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a b s t r a c t

Multiplicative cyberattacks manipulating data over the process control system (PCS) communication
links are cyberattacks that malicious agents may carry out against PCSs. These attacks are modeled
by multiplying the data communicated over the link by a factor, and may be designed to be
stealthy without extensive knowledge of process dynamics. The current work characterizes the
relationship between the control system parameters, the closed-loop stability, and the detectability
of a multiplicative sensor–controller communication link attack with respect to a class of residual-
based detection schemes. The analysis reveals that control system parameters may be selected to aid
in attack detection. Specifically, control system parameters, called attack-sensitive parameters, may
be selected so that the closed-loop process is stable under attack-free operation and is destabilized
by a cyberattack, rendering the attack detectable. With the attack-sensitive parameters, however,
the attack-free closed-loop process performance may be worse than that with parameters selected
based on standard design criteria. To address the potential trade-off between attack-free closed-
loop performance and attack detectability, a novel active attack detection methodology utilizing
control system parameter switching is developed. The control system switches between the nominal
parameters (selected based on standard design criteria) and the attack-sensitive parameters to improve
attack detection capabilities while avoiding substantial degradation in the attack-free closed-loop
performance. The active detection methodology is applied to an illustrative chemical process example
and shown to enhance the attack detection capabilities of two representative residual-based detection
schemes.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Complex cyberattacks on industrial control systems (ICSs)

have demonstrated the proficiency of modern-day cyberattackers

in side-stepping traditional information technology-based cyber-

security approaches for ICSs [1–4]. This has motivated research

work on controller-based approaches for enhancing the cyberat-

tack resilience of ICSs [5–7]. Cyberattack resilience of an ICS may

be defined as the ability to detect, identify, and recover from a

cyberattack [8–10]. Several approaches for designing detection,

identification, and mitigation schemes have been proposed (see,

for example, the reviews [11–13]). Recent research has focused

on incorporating cyberattack resilience as part of the ICS design

to develop inherently cyberattack resilient controller designs.

For example, a gain adjustable observer design with a dynamic

event-triggered communication scheme was proposed that com-

pensates for aperiodic communication-jamming denial of service
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attacks [14]. A linear matrix inequality-based framework was de-

rived for control system parameter selection. A secure polynomial

control scheme based on secret sharing and a multi-party com-

putation approach for evaluating the polynomial feedback control

schemes was proposed [15]. The control scheme eliminates and

limits direct unencrypted communication between different ICS

components, making it difficult for an attacker to understand the

process data based on the data flow in the ICS network.

False-data injection cyberattacks targeting process control sys-

tems (PCSs) may compromise the integrity of the control law,

the data communicated over the controller–actuator communi-

cation link, or the data communicated over the sensor–controller

communication link. The objective of an attack could be to cause

instability or cause adverse economic, environmental, or human

life impacts. Carrying out such attacks while avoiding detec-

tion by process monitoring systems may be a goal of a cyber-

attacker. Due to the complex dynamics of chemical processes,

the design of false-data injection attacks achieving these objec-

tives may require that the attacker possess some process knowl-

edge [16]. Several cyberattacks targeting communication links of
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PCSs have been considered in the literature [17–21]. Two com-
mon models of false-data injection attacks targeting the sensor–
controller link include additive attacks [22], and multiplicative
attacks [23]. Additive sensor–controller link attacks inject false
data by adding a factor to the sensor measurement data com-
municated over the link, leading to the controller receiving the
sensor measurement plus a factor added to it. Multiplicative
sensor–controller link attacks inject false data by multiplying the
data in the communication link by a factor.

Stealthy attacks are designed to evade detection by falsifying
data in the communication links, making the data difficult to
distinguish from the data of the attack-free process. As a result,
stealthy attacks are especially challenging to detect [24]. This
realization has motivated detection scheme designs aimed at
enabling the detection of stealthy attacks [22,23,25–31]. Additive
sensor–controller link attacks may need careful design to remain
stealthy, requiring process information (see Remark 5 in [32]).
Multiplicative sensor–controller link cyberattacks are unique be-
cause they may be designed to be stealthy without requiring
intimate knowledge of process dynamics (see Remark 6 in [32]),
and are the focus of the present work.

Attack detection methods can be broadly divided into two
categories, including passive and active attack detection schemes.
Passive attack detection schemes monitor a process for anomalies
based on regular operational data without employing external
intervention or applying a perturbation. These schemes have
been extensively explored [22,25–27]. For example, one passive
scheme differentiates the behavior of an attacked process from
its attack-free behavior by characterizing the skewness in the
detection metric distribution [25]. Another approach uses a two-
tier controller-detector architecture, with a neural network-based
detection scheme to monitor for some attacks [33]. Other ap-
proaches use standard residual-based detection schemes such as
the cumulative sum (CUSUM) or χ2 detection schemes to identify
anomalous behavior [22,26,27]. False-data injection cyberattacks
targeting phasor measurement units have been considered where
conditions were derived for undetectable additive and multiplica-
tive attacks with a standard detection scheme (e.g., χ2 detec-
tion scheme) [27]. An enhanced detection scheme was proposed.
Closed-loop systems, where falsified output measurements are
used in the controller, were not considered. The use of the CUSUM
and χ2 detection schemes for monitoring closed-loop systems
under additive false-data injection sensor-control link attacks was
considered in [22,26].

Passive approaches for attack detection may not always be
successful in differentiating the anomalous behavior in the at-
tacked process from its attack-free behavior (e.g., Section III, [28]).
As an alternative, an active detection method may potentially
enhance the detection capabilities. Active attack detection meth-
ods involve external intervention to induce an attack-detecting
perturbation in the closed-loop process [23,28–31]. Two active
detection methods were presented in [28]. The first approach
utilizes a watermarking scheme, i.e., a secret noisy input is added
to the computed control input to the process, and an attack
is detected if the distribution of the detection metric deviates
from the distribution expected for an attack-free process. The
second approach uses a moving target scheme, i.e., the original
system is augmented with an authenticating subsystem with
time-varying dynamics and additional sensors to estimate the
subsystem state. In this approach, the attack detection scheme is
based on the difference between the (potentially) falsified output
and the expected output. An approach that uses a combination
of watermarking and a moving target scheme has also been
explored [29]. In [30], the detectability of stealthy attacks exciting
the zero-dynamics was characterized as a function of the observ-
ability of the attacked process. Leveraging this characterization,

detection schemes that use redundant sensors and actuators were

proposed to enable the detection of a zero-dynamics exciting

attack. A few active detection approaches for the detection of

multiplicative cyberattacks have been proposed [23,31]. Specif-

ically, a watermarking approach that adds a constant to the

sensor measurement before communicating the resulting value to

the controller was proposed for multiplicative attacks targeting

sensor–controller and controller–actuator links [23]. The con-

troller subtracts the constant before computing its control action.

Another watermarking scheme was presented in [31], utilizing an

additive secret signal with a known distribution to the control

input to detect several attacks such as multiplicative cyberattacks.

The sensor data reported by all sensors are subject to two tests

developed based on a statistical hypothesis testing criterion.

The connection between the control system design and multi-

plicative sensor–controller link attack detectability has been con-

sidered in [32]. Considering this connection, a controller screen-

ing methodology was proposed to identify and discard con-

trol system parameters that mask an attack from a class of

residual-based detection schemes. This screening methodology

provides a framework for the inclusion of cybersecurity consid-

erations within the standard control design criteria (e.g., closed-

loop stability, performance considerations, and robustness to

uncertainty [34–36]). To the best of the authors’ knowledge,

a rigorous characterization of the relationship between closed-

loop stability, control system parameter selection, and attack

detectability has not been carried out. Motivated by this, the

theoretical results presented in this work rigorously characterize

the relationship between closed-loop stability, control system

parameters, and attack detectability for a residual-based detec-

tion scheme. The results are used to identify a set of control

system parameters (called ‘‘attack-sensitive’’ parameters) under

which a multiplicative sensor–controller link attack can desta-

bilize the closed-loop system. The selection of attack-sensitive

control system parameters can enhance the ability to detect

attacks, but can also degrade the performance of the attack-free

closed-loop system. A novel active attack detection methodol-

ogy employing control system parameter switching is developed

to balance this trade-off. The controller switches between the

nominal control system parameters, chosen based on standard

control design criteria, and the attack-sensitive parameters with

the proposed detection method. The main contributions of the

paper include (1) a rigorous analysis of the relationship between

closed-loop stability, the control design parameters, and the at-

tack detectability for a residual-based detection scheme, and (2)

the development of an active detection methodology that utilizes

control system parameter switching to enhance the detection

capabilities of the detection scheme.

The remainder of the paper is organized as follows: In Sec-

tion 2, the notation, process model, model of the multiplicative

sensor–controller link cyberattack, and control system design

are presented. In Section 3, the residual-based detection scheme

and the proposed active detection method via control parameter

switching are presented. In Section 4, the application of the active

detection method to enhance the attack detection capabilities

of a residual-based detection scheme is demonstrated using a

chemical process example consisting of a continuous stirred tank

reactor (CSTR). A linearized CSTR model is considered to verify the

theoretical results. Additionally, an extension of the theoretical

results presented in this paper is investigated by applying the

proposed approach to the nonlinear CSTR model. The enhanced

detection capabilities are demonstrated considering the proposed

residual-based detection and CUSUM detection schemes.
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2. Preliminaries

2.1. Notation and definitions

For a vector x ∈ R
n, its Euclidean norm is denoted by ∥x∥,

and its infinity norm is denoted by ∥x∥∞. The closed Euclidean
ball and infinity ball centered at the origin with radius R > 0
are denoted by Bn(R) := {x ∈ R

n | ∥x∥ ≤ R} and Bn
∞ := {x ∈

R
n | ∥x∥∞ ≤ R}. For a compact set D ⊂ R

n, RD denotes the
minimal radius of the Euclidean ball enclosing the set, i.e., RD :=
maxx∈D ∥x∥. For a set D ⊂ R

n, the linear transformation of the
set is denoted by AD := {Ax | x ∈ D}. Given two nonempty sets
X ⊂ R

n and Y ⊂ R
n, their Minkowski sum is defined as X ⊕ Y =

{x+y | x ∈ X, y ∈ Y }. For matrices, diag(β1, β2, . . . , βn) represents
an n × n diagonal matrix with diagonal elements β1, β2, . . . , βn,
I represents the identity matrix of appropriate dimensions, and
λi(A) is the ith eigenvalue of the matrix A. Sequences are denoted
with boldface letters, i.e., d := {d(0), d(1), d(2), . . .} where d(t) ∈
R

n for all t ≥ 0. For the discrete-time linear system: z(t + 1) =
Az(t) + v(t), where z(t) ∈ R

n, v(t) ∈ V for all t ≥ 0, and V is a
compact set, a set Dz ⊂ R

n is said to be robust positively invariant
if z(t) ∈ Dz implies that z(t+1) ∈ Dz for any v(t) ∈ V . A set Mz ⊂
R

n is said to be a minimum robust positively invariant set if Mz is
contained within every closed robust positively invariant set [37].
For simplicity of presentation, the minimum robust positively
invariant set will be referred to as the minimum invariant set in
this paper.

2.2. Class of processes and control system design

In this work, processes modeled by discrete-time linear time-
invariant systems and subject to bounded process disturbances
and bounded measurement noise are considered:

x(t + 1) = Ax(t)+ Bu(t)+ Gw(t) (1)

where x(t) ∈ R
nx is the process state vector, u(t) ∈ R

nu is the
manipulated input vector, w(t) ∈ W ⊂ R

nw is the bounded
process disturbance vector, and the set W is assumed to be a
(compact) polytope containing the origin. Without loss of gener-
ality, the initial time is taken to be zero. The matrices A, B, and G

are of appropriate dimensions. The value of the measured output
received by the controller may be corrupted by a multiplicative
sensor–controller link attack. The measured output is modeled
by:

y(t) = Λ(Cx(t)+ v(t)) (2)

where y(t) ∈ R
ny is the potentially falsified output vector re-

ceived by the controller, v(t) ∈ V ⊂ R
ny is the measurement

noise vector, the set V is assumed to be a (compact) polytope
containing the origin, and Λ is the matrix modeling multiplicative
sensor–controller link attack on the process. The matrix C is of
appropriate dimensions. The matrix Λ is referred to as the attack
magnitude where Λ ̸= I indicates the presence of an attack on
the process and Λ = I indicates the absence of an attack.

The matrix pair (A, B) is assumed to be controllable, and the
matrix pair (A, C) is assumed to be observable. A Luenberger
observer is used to estimate the process states and is given by:

x̂(t + 1) = Ax̂(t)+ Bu(t)+ L(y(t)− ŷ(t))

ŷ(t) = Cx̂(t)
(3)

where x̂(t) ∈ R
nx is the estimated state vector, ŷ(t) ∈ R

ny is
the estimated output vector, and L ∈ R

nx×ny is the observer gain
selected so the eigenvalues of A − LC are within the unit circle.
Without loss of generality, the desired operating steady-state for

the process is assumed to be the origin. To steer the process state

to the origin, a linear feedback control law is used:

u(t) = −Kx̂(t) (4)

where K ∈ R
nu×nx is the controller gain, selected such that the

eigenvalues of A− BK are within the unit circle.

The estimation error is defined as e(t) = x(t) − x̂(t), and the

estimation error dynamics are given by:

e(t + 1) = L(I −Λ)Cx(t)+ (A− LC)e(t)+ Gw(t)− LΛv(t) (5)

To analyze the stability of the overall closed-loop process consist-

ing of the process in Eqs. (1)–(2) with the feedback control law

in Eq. (4) using the estimated state from the observer in Eq. (3),

an augmented state vector ξ (t) = [xT (t) eT (t)]T is defined. The

augmented state dynamics are given by:

ξ (t + 1) =

[

(A− BK ) BK

L(I −Λ)C (A− LC)

]

  

=:Aξ (Λ,K ,L)

ξ (t)+

[

G 0nx×ny

G −LΛ

]

  

=:Bξ (Λ,K ,L)

d(t) (6)

where d(t) :=
[

wT (t) vT (t)
]T
∈ F is the augmented disturbance

and measurement noise vector, and F :=

{[

w

v

]

| w ∈ W , v ∈ V

}

is the set of disturbances. Here, Aξ (Λ, K , L) and Bξ (Λ, L) are

the system matrices for the augmented state dynamics. In the

remainder, the admissible set of disturbance and measurement

noise sequences is denoted by F := {d | d(t) ∈ F , ∀ t ≥ 0}.

Given that chemical processes are typically operated at steady-

state for long periods, all analyses in the present work focus on

the process operating at its steady-state, i.e., after the augmented

state of the closed-loop process has converged to its terminal set,

which is the minimum invariant set. The minimum invariant set

for the augmented system in Eq. (6) when maxi|λi(Aξ (Λ, K , L))| <

1 may be expressed as the infinite Minkowski sum [37]:

Dξ (Λ, K , L) =

∞
⨁

i=0

Ai
ξ (Λ, K , L)Bξ (Λ, L) F (7)

Based on Eq. (7), the minimum invariant set of the augmented

closed-loop system is dependent on the attack matrix Λ, the con-

troller gain K , and the observer gain L. For simplicity, the process

operated at steady-state refers to the system of Eq. (6) after the

augmented state has converged to the minimum invariant set,

i.e., ξ (t) ∈ Dξ (Λ, K , L) implying that ξ (t+1) ∈ Dξ (Λ, K , L) for any

d(t) ∈ F . For the remainder, the term closed-loop process refers

to the process described by Eqs. (1)–(2) under the feedback law

given by Eq. (4) using the estimates of states generated by the

observer in Eq. (3).

3. Active multiplicative attack detection utilizing controller

switching

In this section, the residual-based detection scheme consid-

ered is introduced, and a detectability-based classification of at-

tacks is presented. Theoretical results characterizing the rela-

tionship between closed-loop stability, control system parameter

selection, and the detectability of an attack with respect to the

residual-based detection scheme considered are presented. The

results of this analysis are used to develop an active attack de-

tection methodology using occasional control system parameter

switching.
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3.1. Residual-based detection scheme and attack detectability

For the closed-loop process, the residual vector (r(t)) is de-
fined as the difference between the output (y(t)) and its estimate
generated by the observer (ŷ(t)), i.e.,

r(t) := y(t)− ŷ(t)

Writing the residual in terms of the augmented state (ξ (t)) and
the disturbance vector (d(t)) yields:

r(t) =
[

(Λ− I)C C
]

  

=:Ar (Λ)

ξ (t)+
[

0ny×nw Λ
]

  

=:Br (Λ)

d(t) (8)

When Aξ (Λ, K , L) has eigenvalues that lie within the unit circle
and F is compact, Dξ (Λ, K , L) is forward invariant [37] and com-
pact (Sec. 4 in [38]), and the residual is ultimately bounded within
a terminal set. From Eq. (8), the residual terminal set is given by:

Dr (Λ, K , L) = Ar (Λ)Dξ (Λ, K , L)⊕ Br (Λ)F (9)

For every ξ (t) ∈ Dξ (Λ, K , L) and d ∈ F , all possible realizations
of the residual will be contained within its terminal residual set,
i.e., r(t) ∈ Dr (Λ, K , L). Based on Eq. (8), in the absence of an
attack (Λ = I), the residual is dependent on the estimation error
(Eq. (5)) and the disturbance (d(t)). However, in the presence
of a multiplicative sensor–controller link attack (Λ ̸= I), the
residual is also coupled to the process state. In addition to its
dependence on the disturbance set F , the minimum invariant set
is dependent on both the controller gain (K ) and the observer gain
(L). This is true for both the attack-free and the attacked process.
However, the dependency of the terminal residual set on the
controller and observer gains varies for the attack-free and the
attacked processes. Specifically, the attack-free terminal residual
set is dependent on the observer gain only, whereas the attacked
terminal residual set is dependent on the both the controller gain
and the observer gain. Nonetheless, to maintain uniformity of
notation, Dr (I, K , L) is used to represent the attack-free terminal
residual set even though the terminal residual set is independent
of K when Λ = I .

Residual-based anomaly detection schemes are model-based
detection schemes that are commonly used for process mon-
itoring [39–43]. These detection schemes monitor the process
without using external intervention. Consequently, they are pas-
sive detection schemes. Two types of residual-based detection
schemes commonly employed for cyberattack detection are the
χ2 and CUSUM detection schemes [22,26]. Both schemes are
scalar detection schemes in the sense that their output values
are scalar values. To monitor changes in the residual behavior
over time, the schemes may be formulated using the 2-norm
of the residual vector as the input driving the detector output
(see, for example, [32] for further discussion on this point). To
tune the detector to raise zero false alarms when the process
is operating at steady-state, the tuning must account for the
fact that the maximum achievable value of the 2-norm of the
residual is equal to the radius of the ball enclosing the residual
terminal set, i.e., ∥r(t)∥ ≤ RDr (I, K , L) where is RDr (I, K , L) is
the minimum radius of the 2-norm ball enclosing the residual
terminal set (Dr (I, K , L) ⊆ Bny (RDr (I, K , L))) [32]. A limitation of
such detection schemes is that they do not account for the shape
of the terminal residual set of the attack-free closed-loop process
Dr (I, K , L). For example, if the residual of the attacked closed-
loop process is such that it is outside the terminal residual set
of the attack-free closed-loop process but bounded within the 2-
norm ball enclosing the terminal residual set of the attack-free
closed-loop process (r(t) ∈ Bny (RDr (I, K , L)) \ Dr (I, K , L)), the 2-
norm residual-based detection schemes will not detect the attack.

To overcome this limitation, a set membership-based detection
scheme is considered in this work. Specifically, the detection
scheme given by:

z(t) =

{

0, r(t) ∈ Dr (I, K , L)

1, r(t) ̸∈ Dr (I, K , L)
(10)

is considered, where z(t) represents the output of the detection
scheme. An output of z(t) = 0 indicates normal process operation
(no attack detection), and z(t) = 1 indicates that an attack
is detected. Since the set membership-based detection scheme
does not use external intervention to monitor the process, it is
considered a passive detection scheme.

Cyberattacks may be classified based on the ability of the
detection scheme in Eq. (10) to detect the attack. For the closed-
loop process operated at steady-state monitored by the detection
scheme in Eq. (10), an attack is said to be detected at time td
if r(td) ̸∈ Dr (I, K , L) with the output of the detection scheme
z(td) = 1. An attack is defined as a detectable attack with respect
to the detection scheme in Eq. (10) if the attack is detected in
finite time for all ξ (0) ∈ Dξ (Λ, K , L) and d ∈ F . If the attack
renders the closed-loop process unstable, then by convention,
the set Dξ (Λ, K , L) is taken to be the Euclidean space R

2nx . An
attack is defined as an undetectable attack with respect to the
detection scheme in Eq. (10), if the residual of the attacked
closed-loop process satisfies r(t) ∈ Dr (I, K , L) for all t ≥ 0 for
all ξ (0) ∈ Dξ (Λ, K , L) and d ∈ F . Finally, an attack is defined
as potentially detectable with respect to the detection scheme
in Eq. (10), if the attack is neither detectable nor undetectable.
The set of initial conditions considered is Dξ (Λ, K , L) because
steady-state operation is considered. For some initial conditions
in Dξ (Λ, K , L), the attack is detected immediately by the detection
scheme in Eq. (10). However, this does not imply that the attack is
detectable, as the attack needs to be detected in finite-time for all
initial conditions in Dξ (Λ, K , L). While the definitions for attack
detectability with respect to the detection scheme in Eq. (10) are
valid for any attack, multiplicative sensor–controller link attacks
are considered in the present work. Owing to the process distur-
bances and measurement noise, the augmented process states of
the stable closed-loop process (Eq. (6)) are ultimately bounded
within its minimum invariant set. Thus, the notion of closed-loop
stability considered is ultimate boundedness of the augmented
state of the closed-loop process. The closed-loop process in Eq. (6)
is considered to be unstable if ∥ξ (t)∥ → ∞ as t →∞.

To motivate the proposed active detection methodology, the
relationship between closed-loop stability and detectability is
analyzed first. Proposition 1 below establishes a relationship be-
tween the undetectability of a multiplicative attack and the ter-
minal residual sets of the attack-free and attacked closed-loop
process.

Proposition 1. Consider the closed-loop process operated at

steady-state with control system parameters (K , L) under a multi-

plicative sensor–controller link attack of magnitude Λ. If the attack is

such that the closed-loop process remains stable, i.e., the eigenvalues

of Aξ (Λ, K , L) lie within the unit circle, the multiplicative attack is

undetectable with respect to the detection scheme in Eq. (10), if and
only if Dr (Λ, K , L) ⊆ Dr (I, K , L).

Proof. Consider the closed-loop process operated at steady-
state with control system parameters (K , L) under a multiplicative
sensor–controller link attack of magnitude Λ. If the pair (K , L)
are stabilizing under the attack, then the minimum invariant
set of the process Dξ (Λ, K , L) is compact and forward invariant.
Additionally, the augmented state of the attacked closed-loop
process is bounded within its minimum invariant set for all time,
i.e., ξ (t) ∈ Dξ (Λ, K , L) for all t ≥ 0. As a result, the residuals
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of the attacked closed-loop process are also bounded within the
terminal set of residuals, i.e., r(t) ∈ Dr (Λ, K , L) for all ξ (0) ∈
Dξ (Λ, K , L) and d ∈ F . If the terminal residual set of the attacked
process is a subset of or equal to the terminal residual set of the
attack-free process (Dr (Λ, K , L) ⊆ Dr (I, K , L)), the residuals of
the attacked process are contained within its attack-free terminal
residual set, i.e., r(t) ∈ Dr (Λ, K , L) ⊆ Dr (I, K , L) for all t ≥ 0
and the attack is undetectable. Hence, the attack is undetectable
if Dr (Λ, K , L) ⊆ Dr (I, K , L).

To show that Dr (Λ, K , L) ⊆ Dr (I, K , L) is also a necessary
condition for undetectability, the proof proceeds by contradiction.
Assume there is an undetectable multiplicative sensor–controller
link attack of magnitude Λ on the closed-loop process with
control system parameters (K , L) such that the attacked closed-
loop process is stable and the terminal residual set of the attacked
process is not a subset of or equal to the terminal residual
set of the attack-free process, i.e., Dr (Λ, K , L) ̸⊆ Dr (I, K , L).
Based on the definition of undetectable attacks, the multiplicative
sensor–controller link attack is such that for any augmented
state initialized in the minimum invariant set of the attacked
process ξ (0) ∈ Dξ (Λ, K , L) and all d ∈ F , the residuals of the
attacked process are contained within the attack-free terminal
residual set, i.e., r(t) ∈ Dr (I, K , L) for all time t ≥ 0. Since
Dr (Λ, K , L) ̸⊆ Dr (I, K , L), the set Dr (Λ, K , L) \ Dr (I, K , L) is non-
empty. Moreover, there exist ξ (0) ∈ Dξ (Λ, K , L) and d ∈ F that
result in r(t) ∈ Dr (Λ, K , L) \ Dr (I, K , L) for some t ≥ 0 implying
that r(t) ̸∈ Dr (I, K , L) for some t ≥ 0. This leads to a contradiction,
completing the proof. □

From Proposition 1, the question may arise as to whether a
conventional condition for instability, i.e., maxi|λi(Aξ (Λ, K , L))| >
1, and/or Dr (Λ, K , L) ̸⊆ Dr (I, K , L) are sufficient conditions for
a detectable attack. However, these conditions alone are not
sufficient conditions for a detectable attack, and can only be used
to guarantee potential detectability of an attack, which is stated
in the next proposition.

Proposition 2. Consider the closed-loop process operated at

steady-state with control system parameters (K , L) under a multi-

plicative sensor–controller link attack of magnitude Λ. If the attack

is such that (1) the attacked closed-loop process is stable with the

eigenvalues of Aξ (Λ, K , L) within the unit circle, and Dr (Λ, K , L) ̸⊆
Dr (I, K , L), or (2) the attacked closed-loop process is such that

maxi|λi(Aξ (Λ, K , L))| > 1, then the attack is potentially detectable

with respect to the detection scheme in Eq. (10).

Proof. The proof is divided into two parts. Part 1 considers
the case when the attacked closed-loop process is stable, but
Dr (Λ, K , L) ̸⊆ Dr (I, K , L). Part 2 considers the case when the at-
tack renders the closed-loop process unstable in the conventional
sense such that maxi|λi(Aξ (Λ, K , L))| > 1.

Part 1: Consider that the attacked closed-loop process remains
stable with the eigenvalues of Aξ (Λ, K , L) lying within the unit
circle, and Dr (Λ, K , L) ̸⊆ Dr (I, K , L). Since the origin is contained
within the disturbance set (i.e., 0 ∈ F ), the origin is contained
within the minimum invariant sets: Dξ (I, K , L) and Dξ (Λ, K , L)
for the attack-free and attacked closed-loop process, respectively,
from Eq. (7). If the disturbance is identically equal to 0 (d ≡
0 ∈ F), the augmented state will be maintained at the origin
for ξ (0) = 0 ∈ Dξ (Λ, K , L) implying that the residual of the
attacked process is also maintained at the origin, which is within
the attack-free terminal residual set, i.e., r(t) = 0 ∈ Dr (I, K , L)
for all t ≥ 0. For such a realization of the disturbance and initial
condition, the attack will go undetected for all t ≥ 0. However,
since Dr (Λ, K , L) ̸⊆ Dr (I, K , L), r(t) ∈ Dr (Λ, K , L) \ Dr (I, K , L) is
possible for some t ≥ 0, d ∈ F , and ξ (0) ∈ Dr (Λ, K , L) following

similar arguments as that used in the proof of Proposition 1. This
implies that the attack is potentially detectable.

Part 2: Consider that the attacked closed-loop process is such
that maxi|λi(Aξ (Λ, K , L))| > 1. Similar logic as that used in Part 1
may be applied to show that the attack is potentially detectable.
If ξ (0) = 0 and d ≡ 0 ∈ F , the attack is not detected. On the
other hand, since Dξ (Λ, K , L) = R

2nx by convention when the
closed-loop process is rendered unstable by the attack, there exist
ξ (0) ∈ R

2nx such that r(0) ̸∈ Dr (I, K , L) and the attack is detected
at t = 0. Therefore, the attack is potentially detectable. □

If the closed-loop process under an attack is unstable such that
∥ξ (t)∥ → ∞ as t →∞ the attack will be detected in finite time,
if an additional observability condition is satisfied. This result is
formally stated in Proposition 3.

Proposition 3. Consider the closed-loop process with control

system parameters (K , L) under a multiplicative attack of magnitude

Λ ̸= I . Let the control system parameters (K , L) stabilize the attack-

free closed-loop process. If the attack renders the closed-loop process

unstable in the sense that ∥ξ (t)∥ → ∞ as t → ∞ and the pair

(Aξ (Λ, K , L), Ar (Λ)) is observable, the attack is detected in finite

time with respect to the detection scheme in Eq. (10).

Proof. If the closed-loop process under attack is rendered un-
stable in the sense that ∥ξ (t)∥ → ∞ as t → ∞ and the pair
(Aξ (Λ, K , L), Ar (Λ)) is observable, the residuals are unbounded
in the sense that ∥r(t)∥ → ∞ as t → ∞. This follows from
Theorem 1 Appendix. Since the attack-free closed-loop process
with control system parameters (K , L) is stable, its minimum
invariant set Dξ (I, K , L) is a compact (closed and bounded) set. As
a result, the attack-free terminal residual set is also a compact set
(from Eq. (9)). There exists R > 0 such that Dr (I, K , L) ⊆ Bny (R).
Because the residuals of the attacked process are unbounded
(∥r(t)∥ → ∞ as t → ∞), for all ϵ > 0 there exists T > 0 such
that ∥r(t)∥ > ϵ for all t > T . Choosing ϵ > R shows there exists
a finite time T1 such that ∥r(T1)∥ > ϵ > R, which implies that
r(T1) ̸∈ Dr (I, K , L). Thus, the attack is detected in finite time and
the attack is detectable. □

The only assumption made about the process disturbance and
measurement noise is that they are bounded. Even if some eigen-
values of Aξ (Λ, K , L) are outside the unit circle, this assumption
does not exclude potential realizations of the disturbance and
measurement noise that results in the augmented state remaining
bounded for all times. These are cases where the disturbance
can effectively act as a stabilizing input in the sense that the
state remains bounded for all time. In practice, disturbances are
exogenous inputs and are not expected to stabilize a process. The
condition maxi|λi(Aξ (Λ, K , L))| > 1 is a necessary, but not suffi-
cient, condition for the type of closed-loop instability considered
in this work. Therefore, closed-loop instability cannot be verified
solely by checking the eigenvalues of Aξ (Λ, K , L). Nevertheless, a
multiplicative attack is said to be destabilizing if the eigenvalues
of Aξ (Λ, K , L) are outside the unit circle (maxi|λi(Aξ (Λ, K , L))| >
1) to highlight that the attack is responsible for destabilization.

3.2. Active attack detection methodology

Traditional control system design approaches use closed-loop
stability, performance, and robustness to uncertainty as crite-
ria to determine the control system design [34–36]. Although
attack detectability is linked to the control system design (Sec-
tion 3.1), traditional design methods do not consider cyberattack
detectability and may result in selecting control system param-
eters that mask the cyberattack in the sense that a cyberattack
goes undetected with these parameters. From an attack detection
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Fig. 1. (a) An example residual trajectory for the attack-free closed-loop process with the control system switch from nominal parameters to attack-sensitive

parameters occurring at ts . (b) An example residual trajectory for the attacked closed-loop process with the control parameter switch occurring at ts where the attack

is detected at td .

standpoint (Proposition 3), selecting control system parameters
that are ‘‘sensitive’’ to cyberattacks, in the sense that the closed-
loop process is rendered unstable by the attack, may be pre-
ferred. However, sustained operation with these control system
parameters may not be desirable because the closed-loop per-
formance may be worse than that achieved under parameters
determined by traditional design approaches. To manage the
trade-off between attack detection and closed-loop performance,
we propose an active detection methodology that utilizes occa-
sional switching from the nominal control system parameters,
determined by traditional design approaches, to the so-called
attack-sensitive parameters. Control system parameter switching
is one form of active detection that may be considered, ow-
ing to the link between control system parameters and attack
detectability established in Section 3.1.

The nominal parameters are denoted by (K ∗, L∗), while the
attack-sensitive parameters are denoted by (KΛ, LΛ). With the
active detection methodology, the control system parameters
switch from the nominal parameters to the attack-sensitive pa-
rameters at ts. After the control system switches from the nom-
inal parameters to attack-sensitive parameters, the process is
operated over a period Tc > 0 with the attack-sensitive pa-
rameters. Under attack-free operations (Fig. 1(a)), the residual
trajectory after the switch will evolve in the terminal residual
set of the attack-free closed-loop process with attack-sensitive
parameters Dr (I, KΛ, LΛ). After the period Tc elapses, the control
system switches back to the nominal parameters. In the presence
of a multiplicative attack, the residual trajectory may evolve
outside the terminal residual set of the attack-free closed-loop
process with attack-sensitive parameters (Fig. 1(b)) resulting in
the attack being detected.

Under the active detection methodology, the control system
parameters vary over time. The detection scheme needs to ac-
count for this change because the residual terminal set under
attack-free operation depends on the controller and observer
gains. Therefore, the detection scheme is modified as follows:

z(t) =

{

0, r(t) ∈ Dr (I, K (t), L(t))

1, r(t) ̸∈ Dr (I, K (t), L(t))
(11)

where K (t) is the controller gain used at time step t , and L(t)
is the observer gain at time step t , z(t) = 0 indicates a lack of
anomaly detection, and z(t) = 1 indicates anomalous operation
is detected. For the closed-loop process with the nominal param-
eters, (K (t), L(t)) = (K ∗, L∗), and for the closed-loop process with
the attack-sensitive parameters, (K (t), L(t)) = (KΛ, LΛ).

The attack-sensitive parameters are chosen such that the
attack-free closed-loop process operated with the attack-sensitive
parameters is stable, and the process is destabilized by an attack.
Particularly, the attack-sensitive parameters are chosen so that
some eigenvalues of the augmented system matrix lie outside the
unit circle (i.e., maxi|λi(Aξ (Λ, KΛ, LΛ))| > 1), and the matrix pair

(Aξ (Λ, KΛ, LΛ), Ar (Λ)) is observable. The attack-sensitive param-
eters are chosen to be sensitive to a range of attack magnitudes.
Ideally, the attack-sensitive parameters may be chosen so that
the range of attack magnitudes is as large as possible. The attack-
sensitive parameters exploit the dependence of the terminal
residual set on the control system parameters.

The switching instance ts and the period Tc (called the cycle
time) are the two design parameters for the proposed active
detection methodology. The switching instance may be selected
by a process operator based on operational considerations. For
example, one way the switching instance may be selected is
when the closed-loop performance degradation due to operation
with attack-sensitive parameters is acceptable based on pro-
cess economic considerations. The cycle time Tc may be selected
to balance a potential trade-off between attack detection and
closed-loop performance and safety considerations. Given that
Tc is finite, the closed-loop augmented process state will remain
bounded over the period when the attack-sensitive parameters
are used in the control system (ts to ts + Tc). This is true even if
the closed-loop process is subjected to a destabilizing multiplica-
tive attack during this period. Furthermore, it is expected that
the likelihood of detecting potentially detectable and detectable
attacks scales with Tc . Rigorous evaluation of this expectation
is beyond the scope of the present work. However, the attack-
sensitive parameters could result in closed-loop performance de-
terioration for the attack-free process compared to performance
under the nominal control system parameters. Operating with the
attack-sensitive parameters for long periods may not be desirable
from a closed-loop performance perspective. Furthermore, for
destabilizing attacks on the process operated under either control
system (i.e., with nominal parameters or with the attack-sensitive
parameters), the bound on the process state scales with Tc . If
there is a state-space set whereby the process is operated safely,
then Tc should be selected to be small enough to ensure that
the state is maintained within the safe set in the presence of
a destabilizing attack. The closed-loop performance and safety
considerations limit how long the cycle time should be.

The main benefit of the proposed approach is to enhance
the attack detection capabilities. An attacker may select a mul-
tiplicative attack that destabilizes the closed-loop process under
the nominal parameters. Such an attack may be detected by the
detection scheme in Eq. (10). If the attack is undetectable with the
nominal control system parameters, it will not be detected. Even
if the attack is potentially detectable, it may go undetected by the
detection scheme. The active detection methodology enables the
detection of attacks that are designed to be potentially detectable
or undetectable with respect to the closed-loop process under
nominal parameters.

Fig. 2 illustrates the flowchart for the active attack detec-
tion methodology. The proposed active detection methodology is
summarized by the algorithm below. The algorithm is initialized
with t = 0. The parameters of the methodology are the switching
instance ts and the cycle time Tc .
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Fig. 2. Flowchart for the active attack detection methodology.

Fig. 3. (a) An example showing the evolution of the augmented state trajectory for the attack-free closed-loop process with a control parameter switch generating

zero false alarms. (b) An example showing the evolution of the augmented state trajectory for the attack-free closed-loop process with a control system parameter

switch that may generate false alarms.

1. If t ∈ (ts, ts + Tc], set (K (t), L(t)) = (KΛ, LΛ). Else, set
(K (t), L(t)) = (K ∗, L∗).

2. Compute the residual r(t) and the output of the detection
scheme in Eq. (10).

3. If z(t) = 1, an attack is detected; implement attack iden-
tification and mitigation strategies. Else, an attack is not
detected; go to Step 4.

4. Set t ← t + 1. Go to Step 1.

The methodology presented here illustrates a single switching
cycle from the nominal to attack-sensitive parameters and back
to the nominal parameters. To further enhance the detection
capabilities, the methodology may be modified to include pe-
riodic switching from nominal to attack-sensitive parameters.
Additionally, to detect a wider range of attack magnitudes, the
methodology could be modified to include multiple control sys-
tem switches from nominal parameters to other attack-sensitive
parameters.

Under attack-free operation and when control system param-
eter switching takes place, the augmented state needs to be
in the minimum invariant set of the attack-free process with
the updated controller. In this way, the state moves from one
minimum invariant set under one set of control system param-
eters to another. An example trajectory is shown in Fig. 3(a). In
this case, the control system parameters switch from nominal to
attack-sensitive parameters when the augmented state is within
the intersection of the minimum invariant sets with the nomi-
nal and attack-sensitive parameters, i.e., ξ (ts) ∈ Dξ (I, K

∗, L∗) ∩
Dξ (I, KΛ, LΛ). After the switch, the augmented state moves from

the minimum invariant set with nominal parameters to the min-
imum invariant set with attack-sensitive parameters. However,
the augmented state is not measured. When the control param-
eters switch, the augmented state may be outside the minimum
invariant set of the process under the updated controller. If the
process is attack-free, the augmented state will converge to the
minimum invariant set, but the residual during the transient pe-
riod may take values outside the terminal residual set, triggering
a false alarm. An example of this is shown in Fig. 3(b). For the
attack-free process, the control system switches from nominal
to attack-sensitive parameters at the time instance when the
augmented state is outside the minimum invariant set associated
with the attack-sensitive parameters, i.e., ξ (ts) ∈ Dξ (I, K

∗, L∗) \
Dξ (I, KΛ, LΛ). As a result, the process dynamics is excited due
to the switch, in the sense that the augmented state evolves
briefly outside the minimum invariant set with attack-sensitive
parameters. The residual during this transient period, may evolve
outside the terminal residual set associated with the attack-
sensitive parameters and trigger false alarms by the detection
scheme in Eq. (11).

Under an attack, a control system parameter switch may re-
sult in the augmented state exhibiting a transient behavior that
mimics the transient behavior of the attack-free process. An ex-
ample is illustrated in Fig. 4. After a control system parameter
switch to attack-sensitive parameters occurs at time ts, the aug-
mented state of the attacked closed-loop process evolves outside
its attack-free minimum invariant set until time ti. However,
after time ti, the augmented state evolves within the attack-free
minimum invariant set until the time instance te. This may result
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Fig. 4. An example showing the evolution of the augmented state trajectory for

the attacked closed-loop process. After a control system parameter switch to

attack-sensitive parameters, the augmented state mimics the transient behavior

of an attack-free process briefly.

in the residuals of the process evolving briefly outside the attack-
free terminal residual set, before converging to it. In this case,
the alarms generated by the detection scheme monitoring the
attacked process may be indistinguishable from the false alarm
rate in the attack-free process.

Owing to the complications described above, false alarms are
not desirable. To minimize false alarms, a modification to the
detection scheme in Eq. (11) may be considered. In particular,
the detection scheme may be modified to generate an alarm only
if the residual remains outside the terminal set for a specified
period. The period may be chosen to span a few sample times
to account for the potential transient behavior in the attack-
free process. Using a timer threshold whereby the detection logic
must deem abnormal operating behavior over a period before
raising an alarm is a common approach for minimizing nuisance
alarms [44].

Remark 1. If an attack on the closed-loop process operated
under either control mode, i.e., under nominal mode or under
the attack-sensitive mode, is detected at any time td ≥ 0, then
attack identification and mitigation strategies could be employed
to cope with the attack. These strategies are beyond the scope of
this work and the subject of future work.

Remark 2. In addition to attack detection, the operating goals
for a closed-loop process may be included as a constraint for
selecting the attack-sensitive parameters. For example, it may be
desired that the product concentration is within a certain range
to ensure that the product is within specification. The attack-
sensitive parameters may be selected to ensure that the poten-
tial values of the concentration in the corresponding minimum
invariant set are within the acceptable range.

Remark 3. An attacker with prior knowledge of the active de-
tection methodology may attempt to evade detection by using a
destabilizing attack to target the process during the transient pe-
riod after the control system switches from nominal parameters
to attack-sensitive parameters. Randomly selecting the switching
time (ts) to minimize the possibility that the attacker knows when
the controller switch occurs may be helpful in preventing the
success of such attacks.

Remark 4. Detection of attacks that are potentially detectable
under the nominal parameters is possible. In such cases, the
attack identification and mitigation strategies could be activated
following the detection of an attack while the closed-loop process

is operated with the nominal parameters, and switching to the
attack-sensitive parameters may not be needed.

Remark 5. Zero false alarms resulting from a parameter switch
may be guaranteed under a special case when the minimum in-
variant set of the attack-free process under the updated
parameters is a subset of the minimum invariant set of the
process under the parameters used prior to the switch. For ex-
ample, if the minimum invariant set for the attack-free pro-
cess with nominal parameters is contained within the minimum
invariant set for the process with attack-sensitive parameters
(i.e., Dξ (I, K

∗, L∗) ⊂ Dξ (I, KΛ, LΛ)), then, for the switch from nom-
inal to attack-sensitive parameters, the augmented state of the
attack-free process is contained within the minimum invariant
set with attack-sensitive parameters, i.e., ξ (ts) ∈ Dξ (I, KΛ, LΛ). As
a result, there will be no transients, and zero false alarms can
be guaranteed. However, zero false alarms cannot be guaranteed
when a switch from the attack-sensitive parameters to the nom-
inal parameters takes place because at the switching instance
the augmented state may be outside the minimum invariant
set associated with the nominal parameters, i.e., ξ (ts + Tc) ∈
Dξ (I, KΛ, LΛ) \ Dξ (I, K

∗, L∗). As a result, the second switch may
generate false alarms by the detection scheme, and the detection
scheme may need some modification to minimize false alarms.

Remark 6. The detectability of an attack is defined based on
the ability of the residual-based detection scheme to detect the
attack in finite time. It is a system property and is not influenced
by the control parameter switching instance ts or the cycle time
Tc . Under attack-free operation, both parameters (ts and Tc) do
not influence closed-loop stability. The switching instance ts also
does not influence closed-loop stability of the attacked process
with either set of control system parameters, i.e., with nominal
parameters or with attack-sensitive parameters.

Remark 7. Attacks on industrial control systems may take sev-
eral forms. To characterize different types of attacks, the tax-
onomy of attacks on ICSs has been analyzed and presented in
the literature [17–21]. In the present work, the active detec-
tion methodology is designed to enhance the detection capabil-
ities of a residual-based passive detection scheme, monitoring
the process for multiplicative sensor–controller link cyberattacks.
Multiplicative sensor–controller link attacks multiply the data
communicated over the sensor–controller communication chan-
nels by a factor. Under a multiplicative attack, the real-time
process operational data communicated over the communica-
tion channels is masked by the attack. Replay attacks, another
type of false-data injection attacks, communicate historic attack-
free process operational data over the compromised controller
communication channels and are fundamentally different from
multiplicative attacks. Under a replay attack, the data communi-
cated over the compromised controller communication channels
has no correlation to the real-time process operational data.
Characterization of the detection capability of the proposed active
detection methodology to detect other types of cyberattacks is
beyond the scope of the present work.

Remark 8. The proposed active detection methodology con-
siders a single switch from nominal mode (during which the
process is operated with nominal parameters) to the attack-
sensitive mode (during which the process is operated with attack-
sensitive parameters) and back to operating in the nominal mode
thereafter. To further enhance the detection capabilities of the
passive residual-based detection scheme with respect to a wider
range of attack magnitudes, the proposed methodology may be
modified to include control system switches between the nomi-
nal mode and multiple attack-sensitive modes. The closed-loop
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Table 1

Parameters for the CSTR [45].

Volumetric flow rate (F ) 5.0m3 h−1

Reactor volume (V ) 1.0m3

Feed concentration of A (CA0) 4.0 kmolm−3

Activation energy (E) 5.0× 104 kJ kmol−1

Pre-exponential factor (k0) 8.46× 106 m3 h−1 kmol−1

Gas constant (R) 8.314 kJ kmol−1 K

Feed temperature (T0) 300 K

Density of reactor liquid hold-up (ρ) 1000 kgm−3

Heat of reaction (∆H) −1.15× 104 kJ kmol−1

Heat capacity (Cp) 0.231 kJ kg K−1

Steady-state heat rate added/removed from the reactor (Qs) 0 kJ h−1

Steady-state reactant concentration (CAs) 1.22kmolm3

Steady-state temperature (Ts) 438.2K

process with the active detection methodology using multiple
control system switches may be considered a switched system.
Successive switching between different modes may compromise
closed-loop stability of the process. Here, closed-loop stability for
the switched system under bounded process disturbances and
measurement noise means ultimate boundedness of the process
state (and estimation error) in a small neighborhood of the origin.
No guarantees can be made on the closed-loop stability of the
attacked process without placing limitations on the attack mag-
nitude. To guarantee the closed-loop stability of the attack-free
process, two classical approaches may be employed (e.g., [34]). In
the first approach, a common Lyapunov function may be used to
find the control parameters for the nominal and attack-sensitive
modes. The advantage of this approach is that the Lyapunov
function value will decrease over time under any mode if the state
is sufficiently far from the origin. However, this approach restricts
the choice of control parameters. As an alternative approach,
a Lyapunov function may be derived for each mode, i.e., the
multiple Lyapunov function approach. In this case, the switching
times must be carefully selected because the Lyapunov function
value of the inactive modes may increase over time when another
mode is active. Nonetheless, existing methods for determining
the switching times could be employed (see, for example, [34]).

4. Application to a chemical process

A chemical process consisting of a CSTR is considered where a
second-order, exothermic reaction of the form A→ B occurs. The
CSTR contents are assumed to be well-mixed, and the contents
may be heated or cooled using, for example, a cooling jacket or
submerged heat exchanger coil. A dynamic process model is ob-
tained from mass and energy balances under standard modeling
assumptions, and is given by the following system of ordinary
differential equations:

dCA

dt
=

F

V
(CA0 +∆CA0 − CA)− k0e

−E
RT C2

A

dT

dt
=

F

V
(T0 +∆T0 − T )−

∆Hk0

ρCp

e
−E
RT C2

A +
Q

ρCpV

(12)

where CA0 is the feedstock reactant concentration, T0 is the feed-
stock temperature, CA is the reactor reactant concentration, T is
the reactor temperature, and Q is the heat added to or removed
from the tank contents. The variables ∆CA0 and ∆T0 represent
two bounded process disturbances, modeled as a deviation from
the nominal feedstock reactant concentration and temperature.
The process parameter definitions and their values are given in
Table 1.

The control objective is to operate the process around its open-
loop stable steady-state with CA = CAs and T = Ts where the
values are given in Table 1. The measured outputs are CA and
T , and the manipulated input is Q . Defining deviation variables,
the state, input, process disturbance, and output are given by:

x = [x1 x2]
T = [CA − CAs T − Ts]

T , u = Q − Qs, w = [∆CA0 ∆T0]
T ,

and y = [x1 − x1s x2 − x2s]
T . The sensors measuring CA and T are

corrupted by bounded measurement noise.
To design a linear feedback control law for the CSTR, the

nonlinear process model in Eq. (12) is linearized about its steady-
state, yielding a continuous-time linear process model. The
continuous-time linear model is discretized in time with a sam-
pling interval of 10−2 h by assuming a zeroth-order hold of the
inputs to obtain a discrete-time linear process model of the form
in Eq. (1). The system matrices are given by:

A =

[

0.7364 −0.0041
10.6953 1.1560

]

, B =

[

−9.0708× 10−8

4.6741× 10−5

]

,

G =

[

0.0433 −0.0001
0.2724 0.0540

]

(13)

The discrete-time linear model for the CSTR of the form in Eq. (1)
with matrices in Eq. (13) is referred to as the linearized CSTR
model.

In the simulations presented in subsequent sections, the Multi-
Parametric Toolbox (MPT) 3.0 [46] is used for the calculation
of the minimum invariant and residual terminal sets. Numerical
approximations of the minimum invariant sets are computed
based on the algorithm in [47] with an error bound of 5×10−5. In
comparing the numerical estimates of the terminal residual sets,
the technique presented in [32] is used. In the remainder, time is
represented in continuous time with a slight abuse of notation. In
Section 4.1, the application of the active detection methodology
for enhancing the detection capabilities of the residual-based de-
tection scheme is demonstrated using the linearized CSTR model.
In Section 4.2, the active detection methodology is applied to the
nonlinear CSTR to evaluate the efficacy of the proposed approach
when dealing with more complex process dynamics.

4.1. Application of the active detection methodology to the linearized

CSTR

In this section, the CSTR is modeled using the linearized pro-
cess model. The disturbance set (F ) is described by an admis-
sible process disturbance set (W ) given by ∆CA0 ∈ [−0.5, 0.5]
kmolm−3 and ∆T0 ∈ [−5, 5] K, and an admissible measurement
noise set (V ) described by [−0.5, 0.5] kmolm−3 and [−5, 5] K
for the concentration and temperature sensors, respectively. The
control actions are computed using a linear control law of the
form in Eq. (4) using estimates generated by a Luenberger ob-
server of the form in Eq. (3). Pole placement is used to deter-
mine the controller and observer gains. The nominal parameters
(K ∗, L∗) are chosen to stabilize the attack-free process with the
controller gain computed with poles placed at [0.2 −0.1], and the
observer gain with the poles placed at [0.2 0.3]. For the attack-
sensitive parameters (KΛ, LΛ), the controller gain is computed
with poles placed at [−0.33 − 0.3] and the observer gain is
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Fig. 5. The residual values of the attacked linearized CSTR process with (a) with nominal parameters before and after a switch to the attack-sensitive parameters

and (b) with attack-sensitive parameters where the attack is detected at time td = 2.74 h.

computed with poles placed at [−0.2 −0.3]. In the absence of an
attack, the closed-loop process with attack-sensitive parameters
is stable in the sense that maxi|λi(Aξ (I, KΛ, LΛ))| = 0.33 < 1.
Furthermore, the attack-sensitive parameters are found to be
‘‘sensitive’’ to multiplicative sensor–controller link attacks with
magnitudes in the set {Λ | diag(1, α) | α ∈ [0.6, 0.95]}.
This range is numerically verified by parameterizing the attack
magnitude with a parameter α where Λ = diag(1, α). The value
of α is varied beginning at 0.6 and incremented by 0.01 until a
value of α = 0.95 is reached. For each Λ, the control system
parameters are sensitive to the attack if any of the eigenvalues
of Aξ (Λ, KΛ, LΛ) are outside the unit circle and the observability
matrix for the pair (Aξ (Λ, KΛ, LΛ), Ar (Λ)) is full rank. A similar
analysis is performed using the nominal parameters. The nom-
inal parameters are not sensitive to any attack in the set {Λ |
diag(1, α) | α ∈ [0.6, 0.95]}.

Three sets of simulations are performed, and the results are
compared. First, the closed-loop process with nominal param-
eters and without the active detection methodology (without
switching) is considered. Second, the active detection methodol-
ogy is applied to the attacked closed-loop process. The first and
second simulation sets are used to evaluate the enhanced detec-
tion capabilities of the proposed active detection methodology.
Third, the active detection methodology is applied to the attack-
free process to identify if false alarms are raised resulting from
control system parameter switching.

Each simulation set consists of 1000 simulations of the closed-
loop process. The process disturbances and measurement noise
are modeled as random variables drawn from a uniform distri-
bution on the interval defined by the bounds of the appropriate
admissible set. The value of the random variables modeling the
process disturbances and measurement noise are varied every
sample time, and different realizations of the random variables
are used in each simulation. The same realizations of random
variables are used across simulation sets to compare the results
across simulation sets. For each simulation, the process states are
initialized at 0, and a period of 5 h is simulated.

For simulating the attacked process, an attack magnitude of
Λ = diag(1, 0.9) is considered. Under the nominal parameters,
the attack is potentially detectable, which can be observed from
Fig. 5(a) since Dr (Λ, K ∗, L∗) ̸⊆ Dr (I, K

∗, L∗). Under the attack-
sensitive parameters, the attack is detectable, and the terminal
residual set for the attack-free process under the attack-sensitive

parameters is shown in Fig. 5(b). To demonstrate the enhance-

ment of attack detection capabilities of the residual-based de-

tection scheme, the proposed active detection methodology is

applied and the control system switches to attack-sensitive pa-

rameters at time ts = 2.5 h. A cycle time of Tc = 1 h is used,

i.e., in the absence of attack detection, a second switch from

attack-sensitive to nominal parameters is implemented at time

ts + Tc = 3.5 h.

The residual values for one of the simulations from the first

set (with the active detection methodology) are depicted in Fig. 5.

From Fig. 5(a), the residual values of the closed-loop process with

nominal parameters are in the attack-free terminal residual set

before the switch occurs, i.e., r(t) ∈ Dr (I, K
∗, L∗), t ∈ [0, 2.5] h.

As a result, no alarms are raised by the detection scheme, and

the attack is not detected during this period. After the switch to

attack-sensitive parameters, the attack is detected at time td =
2.74 h because the residual value is outside the terminal residual

set, i.e., r(td) ̸∈ Dr (I, KΛ, LΛ) (Fig. 5(b)). Following the detection

of the attack, the control system switches back to nominal pa-

rameters to stabilize the closed-loop process. In practice, attack

identification and mitigation measures would be activated after

detection. After switching back to the nominal parameters, no

alarms are raised (Fig. 5(a)).

The results obtained from the first and second simulation sets

are compared. For the second simulation set (passive detection),

the attack is detected in 43 out of 1000 simulations. In 19 of

these 43 simulations, the attack is detected before the switching

instance (ts = 2.5 h). For the first and second simulation sets, the

process evolves the same during the period t = 0 h to t = 2.5 h

because the same control system, attack, disturbance, measure-

ment noise, and detection scheme are applied to the process

during this period. For the 19 simulations, switching to attack-

sensitive parameters is not needed as the attack is detected before

the switch. For the remaining 981 simulations, the attack is de-

tected after switching to the attack-sensitive parameters within

a maximum of 24 sample times in all simulations. Considering

the 981 remaining simulations with passive detection (second

simulation set), the attack is detected in 33 sample times after

ts = 2.5 h in the best case and never detected over the simulated

5 h operating period in the worst case. The results demonstrate

an enhancement of detection capabilities of the residual-based

detection scheme by applying the active detection methodology.
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In the third simulation set, the false alarm rate under the pro-
posed active detection methodology is evaluated. The attack-free
process is considered for the analysis. False alarms are not raised
after switching into and out of the attack-sensitive parameters
in any simulation. Further analysis is performed to address the
possibility of false alarms. The containment of the augmented
state at the switching instances in the minimum invariant set is
verified. When switching to the attack-sensitive parameters, the
state is verified to be in the minimum invariant set associated
with the attack-sensitive parameters, i.e., ξ (ts) ∈ Dξ (I, KΛ, LΛ).
When switching back to the nominal parameters, the state is
verified to be in the minimum invariant set associated with
the nominal parameters, i.e., ξ (ts + Tc) ∈ Dξ (I, K

∗, L∗). When
the control system switches from nominal parameters to attack-
sensitive parameters, the augmented state is in the minimum
invariant set of the attack-free process with attack-sensitive pa-
rameters in all simulations. When the control system switches
from attack-sensitive parameters to nominal parameters, the aug-
mented state is not contained within the minimum invariant set
of the attack-free process with nominal parameters in 958 out
of the 1000 simulations. In the 958 simulations, the augmented
state evolves briefly outside the minimum invariant set of the
attack-free closed-loop process with nominal parameters. The
augmented state converges to the minimum invariant set within
two sample times. No false alarms are observed in any of these
cases. Although this analysis confirms the possibility of a false
alarm, false alarms are not raised in these cases.

4.2. Application of the active detection methodology to the nonlinear

CSTR

In this section, we apply the active detection methodology
to the nonlinear CSTR process model in Eq. (12). To this end,
the state is maintained within a region around the origin when
the process disturbances and measurement noise are small. In
this region, the nonlinear process may be approximated by its
linearized model. As the magnitude of the disturbances and mea-
surement noise increases, the impact of the nonlinearities in-
creases. While the theoretical results in this work are devel-
oped strictly for linear systems, the objective of this study is
to assess the method’s applicability to the nonlinear case. The
proposed active detection method is therefore applied to the
nonlinear process, considering small disturbances. The distur-
bance set F is described by an admissible process disturbance
set (W ) given by ∆CA0 ∈ [−0.01, 0.01] kmolm−3 and ∆T0 ∈
[−0.2, 0.2] K, and an admissible measurement noise set (V ) de-
scribed by [−0.01, 0.01] kmolm−3 and [−0.2, 0.2] K for the
concentration and temperature sensors, respectively. The process
disturbances and measurement noise are modeled as random
variables drawn from a uniform distribution in the interval spec-
ified by the bounds of the admissible set. The same realizations
of random variables are used across simulation sets.

The closed-loop simulations of the continuous-time CSTR pro-
cess use the explicit Euler’s method with a step size of 1× 10−4 h
to integrate the ordinary differential equations in Eq. (12). Ex-
tensive simulations are employed to verify that further reduction
in the integration time step did not lead to substantial changes
in the computed solution of the nonlinear ordinary differential
equations. To steer the process states to the origin, a linear
control law (Eq. (4)) is used with state estimates generated by
a Luenberger observer (Eq. (3)) based on the linearized process
model using the matrices A, B, and G (Eq. (13)). The sampling
period of the control system is 10−2 h, which is the same as that
used in Section 4.1. In general, the sampling period should be
sufficiently small so that the continuous-time process in Eq. (12)
may be stabilized with the discrete-time controller in Eq. (4). Two

sets of simulations, each consisting of 1000 simulations of the
attack-free closed-loop process with nominal parameters and the
attack-free closed-loop process with attack-sensitive parameters
are performed. In all simulations, the attack-free closed-loop pro-
cess is found to be stable, verifying that the sampling period is
appropriately chosen.

Numerical approximations of the attack-free terminal resid-
ual sets for the closed-loop process with nominal parameters
and with the attack-sensitive parameters are computed from the
linearized CSTR model. To verify that the terminal residual set
approximated from the linear model is a suitable approxima-
tion for the nonlinear process, the evolution of the residuals are
considered under the nominal and attack-sensitive parameters.
Considering the same two sets of simulations used for verifying
closed-loop stability, the residuals of the attack-free process are
bounded within the appropriate terminal residual set in all sim-
ulations. Based on this, the computed terminal residual sets are
suitable approximations for the nonlinear process.

A similar study as that performed in Section 4.1 consisting of
three simulations sets is carried out for the nonlinear process.
In each simulation set, 1000 simulations are conducted. These
simulations enable the evaluation of the detection capabilities
and potential of false alarms under the proposed active detection
methodology for the nonlinear process. For the first two simula-
tion sets, an attack of magnitude Λ = diag(1, 0.9) is considered.
Based on the linearized model, the attack-sensitive parameters
are ‘‘sensitive’’ to this attack, while the nominal parameters are
not. For the third simulation set, attack-free operation is consid-
ered. In the first simulation set (with active detection method-
ology), the control system switches from nominal parameters to
attack-sensitive parameters at time instance ts = 2.5 h. The cycle
time under the attack-sensitive parameters is Tc = 1 h.

The residual values from one simulation in the first simu-
lation set (with active detection methodology) are depicted in
Fig. 6. From Fig. 6(b), the attack is detected at time td = 2.69 h
after the control system switches from nominal parameters to
attack-sensitive. Following the detection of the attack, the con-
trol system switches back to nominal parameters to stabilize
the closed-loop process. From Fig. 6(a), the residual is outside
the attack-free terminal residual set for one sample time after
switching back to nominal parameters. As a result, another alarm
is raised. Thereafter, no alarms are raised because the residual
converges to the terminal residual set.

For the 1000 simulations of the attacked process under nomi-
nal parameters monitored by the residual-based detection scheme
in Eq. (10) (passive only detection), the attack is detected in
only one simulation. In the active detection simulation set, the
attack is detected after the control system switches from nomi-
nal parameters to attack-sensitive parameters in all cases. After
switching to attack-sensitive parameters, the attack is detected
within a minimum of 2 sample times and a maximum of 19
sample times after the switching instance. Thus, the active de-
tection methodology also enhances the detection capabilities of
the residual-based detection scheme for the nonlinear process.

In the third simulation set, 1000 simulations of the attack-free
process with the active detection methodology are performed to
analyze the false alarm rate. No false alarms are raised in any of
the simulations. Similar to the analysis for the third simulation
set in Section 4.1, the containment of the augmented state at
the switching instance within the minimum invariant set with
the updated parameters is verified. At the switching instance
ts, the state is always contained in the minimum invariant set
Dξ (Λ, K ∗, L∗) in all cases. At the switching instance ts + Tc , the
augmented state is not within the minimum invariant set un-
der nominal parameters in 921 out of 1000 simulations. Over
these 921 simulations, the augmented state evolves outside the
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Fig. 6. (a) The residual values of the attacked nonlinear CSTR process with nominal parameters before and after a switch to the attack-sensitive parameters. (b) The

detection of the attack at the time td = 2.69 h after a switch from nominal parameters to attack-sensitive parameters.

Fig. 7. (a) The residual values of the attack-free nonlinear CSTR process with nominal parameters before and after a switch to the attack-sensitive parameters. (b)

The residual values of the attack-free nonlinear CSTR process with attack-sensitive parameters.

minimum invariant set, but converges to it in 2 sample times.

However, no false alarms are observed in any of the 921 sim-

ulations. Fig. 7 illustrates the residual values for the attack-free

process with the active detection methodology over one simu-

lation. Over this simulation, no false alarms are observed when

the control system switches from the nominal mode into the

attack-sensitive mode (Fig. 7(a)). Similarly, no false alarms are

observed after the control system switches back to the nominal

mode (Fig. 7(b)).

4.2.1. Comparison between active and passive detection

The application of active detection methodology to enhance

the detection capabilities of the CUSUM detection scheme, an-

other residual-based detection scheme, is demonstrated. The

CUSUM detection scheme is a statistical change detection scheme

that monitors a process based on the deviation of the detec-

tion metric from a predefined baseline value. Application of

the CUSUM detection scheme using the residual vector as the

detection scheme has been considered as a passive attack detec-
tion scheme previously in the literature [22,26,32]. The CUSUM
detection scheme monitoring a process based on the 2-norm of
the residual may be represented by:

S(t) = max{S(t − 1)+ ∥r(t)∥ − b, 0}; S(−1) = 0; (14)

where S(t) is the CUSUM statistic, which is the detection scheme
output, r(t) is the residual of the process at the time t ≥ 0, and
b is the baseline parameter. An attack on the process is detected
by the scheme if the CUSUM statistic exceeds the tolerance value,
which is the alarm threshold τ , i.e.,

S(t) ≤ τ ; No Attack

S(t) > τ ; Attack

The CUSUM detection scheme is chosen as the detection
scheme in place of the set membership-based detection scheme
considered earlier to monitor the CSTR. An attack is considered
in the temperature sensor–controller link and has the same
magnitude as that previously considered, i.e., Λ = diag(1, 0.9).
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Fig. 8. (a) The CUSUM statistic for the attacked CSTR without the active detection methodology implemented. (b) The CUSUM statistic for the attacked CSTR process

with the active detection methodology implemented, showing that the attack is detected at time t = 2.69 h.

To tune the CUSUM detection scheme for a zero false alarm rate
in the absence of an attack (and without switching) when mon-
itoring the closed-loop process, the approach presented in [32]
is adopted. Because the residuals of the attack-free closed-loop
process are always contained within the terminal residual set,
they are also contained within the 2-norm ball enclosing the
terminal residual set. Consequently, the norm of the residual
vector of the attack-free process is always less than the radius of
the ball. The baseline parameter is selected as the radius of the
2-norm ball enclosing the terminal residual set of the attack-free
process. With the nominal parameters, the radius is RDr (I,K∗,L∗) =
0.6169, and with the attack-sensitive parameters, the radius is
RDr (I,KΛ,LΛ) = 0.7884. Based on Eq. (14), the CUSUM statistic for
the attack-free process always remains at zero with this choice
of the baseline parameter, and any non-zero CUSUM statistic
value may be considered indicative of an attack. In this case, the
CUSUM detection may be tuned with an alarm threshold choice
of τ = 0. To maintain a zero false alarm rate when there are small
variations in the process that are not necessarily due to an attack,
the alarm threshold for the detection scheme is set at τ = 0.01.
Furthermore, the CUSUM detection scheme is implemented so
that upon detection of an attack, the CUSUM statistic is reset to
0 at the next time step, i.e., S(t) > τ implies S(t + 1) = 0.

To enhance the attack detection capability of the CUSUM
detection scheme, the active detection methodology is imple-
mented. Because the parameter b is dependent on the terminal
residual set, which depends on the control system parameters,
the baseline parameter switches from the value with the nominal
parameters to the value corresponding to the attack-sensitive
parameters when operating with the attack-sensitive parameters:

b(t) =

{

RDr (I,KΛ,LΛ) = 0.7884; t ∈ (ts, ts + Tc]

RDr (I,K∗,L∗) = 0.6169; Otherwise

In this case, the control system switches back to using the nomi-
nal parameters if an attack is detected during operation with the
attack-sensitive parameters.

Two sets of simulations are performed for the process moni-
tored by the CUSUM detection scheme in Eq. (14). First, the at-
tacked closed-loop process with nominal parameters (no param-
eter switching) and monitored by the CUSUM detection scheme is
considered. Next, the attacked closed-loop process with the active
detection methodology and monitored by the CUSUM detection

scheme is considered. The attack is not detected in any of the
simulations using passive detection (with no switching). Fig. 8(a)
illustrates the output of the CUSUM scheme for one simulation
with passive detection. With the active detection methodology,
however, the attack is detected in all cases after the control
system switches from nominal parameters to attack-sensitive
parameters. The attack is detected in a minimum of 2 sample
times and a maximum of 19 sample times after switching.

The residual values from one simulation with the active de-
tection methodology are shown in Fig. 9. Before the switch to
attack-sensitive parameters occurs, the residual values for the
attacked closed-loop process with nominal parameters are in
the 2-norm ball enclosing the attack-free terminal residual set,
i.e., r(t) ∈ B2(RDr (I,K∗,L∗)) for all t ∈ [0, 2.5] h (Fig. 9(a)). As a
result, no alarms are raised by the detection scheme. After the
switch to attack-sensitive parameters, the attack is detected at
time td = 2.69 h because the residual value is outside the 2-norm
ball enclosing the terminal residual set (Fig. 9(b)). From Fig. 8(b),
an alarm is raised by the detection scheme at the detection time.
Following the detection of the attack, the control system switches
back to nominal parameters to stabilize the closed-loop process.
From Fig. 9(a), no alarms are raised by the detection scheme
thereafter.

Remark 9. The CUSUM detection scheme is a dynamic detection
scheme measuring the cumulative deviation of the 2-norm of
the residual from the baseline parameter over time. While not
observed in the simulations presented in this section, in some
cases, the CUSUM detection scheme may not detect an attack
immediately after the residual of the closed-loop process leaves
the 2-norm ball enclosing its attack-free terminal residual set.
However, the set membership-based detection scheme in Eq. (10)
detects an attack as soon as the residual leaves the terminal
residual set of the attack-free process. Based on this, it may
appear that the CUSUM detection scheme is not as sensitive to
the drifts in the detection parameter, as the set membership-
based detection scheme. However, the sensitivity of the CUSUM
detection scheme to the drifts in the detection metric is depen-
dent on its tuning parameters (i.e., on the threshold τ and the
parameter b). The tuning approach is fundamentally different
from the set membership-based detection scheme. Consequently,
the detection performance of the CUSUM detection scheme with
a given choice of τ and b may not be directly compared with that
of the set membership-based detection scheme.

76



S. Narasimhan, N.H. El-Farra and M.J. Ellis Journal of Process Control 116 (2022) 64–79

Fig. 9. (a) The residual values of the attacked nonlinear CSTR with nominal parameters before and after a switch to attack-sensitive parameters. (b) The residual

values of the attacked nonlinear CSTR with attack-sensitive parameters showing attack detection at time td = 2.69 h.

5. Conclusions

In this work, an active attack detection methodology that

enhances the attack detection capabilities of residual-based de-

tection schemes was developed. The methodology utilizes control

system parameter switching to probe for, and elicit detection

of, multiplicative sensor–controller attacks. In this approach, the

control system switches occasionally between nominal control

system parameters, selected on the basis of standard control

design criteria, and attack-sensitive control system parameters

to manage the potential trade-off between closed-loop perfor-

mance and attack detectability. The relationship between attack

detectability with respect to a residual-based detection scheme,

the control system parameters, and closed-loop stability was

rigorously analyzed and the selection of the attack-sensitive pa-

rameters exploited this relationship. The enhancement of attack

detection capabilities of two residual-based detection schemes

upon application of the active attack detection methodology was

demonstrated using a chemical process example. Future work

will investigate extensions of the theoretical analysis to nonlinear

process systems, and the development of attack identification and

mitigation strategies.
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Appendix. Unstable systems with bounded inputs

For the detectability result, a result on unstable systems with

bounded inputs is needed.

Theorem 1. Consider the system

z(t + 1) = Azz(t)+ Bνν(t)

η(t) = Czz(t)+ Dνν(t)
(A.1)

with z(t) ∈ R
n, η(t) ∈ R

nη , and ν(t) ∈ Γ ⊂ R
nν for all time

t ≥ 0, where Γ is a compact set. If the pair (Az, Cz) is observable,

and ∥z(t)∥ → ∞ as t →∞, then ∥η(t)∥ → ∞ as t →∞.

Proof. Defining ηn(t) and νn(t) as:

ηn(t) :=

⎡

⎢
⎣

η(t)
...

η(t + n− 1)

⎤

⎥
⎦ , νn(t) :=

⎡

⎢
⎣

ν(t)
...

ν(t + n− 1)

⎤

⎥
⎦ (A.2)

If the pair (Az, Cz) is observable, the observability matrix has rank

nz . Provided ηn(t) and νn(t), z(t) is the unique solution to the

following system of equations if (Az, Cz) is observable:

ηn(t) =

⎡

⎢
⎢
⎣

Cz

CzAz

...

CzA
n−1
z

⎤

⎥
⎥
⎦

  

=:On

z(t)+

⎡

⎢
⎢
⎣

Dν

CzBν Dν

...
. . .

. . .

CzA
n−2
z Bν · · · CzBν Dν

⎤

⎥
⎥
⎦

  

=:Bn

νn(t) = Onz(t)+ Bnνn(t) (A.3)

where On is the observability matrix.

Since the pair (Az, Cz) is observable, On has full column rank

and O
T
nOn is a positive definite matrix. Thus, ∥z∥

O
T
nOn

:=
√

zTOT
nOnz is a weighted Euclidean norm. Owing to the equiv-

alence of norms, there exists c > 0 such that ∥z(t)∥
O

T
nOn
≥

c∥z(t)∥. From Eq. (A.3), the equivalence of norms, and the triangle

inequality,

c∥z(t)∥ ≤ ∥Onz(t)∥ = ∥ηn(t)− Bnνn(t)∥

≤ ∥η(t)∥ + ∥η(t + 1)∥ + · · · + ∥η(t + n− 1)∥

+ ∥Bnνn(t)∥ (A.4)
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Since ν(t) is bounded for all t ≥ 0, ∥Bnνn(t)∥ is bounded. Because
the last line of Eq. (A.4) is a sum over a finite number of terms,
∥η(t)∥ → ∞ as t →∞ if ∥z(t)∥ → ∞ as t →∞. □
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