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ABSTRACT

We consider Stokes systems with measurable coefficients and Lions-
type boundary conditions. We show that, in contrast to the Dirichlet
boundary conditions, local boundary mixed-norm L; ;-estimates hold
for the spatial second-order derivatives of solutions, assuming the
smallness of the mean oscillations of the coefficients with respect to
the spatial variables in small cylinders. In the un-mixed norm case
with s =g = 2, the result is still new and provides local boundary
Caccioppoli-type estimates. The main challenges in the work arise
from the lack of regularity of the pressure and time derivatives of
the solutions and from interaction of the boundary with the nonlocal
structure of the system. To overcome these difficulties, our approach
relies heavily on several newly developed regularity estimates for
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both divergence and non-divergence form parabolic equations with
coefficients that are only measurable in the time variable and in one
of the spatial variables.

1. Introduction and main results

In this article, we investigate local boundary mixed-norm L ;-estimates for solutions to
time-dependent Stokes systems. In particular, we show that for time-dependent Stokes
systems with the Lions boundary conditions (see [1, 2] and (1.2) below), the local
boundary L; ;-estimates for the solutions hold. Our results are established for a general
class of Stokes systems in non-divergence form with measurable coefficients, so they
could therefore be useful, for example, for studying flows of inhomogeneous fluids with
density-dependent viscosity [3, 4]. Precisely, we investigate the following Stokes system:

u — a(t,x)Dju+Vp=f, divu=g inQf, (1.1)
with the Lions boundary conditions on {x; = 0} :
Dauy =ug=0 on(—1,0]xB; x {0}, k=1,2,...d— 1. (1.2)

The Lions boundary conditions are a special case of the Navier (or slip) boundary condi-
tions introduced in [5]. In the above equations, Q; is the unit upper half-parabolic cylin-
der and B is the unit ball in R, See Section 2.1 for their definitions. In (1.1),
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u = (u(t,x), up(t,x), .., ug(t, x)) € R where (t,x) € Qf,

is an unknown vector-valued function representing the velocity of the considered fluid,
p = p(t,x) is an unknown fluid pressure, f = (fi,f2,....fs) is a given measurable vector-
valued function, and g =g(t,x) is a given measurable function. In addition, a; =
a;i(t,x) is a given measurable symmetric matrix of the viscosity coefficients. Throughout
the article, we assume that a;; satisfies the following boundedness and ellipticity condi-
tions with the ellipticity constant v € (0,1) : for a.e. (¢, x),

vEP < aij(t,x)&i¢; and  ay| < v foré = (&,& .0 E) €RYL (1.3)

As a regularity assumption on the coefficients, we impose the following vanishing mean
oscillation in x (VMO,) condition on a; which was introduced in [6], with a con-
stant 0 € (0,1).

Assumption 1.1 (0). There exists Ry € (0,1/4) such that for any (ty,xo) € QF and r €
(0,Ryg), there exists a;(t) satisfying (1.3) and

} lay(tyx) — ag(t)| dx dt <5 forij=1,2,....d.
Q/ (to,x0)

For the definitions of Q(#y,xo) and various function spaces, we refer the reader to
Section 2.1. We say that (u,p) € WI2(Q)? x Wo1(Q[) is a strong solution of (1.1) on

1 if (1.1) holds for a.e. (f,x) € Q] and (1.2) holds in the sense of trace. The main
result of the article on the local L; ;-estimate for solutions to (1.1) is now stated as the
following theorem.

Theorem 1.2. Let s,q € (1,00). There exists 6 = 6(d,v,s,q) € (0,1) such that the follow-
ing statement holds. Suppose that Assumption 1.1 (0) holds. Then, if (u,p)€
wh 2(Q*) x WY 1(Qf) is a strong solution to (1.1) in Qf with the boundary conditions
(1 2) felL, q(Q+) and Dg € L, 4(Q)%, it follows that

1D%uls, 07, < N w5l o) + 1081
+N(d,v,5,9)Ry?|u

LMI(Q”} (1.4)

Ls,q(Q;r) :

Remark 1.3.
i. By using interpolation and a standard iteration argument, it is easily shown that
(1.4) still holds if we replace the term Ry?[lull; L) on the right-hand side

with Ry > ful, oo)-
ii. The estimate (1.4) holcis trivially for d=1. Therefore, throughout the article, we
set d > 2.

Even in the un-mixed norm case with s =g =2, the estimate (1.4) is new. In this
case, local boundary estimates as in (1.4) are known as Caccioppoli-type estimates. See
[7-10], for instance. However, in contrast to the case we consider, the local boundary
Caccioppoli-type estimates for non-stationary Stokes systems do not hold under the
homogeneous Dirichlet boundary conditions, as demonstrated in a recent work [11].
Therefore, besides other interests, finding a right class of boundary conditions so that
(1.4) holds is an interesting question, which this article answers.
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We emphasize that the boundary conditions (1.2) are essential to the validity of (1.4).
Observe that unlike some known local regularity estimates (see [12], for instance), (1.4)
does not contain the pressure on the right-hand side, and thus it requires only very
mild regularity of the pressure. To the best of our knowledge, it is new even for the
classical Stokes system, i.e., when a; = d;;. As such, (1.4) might be useful in applica-
tions. For more information regarding estimates without the pressure, see [13, Remark
IV.4.2] and [14-16] for stationary equations with constant coefficients, [7] for time-
dependent equations with constant coefficients, and [8] for time-dependent equations
with measurable coefficients.

The L,-estimates for solutions of Stokes systems are a research topic of great math-
ematical interest. See the monographs [12, 13, 15], as well as a survey paper [17] and
the references therein. The earliest work on equations with constant coefficients can be
found in [18]. See also [19-21]. In these works, global estimates are proved either using
fundamental solutions and potential analysis techniques, or using a functional analytic
approach. Local estimates are more delicate and cannot be derived from these methods.
In recent work [22, 23], the local and global L, and weighted L, theory are established
for divergence form stationary Stokes systems with measurable coefficients using a per-
turbation method and localization technique. However, this approach does not work for
non-stationary Stokes systems owing to the lack of local regularity in the time variable
of solutions and the pressure. This problem is considered in a recent work [8], in which
local interior estimates in mixed-norm Lebesgue spaces are established by combining
the perturbation argument with several regularity estimates for equations in divergence
and non-divergence form applied to the vorticity equations. In this article, we study the
corresponding local boundary estimates.

The proof of Theorem 1.2 is based on the perturbation technique using the
Fefferman-Stein sharp functions developed in [6, 24, 25] and in [8, 22, 23]. There are
several additional difficulties. First, as we already mentioned, the localization technique
typically used in the study of stationary Stokes systems [22, 23] is not applicable owing
to the lack of regularity in the time variable for the Stokes system. Second, the structure
of the system is nonlocal in view of the pressure term, and its complicated interaction
with the boundary is not very well understood. Finally, the usual local energy estimates
that are essential in perturbation methods are not known in the literature for the time-
dependent Stokes system (1.1). To overcome these difficulties, we modify the ideas used
in [8] and take the boundary conditions (1.2) into account to derive boundary estimates
for the solutions of the vorticity equations and divergence equations. Several new inter-
mediate results on the solvability and regularity estimates for the Stokes system and the
vorticity equations near the boundary are developed.

In the rest of this section, we briefly discuss a result on the solvability of the Stokes
system with the Lions boundary conditions. The result is not only intrinsically interest-
ing, but is also an essential ingredient that we develop to prove Theorem 1.2. Consider
the following Stokes system in the upper half-space:

u—ag(t)Dju+Vp = f  in(0,T] x R%,
divu = g in (0, T] x R%

< (1.5)
u(0, x) = 0 forx € R‘i,
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with the Lions boundary conditions
Dguy = ug =0 on (0, T|xR ! x {0} fork=1,2,...,d—1, (1.6)

where T>0 is some given number and Rd =R%! x (0,00). In (1.5), we assume that
a;; is a measurable function depending only on the time variable, ie., a;:(0,T) — R,
and that (1.3) holds.

Theorem 1.4. Let T>0 and qo € (1,00). Let f € Ly ((0,T) x Rd) and g:(0,T) x
R? — R such that g € Ly, ((0,T) x R%), Dg € L, ((0.T) x Rd) £(0,-) =0, and g =
d1VG for some vector field

G = (G, Gy, ..., Gg) € Ly ((0,T) x RE)*

in the sense that
J g0, dx dt :J G:D;p dx dt (1.7)
(0, T)xR? (0, T)xR?

for any ¢ € C((0,T) x RY). Then there exists a unique strong solution (u, p) of
(1.5)-(1.6) such that

ue Ly ((o, T),qu(Ri)>, y, Du, D21 € Ly ((0, T) x RY),
P € Ly (0. 1), Loy 1oc(RE)),  Vp € Ly ((0,T) x RY).
Moreover, (u, p) satisfies the estimates
HD””L (0, T)xR?) < NleHL (0, T)xR?) +N2||<‘>7||L (0, T)xR? )>
(2% u||Lq o0.1)xwd) < N2 [ufnLq (0,74 + ||Dg||Lq o, T)xm],
1925 0,17kt ) < N2 [IF 07ty + I1DE 0,17k + G 0,11k |
(1.8)

and

ot 0 11m8) = N2 [y 01y + Gy 011k ) (19)

for some constants Ny = Ny(v,d,qo, T) > 0 and N, = N»(v,d, q9) > 0.

Although the Stokes system with the Lions boundary conditions appeared some time
ago [1, 2], Theorem 1.4 seems new. To carry out the proof, we use the boundary condi-
tions and carefully use odd/even extensions to look for a solution in the whole space.
To avoid the complication due to the pressure, we first solve for the vorticity, from
which we recover the solution using the divergence equation and the fundamental solu-
tion of the Laplace equation. Because of the odd and even extensions, the new coeffi-
cients of the Stokes system in the whole space are merely measurable with possibly very
large oscillation in the x, direction. Therefore, solving for and estimating the solutions
in Sobolev spaces are quite involved. Several recent results developed in [24, 26] on the
existence, uniqueness, and regularity results for equations with coefficients only measur-
able in t and one of the spatial directions are carefully applied to obtain the
desired results.
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The rest of the article is organized as follows. In Section 2, we introduce the notation
and recall several known inequalities and estimates that are needed in the article. In
Section 3, we study the Stokes system with coefficients depending only on the time vari-
able. Several regularity estimates of solutions near the boundary are proved using the
divergence and vorticity equations. In Section 4, we prove Theorem 1.4 on the existence
and uniqueness of strong solutions to the Stokes system in the upper half-space with
the Lions-type boundary conditions. In the last section, Section 5, Theorem 1.2
is proved.

2. Notation and preliminary estimates
2.1. Notation

We denote the upper half-ball in R? of radius p centered at xp = (x}, x5) € R x R
as

B (x0) = {x = (¥, x4) € R X R : |x — x| < p, x4 > 0}
and the upper half-parabolic cylinder centered at zy = (f,x0) € R¥*! with radius p > 0
as
Q+(ZO) = (t() — pz, t0]><B+(xO).

For brevity, when 2z, = (0,0), we write Q; = Q}(0,0) and B} = B/ (0). We also denote
by B, the unit ball in R%! centered at the origin with radlus p > 0.

For each s, € [1,00) and each parabolic cylinder Q=T x QC R x R% the
Lebesgue mixed (s, g)-norm of a measurable function h defined in Q is

s/q 1/s
Ls,q(QFUr(LIh(tx)lq ) dt] ,

and we denote the mixed-norm Lebesgue spaces as

Liq(Q ={h:Q—R: ||

1

Ls,q(Q) < OO}.
We also denote the parabolic Sobolev space as
WEA(Q) ={u: u,Du,D’u € L 4(Q), ur € Li(Q)},

which is slightly different from the usual parabolic Sobolev spaces as it does not require
ur € Ls 4(Q). We also set

Wg’ql(Q) ={u: u,DucLy(Q}
When s =g, we omit one of these two indices and write
Ly(Q) = Ly y(Q), WyAQ) = Wra(Q), Wp'(Q) = Wpi(Q).

To express the average of a function g over a set D in R4, we use the notation @)p
defined by

@)p = }Dg( x) dx dt = |D|J g(t,x) dx dt, (2.1)
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where |D| is the n+ 1-dimensional Lebesgue measure of D C R%™. For a function g
defined on a parabolic cylinder Q =T x Q C R x R? we denote the average of g over
Q, as a function of ¢, by

1
8] (1) = }Qg(t,x) dx = |Q|J gtx) dx, teTl, (2.2)

where |Q| is the n-dimensional Lebesgue measure of Q C R?.

2.2. Sharp function estimates

The following result is a special case of [27, Theorem 2.3 (i)]. Let X C R¥! be a space
of homogeneous type, which is endowed with the parabolic distance and a doubling
measure g that is naturally inherited from the Lebesgue measure. As in [27], we take a
filtration of partitions of A’ (cf. [28]) and, for any f € L; ,., we define its dyadic sharp
function f(ﬁ, in X associated with the filtration of partitions. In addition, for each g €
[1,00], A, denotes the Muckenhoupt class of weights.

Theorem 2.1. Let s,q € (1,00), Ky > 1, and w € Ay with [w]Aq < Kyo. Suppose that
f € Ly(wdy). Then,
(ﬂ)}’

# _ 1
0wy < N 165 g + 2(X) " eo(spp(f))’

where N> 0 is a constant depending only on s, q, Ky, and the doubling constant of p,
and the second term on the right-hand side is understood to be zero if u(X) = oco.

As a direct consequence of Theorem 2.1, we have the following lemma, where fdy is
the dyadic sharp function of f on Q} associated with a filtration of partitions of Qj sat-
isfying the properties in, for instance, [27, Theorem 2.1]. Note that, as for Qf, the con-
stants in [27, Theorem 2.1] depend only on the dimension d.

Lemma 2.2. For any s,q € (1,00), there exists a constant N = N(d,s,q) > 0 such that

d_q 2
g SN[ + Bl )

for any R>0 and f € L, 4(Qg).

Proof. For t € (—R%,0), let
W) = £ ey and 60 = IF5 () + (g o

Moreover, for any w € A,((—R%0)) with [o] 4, < Ko, we write a(t, x) = o(t) for all
(t,x) € Qf. Then, by applying Theorem 2.1 with X = Qj;, we obtain

#
W 0),0) = W lleyapa) < Nllfay + (Do llzycap.a) = NIz, ((—r2,0),0)>

where N :N(d,Ko,s). Then, by the extrapolation theorem (see, for instance, [27,
Theorem 2.5]), we see that

Wm0, 0) S ANIDN L (20,0 YO €A, 0], < K.

Note that in the special case of v =1, o)) = |[f||L5 Q) and
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# Z+é
1llL—re0)0) < Wayllr, op) + R Dy -

Therefore, the desired estimate follows. [ |

3. Stokes systems with simple coefficients

In this section, we consider the time-dependent Stokes system with coefficients depend-
ing only on the time variable:

u —a(t)Dju+Vp=0, divu=0 in Q. (3.1)

The system (3.1) is equipped with the Lions boundary conditions on {x; = 0} N B, : for
k=12,...,d—1,

Daui(t,x',0) = uy(t,x',0) =0 for a.e. (t,x') € (—1,0]xBj, (3.2)

where a;; = (a;;(t)) is a given symmetric matrix of coefficients depending only on the
time variable ¢ and satisfying the ellipticity condition (1.3). This section provides key
estimates that are needed for the proof of Theorem 1.2. We begin with the following
estimates of the second derivatives of solutions.

Lemma 3.1. Let qo € (1,00), and (u,p) € qu(’)z(Qf)d x W»L(Q;) be a strong solution
to (3.1) in Q] with the boundary conditions (3.2). Then we have

d—1

1Dl g1, < N(dovado) Y (1Dt = Dyl (D)1, o) + IDatile o)) )
i=1 .

+ N(d, v,90) | Dxtaally, (or)»

where, as in (2.2), [D“i]Bj(t) is the average of Du;(t,) in Bf. Moreover, (3.3) also holds
if the second equation in (3.1) is replaced with

divu =g(t) inQf

for some given measurable function g:(—1,0) — R, which is independent of the spa-
tial variables.

Proof. We prove (3.3) when the second equation in (3.1) is replaced with
divu =g(t) inQy.
Let (a)kz)i ., be a matrix-valued function defined in Q] as
on = O — Oy inQy  fork,l € {1,2,....d}. (3.4)

Then a)kleH;O(Qf) for k,1€{1,2,...,d}. See [29, p. 362] for the definition of
H,g, (QF). We set

aij(t) = a;(t), aaa = au(t)
for i,j € {1,...,d — 1} and

for j=1,..,d —1. We observe that for every k1€ {1,2,...,d}, oy € H;O(Qf) is a
weak solution to the parabolic equation
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Ay — div (a(t) ' Voy) =0 inQf (3.5)

with the homogeneous Dirichlet or homogeneous conormal derivative boundary condi-
tion on {x; = 0}. Precisely,

d

Zajd(t)chokl = add(t)dekl =0 on {xd = 0} NB;, if kle {1,2, end — 1},
=1

oy =0 on{x;=0}NB; if k=dorl=d.

(3.6)

From this, we apply the local boundary ’Hll,-estimate for linear parabolic equations in
divergence form (cf. [29]) to obtain

1D, q;,) = Nld:vsqo)lloll, o; - (3.7)
Since divu = g(t) and g is independent of the x-variable, we have
d d d
Au; = —D; ZDkuk + Z Dyxu; = ZDkwki a.e.in QT (3.8)
k=1 k=1 k=1

Then, upon using the boundary conditions (3.2) and (3.6), for a.e. t € (—1,0), one can
view (3.8) as the following Poisson equations in non-divergence form with the
Neumann and Dirichlet boundary condition, respectively. Precisely, for a.e. t € (—1,0),
the function u; = u;(¢, -) satisfies

A(ui — [ui]w(t)) = kawk,- in B,
! k=1
Dy (u,- - [”i]BT(t)) =0 on{x; =0} NB,

fori=1,...d — 1, where [”]Bj(t) is the average of u(t,-) in Bf, and

d
Aud = ZDkwkd in B-l"_,
k=1
ug =0 on{x; =0} NB;.

We apply the local boundary W;-estimate for the Laplace operator and then integrate it
over the time variable to obtain

d—1
D%l q: ) < NIDOIL gr ) + N Dt = il s ) + Nlsall oz

i=1

From this inequality and (3.7) we obtain that

||D2”||Lq0 Q) < N||CU||LqO +NZH’/‘I — [ui B+HL% Q) +N|| d||L Q)

< SHDZUHLqO(Q;M) +N87IZ||L{1‘ - {Uz’]Br (t)”qu(Q;r/z;) +N871||Md||LqO(Q+ 5

)
Py 3/4

where in the second inequality we used multiplicative inequalities. It then follows from
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a standard iteration argument that

||D2“||Lq0 )< NZ i — ||L N(e) +N||”d||LqO(Ql+)~

By the multiplicative inequalities again, we arrive at

d—1
1Dl r ) < NS Nt = [l (Ol ) + Nl - (3.9)

i=1

Now by using the method of finite-difference quotient in the x’ direction and taking
the limit, from (3.9), we get

||DDx’”||L ) < NZ || Dy — X’“i]Bl+ (t)”qu(Ql*) + N||Dx’ud||Lq0(Q]+)’ (3.10)

where N = N(d, v, qo). Using the condition that divu is independent of x, we also have

d—1
103l o) < N D 1Dt = Dl (Ol qr) + NIty gy (31D

i=1
It remains to estimate Déu,- fori=1,...,d — 1. Since

D2u; = Dywg; + DaDjug,
it follows from (3.7) and (3.10) that

d—
D3l o, Z (IDets = (Dol (Ol o) + I 0uley ) ) + NPl
(3.12)
Combining (3.10), (3.11), (3.12), and the triangle inequality, we obtain (3.3). The lemma
is proved. u

Now, recall that for each « € (0,1] and each parabolic cylinder Q C R*!, the para-
bolic Holder semi-norm of the function u defined in Q is
|u(t, x) — u(s,y)|

(b (o)€@ |t — s+ [x — "
(t,x) # (5,9)

H“Hcy/zﬂ(Q) =

and its Holder norm is

ey = 18l q) + [llcrney-
The following lemma is needed later in this article.
Lemma 3.2. Under the assumptions of Lemma 3.1, we have

lollornr, < N o)l g (3.13)

and for any o € (0,1),
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Do

ey, S Nldvaon @o)lIDollp, o),

where @ = (wkl)ilzl is defined in (3.4).

Proof. Let iy (t,x) be the even extensions of uy(t,x) with respect to x4, k=1,....,d — 1,
and i1,4(t,x) be the odd extension of uy(t,x) with respect to x, Further, let p be the
even extension of p in x,. Set

aij = a;(t) forij=1,...,d—1, a4 = au(t),
ajd(t) x5 > 0,

_ajd<t) xXg < 0, fOI‘] =1, ,d —1.

Gja = dagj =

Then by the boundary conditions on u, we have & € W;(’)Z(Ql)d, p e WP(Q), and
Ijt[ — Zz,-j(t,xd)Dijzl + VIN) =0 in Ql.
We again denote by wy; the extensions of those wy; defined in the proof of Lemma

3.1 with respect to x,. That is, wy, k,1 € {1,...,d — 1}, is even and wy, I € {1,....,d —
1}, is odd with respect to x4, so

wy = Okl — Ojtig

in Q for k,1 € {1,2,...,d}. It is easily seen that wy satisfies the following equation in
divergence form:

8twk1 — div (EITV(DH) =0
in Qy, k,1 €{1,2,...,d}, where

o~ - 2adj(t) Xd Z 0,

forj=1,2,....d—1, and
aij = a;(t), and agg = ag(t)

for i,j € {1,2,...,d — 1}.
If we know a priori that wy; is sufficiently smooth, then wy; also satisfies the non-
divergence form equation

Orwy — aij(t, x4) Dijoogg = 0 (3.14)
in Q;. While checking this, we use the identity
Dy (agi(t, xa)Dgjit) = agj(t, xa) DDyt (3.15)

for I =1,...,d — 1, which follows from the definition of a4 and the evenness of u; with
respect to x, Indeed, one can show that wj; belongs to W;f(Qr) for any r € (0,1) and
satisfies (3.14) in Q, by using the W;’z solvability of parabolic equations in non-diver-
gence form with coefficients being measurable functions of (t,x,;) except for a,4, which
is a measurable function of ¢ only (cf. [24, 26]), as well as the unique solvability of the
divergence form equation for wy; (cf. [29]).

Once we check that wy € qu[’)z(Qr), r€(0,1), satisfies (3.14), we use the parabolic
Sobolev embedding theorem combined with bootstrap and iterations to obtain (3.13).
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Since the coefficients in (3.14) are independent of x/, by differentiating (3.14) in x’
(in fact, using finite-difference quotients), we find that Dywy € qul’)z(Q,), re (0,1),
also satisfies (3.14). This together with (3.13) shows that

IDeollma:,) < NG 0) IDeol, g
It remains to estimate Dyw. For k,I € {1,...,d — 1}, using the evenness of wy and

the unique solvability of the non-divergence and divergence form equations as above,
we notice that Dywy belongs to W;QZ(QT), r € (0,1), and satisfies

O:Dgwyy — Zlij(t, xd)D,'deCOkl =0
in Q,. Then, by the same reasoning as above, we obtain
IDaconllcieniqqy,) < N(dh v go)IDaooill,, o) -
Finally, for I =1,...,d — 1, wy satisfies (3.14) in QT with the Dirichlet boundary con-
dition on Q; N {(t,«,x4) € R : x; = 0}. Thus, by the boundary W,? estimate with

p>(d+2)/(1 —a), the parabolic Sobolev embedding theorem, and the boundary
Poincaré inequality, we have

IDavarllcornqy ) < Nlloarlly, op) = NlIDaalllr, o)

where N = N(d, v,a,qo). The lemma is proved. |

Remark 3.3. Lemma 3.2 can also be proved by using the boundary qu’z—estimate with
either the Dirichlet or Neumann boundary condition. We give a sketch below. Recall
that wy; satisfies the divergence form Eq. (3.5) with either the conormal or Dirichlet
boundary condition. Since the coefficients are independent of x, we can use the unique-
ness of strong solutions in the half-space to show that wy is also in W;’z( ;r/z) for any
q < 00. See, for instance, [24]. To obtain the estimates in Lemma 3.2, it remains to use
the parabolic Sobolev embedding theorem.

4. A solvability result: proof of Theorem 1.4

In this section, we prove Theorem 1.4, which demonstrates the existence of a solution
to the system (1.5) with the boundary conditions (1.6). Henceforth, we denote

R% = (0,T) x R4
We first give a lemma.
Lemma 4.1. Let T>0, gqo€(1,00),q € (1,d), h€Ly(RE)NL,(RE), and
ke {1,...,d}. We define
vie(t,x) = J de(D(x —y)h(t,y) dy
R

in R, where ®(-) is the fundamental solution of the Laplace equation in R®. Then we
have the following.
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a. IOT Ilvi(t, ')”2*(1&") dt < oo and Dyvy € Ly, (R%) with the estimates
1

1

T ar
Qﬁmumgwwﬂ < N a)lll, (41)
IDxvielly, @ey < N(dsqo) Il re)» (4.2)
where q; = dq,/(d — q1). We also have

d
ZDkvk(t, x) = h(t,x) inR%. (4.3)

k=1

b. If Dih € Ly, (RY), then D2vy € Ly, (RY) with

Avi(t,x) = Dyh(t,x) inR%, (4.4)

and the following estimate holds:
102l ) < N o) DRkl e (45)
c. IfDh€ Ly (RE) N L, (RY), it holds that

Dvi(t,x) = J de(D(x — y)Dh(t,y) dy inR%. (4.6)
R

Proof. For ae. t€[0,T),h(t,-) € Ly, (RY). Thus, for ae t€[0,7T], by the
Hardy-Littlewood-Sobolev theorem of fractional integration (see [30, Chapter V]), we
have

i (£, ')HLqT(Rd) < N q)1h(5, )], gy

By integrating both sides of the above inequality with respect to t € [0,T], we
obtain (4.1).
Now we find h™"(t,x) € C([0, T] x R?) such that

[B™ = hll, @)+ IF" =Rl ge) —0 (4.7)
as m — oo. For each m = 1,2, ..., we set
Vi (tx) == J de(D(x —y)h™(t,y) dy. (4.8)
R

Then, again by the Hardy-Littlewood-Sobolev theorem, we have
T
m q
J, 1926 = vt N gy =0 (49)
as m — oo. Integration by parts applied to (4.8) gives
V(%) = J Dx— D" (1y) dy (4.10)
R

from which it follows that

Av'(t,x) = Dyh™(t, y). (4.11)
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Note that
P(tx) =i Blx = 3)"(03) dy (@12)
R
and
Dv(t,x) = J Dy®(x — y)Dh™(t,y) dy = DDkJ O(x — y)h™(t,y) dy. (4.13)
R? R?
Thus,
d
> Def(tx) = AJ O(x — y)h™(t,y) dy = h"(t,x) (4.14)
k=1 R

in R%. By applying to (4.12) the fact that the double Riesz transform is bounded in
L,(RY), 1<p<oo, (see [30, Chapter III]) and by integrating both sides of the
obtained inequality in ¢, we arrive at

1D, ey < N(ds o) 11", g
Then, (4.2) and (4.3) follow from this inequality, (4.14), (4.7), and (4.9).
If Dk € Ly, (RE), we find " € C°([0, T] x RY) such that
1™ = hll, ey + B =Bl ge) + IDH™ = Dihll (gay — 0 (4.15)

as m — oo. Then, by applying the boundedness in L, (R of the double Riesz transform
to (4.10), we obtain

IDZv" Iy, ey < N(d>qo)[Deh™ ||, (ga)-

Using this estimate, (4.9), (4.11), and (4.15), we prove (4.4) and (4.5).
Finally, to prove (4.6), we use the Hardy-Littlewood-Sobolev theorem as well as the
first equality in (4.13) with " € C°([0, T] x R) satisfying (4.15) as well as

[Deh™ — th”qu ®d) — 0
as m — o0. The lemma is proved. ]
Proposition 4.2. Let T>0, qo € (1,00). Assume that a;; = a;j(t) for t € (0, T). Let f €

Ly, ((0.T) x R and g e L, ((0,T) x RY), Dg € Ly, ((0.T) x RY)%, ¢(0,-) =0, and
g = div (G) in the sense of (1.7) for some vector field

G = (Gy,Gyy ..., Gg) € Ly ((0,T) x RY)™.

Additionally, assume that ¢ and G vanish for large |x| uniformly in t € [0,T] and
feCr((o.T) x R‘i)d. Then, there exists a solution (u, p) of (1.5)-(1.6) such that

we L ((0,7),Lg,(RY)), 1o D, D € Ly ((0,T) x EY),
J S qu((O, T)’qu,IOC(Ri))’ VP € qu((O, T) X Ri)
and that satisfies (1.8) and (1.9).
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Proof. Set a;; to be as defined in the proof of Lemma 3.2. Our goal is to construct a
strong solution (i, p) in R% = (0, T) x R? of the Stokes system

i, —a;Dyi +Vp = f in R,
div (&) = 3 inRY, (4.16)
(0, x) =0 forx € R,

where g(t,x) and f(t,x) = Gl,fz, ...,fd) are functions such that g(t,-) is the even exten-
sion of g(t,-) on ]Rd,fk(t,-) is the even extension of fi(t,-) on R k=1,2,...d — 1,
and f,(t,-) is the odd extension of fy(t,-). We will see that the constructed solution
uk(t,+) is even in x4 for all k=1,2,....,d — 1, and uy(t,-) is odd in the x,-variable.
Therefore, u(t,-) = u(t,-)|ge and p(t,-) = p(t,-)|pe satisfy (1.5).

Since g(t,x) = f(t,x) = é(t, x) =0 for |x| > R with a sufficiently large R >0, there
exists q; € (1,d) such that

D8£ G € Ly, ((0,T) x RL) N L, ((0,T) x RY), 1=1,....4d.

Step 1: We construct # and prove the first two estimates in (1.8). Recall that f =
(fi> .. fa) is assumed to be smooth with compact support in (0, T) x Ri. Thus,

Dif, — Dif . € Ly, (RS,

and according to the results in [26], there exist wy € qu[’)z(R’%), k1€ {1,..,d}, satisfy-
ing the non-divergence form equations
Orwy — a,'jDijwk] = Dkf[ — Dljk inR‘%, (4.17)
wu(0,x) =0 forx e RY.
Since f,(t,x), k=1,...,d — 1, is the even extension of fi(t,x) and f,(t,x) is the odd
extension of f;(t,x),

Dif (t,x) = Dif (£, x), k1€ {1,....d—1},

is even with respect to x, and

Dyf,—Dif p, le{l,...d—1},

is odd with respect to x,; By the evenness and oddness of the right-hand sides and coef-
ficients of (4.17), we see that wy, k,1 € {1,..,d — 1}, is even with respect to x,, and
wg, 1€{1,....,d—1}, is odd with respect to x;. We also see that wy = —wy.
Furthermore, one can check that wy, k,I € {1,...,d}, satisfies the following divergence
form equation:

(4.18)

&wkl — div (Elvakl> = Dkfl - Dl.fk in R?«,
wkl(o, x) = 0 for x € Rd,

where a;; (which is different from a;) is as defined in the proof of Lemma 3.2. By the
H‘ll7 estimates (see [29, Theorem 2.1]), we have
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1Dl ety < N @)Wy ey 0ml, ) < NOT @l oy (419)
Since f € Ly, ((0,T) x Ri)d, we also have
IDoully, @y < N@g)fll, @ep ol @ < N@Tq)lIf Il ) (4.20)
Now we set
u(t,x) = J O(x — y)g(t,y) dy + ZJ D®(x — y)owu(t,y) dy (4.21)

in R‘%. By the properties of the fundamental solution ®(-), g, and wy;, we see that
u(t,-), I=1,...,d —1, is even in x,, and 14(t,-) is odd in x,; Note that

g Dig> 0w Dioyt € Ly, (RT) N Ly, (RY).

Then, by Lemma 4.1,
d
Ay = Dlg + Drwy in R‘%,
kZ; (4.22)

1Dl wey < NIy, @) + Nllowll,, @),

and
ID*ll;, ray < NIDZIl;, ge) + NIDowlly, za),

where N = N(d, qo). These estimates combined with (4.19) prove the first two estimates

in (1.8), provided that u(t,-) = (¢, ')‘R‘i satisfies (1.5).

Step 2: We prove (1.9). Observe that, for ¢ € C°(R%),

|| o v de= | oen)| DoG—pae9) dy dx ar
R

T T

+ ZJ @, (t,x) J de(D(x—y)wkl(t,y) dy dx dt

:J le(D(y)J gtx)p,(t,x+y) dx dt dy
R

d
+3°| Do0)|_outetaty) dr de dy= i+
k=1"R RT
For k=1,2,...,d — 1, we set Gi(t,-) to be the even extension of Gy(t,-) with respect to
x4 and G4(t,-) to be the odd extension of G4(t,-) with respect to x;. By (1.7) we have
&g = leG

in the sense of distribution. Then
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J = J dDICD(y)J G(65) - V(b +y) de di dy
= ZJ Dro(t, x)J D(x — y)Gi(t,y) dy dx dt.
Since Gy € Ly, (RE) N L, (R‘%), by Lemma 4.1,
Vik(t, x) :== JRleCD(x — 9)G(t,y) dy

satisfies D, Vi GLqO(]Rd) with the estimate as in (4.2). Thus, if we set Vi(t,x) =
S DiVi(t,x), then

= J Vi(t,x)p(t,x) dx dt
R%

and
V1 ||L%(R;) < N(d,qo) HGHL%(R‘})'

For J,, we observe that from (4.18),

J da)kl(t,x)(pt(t,ery) dx dt :J d&jiDja)kl(t,x)Di<p(t,x +y) dx dt
R R

T T

—I—J dfl(t,x)Dkq)(t,x +y) dx dt — J dfk(t,x)Dlgo(t,x +y) dx dt.
R% R

From (4.19) and (4.20), we see that d;Djon € Ly, (RE) N L, (R$) andf € Ly, (RE) N L, (RL).
Thus, by proceeding as above, we find that there exists V5 € Ly, (R%) such that

L= —J Va(t,x)o(t,x) dx dt
Rf

and
IVallo, ) < NIDoull, o) + NIl gy < NIFll, ey

where N = N(d,v,qo), and the last inequality is due to the first estimate in (4.19).
From the above observations on J; and J,, we see that

atﬁl == V1 + V2)
and
10l ey < NG, @y + NI, @)

where N = N(d, qo, V). This proves (1.9).

- Td
Step 3: We prove that in R,

diva(t,x) = g(t,x) (4.23)

and
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8k111 — 6,11k = W] (4.24)
By (4.21) and Lemma 4.1, one can write
d d
ZDlﬁl = ZD,j leCI)(x —y)g(t,y) dy+ Z DIJ deCI)(x —y)ou(t,y) dy, (4.25)
I=1 =1 R Lk=1 R

where the second term is zero because wy = —wjy. Regarding the first term in (4.25),
we observe that

d d
ZJ WDy dx dt = ZJ Dl(p(t,x)J Di®(x — y)g(t,y) dy dx dt
I=1 IR} =1 IR} R
d
=3[ g0 D@ - 0D0(0) dy dx at
=1 R R?
= —J fg(t,x)AJ O(x —y)o(t,y) dy dx dt = —J gt x)p(t,x) dx dt
RY R? RY
for any ¢ € C°(R%). Hence, (4.23) is proved.
To prove (4.24), we first show that
8ka)ﬂ - Glco]-k = (9]‘(1)](1 (4.26)

in R% for all k,j,1 € {1,..,d}. By the properties of @y, this is equivalent to showing
that

Okwj) + Qo + Qg = 0 (4.27)

in RY. Tt is sufficient to check (4.27) for three cases: k,j,1 € {1,....d — 1}, k = d, j,] €
{1,...,d—1}, and k =j=dand I € {1,...,d — 1}. In the last case, (4.27) becomes

Ogwa + Oqw13 = 0,

which is guaranteed by the property of wy;. For the first and second cases, by differenti-
ating the Eq. (4.17) in x,, we write them as

{ 0D, — a;DyDyyy = Dy(Dif | — Dif,)  inRY, (28)

D,wi(0,x) =0 forxe R,

where

ro=1,..,d if kle{l,.,d—1},
r =1,...d—1 if k=d or I=d.

In particular, note that when k,1 € {1,...,d — 1},
Dya;Dijwy = a;iDiiDgwy,

which follows from the evenness of wy with respect to x; From (4.28), one can see
that Orwj + djy + Oy € W;QZ(R‘%) satisfies (4.28) with the right-hand side being
zero. Then, by uniqueness, (4.27) follows.
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Now we prove (4.24). From (4.21) we have
Ot — Oy = DkJ le(D(x - y)g(t,y) dy - D]J de(D(x - y)g(t,y) d)/
R R

d
+ Z {ij D, ®(x — y)wy(t,y) dy — DIJ D,®(x — y)wu(t,y) dy|,
RY RY

r=1

where the first two terms on the right-hand side cancel each other. Then, since Dw, €
Ly, (R%) N Ly, (R‘%% by (4.6)

d
8](11)( — sz]k = ZJ qu)(x —y) (Dka)rl(t,y) — Dlwrk(t,y)) dy
RA

r=1
d
= ZJ dDr(D(x — y)D,wy(t,y) dy = wy,
r=1JR
where we used (4.26) in the second equality and (4.3) in the last equality.

Step 4: We prove that there exists p : R% — R such that (i, p) satisfies (4.16). In fact,
the second relation in (4.16) is shown in (4.23), and the third one follows from the def-
inition of % in (4.21) and the initial conditions on g and wy;. Thus, we prove here

it, — agDyii + Vp = f (4.29)

in R‘%. Once this is proved, the last estimate in (1.8) follows from (4.29), the second
estimate in (1.8), and (1.9), as well as the evenness and oddness of the involved func-
tions. We set h = (hy, ..., h;), where

hi(t,x) = f1(t,x) — Diuy(t,x) + a@y(t, x4) Dty (1, x)
in R‘%. Then, using (4.24) and (4.18), we see that
Dihj — Db =0

in ]R‘% in the distribution sense. In particular, if k=d and I € {1, ...,d — 1}, then it fol-
lows that

Dgh; — Dihy = Ddfl — Dl]?d — 8t(Dd£t1 — Dlﬂd) + Dy (aijD,-jﬂl) — Dy (c_lijDijﬁd)
= Ddfl — led — at(l)dl + D,’ (Zl],D](,Od]) =0,

where we used (3.15), which was deduced from the evenness of #; in x,.
We extend h; to be zero for <0 and take infinitely differentiable functions #(t) €
C(R) and {(x) € C°(R?) with unit integrals such that 5(t) = 0 for t > 0. We set

T
W00 = [ | st —sx—y) dy ds
—0 JR
where

by (t,x) = &~ 2n(t/) (x/e).
Then hl(c) e c>([0, T] x RY) and
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Dh\ — DR = 0 (4.30)
in R’%. Let
pi(t,x) = J hge)(t, r,0,...,0) dr —l—J hgg)(t,xl,r, 0,...,0) dr+ ...
0 0
Xd .
—|—J hff)(t,xl,xz,...,xd,l,r) dr.

0

We define

Using (4.30), we see that

in R‘%, and
IVp ||L (R%) ||h(s>||qu(R§) < Hh”L%(R‘;)

is bounded uniformly in & > 0.
On the other hand, for each R > 1, by the Poincaré inequality,

156l ) < N oo RITE
for each t € [0, T]. By integrating both sides of the above inequality in ¢, we obtain
11 01780 < NIVE oy 7

which is bounded uniformly in & > 0. Hence, there ex1sts p(t,x) defined in R, which
is spatially locally in Ly, (R%), such that Vp € Ly (R 4) and a subsequence of {Vp‘}
converges weakly to Vp in Ly, (R). Since

Dp* =hY, 1=1,..4d,
in R% and hl('g) — hyin LqO(R‘%), we conclude that (& 13) satisfies (4.29).
Finally, we note from (4.29) that & € L((0, T), Ly, (R ). |

Proof of Theorem 1.4. We denote RT L =(0,T) x Rd In view of Proposition 4.2 and
the fact that C;° (RT L) s dense in Ly, (]R‘% 1) we only need to show that there exist
functions ¢" and G" = (G",...,G") defined on R} _ such that g"(t,x) and G"(tx)
vanish for large |x| uniformly in t E [0, T7,

m m m m d
g" IDg"| € Ly (RT ), £7(0.) =0, G" € Ly(R7 )",
Oig™ = divG™
in R‘%’+, and

g = 8"z, es ,) + 108 = D" Iy, rs ) + 116G = G"lly, gs ) =0 asm — oo

We take infinitely differentiable functions y,,(x) defined on R? such that y,,(x) =1
on B,,/; and y,,(x) = 0 for x € R\B,,, m = 1,2, ..., where
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By = {|x| < m:x € R},
We set

J5: V() - G(t.y) dy
B =B, N{x; >0}, c,(t) === ,
m {xs > 0} (t) ot ()

and find H™ in (0, T) x B}, such that

divH" =-Vy, G+ cu(t)m(x) in(0,T) x B/,
H™(t,x) =0 on(0,T)x 0B,

with the estimate
IDH" 1, (0,185 < N o) (IV2m - Gl (0,1785) + Nem O, (01985) )

This is indeed possible by using an integral representation of the solutions to the diver-
gence equations on star-shaped domains, as shown in, for instance, [31]. We note that

192 Gl (1) + 1m0 () (0 1ym) < N g,,,Gllr st

T, +
From the above two inequalities, the Poincaré inequality on B}, and the fact that

||1Bm\Bm/2G||LqO(Rq~)+) — 0 asm — 00,

we have
||Hm||Lq0(<o,T)XB$) < m||DmeHqu((O’T>XBy+n) — 0 asm — oo.
We set
£ = 2,00 + 2, [ ) s
and

" | dm(x)G(t,x) + H™(t, x) in(0,T) x B},
G (%) '—{A 0 in(O,T)i(Ri\B;).

We then see that ¢” and G™ satisfy the required properties. In particular, for
¢ € G (RY),

t

J "o, dx dt =
d

d
Ty + e RT 0

[me Vo + oV G+ iy (J cm(s) d5> wt] dx dt

>+

=1 (tnG-Vo+ oV -G = tu(x)en(t)p) dx dt

QRT,#*
T
= 1mG - Vo dx dt—J J @div H" dx dt
RY o JB;,
= G" -V dx dt,
Rd
T, +

where we used the fact that H” = 0 on (0, T) x 0B;,. The theorem is proved. |
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5. Stokes system with measurable coefficients and proof of Theorem 1.2

In this section, we consider the non-divergence form Stokes system with measurable
coefficients and the Lions boundary conditions. We give the proof of the main result of
the article, Theorem 1.2. Recall the notation (f), and [f](¢) in (2.1) and (2.2) for f
defined on Q=T x Q C R x RY. For a domain Q C ]R and p > 0, we denote

o _ +
0= UyeQB p )-
We say that Q satisfies the interior measure condition if there exists y € (0,1) such that
for any xy € Q and r € (0,diam Q),
|Br(x0) N Q| y
[Br(x)|

We begin with the following lemma estimating the second derivatives of solutions.

(5.1)

Lemma 5.1. Let gy € (1,00), q € (qo,0), ¥ € (0,Rg), and 6 € (0,1). Further, let u €
W1 2(QJ’) be a strong solution to (1.1) in Q with the boundary conditions (1.2), where
P 6 wyl(Qh), f € Lqﬂ(QJr) , and Dg € LqO(Q+(zo)) . Suppose that Assumption 1.1 (9)
holds. Then we have
<w%W>;<va4wﬁmwM@ ™ +f%wu—wMNMW@J
d- €1
Z |Dduz|q0 (|Dx,ud|‘10)gy+‘| (5.2)

N(d, v, o, q)0 5(|DPul")’

d v, q()

Q+)

and

(IDZqu‘))g;/z < N(d, v, qp) [(IDqu‘))g + (1) + r‘1(|Du\"°)g¢}

1 (5.3)
+ N(d v, qun )55 (D2l

Proof. If h is an integrable function defined on Q;, we take the following mollification

of h(t, x) for t € (—r* +€%,0) :

0
h9(t, x) :J h(t +s,x)n,(s) ds,

where 5(t) € C°(R) with 7(t) = 0 for t > 0 and 5,(t) = ¢ ?5(t/e?). Note that h®) (¢, x)
is infinitely differentiable in f, and 3fh(‘5)(t,x) € qu(Qﬁ) for any k=1,2,... if he
Lg,(Qf), ¥ € (0,r), and ¢ is sufficiently small. By mollifying (1.1) as above with respect
to t, we have

O — ayDyu® + Vp = O 4 (a;Du)® — ayDyu'®

in Q} for ' € (0,7). We see that if we prove the estimate in the lemma for u®), by let-
ting ¢ — 0, we obtain the desired estimate for u. Thus, henceforth we assume that u(t,
x) is infinitely differentiable in ¢ and 0Fu, OFDu, O¥D?u € L, (Q/") for any k = 1,2, ....
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Let {,(x) and ¥,.(¢t) be infinitely differentiable functions defined on R? and R,
respectively, such that
{,(x) =1 onBy {((x)=0 onR%B,
Y, (t) =1 ont € (—4r*/9,4r*/9), ,(t) =0 ont e R\(—r*r?).
We set ¢, (t,x) = ,(t){,(x). Then ¢, =1 on Q,,/3 and |D¢,| < 4/r.

For the given r € (0,Ry), let a;;(t) be the matrix defined in Assumption 1.1 (6) such
that

][ +|a,-j(t,x) —ai(t)] dx dt <9, Vij=12,...4d.

N

We first consider the following equation:

We — &,J(t)D,Jw + Vpl = IQ:r(f + (a,-j — &,J)D,]u) in (—7’2, 0) X Ri
div w = (e—[gt)], 5o, in(=%0) xRL
w(—r?,-) = 0 inR?

with the Lions boundary conditions
Dywp=wy =0 on{x; =0} fork=1,2,...,d—1,
where

 Jpgt)G0) dy
[g(t,')]g,,Bj - fBer()’) dy .

To find a strong solution (w,p;) to the above equation using Theorem 1.4, we need to
check that

3t x) = (g — [g(t ‘>]z,,s,+)¢’r €L, ((-ﬁ,o) X Ri), Dg €L, ((—rz,O) X Ri),

g(—r%-) =0, and that there exists G = (Gi, ..., Ga) € Ly, (Rf. . ) such that
8t§ =divG

in (—r%,0) x R‘i in the sense as in (1.7). The first three conditions are easy to check, so
we check only the last one. Since u(t, x) is infinitely differentiable in ¢t and O,divu €
Ly, (Qf), we have

0 = (g — [0g(6)] 5 ) L0 + (8 = [3(89)] 4 )0 (0),

which belongs to Ly, ((—%,0) x Ri). From this it follows that
J 0ig(t,x) dx = 0.
B}

Then, as in the proof of Theorem 1.4, we find G € Wp:'((—r%,0) x B}) such that

divG = 9,g(t,x) in(—r%0) x B,
G(t,x) =0 on(—r*0) x OB/.

We again denote by G the zero extension of G on (—2,0) x (R%\B}). Then, using the
fact that ¢ has compact support on (—2,0] x B and the zero boundary condition of
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G(t,-) on OB/, we arrive at
&g =divG

in (—rZ,O) X Ri. Hence, the existence of w is ensured by Theorem 1.4. Further, it fol-
lows from Theorem 1.4 that

||D2W||Lq0((,,z,0)xm) < N<|lf||Lq0(Q,+) + [[(a5 — ay)Djull,, o) + ||D§||qu((—r2,0)XRi)>’
where N = N(d,v, qo). Note that
||D§||L%((_r2,o)xm) = HD[( - [s(t )]( B+>¢:|”qu((—r2,0)><Rﬂ)

< D¢l 0y + 11 (& = [8(t )], 5 ) Pbeln )
< HDg||Lq0(Q,+) +4rtg - [g( ")]gr,B:rHqu(Qf)’

where

1
||g— [g(t,)]ghB:rHLqO(Q:r) :m

L (g(tx) —g(t.y)i(y) d

Ly (Q7)

<N lg(tx) =gy @ 50) dy

because [;.(,(y) dy is comparable to |B/|. By Holder’s inequality and the Poincaré
inequality,

|ttt =gl @000 d

1

490
< NG J@ lg(t.x) —g(t.y)|* dx dt dy) < N(d:q0)r[IDglly,, (o)
Hence, we obtain
102wl oyt < N0 [ )+ a5 = ) Dol ) + D8 ]

From this and by using Assumption 1.1 () and Holder’s inequality for the middle term
on the right-hand side of the last estimate, we have

(IDw*). < N(d, v,q0) [<|Dg|q°>g+ - <V|q°>§,+} N1 o, )5 (DUl (5.4)

Now, let (v,p,) = (u — w,p — p1). We see that (v,p,) satisfies
v — Zl,]<t)D,]V + sz =0, divv= [g(t, )] (B

in ta /3 with the boundary conditions as in (1.2). By using (3.3) in Lemma 3.1 with
suitable scaling, we have

I 2v||Lq <NZI’ <||Dx’vl_ x’VJB+ ()||qu +||dei”qu(Q;/3)>

+ Nr~ ||Dx’Vd||L @)

2/3



COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS e 1723

where N = N(d, v, qg). It is clear that, for instance, [Dyv;] B, (t) can be replaced with

[Dxvip:(t) on the right-hand side of the above 1nequahty From this, the triangle
inequality, and the Poincaré inequality on terms involving w, we obtain

1

(D),

1

'N(d, v, 40) [<|Du — [Dug (1)), + (1Dw [wang}

d—1

NG 100 Y (D), + ()

i=1

(5.5)
'N(d v, go)[(|Datsal ), + <|D;«w|‘f°>§

N(d,v,qo)r"

—1 1
(1D~ Dulyy (9B, + S (D, <|Dxfudlq°>q5*1
i=1

+ N(d, v, qo) (D W]}

Observe that in the last inequality, we applied the Poincaré inequality to the terms D;w;
and Dywy with i = 1,2,...,d — 1 because these terms vanish on {x; = 0}. Then, by the
triangle inequality and (5.5), we infer that
(D25, < (D)o, + (D)2,
/2 /2 ,/z
1 da— 1
< N(d,v,q0)r™" | (|Du — [Dulp: (1)) Z |Dd“z|q0 + (IDxual ™)

- N(d vy q0) (D]

This estimate and (5.4) imply (5.2) as well as (5.3). The proof of the lemma is thus
complete. |

Corollary 5.2. Let gy € (1,00), q € (qo,0), r € (0,Ry), and 0 € (0,1). Suppose that
T>0 and Q C R satisfies (5.1) for some 7y > 0. Let u € wy 2((=T = 120) x Q) be a
strong solution to (1.1) in (=T —r%0) x Q" with the boundary conditions (1.2) on
(=T —7%0) x (Q N{x:x3=0}), where pe WP'((—T —1%0) x @), f € Ly, ((—T—
r2,0) x Q)% and Dg € Ly, ((—T —r2,0) x Q")*. Further, suppose that Assumption 1.1
(0) holds. Then we have

(T + )|y

(|D2”|qo)?_0—T oxa < N(d:v.q0,7) ©
(T|Qf)

(1 g|qo) —r— o< T (mqu)qﬂ T—12,0)xQ’

(T + )@y

a0
q

(|Du|qo) —r2,0)xQ" +N(d V490,97 ) —T—r%,0)xQ""

(5.6)

Proof. We use a partition of unity argument. By using (5.3) and the corresponding
interior estimate (cf. [8, Lemma 4.1]), for any xo € Q and , € (—T,0), we have



1724 H. DONG ET AL.

(ID41%)q: 4,0y < N 00) [(ID8I" ) 4 + (1)) + 7108 )1

+ N(d, v, g0, )3" /(D2 w1 .
In particular, when dist(xo, {x; = 0}) < r/8 so that we need to apply the boundary esti-
mate (5.3), we use the relations

Qj/g(to,xo) - Qj/4(l‘o,5€o) - Qj/z(to,&o) C Q (to, x0),

where X is the projection of x, onto {x; = 0}.

Now to obtain (5.6), it suffices to integrate both sides of the above inequality with
respect to (fp,x) € (—T,0) x Q and use Holder’s inequality and the interior measure
condition (5.1). [ |

We now state the following result on the interior mean oscillation estimate of the
vorticity matrix @ = V x u, which is [8, Lemma 4.10].

Lemma 5.3. Li q1 € (1,00),q90 € (1,q1), 6 € (0,1), Ry € (0,1/4), r € (0,Ry), Kk € (0,
1/4), and zy € Qf such that Q(z) = Q,(z). Suppose that Assumption 1.1 (3) holds.
Let uc W1 2(Q,(zo)) be a strong solution of (1.1) in Q.(z9), where
p € WL (Qu(20) f € Ly (Qulz0))", and Dg € L, (Qulz))". Then

(IDw — (Dw)q,. 2 0 (20)

< N(dv, qo ) UANE )+ NOm v gor ) (K558 1) (DPuf)8

where w =V X u is the matrix of vorticity.
In the next lemma, we prove a boundary mean oscillation estimate of the derivatives
of the vorticity matrix.

Lemma 5.4. Let g € (1,00),q0 € (1,q1), 6 € (0,1), Ry € (0,1/4), r € (0,Ro/4), x € (0,
1/4), and zy € Q. Suppose that Assumption 1.1 (3) holds. Let u € W;l’z(Q;;(zo))d be a
strong solution to (1.1) in Qi.(z)) with the boundary conditions (1.2) on
Qi (20) N {(t,x) : x4 = 0}, where pe W*'(Qh(20)), f € Lo, (Qt(20)), and Dg € Ly,
(QZ(20))". Then

(ID — (D®) g 2y Dt (20

_d+2
< N(d v, qo)i o ([f*)g: ) + N(d v o) ‘f°(|Dg|q°)Q+ (z0)

+Nmu%@KfW%T+wﬁwwMW@.

Proof. We write zy = (o, X, X40), and we split the proof into two cases.

Case I: x50 > r. In this case, as Q (z) = Q,(2z0), we use Lemma 5.3 to conclude that
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(IDw — (Dw) e (, |)Q,t<z@)
< N go)k TV, o+ Nomoadoran) (6555 1) (D28,

In addition, observe that since Q" (z9) C Q3,(20),
(1D s () < N() (1A g1 (2y)

for every measurable function h. Therefore, the assertion of the lemma follows even
without the term involving Dg on the right-hand side.

Case II: x4 < r. In this case, we write Zy = (y,X¢), where Xy = (x{,0). We observe
that Q' (z0) C Q5,(2¢). Moreover, as k < 1/4 and |zy — Zo| < r, we see that
Q. (20) C Qy,/3(20) € Q4 (20) C Q5. (20)-

Let (w,p1) and (v,p,) be as in the proof of Lemma 5.1. In particular, (w,p;) is the
strong solution of

wy — a;(t)Diw + Vp, = Io,(z0) [f + (ai — ay(t)) Dyu],
divw = ¢y (z—20)(g — [g(t, ')]Qr(.,;{o),gz(%))

in (—(4r)* +to, o) x R? with zero initial condition at t =t, — (4r)" and the Lions
boundary conditions

Dywy=w;=0 on{x; =0} fork=12,..,d—1.

Here a;;(t) is the matrix defined in Assumption 1.1 () such that

][ la(t,x) — ay(t)] dx dt <0, Vij=1,2,..d.
Qf(20)

Moreover, (v,p,) = (u— w,p — p1) is a strong solution of
vi — a(t)Dyv + Vp, =0, divv = [g(¢, ')]CM(_%),BL(%)

in Q /3(20) satisfying the Lions boundary conditions on {x4 = 0}. Let us denote by
=V x wand w; = V X v the vorticity matrices of w and v, respectively. We deduce
from (5.4) that

1
(1Den[*)3, ., < (IDPWI™)E, o

N(d, v, qo) (IDg|q°)Q+ e T U)o + oW N (d, V,ql,qo)(!Dzqu‘)m o)
(5.7)

By applying Lemma 3.2 with o = 1/2 and a suitable scaling, the triangle inequality, and
Holder’s inequality, we obtain
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(IDw2 = (D) gy () Dz ()

< N(Kr)%[[D(UzH < N(d,v, qo)K2(|Dw |q°)

CHI(Q} ,(50) = @, 5(20)

N(d, v, qo)i [(IDwVf“)g;(eo) + (IDon |q°)gz,(zo)]
N(d,v, go) [<|D2u|ql Vs + (lerf‘))&w} -
Then, by combining this estimate with (5.7) and the fact that 6 € (0,1), we infer that
(D@ — (Dw2) g 20y D (zg) < N(ds v o) 2 [(IDglq") )t (lfl‘”) ]

N(d, v, q1, q0) (i + /255 3) (IDzulql )6 o)
(5.8)
Now, by using the inequality
} |Do> — (Dw) g1 ()| dx dt < 2} |Dw — ¢| dx dt
QKr(ZO) er(z(])

with ¢ = (Dw,) Qi (x> and then applying the triangle inequality and Holder’s inequality,
we have

][o+< 100~ (D)g. | ds di < 2][o+< 100~ (Dex)g | ds d

40

< 2][ |De, — (Dw2) gz ()| dx dt + N(d, qo)xc w ][
Q;rr(z()) Q:’(Z[))

|Doy | dx dt)

1

90
< 2][ |De, — (Dw2) gz ()| dx dt + N(d, qo)rc © <][ |Do | dx dt)
QlJ‘rr(Z())

Qi (20)
This estimate, (5.7), and (5.8) imply that

(IDow> — (Dw)Q;,(ZO)I)Q;(zO)

< N(d, v, qo )k S (1), )+ N(d, v go)x” S (Dg).

d+2 1 1

+ N(d, v, qos ql) (K W oo 1 Kz) <|D2u|ql >g+ oy

Again, as Q,(29) C Qi,(z), we see that
(1) gz 2 < N(@) (M) o

for every measurable function h, so the assertion of the lemma follows. The proof is
then complete. u

Our next lemma gives the key estimates of Do and D?u in the mixed norm.

Lemma 5.5. Let R € [1/2,1), Ry € (0,Ry), 6 € (0,1), k € (0,1/4), s,q € (1,00), q1 € (1,
min{s,q}), and qo € (1,q1). Assume that Assumption 1.1 (0) holds. Let u €
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W1 2(QMR ) be a strong solution to (1.1) in QR+R with the boundary conditions (1.2)

on Qrir, N{(t,x) : x4 =0}, where  p € W0 I(QR+R1) fel, q(QR+R ) , and
Dg € Ls,q(QlJ{+Rl)d, and let w =V X u denote the matrix of vorticity defined in (3.4).
Then we have

_di2
Dol i) < N [|f]], 4 Nk % IIDgIILS
,a(Qg) .4 q

(Q}erﬂzl/ ) R+R /z)

(5.9)

N( o ar l) D? Nk~ R7YD
q q q 2 q
+ N\ 060 o452 )||D*u Log(Qq,p, ) + Nk R, "||Du Loq(Qf 5, o)

and

D’u + Nk %|[D
/4I5

L.(q) SNk E Hf

‘q QR+R ) sq QR+R )

(5.10)

L, q QR+R )

Proof. We first prove (5.9). We consider two cases.

Case I: r € (0,R,/10). It follows from Lemma 5.4 that for all z, € QT?,

(1D — (D) g sy < N oo S (F9)5,

d+2 11

+ N(d o) S (Dgl™ ), ) + Nl qonan) (656573 + 1) (D2uf)E,
Observe that because r < R, /10, we have Qj,(20) C Qg p, 1 Therefore,

(IDgI" ). o, < Ml [DgI" )
(") ) < Mgy, [f*)5(z0), and

(|D2u|‘11 & < Mg |D2ul®)ii(z),
Sr

R+R, /2

where M is the Hardy-Littlewood maximal function. These estimates imply that
1

%)% (20)

FNEE Mg, D8 (a) + N (T 4 ) Mg Dl (),

R+R; /2 R+R; /2

(IDw — (D) g () s ) < N5 M(Ig,

R+Ry /2

Case II: r € [R;/10,R/x] and z = (ty, %) € Qj such that ty € [-R? + (kr)?/2,0]. In
this case, we simply estimate
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(|Dw> — (Dw) o1

Kr

(zo)mQ;DQ;,(zo)mQ; < 2(|Dw|)Q;(zo)mQ; < 2(|Da)|q°)Qm<ZO)mQ+

—di2 9o % q0 %
< Nr o [([f|*) + (|Dg|*) g+

QJ-F+R /z(z‘))ﬂQLRl/z Q-+R /z(z")ﬂQLR /2

(5.11)

+ R (|Duf*)s, | NS (DR, o
Kr Ry /2( )mQR+R1/2 Kr+Ry /2< >ﬁQR+R1/2
where we used Corollary 5.2 and R; /10 < r in the last inequality.
Now, we take X = Q} and define the dyadic sharp function (Da))jy of Do in X.
From the above two cases, we conclude that for any z, € &,

# —di2 0 0\~
(Do) (20) < NI [ Mgy, (] + 1Dg)™ Vi(z0) + R Ml [Dul*)i(z0)|
+N<K T Jr;cz)M(zQ+ |D2u) ) (2).

R+R, /2
Indeed, by the properties in [27, Theorem 2.1], for any element Q) in the partitions of
Qf;, there exists zg = (fg,%o) such that —R? + (xr)*/2 < t, < 0 and

QZ - Qj;r(zo) n Q;{r’

where the volumes of Q) and Q| (zy) are comparable. Recalling that 1 < gy < q; <
min{s,q}, by Lemma 2.2 and the Hardy-Littlewood maximal function theorem in
mixed-norm spaces (see, for instance, [27, Corollary 2.6]),

Loyig) T R HH(IDO))

(ap) SN[,

< NK qo ||M(IQ+

R+Ry /2

1 _dy2 1
(11 + D)ol o) + Ni SR Mgy [Dul® i, e

- N(KW ) ||M(1Q+

R+R} /2

L 2,d
ID?ul™)ar|| ey + NR4(|Doo]) o

e R Dul,

Z+4
Loa(Qfy, ) TR (ID]) g

Similar to (5.11), by Corollary 5.2, the last term on the right-hand side above is
bounded by

1 1
NRH|(f)E.  + (Dgl™)®.  + Ry (|Dul*)®
QR+R1/2 QR+R1
< N[WHLS,AQ

where we used Holder’s inequality in the last line. Combining the two inequalities
above, we obtain (5.9).

Next, we prove (5.10). Since u satisfies (4.22) in Qj g, With g in place of ¢ and with
either the zero Dirichlet or Neumann boundary condition, by the boundary mixed-
norm Sobolev estimate for non-divergence form elliptic equations (cf. [27]), we have

1
+ 5%*&(‘D2u|41 )‘11+
QR+R1/2

Q;zer /2

1Dl g, o+ R IDH o, S D g, )

iRy )
R+R; /2
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| D*u

-2
LS»q(Q;) S NHDwHLS)q(Q;ml/Z) + N||Dg||L5’4(Q;+R1/2> + NRI Hu LS’”I(Q;+R1/2>.

Replacing u; with u; — [u;]+  (¢) for i =1,...,d — 1 and using the interior and bound-
R+Ry[2
ary Poincaré inequality, we infer that

1Dl o) < N|IDo

—1
Loa(Qf g, ) + N”Dg”Ls,q(QLRI/Z) + NR, ||DuHLs’q(Q;+R1/2)' (5.12)

Combining (5.12) and (5.9) with R+ R;/2 in place of R, we obtain (5.10). The lemma
is proved. |
Now we are ready to give the proof of Theorem 1.2.

Proof of Theorem 1.2. For k = 1,2, ..., we denote QX = (—(1 —27%)%,0) x B . Letko

be the smallest positive integer such that 2-k=1 < R,. For k > ko, we apply (5.10) with
R=1-2%and R, =275 to get

) _di2 _dn2
ID7ully, (gt < N [|fll,, ey + N o [|Dgll, ey

( e ;) i e (5.13)
+ N Kk % 00 o + 2 ||D ullp, (@ + NK 22 ||Du||Ls’q(Qk+1)~
From (5.13) and the interpolation inequalities, we obtain
) _de2 _dx2
[D7u |Ls,q(Qk) <Nk @ HfHLS,q(Qk“) + Nic o ||Dg||Ls)q(Qk“) (5.14)

2 ), 12D o
+ Nk 0w a4+ )||D “HLS,q(QkH)‘f'NK w2 ||”||L5,q(Qk+1)’

where the constants N above are independent of k. We then take x sufficiently small
and then ¢ sufficiently small so that

d+2 1 1

N(KT w4 ﬁ) <1/5.

Finally, we multiply both sides of (5.14) by 5% and sum over k = kg, ko + 1, ... to obtain
the desired estimate. The theorem is proved. |
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