (4.3) follow from this inequality, (4.14), (4.7), and (4.9).

If Dxh 2 Lq0ðR
d
TÞ, we find hm 2 C1

0 ð½0,T� � RdÞ such that

khm � hkLq1 ðR
d
TÞ
þ khm � hkLq0 ðR

d
TÞ
þ kDxh

m � DxhkLq0 ðR
d
TÞ
! 0 (4.15)

as m ! 1: Then, by applying the boundedness in LpðR
dÞ of the double Riesz transform

to (4.10), we obtain

kD2
xv

mkLq0 ðR
d
TÞ
� Nðd, q0ÞkDkh

mkLq0 ðR
d
TÞ
:

Using this estimate, (4.9), (4.11), and (4.15), we prove (4.4) and (4.5).

Finally, to prove (4.6), we use the Hardy–Littlewood–Sobolev theorem as well as the

first equality in (4.13) with hm 2 C1
0 ð½0,T� � RdÞ satisfying (4.15) as well as

kDxh
m � DxhkLq1 ðR

d
TÞ
! 0

as m ! 1. The lemma is proved. �

Proposition 4.2. Let T> 0, q0 2 ð1,1Þ. Assume that aij ¼ aijðtÞ for t 2 ð0,TÞ. Let f 2
Lq0ðð0,TÞ � R

d
þÞ

d and g 2 Lq0ðð0,TÞ � R
d
þÞ, Dg 2 Lq0ðð0,TÞ � R

d
þÞ

d, gð0, �Þ ¼ 0, and

gt ¼ div ðGÞ in the sense of (1.7) for some vector field

G ¼ ðG1,G2, :::,GdÞ 2 Lq0ðð0,TÞ � R
d
þÞ

d:

Additionally, assume that g and G vanish for large jxj uniformly in t 2 ½0,T� and

f 2 C1
0 ðð0,TÞ � Rd

þÞ
d. Then, there exists a solution (u, p) of (1.5)–(1.6) such that

u 2 L1 ð0,TÞ, Lq0ðR
d
þÞ

� �

, ut,Du,D
2u 2 Lq0ðð0,TÞ � R

d
þÞ,

p 2 Lq0ðð0,TÞ, Lq0, locðR
d
þÞÞ, rp 2 Lq0ðð0,TÞ � R

d
þÞ

and that satisfies (1.8) and (1.9).
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Proof. Set �aij to be as defined in the proof of Lemma 3.2. Our goal is to construct a

strong solution ð~u, ~pÞ in Rd
T ¼ ð0,TÞ � Rd of the Stokes system

~ut � �aijDij~u þr~p ¼ ~f inRd
T ,

div ð~uÞ ¼ ~g inRd
T ,

~uð0, xÞ ¼ 0 for x 2 Rd,

8

>

<

>

:

(4.16)

where ~gðt, xÞ and ~f ðt, xÞ ¼ ð~f 1,
~f 2, :::,

~f dÞ are functions such that ~gðt, �Þ is the even exten-

sion of gðt, �Þ on Rd, ~f kðt, �Þ is the even extension of fkðt, �Þ on Rd, k ¼ 1, 2, :::, d � 1,

and ~f dðt, �Þ is the odd extension of fdðt, �Þ: We will see that the constructed solution

~ukðt, �Þ is even in xd for all k ¼ 1, 2, :::, d � 1, and udðt, �Þ is odd in the xd-variable.

Therefore, uðt, �Þ ¼ ~uðt, �Þj
R

d
þ
and pðt, �Þ ¼ ~pðt, �Þj

R
d
þ
satisfy (1.5).

Since gðt, xÞ ¼ f ðt, xÞ ¼ Gðt, xÞ ¼ 0 for jxj > R with a sufficiently large R> 0, there

exists q1 2 ð1, dÞ such that

g,Dlg, fl,Gl 2 Lq0ðð0,TÞ � R
d
þÞ \ Lq1ðð0,TÞ � R

d
þÞ, l ¼ 1, :::, d:

Step 1: We construct ~u and prove the first two estimates in (1.8). Recall that f ¼
ðf1, :::, fdÞ is assumed to be smooth with compact support in ð0,TÞ � Rd

þ: Thus,

Dk
~f l � Dl

~f k 2 Lq0ðR
d
TÞ,

and according to the results in [26], there exist xkl 2 W1, 2
q0

ðRd
TÞ, k, l 2 f1, :::, dg, satisfy-

ing the non-divergence form equations

@txkl � �aijDijxkl ¼ Dk
~f l � Dl

~f k inRd
T ,

xklð0, xÞ ¼ 0 for x 2 Rd:

(

(4.17)

Since ~f kðt, xÞ, k ¼ 1, :::, d � 1, is the even extension of fkðt, xÞ and ~f dðt, xÞ is the odd

extension of fdðt, xÞ,

Dk
~f lðt, xÞ � Dl

~f kðt, xÞ, k, l 2 f1, :::, d � 1g,

is even with respect to xd, and

Dd
~f l � Dl

~f d, l 2 f1, :::, d � 1g,

is odd with respect to xd. By the evenness and oddness of the right-hand sides and coef-

ficients of (4.17), we see that xkl, k, l 2 f1, :::, d � 1g, is even with respect to xd, and

xdl, l 2 f1, :::, d � 1g, is odd with respect to xd. We also see that xkl ¼ �xkl:
Furthermore, one can check that xkl, k, l 2 f1, :::, dg, satisfies the following divergence

form equation:

@txkl � div ð~a>rxklÞ ¼ Dk
~f l � Dl

~f k in Rd
T ,

xklð0, xÞ ¼ 0 for x 2 Rd,

(

(4.18)

where ~aij (which is different from �aij) is as defined in the proof of Lemma 3.2. By the

H1
p estimates (see [29, Theorem 2.1]), we have
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kDxklkLq0 ðR
d
TÞ
� Nð�, q0Þk~f kLq0 ðR

d
TÞ
, kxklkLq0 ðR

d
TÞ
� Nð�,T, q0Þk~f kLq0 ðR

d
TÞ
: (4.19)

Since f 2 Lq1ðð0,TÞ � R
d
þÞ

d, we also have

kDxklkLq1 ðR
d
TÞ
� Nð�, q1Þk~f kLq1 ðR

d
TÞ
, kxklkLq1 ðR

d
TÞ
� Nð�,T, q1Þk~f kLq1 ðR

d
TÞ
: (4.20)

Now we set

~ulðt, xÞ ¼

ð

R
d

DlUðx� yÞ~gðt, yÞ dy þ
X

d

k¼1

ð

R
d

DkUðx� yÞxklðt, yÞ dy (4.21)

in R
d
T : By the properties of the fundamental solution Uð�Þ, ~g , and xkl, we see that

~ulðt, �Þ, l ¼ 1, :::, d � 1, is even in xd, and ~udðt, �Þ is odd in xd. Note that

~g , Dx~g , xkl, Dxxkl 2 Lq0ðR
d
TÞ \ Lq1ðR

d
TÞ:

Then, by Lemma 4.1,

D~ul ¼ Dl~g þ
X

d

k¼1

Dkxkl in R
d
T ,

kD~ulkLq0 ðR
d
TÞ
� Nk~gkLq0 ðR

d
TÞ
þ NkxklkLq0 ðR

d
TÞ
,

(4.22)

and

kD2
~ulkLq0 ðR

d
TÞ
� NkD~gkLq0 ðR

d
TÞ
þ NkDxklkLq0 ðR

d
TÞ
,

where N ¼ Nðd, q0Þ: These estimates combined with (4.19) prove the first two estimates

in (1.8), provided that uðt, �Þ ¼ ~uðt, �Þj
R

d
þ
satisfies (1.5).

Step 2: We prove (1.9). Observe that, for u 2 C1
0 ðRd

TÞ,

ð

R
d
T

~ulut dx dt ¼

ð

R
d
T

utðt, xÞ

ð

R
d
DlUðx � yÞ~gðt, yÞ dy dx dt

þ
X

d

k¼1

ð

R
d
T

utðt, xÞ

ð

R
d
DkUðx� yÞxklðt, yÞ dy dx dt

¼

ð

R
d
DlUðyÞ

ð

R
d
T

~gðt, xÞutðt, xþ yÞ dx dt dy

þ
X

d

k¼1

ð

R
d
DkUðyÞ

ð

R
d
T

xklðt, xÞutðt, x þ yÞ dx dt dy ¼: J1 þ J2:

For k ¼ 1, 2, :::, d � 1, we set ~Gkðt, �Þ to be the even extension of Gkðt, �Þ with respect to

xd and ~Gdðt, �Þ to be the odd extension of Gdðt, �Þ with respect to xd. By (1.7) we have

@t~g ¼ div ~G

in the sense of distribution. Then
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J1 ¼

ð

R
d
DlUðyÞ

ð

R
d
T

~Gðt, xÞ � ruðt, x þ yÞ dx dt dy

¼
X

d

k¼1

ð

R
d
T

Dkuðt, xÞ

ð

R
d

DlUðx � yÞ~Gkðt, yÞ dy dx dt:

Since ~Gk 2 Lq0ðR
d
TÞ \ Lq1ðR

d
TÞ, by Lemma 4.1,

Vlkðt, xÞ :¼

ð

R
d
DlUðx � yÞ~Gkðt, yÞ dy

satisfies DxVlk 2 Lq0ðR
d
TÞ with the estimate as in (4.2). Thus, if we set V1ðt, xÞ ¼

Pd
k¼1DkVklðt, xÞ, then

J1 ¼ �

ð

R
d
T

V1ðt, xÞuðt, xÞ dx dt

and

kV1kLq0 ðR
d
TÞ
� Nðd, q0Þk~GkLq0 ðR

d
TÞ
:

For J2, we observe that from (4.18),
ð

R
d
T

xklðt, xÞutðt, xþ yÞ dx dt ¼

ð

R
d
T

~ajiDjxklðt, xÞDiuðt, x þ yÞ dx dt

þ

ð

R
d
T

~f lðt, xÞDkuðt, x þ yÞ dx dt �

ð

R
d
T

~f kðt, xÞDluðt, xþ yÞ dx dt:

From (4.19) and (4.20), we see that ~ajiDjxkl 2 Lq0ðR
d
TÞ \ Lq1ðR

d
TÞ and

~f 2 Lq0ðR
d
TÞ \ Lq1ðR

d
TÞ.

Thus, by proceeding as above, we find that there existsV2 2 Lq0ðR
dÞ such that

J2 ¼ �

ð

R
d
T

V2ðt, xÞuðt, xÞ dx dt

and

kV2kLq0 ðR
d
TÞ
� NkDxklkLq0 ðR

d
TÞ
þ Nk~f kLq0 ðR

d
TÞ
� Nk~f kLq0 ðR

d
TÞ
,

where N ¼ Nðd, �, q0Þ, and the last inequality is due to the first estimate in (4.19).

From the above observations on J1 and J2, we see that

@t~ul ¼ V1 þ V2,

and

k@t~ulkLq0 ðR
d
TÞ
� Nk~GkLq0 ðR

d
TÞ
þ Nk~f kLq0 ðR

d
TÞ
,

where N ¼ Nðd, q0, �Þ: This proves (1.9).

Step 3: We prove that in Rd
T ,

div ~uðt, xÞ ¼ ~gðt, xÞ (4.23)

and

COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 1715



@k~ul � @l~uk ¼ xkl: (4.24)

By (4.21) and Lemma 4.1, one can write

X

d

l¼1

Dl~ul ¼
X

d

l¼1

Dl

ð

R
d
DlUðx � yÞ~gðt, yÞ dyþ

X

d

l, k¼1

Dl

ð

R
d
DkUðx� yÞxklðt, yÞ dy, (4.25)

where the second term is zero because xkl ¼ �xlk: Regarding the first term in (4.25),

we observe that

X

d

l¼1

ð

R
d
T

~ulDlu dx dt ¼
X

d

l¼1

ð

R
d
T

Dluðt, xÞ

ð

R
d

DlUðx � yÞ~gðt, yÞ dy dx dt

¼
X

d

l¼1

ð

R
d
T

~gðt, xÞ

ð

R
d

ðDlUÞðy� xÞDluðt, yÞ dy dx dt

¼ �

ð

R
d
T

~gðt, xÞD

ð

R
d

Uðx � yÞuðt, yÞ dy dx dt ¼ �

ð

R
d
T

~gðt, xÞuðt, xÞ dx dt

for any u 2 C1
0 ðRd

TÞ: Hence, (4.23) is proved.

To prove (4.24), we first show that

@kxjl � @lxjk ¼ @jxkl (4.26)

in Rd
T for all k, j, l 2 f1, :::, dg: By the properties of xkl, this is equivalent to showing

that

@kxjl þ @jxlk þ @lxkj ¼ 0 (4.27)

in Rd
T : It is sufficient to check (4.27) for three cases: k, j, l 2 f1, :::, d � 1g, k ¼ d, j, l 2

f1, :::, d � 1g, and k ¼ j ¼ d and l 2 f1, :::, d � 1g: In the last case, (4.27) becomes

@dxdl þ @dxld ¼ 0,

which is guaranteed by the property of xkl. For the first and second cases, by differenti-

ating the Eq. (4.17) in xr, we write them as

@tDrxkl � �aijDijDrxkl ¼ DrðDk
~f l � Dl

~f kÞ inRd
T ,

Drxklð0, xÞ ¼ 0 for x 2 Rd,

(

(4.28)

where

r ¼ 1, :::, d if k, l 2 f1, :::, d � 1g,
r ¼ 1, :::, d � 1 if k ¼ d or l ¼ d:

�

In particular, note that when k, l 2 f1, :::, d � 1g,

Dd�aijDijxkl ¼ �aijDijDdxkl,

which follows from the evenness of xkl with respect to xd. From (4.28), one can see

that @kxjl þ @jxlk þ @lxkj 2 W1, 2
q0

ðRd
TÞ satisfies (4.28) with the right-hand side being

zero. Then, by uniqueness, (4.27) follows.
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Now we prove (4.24). From (4.21) we have

@k~ul � @l~uk ¼ Dk

ð

R
d
DlUðx � yÞ~gðt, yÞ dy� Dl

ð

R
d
DkUðx � yÞ~gðt, yÞ dy

þ
X

d

r¼1

Dk

ð

R
d
DrUðx� yÞxrlðt, yÞ dy� Dl

ð

R
d
DrUðx� yÞxrkðt, yÞ dy

	 


,

where the first two terms on the right-hand side cancel each other. Then, since Dxrl 2
Lq0ðR

d
TÞ \ Lq1ðR

d
TÞ, by (4.6)

@k~uk � @k~uk ¼
X

d

r¼1

ð

R
d
DrUðx � yÞ Dkxrlðt, yÞ � Dlxrkðt, yÞ

� �

dy

¼
X

d

r¼1

ð

R
d
DrUðx � yÞDrxklðt, yÞ dy ¼ xkl,

where we used (4.26) in the second equality and (4.3) in the last equality.

Step 4: We prove that there exists ~p : R
d
T ! R such that ð~u, ~pÞ satisfies (4.16). In fact,

the second relation in (4.16) is shown in (4.23), and the third one follows from the def-

inition of ~u in (4.21) and the initial conditions on g and xkl. Thus, we prove here

~ut � �aijDij~u þr~p ¼ ~f (4.29)

in Rd
T : Once this is proved, the last estimate in (1.8) follows from (4.29), the second

estimate in (1.8), and (1.9), as well as the evenness and oddness of the involved func-

tions. We set h ¼ ðh1, :::, hdÞ, where

hlðt, xÞ ¼ ~f lðt, xÞ � @t~ulðt, xÞ þ �aijðt, xdÞDij~ulðt, xÞ

in Rd
T : Then, using (4.24) and (4.18), we see that

Dkhl � Dlhk ¼ 0

in Rd
T in the distribution sense. In particular, if k¼ d and l 2 f1, :::, d � 1g, then it fol-

lows that

Ddhl � Dlhd ¼ Dd
~f l � Dl

~f d � @tðDd~ul � Dl~udÞ þ Dd �aijDij~ul

� �

� Dl �aijDij~ud

� �

¼ Dd
~f l � Dl

~f d � @txdl þ Di ~ajiDjxdl

� �

¼ 0,

where we used (3.15), which was deduced from the evenness of ~ul in xd.

We extend hl to be zero for t< 0 and take infinitely differentiable functions gðtÞ 2
C1
0 ðRÞ and fðxÞ 2 C1

0 ðRdÞ with unit integrals such that gðtÞ ¼ 0 for t � 0: We set

h
ðeÞ
l ðt, xÞ ¼

ðT

�1

ð

R
d
hlðs, yÞ/eðt � s, x� yÞ dy ds,

where

/eðt, xÞ ¼ e�d�2gðt=e2Þfðx=eÞ:

Then h
ðeÞ
l 2 C1 ½0,T� � Rd

� �

and
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Dkh
ðeÞ
l � Dlh

ðeÞ
k ¼ 0 (4.30)

in Rd
T : Let

peðt, xÞ ¼

ðx1

0

h
ðeÞ
1 ðt, r, 0, :::, 0Þ dr þ

ðx2

0

h
ðeÞ
2 ðt, x1, r, 0, :::, 0Þ dr þ :::

þ

ðxd

0

h
ðeÞ
d ðt, x1, x2, :::, xd�1, rÞ dr:

We define

~p
eðt, xÞ ¼ peðt, xÞ �

1

B1

ð

B1

peðt, yÞ dy:

Using (4.30), we see that

r~pe ¼ h
ðeÞ
1 , :::, h

ðeÞ
d

� �

in Rd
T , and

kr~p
ekLq0 ðR

d
TÞ
¼ khðeÞkLq0 ðR

d
TÞ
� khkLq0 ðR

d
TÞ

is bounded uniformly in e > 0:
On the other hand, for each R> 1, by the Poincar�e inequality,

k~peðt, �ÞkLq0 ðBRÞ
� Nðd, q0,RÞkr~p

eðt, �ÞkLq0 ðBRÞ

for each t 2 ½0,T�: By integrating both sides of the above inequality in t, we obtain

k~pekLq0 ðð0,TÞ�BRÞ
� Nkr~p

ekLq0 ðð0,TÞ�BRÞ
,

which is bounded uniformly in e > 0: Hence, there exists ~pðt, xÞ defined in Rd
T , which

is spatially locally in Lq0ðR
d
TÞ, such that r~p 2 Lq0ðR

d
TÞ and a subsequence of fr~p

eg
converges weakly to r~p in Lq0ðR

d
TÞ: Since

Dl~p
e ¼ h

ðeÞ
l , l ¼ 1, :::, d,

in Rd
T and h

ðeÞ
l ! hl in Lq0ðR

d
TÞ, we conclude that ð~u, ~pÞ satisfies (4.29).

Finally, we note from (4.29) that ~u 2 L1ðð0,TÞ, Lq0ðR
dÞÞ: �

Proof of Theorem 1.4. We denote Rd
T,þ ¼ ð0,TÞ � Rd

þ: In view of Proposition 4.2 and

the fact that C1
0 ðRd

T,þÞ is dense in Lq0ðR
d
T,þÞ, we only need to show that there exist

functions gm and Gm ¼ ðGm
1 , :::,G

m
d Þ defined on R

d
T,þ such that gmðt, xÞ and Gmðt, xÞ

vanish for large jxj uniformly in t 2 ½0,T�,

gm, jDgmj 2 Lq0ðR
d
T,þÞ, gmð0, �Þ ¼ 0, Gm 2 Lq0ðR

d
T,þÞ

d,

@tg
m ¼ divGm

in Rd
T,þ, and

kg � gmkLq0 ðR
d
T,þÞ

þ kDg � DgmkLq0 ðR
d
T,þÞ

þ kG� GmkLq0 ðR
d
T,þÞ

! 0 asm ! 1:

We take infinitely differentiable functions vmðxÞ defined on Rd such that vmðxÞ ¼ 1

on Bm=2 and vmðxÞ ¼ 0 for x 2 RdnBm, m ¼ 1, 2, :::, where
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Bm :¼ fjxj < m : x 2 Rdg:

We set

Bþ
m ¼ Bm \ fxd > 0g, cmðtÞ ¼

Ð

Bþ
m
rvmðyÞ � Gðt, yÞ dy
Ð

Bþ
m
vmðyÞ dy

,

and find Hm in ð0,TÞ � Bþ
m such that

divHm ¼ �rvm � Gþ cmðtÞvmðxÞ in ð0,TÞ � Bþ
m,

Hmðt, xÞ ¼ 0 on ð0,TÞ � @Bþ
m,

�

with the estimate

kDxH
mk

Lq0 ð0,TÞ�Bþ
mð Þ � Nðd, q0Þ krvm � Gk

Lq0 ð0,TÞ�Bþ
mð Þ þ kcmðtÞvmðxÞkLq0 ð0,TÞ�Bþ

mð Þ

� �

:

This is indeed possible by using an integral representation of the solutions to the diver-

gence equations on star-shaped domains, as shown in, for instance, [31]. We note that

krvm � Gk
Lq0 ð0,TÞ�Bþ

mð Þ þ kcmðtÞvmðxÞkLq0 ð0,TÞ�Bþ
mð Þ � NðdÞm�1k1BmnBm=2

GkLq0 ðR
d
T,þÞ

:

From the above two inequalities, the Poincar�e inequality on Bþ
m, and the fact that

k1BmnBm=2
GkLq0 ðR

d
T,þÞ

! 0 asm ! 1,

we have

kHmk
Lq0 ð0,TÞ�Bþ

mð Þ � mkDxH
mk

Lq0 ð0,TÞ�Bþ
mð Þ ! 0 asm ! 1:

We set

gmðt, xÞ :¼ vmðxÞgðt, xÞ þ vmðxÞ

ðt

0

cmðsÞ ds

and

Gmðt, xÞ :¼
vmðxÞGðt, xÞ þ Hmðt, xÞ in ð0,TÞ � Bþ

m,
0 in ð0,TÞ � ðRd

þnB
þ
mÞ:

�

We then see that gm and Gm satisfy the required properties. In particular, for

u 2 C1
0 ðRd

TÞ,

ð

R
d
T,þ

gmut dx dt ¼

ð

R
d
T,þ

vmG � ruþ urvm � Gþ vm

ðt

0

cmðsÞ ds

 !

ut

" #

dx dt

¼

ð

R
d
T,þ

vmG � ruþ urvm � G� vmðxÞcmðtÞuð Þ dx dt

¼

ð

R
d
T,þ

vmG � ru dx dt �

ðT

0

ð

Bþ
m

udivHm dx dt

¼

ð

R
d
T,þ

Gm � ru dx dt,

where we used the fact that Hm ¼ 0 on ð0,TÞ � @Bþ
m: The theorem is proved. �
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5. Stokes system with measurable coefficients and proof of Theorem 1.2

In this section, we consider the non-divergence form Stokes system with measurable

coefficients and the Lions boundary conditions. We give the proof of the main result of

the article, Theorem 1.2. Recall the notation ðf ÞQ and ½f �
X
ðtÞ in (2.1) and (2.2) for f

defined on Q ¼ C� X � R� Rd: For a domain X � R
d
þ and q > 0, we denote

X
q ¼

[

y2X
Bþ
q ðyÞ:

We say that X satisfies the interior measure condition if there exists c 2 ð0, 1Þ such that

for any x0 2 �X and r 2 ð0, diam XÞ,

jBrðx0Þ \ Xj

jBrðx0Þj
� c: (5.1)

We begin with the following lemma estimating the second derivatives of solutions.

Lemma 5.1. Let q0 2 ð1,1Þ, q 2 ðq0,1Þ, r 2 ð0,R0Þ, and d 2 ð0, 1Þ. Further, let u 2

W1, 2
q ðQþ

r Þ
d be a strong solution to (1.1) in Qþ

r with the boundary conditions (1.2), where

p 2 W0, 1
1 ðQþ

r Þ, f 2 Lq0ðQ
þ
r Þ

d, and Dg 2 Lq0ðQ
þ
r ðz0ÞÞ

d. Suppose that Assumption 1.1 (d)

holds. Then we have

ðjD2ujq0Þ
1
q0

Qþ
r=2

� Nðd, �, q0Þ ðjDgjq0Þ
1
q0

Qþ
r
þ ðjf jq0Þ

1
q0

Qþ
r
þ r�1ðjDu� Du½ �Bþ

r
ðtÞjq0Þ

1
q0

Qþ
r

	 


þ Nðd, �, q0Þr
�1
X

d�1

i¼1

ðjDduij
q0Þ

1
q0

Qþ
r
þ ðjDx0udj

q0Þ
1
q0

Qþ
r

" #

þ Nðd, �, q0, qÞd
1
q0
�1

qðjD2ujqÞ
1
q

Qþ
r
,

(5.2)

and

ðjD2ujq0Þ
1
q0

Qþ
r=2

� Nðd, �, q0Þ ðjDgjq0Þ
1
q0

Qþ
r
þ ðjf jq0Þ

1
q0

Qþ
r
þ r�1ðjDujq0Þ

1
q0

Qþ
r

	 


þ Nðd, �, q0, qÞd
1
q0
�1

qðjD2ujqÞ
1
q

Qþ
r
:

(5.3)

Proof. If h is an integrable function defined on Qþ
r , we take the following mollification

of h(t, x) for t 2 ð�r2 þ e2, 0Þ :

hðeÞðt, xÞ ¼

ð0

�r2
hðt þ s, xÞgeðsÞ ds,

where gðtÞ 2 C1
0 ðRÞ with gðtÞ ¼ 0 for t � 0 and geðtÞ ¼ e�2gðt=e2Þ: Note that hðeÞðt, xÞ

is infinitely differentiable in t, and @k
t h

ðeÞðt, xÞ 2 Lq0ðQ
þ
r0 Þ for any k ¼ 1, 2, ::: if h 2

Lq0ðQ
þ
r Þ, r

0 2 ð0, rÞ, and e is sufficiently small. By mollifying (1.1) as above with respect

to t, we have

@tu
ðeÞ � aijDiju

ðeÞ þrpðeÞ ¼ f ðeÞ þ aijDijuð Þ
ðeÞ � aijDiju

ðeÞ

in Qþ
r0 for r

0 2 ð0, rÞ: We see that if we prove the estimate in the lemma for uðeÞ, by let-

ting e ! 0, we obtain the desired estimate for u. Thus, henceforth we assume that u(t,

x) is infinitely differentiable in t and @k
t u, @

k
tDxu, @

k
tD

2
xu 2 Lq0ðQ

þ
r Þ for any k ¼ 1, 2, ::::
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Let frðxÞ and wrðtÞ be infinitely differentiable functions defined on R
d and R,

respectively, such that

frðxÞ ¼ 1 onB2r=3, frðxÞ ¼ 0 onRdnBr,
wrðtÞ ¼ 1 on t 2 ð�4r2=9, 4r2=9Þ, wrðtÞ ¼ 0 on t 2 Rnð�r2, r2Þ:

We set /rðt, xÞ ¼ wrðtÞfrðxÞ: Then /r ¼ 1 on Q2r=3 and jD/rj � 4=r:
For the given r 2 ð0,R0Þ, let âijðtÞ be the matrix defined in Assumption 1.1 (d) such

that
ð

6

Qþ
r

jaijðt, xÞ � âijðtÞj dx dt � d, 8 i, j ¼ 1, 2, :::, d:

We first consider the following equation:

wt � âijðtÞDijwþrp1 ¼ IQþ
r
ðf þ ðaij � âijÞDijuÞ in ð�r2, 0Þ � Rd

þ

divw ¼ ðg � gðt, �Þ
� �

fr ,B
þ
r
Þ/r in ð�r2, 0Þ � Rd

þ

wð�r2, �Þ ¼ 0 inRd
þ

8

>

>

<

>

>

:

with the Lions boundary conditions

Ddwk ¼ wd ¼ 0 on fxd ¼ 0g for k ¼ 1, 2, :::, d � 1,

where

gðt, �Þ
� �

fr ,B
þ
r
¼

Ð

Bþ
r
gðt, yÞfrðyÞ dy
Ð

Bþ
r
frðyÞ dy

:

To find a strong solution ðw, p1Þ to the above equation using Theorem 1.4, we need to

check that

~gðt, xÞ :¼ g � gðt, �Þ
� �

fr ,B
þ
r

� �

/r 2 Lq0 ð�r2, 0Þ � Rd
þ

� �

, D~g 2 Lq0 ð�r2, 0Þ � Rd
þ

� �

,

~gð�r2, �Þ ¼ 0, and that there exists G ¼ ðG1, :::,GdÞ 2 Lq0ðR
d
T,þÞ such that

@t~g ¼ divG

in ð�r2, 0Þ � Rd
þ in the sense as in (1.7). The first three conditions are easy to check, so

we check only the last one. Since u(t, x) is infinitely differentiable in t and @tdiv u 2
Lq0ðQ

þ
r Þ, we have

@t~g ¼ @tg � @tgðt, �Þ
� �

fr ,B
þ
r

� �

frðxÞwrðtÞ þ g � gðt, �Þ
� �

fr ,B
þ
r

� �

frðxÞw
0
rðtÞ,

which belongs to Lq0ðð�r2, 0Þ � Rd
þÞ: From this it follows that
ð

Bþ
r

@t~gðt, xÞ dx ¼ 0:

Then, as in the proof of Theorem 1.4, we find G 2 W0, 1
q0

ðð�r2, 0Þ � Bþ
r Þ such that

divG ¼ @t~gðt, xÞ in ð�r2, 0Þ � Bþ
r ,

Gðt, xÞ ¼ 0 on ð�r2, 0Þ � @Bþ
r :

�

We again denote by G the zero extension of G on ð�r2, 0Þ � ðRd
þnB

þ
r Þ: Then, using the

fact that ~g has compact support on ð�r2, 0� � Bþ
r and the zero boundary condition of
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Gðt, �Þ on @Bþ
r , we arrive at

@t~g ¼ divG

in ð�r2, 0Þ � Rd
þ: Hence, the existence of w is ensured by Theorem 1.4. Further, it fol-

lows from Theorem 1.4 that

kD2wk
Lq0 ð�r2 , 0Þ�Rd

þð Þ � N kf kLq0 ðQ
þ
r Þ
þ kðaij � âijÞDijukLq0 ðQ

þ
r Þ
þ kD~gk

Lq0 ð�r2, 0Þ�Rd
þð Þ

� �

,

where N ¼ Nðd, �, q0Þ: Note that

kD~gk
Lq0 ð�r2, 0Þ�Rd

þð Þ ¼ kD g � gðt, �Þ
� �

fr ,B
þ
r

� �

/r

h i

k
Lq0 ð�r2, 0Þ�Rd

þð Þ

� kDgkLq0 ðQ
þ
r Þ
þ k g � gðt, �Þ

� �

fr ,B
þ
r

� �

D/rkLq0 ðQ
þ
r Þ

� kDgkLq0 ðQ
þ
r Þ
þ 4r�1kg � gðt, �Þ

� �

fr ,B
þ
r
kLq0 ðQ

þ
r Þ
,

where

kg � gðt, �Þ
� �

fr ,B
þ
r
kLq0 ðQ

þ
r Þ

¼
1

Ð

Bþ
r
frðyÞ dy













ð

Bþ
r

gðt, xÞ � gðt, yÞ
� �

frðyÞ dy













Lq0 ðQ
þ
r Þ

� NðdÞ

ð

6

Bþ
r

kgðt, xÞ � gðt, yÞkLq0 ðQ
þ
r Þ
frðyÞ dy

because
Ð

Bþ
r
frðyÞ dy is comparable to jBþ

r j: By H€older’s inequality and the Poincar�e

inequality,
ð

6

Bþ
r

kgðt, xÞ � gðt, yÞkLq0 ðQ
þ
r Þ
frðyÞ dy

� N

�
ð

6

Bþ
r

ð

Qþ
r

jgðt, xÞ � gðt, yÞjq0 dx dt dy

� 1
q0

� Nðd, q0ÞrkDgkLq0 ðQ
þ
r Þ
:

Hence, we obtain

kD2wkLq0 ðð�r2, 0Þ�Rd
þÞ

� Nðd, �, q0Þ kf kLq0 ðQ
þ
r Þ
þ kðaij � âijÞDijukLq0 ðQ

þ
r Þ
þ kDgkLq0 ðQ

þ
r Þ

h i

:

From this and by using Assumption 1.1 (d) and H€older’s inequality for the middle term

on the right-hand side of the last estimate, we have

ðjD2wjq0Þ
1
q0

Qþ
r
� Nðd, �, q0Þ ðjDgjq0Þ

1
q0

Qþ
r
þ ðjf jq0Þ

1
q0

Qþ
r

	 


þ Nðd, �, q0, qÞd
1
q0
�1

qðjD2ujqÞ
1
q

Qþ
r
: (5.4)

Now, let ðv, p2Þ ¼ ðu� w, p� p1Þ: We see that ðv, p2Þ satisfies

vt � �aijðtÞDijvþrp2 ¼ 0, div v ¼ gðt, �Þ
� �

fr ,B
þ
r

in Qþ
2r=3 with the boundary conditions as in (1.2). By using (3.3) in Lemma 3.1 with

suitable scaling, we have

kD2vkLq0 ðQ
þ
r=2

Þ � N
X

d�1

i¼1

r�1
�

kDx0vi � Dx0vi½ �Bþ
2r=3

ðtÞkLq0 ðQ
þ
2r=3

Þ þ kDdvikLq0 ðQ
þ
2r=3

Þ

�

þ Nr�1kDx0vdkLq0 ðQ
þ
2r=3

Þ,
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where N ¼ Nðd, �, q0Þ: It is clear that, for instance, ½Dx0vi�Bþ
2r=3

ðtÞ can be replaced with

½Dx0vi�Bþ
r
ðtÞ on the right-hand side of the above inequality. From this, the triangle

inequality, and the Poincar�e inequality on terms involving w, we obtain

ðjD2vjq0Þ
1
q0

Qþ
r=2

� r�1Nðd, �, q0Þ ðjDu� Du½ �Bþ
r
ðtÞjq0Þ

1
q0

Qþ
r
þ ðjDw� Dw½ �Bþ

r
ðtÞjq0Þ

1
q0

Qþ
r

	 


þ r�1Nðd, �, q0Þ
X

d�1

i¼1

ðjDduij
q0Þ

1
q0

Qþ
r
þ ðjDdwij

q0Þ
1
q0

Qþ
r

	 


þ r�1Nðd, �, q0Þ½ðjDx0udj
q0Þ

1
q0

Qþ
r
þ ðjDx0wdj

q0Þ
1
q0

Qþ
r

� Nðd, �, q0Þr
�1 ðjDu� Du½ �Bþ

r
ðtÞjq0Þ

1
q0

Qþ
r
þ
X

d�1

i¼1

ðjDduij
q0Þ

1
q0

Qþ
r
þ ðjDx0udj

q0Þ
1
q0

Qþ
r

" #

þ Nðd, �, q0ÞðjD
2wjq0Þ

1
q0

Qþ
r
:

(5.5)

Observe that in the last inequality, we applied the Poincar�e inequality to the terms Ddwi

and Dx0wd with i ¼ 1, 2, :::, d � 1 because these terms vanish on fxd ¼ 0g: Then, by the

triangle inequality and (5.5), we infer that

ðjD2ujq0Þ
1
q0

Qþ
r=2

� ðjD2wjq0Þ
1
q0

Qþ
r=2

þ ðjD2vjq0Þ
1
q0

Qþ
r=2

� Nðd, �, q0Þr
�1 ðjDu� Du½ �Bþ

r
ðtÞjq0Þ

1
q0

Qþ
r
þ
X

d�1

i¼1

ðjDduij
q0Þ

1
q0

Qþ
r
þ ðjDx0udj

q0Þ
1
q0

Qþ
r

" #

þ Nðd, �, q0ÞðjD
2wjq0Þ

1
q0

Qþ
r
:

This estimate and (5.4) imply (5.2) as well as (5.3). The proof of the lemma is thus

complete. �

Corollary 5.2. Let q0 2 ð1,1Þ, q 2 ðq0,1Þ, r 2 ð0,R0Þ, and d 2 ð0, 1Þ. Suppose that

T> 0 and X � R
d
þ satisfies (5.1) for some c > 0. Let u 2 W1, 2

q ðð�T � r2, 0Þ � X
rÞd be a

strong solution to (1.1) in ð�T � r2, 0Þ � X
r with the boundary conditions (1.2) on

ð�T � r2, 0Þ � ðXr \ fx : xd ¼ 0gÞ, where p 2 W0, 1
1 ðð�T � r2, 0Þ � X

rÞ, f 2 Lq0ðð�T�
r2, 0Þ � X

rÞd, and Dg 2 Lq0ðð�T � r2, 0Þ � X
rÞd. Further, suppose that Assumption 1.1

(d) holds. Then we have

ðjD2ujq0Þ
1
q0

ð�T, 0Þ�X
� Nðd, �, q0, cÞ

ððT þ r2ÞjXrjÞ
1
q0

ðTjXjÞ
1
q0

	

ðjDgjq0Þ
1
q0

ð�T�r2 , 0Þ�X
r þ ðjf jq0Þ

1
q0

ð�T�r2, 0Þ�X
r

þ r�1ðjDujq0Þ
1
q0

ð�T�r2, 0Þ�X
r




þ Nðd, �, q0, q, cÞ
ððT þ r2ÞjXrjÞ

1
q

ðTjXjÞ
1
q

d
1
q0
�1

qðjD2ujqÞ
1
q

ð�T�r2, 0Þ�X
r :

(5.6)

Proof. We use a partition of unity argument. By using (5.3) and the corresponding

interior estimate (cf. [8, Lemma 4.1]), for any x0 2 X and t0 2 ð�T, 0Þ, we have
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ðjD2ujq0ÞQþ
r=8

ðt0, x0Þ
� Nðd, �, q0Þ ðjDgjq0ÞQþ

r ðt0, x0Þ
þ ðjf jq0ÞQþ

r ðt0 , x0Þ
þ r�q0ðjDujq0ÞQþ

r ðt0, x0Þ

h i

þ Nðd, �, q0, qÞd
1�q0=qðjD2ujqÞ

q0=q

Qþ
r ðt0, x0Þ

:

In particular, when distðx0, fxd ¼ 0gÞ < r=8 so that we need to apply the boundary esti-

mate (5.3), we use the relations

Qþ
r=8ðt0, x0Þ � Qþ

r=4ðt0, x̂0Þ � Qþ
r=2ðt0, x̂0Þ � Qþ

r ðt0, x0Þ,

where x̂0 is the projection of x0 onto fxd ¼ 0g:
Now to obtain (5.6), it suffices to integrate both sides of the above inequality with

respect to ðt0, x0Þ 2 ð�T, 0Þ � X and use H€older’s inequality and the interior measure

condition (5.1). �

We now state the following result on the interior mean oscillation estimate of the

vorticity matrix x ¼ r� u, which is [8, Lemma 4.10].

Lemma 5.3. Let q1 2 ð1,1Þ, q0 2 ð1, q1Þ, d 2 ð0, 1Þ, R0 2 ð0, 1=4Þ, r 2 ð0,R0Þ, j 2 ð0,

1=4Þ, and z0 2 Qþ
1 such that Qþ

r ðz0Þ ¼ Qrðz0Þ. Suppose that Assumption 1.1 (d) holds.

Let u 2 W1, 2
q1

ðQrðz0ÞÞ
d be a strong solution of (1.1) in Qrðz0Þ, where

p 2 W0, 1
1 ðQrðz0ÞÞ, f 2 Lq0ðQrðz0ÞÞ

d, and Dg 2 Lq0ðQrðz0ÞÞ
d. Then

ðjDx� ðDxÞQjrðz0Þ
jÞQjrðz0Þ

� Nðd, �, q0Þj
�dþ2

q0 ðjf jq0Þ
1
q0

Qrðz0Þ
þ Nðn, �, q0, q1Þ j

�dþ2
q0 d

1
q0
� 1

q1 þ j

� �

ðjD2ujq1Þ
1=q1
Qrðz0Þ

,

where x ¼ r� u is the matrix of vorticity.

In the next lemma, we prove a boundary mean oscillation estimate of the derivatives

of the vorticity matrix.

Lemma 5.4. Let q1 2 ð1,1Þ, q0 2 ð1, q1Þ, d 2 ð0, 1Þ, R0 2 ð0, 1=4Þ, r 2 ð0,R0=4Þ, j 2 ð0,

1=4Þ, and z0 2 Qþ
1 . Suppose that Assumption 1.1 (d) holds. Let u 2 W1, 2

q1
ðQþ

5rðz0ÞÞ
d be a

strong solution to (1.1) in Qþ
5rðz0Þ with the boundary conditions (1.2) on

Qþ
5rðz0Þ \ fðt, xÞ : xd ¼ 0g, where p 2 W0, 1

1 ðQþ
5rðz0ÞÞ, f 2 Lq0ðQ

þ
5rðz0ÞÞ

d, and Dg 2 Lq0
ðQþ

5rðz0ÞÞ
d. Then

ðjDx� ðDxÞQþ
jrðz0Þ

jÞQþ
jrðz0Þ

� Nðd, �, q0Þj
�dþ2

q0 ðjf jq0Þ
1
q0

Qþ
5rðz0Þ

þ Nðd, �, q0Þj
�dþ2

q0 ðjDgjq0Þ
1
q0

Qþ
5rðz0Þ

þ Nðn, �, q0, q1Þ j
�dþ2

q0 d
1
q0
� 1

q1 þ j
1
2

� �

ðjD2ujq1Þ
1=q1
Qþ
5rðz0Þ

:

Proof. We write z0 ¼ ðt0, x
0
0, xd0Þ, and we split the proof into two cases.

Case I: xd0 � r: In this case, as Qþ
r ðz0Þ ¼ Qrðz0Þ, we use Lemma 5.3 to conclude that
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ðjDx� ðDxÞQþ
jrðz0Þ

jÞQþ
jrðz0Þ

� Nðd, �, q0Þj
�dþ2

q0 ðjf jq0Þ
1
q0

Qþ
r ðz0Þ

þ Nðn, �, q0, q1Þ j
�dþ2

q0 d
1
q0
� 1

q1 þ j

� �

ðjD2ujq1Þ
1=q1
Qþ
r ðz0Þ

:

In addition, observe that since Qþ
r ðz0Þ � Qþ

5rðz0Þ,

ðjhjÞQþ
r ðz0Þ

� NðdÞðjhjÞQþ
5rðz0Þ

for every measurable function h. Therefore, the assertion of the lemma follows even

without the term involving Dg on the right-hand side.

Case II: xd0 < r: In this case, we write ẑ0 ¼ ðt0, x̂0Þ, where x̂0 ¼ ðx00, 0Þ: We observe

that Qþ
r ðz0Þ � Qþ

2rðẑ0Þ: Moreover, as j < 1=4 and jz0 � ẑ0j < r, we see that

Qþ
jrðz0Þ � Qþ

4r=3ðẑ0Þ � Qþ
4rðẑ0Þ � Qþ

5rðz0Þ:

Let ðw, p1Þ and ðv, p2Þ be as in the proof of Lemma 5.1. In particular, ðw, p1Þ is the

strong solution of

wt � âijðtÞDijwþrp1 ¼ IQ4rðẑ0Þ f þ ðaij � âijðtÞÞDiju
� �

,

divw ¼ /4rðz � ẑ0Þðg � gðt, �Þ
� �

f4rð��x̂0Þ,B
þ
4rðx̂0Þ

Þ

(

in ð�ð4rÞ2 þ t0, t0Þ � R
d
þ with zero initial condition at t ¼ t0 � ð4rÞ2 and the Lions

boundary conditions

Ddwk ¼ wd ¼ 0 on fxd ¼ 0g for k ¼ 1, 2, :::, d � 1:

Here âijðtÞ is the matrix defined in Assumption 1.1 (d) such that
ð

6

Qþ
4rðẑ0Þ

jaijðt, xÞ � âijðtÞj dx dt � d, 8 i, j ¼ 1, 2, :::, d:

Moreover, ðv, p2Þ ¼ ðu� w, p� p1Þ is a strong solution of

vt � �aijðtÞDijvþrp2 ¼ 0, div v ¼ gðt, �Þ
� �

f4rð��x̂0Þ,B
þ
4rðx̂0Þ

in Qþ
8r=3ðẑ0Þ satisfying the Lions boundary conditions on fxd ¼ 0g: Let us denote by

x1 ¼ r� w and x2 ¼ r� v the vorticity matrices of w and v, respectively. We deduce

from (5.4) that

ðjDx1j
q0Þ

1
q0

Qþ
4rðẑ0Þ

� ðjD2wjq0Þ
1
q0

Qþ
4rðẑ0Þ

� Nðd, �, q0Þ ðjDgjq0Þ
1
q0

Qþ
4rðẑ0Þ

þ ðjf jq0Þ
1
q0

Qþ
4rðẑ0Þ

	 


þ d
1
q0
� 1

q1Nðd, �, q1, q0ÞðjD
2ujq1Þ

1
q1

Qþ
4rðẑ0Þ

:

(5.7)

By applying Lemma 3.2 with a ¼ 1=2 and a suitable scaling, the triangle inequality, and

H€older’s inequality, we obtain
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ðjDx2 � ðDx2ÞQþ
jrðz0Þ

jÞQþ
jrðz0Þ

� NðjrÞ
1
2 Dx2½ �½ �

C
1
4
, 1
2ðQþ

4r=3
ðẑ0ÞÞ

� Nðd, �, q0Þj
1
2ðjDx2j

q0Þ
1
q0

Qþ
8r=3

ðẑ0Þ

� Nðd, �, q0Þj
1
2 ðjDxjq0Þ

1
q0

Qþ
4rðẑ0Þ

þ ðjDx1j
q0Þ

1
q0

Qþ
4rðẑ0Þ

	 


� Nðd, �, q0Þj
1
2 ðjD2ujq1Þ

1
q1

Qþ
4rðẑ0Þ

þ ðjDx1j
q0Þ

1
q0

Qþ
4rðẑ0Þ

	 


:

Then, by combining this estimate with (5.7) and the fact that d 2 ð0, 1Þ, we infer that

ðjDx2 � ðDx2ÞQþ
jrðz0Þ

jÞQþ
jrðz0Þ

� Nðd, �, q0Þj
1
2 ðjDgjq0Þ

1
q0

Qþ
4rðẑ0Þ

þ ðjf jq0Þ
1
q0

Qþ
4rðẑ0Þ

	 


þ Nðd, �, q1, q0Þ j
1
2 þ j1=2d

1
q0
� 1

q1

� �

ðjD2ujq1Þ
1
q1

Qþ
4rðẑ0Þ

:

(5.8)

Now, by using the inequality
ð

6

Qþ
jrðz0Þ

jDx� ðDxÞQþ
jrðz0Þ

j dx dt � 2

ð

6
Qþ
jrðz0Þ

jDx� cj dx dt

with c ¼ ðDx2ÞQþ
jrðz0Þ

, and then applying the triangle inequality and H€older’s inequality,

we have
ð

6

Qþ
jrðz0Þ

jDx� ðDxÞQþ
jrðz0Þ

j dx dt � 2

ð

6

Qþ
jrðz0Þ

jDx� ðDx2ÞQþ
jrðz0Þ

j dx dt

� 2

ð

6

Qþ
jrðz0Þ

jDx2 � ðDx2ÞQþ
jrðz0Þ

j dx dt þ Nðd, q0Þj
�dþ2

q0

ð

6

Qþ
r ðz0Þ

jDx1j
q0 dx dt

 ! 1
q0

� 2

ð

6

Qþ
jrðz0Þ

jDx2 � ðDx2ÞQþ
jrðz0Þ

j dx dt þ Nðd, q0Þj
�dþ2

q0

ð

6

Qþ
4rðẑ0Þ

jDx1j
q0 dx dt

 ! 1
q0

:

This estimate, (5.7), and (5.8) imply that

ðjDx� ðDxÞQþ
jrðz0Þ

jÞQþ
jrðz0Þ

� Nðd, �, q0Þj
�dþ2

q0 ðjf jq0Þ
1
q0

Qþ
4rðẑ0Þ

þ Nðd, �, q0Þj
�dþ2

q0 ðjDgjq0Þ
1
q0

Qþ
4rðẑ0Þ

þ Nðd, �, q0, q1Þ j
�dþ2

q0 d
1
q0
� 1

q1 þ j
1
2

� �

ðjD2ujq1Þ
1
q1

Qþ
4rðẑ0Þ

:

Again, as Qþ
4rðẑ0Þ � Qþ

5rðz0Þ, we see that

ðjhjÞQþ
4rðẑ0Þ

� NðdÞðjhjÞQþ
5rðz0Þ

for every measurable function h, so the assertion of the lemma follows. The proof is

then complete. �

Our next lemma gives the key estimates of Dx and D2u in the mixed norm.

Lemma 5.5. Let R 2 ½1=2, 1Þ, R1 2 ð0,R0Þ, d 2 ð0, 1Þ, j 2 ð0, 1=4Þ, s, q 2 ð1,1Þ, q1 2 ð1,

minfs, qgÞ, and q0 2 ð1, q1Þ. Assume that Assumption 1.1 (d) holds. Let u 2
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W1, 2
s, q ðQ

þ
RþR1

Þd be a strong solution to (1.1) in Qþ
RþR1

with the boundary conditions (1.2)

on QRþR1
\ fðt, xÞ : xd ¼ 0g, where p 2 W0, 1

1 ðQþ
RþR1

Þ, f 2 Ls, qðQ
þ
RþR1

Þd, and

Dg 2 Ls, qðQ
þ
RþR1

Þd, and let x ¼ r� u denote the matrix of vorticity defined in (3.4).

Then we have

kDxkLs, qðQþ
R
Þ � Nj

�dþ2
q0 kf kLs, qðQþ

RþR1=2
Þ þ Nj

�dþ2
q0 kDgkLs, qðQþ

RþR1=2
Þ

þ N j
�dþ2

q0 d
1
q0
� 1

q1 þ j
1
2

� �

kD2ukLs, qðQþ
RþR1=2

Þ þ Nj
�dþ2

q0 R�1
1 kDukLs, qðQþ

RþR1=2
Þ

(5.9)

and

kD2ukLs, qðQþ
R
Þ � Nj

�dþ2
q0 kf kLs, qðQþ

RþR1
Þ þ Nj

�dþ2
q0 kDgkLs, qðQþ

RþR1
Þ

þ N j
�dþ2

q0 d
1
q0
� 1

q1 þ j
1
2

� �

kD2ukLs, qðQþ
RþR1

Þ þ Nj
�dþ2

q0 R�1
1 kDukLs, qðQþ

RþR1
Þ:

(5.10)

Proof. We first prove (5.9). We consider two cases.

Case I: r 2 ð0,R1=10Þ: It follows from Lemma 5.4 that for all z0 2 Qþ
R ,

ðjDx� ðDxÞQþ
jrðz0Þ

jÞQþ
jrðz0Þ

� Nðd, �, q0Þj
�dþ2

q0 ðjf jq0Þ
1
q0

Qþ
5rðz0Þ

þ Nðd, �, q0Þj
�dþ2

q0 ðjDgjq0Þ
1
q0

Qþ
5rðz0Þ

þ Nðd, �, q0, q1Þ j
�dþ2

q0 d
1
q0
� 1

q1 þ j
1
2

� �

ðjD2ujq1Þ
1
q1

Qþ
5rðz0Þ

:

Observe that because r < R1=10, we have Qþ
5rðz0Þ � Qþ

RþR1=2
: Therefore,

ðjDgjq0Þ
1
q0

Qþ
5rðz0Þ

�MðIQþ
RþR1=2

jDgjq0Þ
1
q0ðz0Þ,

ðjf jq0Þ
1
q0

Qþ
5rðz0Þ

�MðIQþ
RþR1=2

jf jq0Þ
1
q0ðz0Þ, and

ðjD2ujq1Þ
1
q1

Qþ
5rðz0Þ

�MðIQþ
RþR1=2

jD2ujq1Þ
1
q1ðz0Þ,

whereM is the Hardy–Littlewood maximal function. These estimates imply that

ðjDx� ðDxÞQþ
jrðz0Þ

jÞQþ
jrðz0Þ

� Nj
�dþ2

q0MðIQþ
RþR1=2

jf jq0Þ
1
q0ðz0Þ

þ Nj
�dþ2

q0MðIQþ
RþR1=2

jDgjq0Þ
1
q0ðz0Þ þ N j

�dþ2
q0 d

1
q0
� 1

q1 þ j
1
2

� �

MðIQþ
RþR1=2

jD2ujq1Þ
1
q1ðz0Þ:

Case II: r 2 ½R1=10,R=j� and z0 ¼ ðt0, x0Þ 2 Qþ
R such that t0 2 ½�R2 þ ðjrÞ2=2, 0�: In

this case, we simply estimate

COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 1727



ðjDx� ðDxÞQþ
jrðz0Þ\Q

þ
R
jÞQþ

jrðz0Þ\Q
þ
R
� 2ðjDxjÞQþ

jrðz0Þ\Q
þ
R
� 2ðjDxjq0Þ

1
q0

Qþ
jrðz0Þ\Q

þ
R

� Nj
�dþ2

q0

	

ðjf jq0Þ
1
q0

Qþ
jrþR1=2

ðz0Þ\Q
þ
RþR1=2

þ ðjDgjq0Þ
1
q0

Qþ
jrþR1=2

ðz0Þ\Q
þ
RþR1=2

þ R�1
1 ðjDujq0Þ

1
q0

Qþ
jrþR1=2

ðz0Þ\Q
þ
RþR1=2




þ Nj
�dþ2

q1 d
1
q0
� 1

q1ðjD2ujq1Þ
1
q1

Qþ
jrþR1=2

ðz0Þ\Q
þ
RþR1=2

,

(5.11)

where we used Corollary 5.2 and R1=10 � r in the last inequality.

Now, we take X ¼ Qþ
R and define the dyadic sharp function ðDxÞ#dy of Dx in X :

From the above two cases, we conclude that for any z0 2 X ,

ðDxÞ#dyðz0Þ � Nj
�dþ2

q0 MðIQþ
RþR1=2

ðjf j þ jDgjÞq0Þ
1
q0ðz0Þ þ R�1

1 MðIQþ
RþR1=2

jDujq0Þ
1
q0ðz0Þ

h i

þ N j
�dþ2

q0 d
1
q0
� 1

q1 þ j
1
2

� �

MðIQþ
RþR1=2

jD2ujq1Þ
1
q1ðz0Þ:

Indeed, by the properties in [27, Theorem 2.1], for any element Qn
a in the partitions of

Qþ
R , there exists z0 ¼ ðt0, x0Þ such that �R2 þ ðjrÞ2=2 � t0 � 0 and

Qn
a � Qþ

jrðz0Þ \ Qþ
R ,

where the volumes of Qn
a and Qþ

jrðz0Þ are comparable. Recalling that 1 < q0 < q1 <
minfs, qg, by Lemma 2.2 and the Hardy–Littlewood maximal function theorem in

mixed-norm spaces (see, for instance, [27, Corollary 2.6]),

kDxkLs, qðQþ
R
Þ � N kðDxÞ#dykLs, qðQþ

R
Þ þ R

2
sþ

d
qðjDxjÞQþ

R

h i

� Nj
�dþ2

q0 kMðIQþ
RþR1=2

ðjf j þ jDgjÞq0Þ
1
q0kLs, qðRdþ1Þ þ Nj

�dþ2
q0 R�1

1 kMðIQþ
RþR1=2

jDujq0Þ
1
q0kLs, qðRdþ1Þ

þ N j
�dþ2

q0 d
1
q0
� 1

q1 þ j
1
2

� �

kMðIQþ
RþR1=2

jD2ujq1Þ
1
q1kLs, qðRdþ1Þ þ NR

2
sþ

d
qðjDxjÞQþ

R

� N

	

j
�dþ2

q0 kf kLs, qðQþ
RþR1=2

Þ þ j
�dþ2

q0 kDgkLs, qðQþ
RþR1=2

Þ þ j
�dþ2

q0 R�1
1 kDukLs, qðQþ

RþR1=2
Þ

þ j
�dþ2

q0 d
1
q0
� 1

q1 þ j
1
2

� �

kD2ukLs, qðQþ
RþR1=2

Þ þ R
2
sþ

d
qðjDxjÞQþ

R




:

Similar to (5.11), by Corollary 5.2, the last term on the right-hand side above is

bounded by

NR
2
sþ

d
q ðjf jq0Þ

1
q0

Qþ
RþR1=2

þ ðjDgjq0Þ
1
q0

Qþ
RþR1=2

þ R�1
1 ðjDujq0Þ

1
q0

Qþ
RþR1=2

þ d
1
q0
� 1

q1ðjD2ujq1Þ
1
q1

Qþ
RþR1=2

	 


� N kf kLs, qðQþ
RþR1=2

Þ þ kDgkLs, qðQþ
RþR1=2

Þ þ R�1
1 kDukLs, qðQþ

RþR1=2
Þ þ d

1
q0
� 1

q1kD2ukLs, qðQþ
RþR1=2

Þ

	 


,

where we used H€older’s inequality in the last line. Combining the two inequalities

above, we obtain (5.9).

Next, we prove (5.10). Since u satisfies (4.22) in Qþ
RþR1

with g in place of ~g and with

either the zero Dirichlet or Neumann boundary condition, by the boundary mixed-

norm Sobolev estimate for non-divergence form elliptic equations (cf. [27]), we have
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kD2ukLs, qðQþ
R
Þ � NkDxkLs, qðQþ

RþR1=2
Þ þ NkDgkLs, qðQþ

RþR1=2
Þ þ NR�2

1 kukLs, qðQþ
RþR1=2

Þ:

Replacing ui with ui � ½ui�Bþ
RþR1=2

ðtÞ for i ¼ 1, :::, d � 1 and using the interior and bound-

ary Poincar�e inequality, we infer that

kD2ukLs, qðQþ
R
Þ � NkDxkLs, qðQþ

RþR1=2
Þ þ NkDgkLs, qðQþ

RþR1=2
Þ þ NR�1

1 kDukLs, qðQþ
RþR1=2

Þ: (5.12)

Combining (5.12) and (5.9) with Rþ R1=2 in place of R, we obtain (5.10). The lemma

is proved. �

Now we are ready to give the proof of Theorem 1.2.

Proof of Theorem 1.2. For k ¼ 1, 2, :::, we denote Qk ¼ ð�ð1� 2�kÞ2, 0Þ � Bþ
1�2�k : Let k0

be the smallest positive integer such that 2�k0�1 � R0: For k � k0, we apply (5.10) with

R ¼ 1� 2�k and R1 ¼ 2�k�1 to get

kD2ukLs, qðQkÞ � Nj
�dþ2

q0 kf kLs, qðQkþ1Þ þ Nj
�dþ2

q0 kDgkLs, qðQkþ1Þ

þ N j
�dþ2

q0 d
1
q0
� 1

q1 þ j
1
2

� �

kD2ukLs, qðQkþ1Þ þ Nj
�dþ2

q0 2kkDukLs, qðQkþ1Þ:
(5.13)

From (5.13) and the interpolation inequalities, we obtain

kD2ukLs, qðQkÞ � Nj
�dþ2

q0 kf kLs, qðQkþ1Þ þ Nj
�dþ2

q0 kDgkLs, qðQkþ1Þ

þ N j
�dþ2

q0 d
1
q0
� 1

q1 þ j
1
2

� �

kD2ukLs, qðQkþ1Þ þ Nj
�1

2�
2ðdþ2Þ
q0 22kkukLs, qðQkþ1Þ,

(5.14)

where the constants N above are independent of k. We then take j sufficiently small

and then d sufficiently small so that

N j
�dþ2

q0 d
1
q0
� 1

q1 þ j
1
2

� �

� 1=5:

Finally, we multiply both sides of (5.14) by 5�k and sum over k ¼ k0, k0 þ 1, ::: to obtain

the desired estimate. The theorem is proved. �
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