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Abstract

Genome assemblies are growing at an exponential rate and have proved indispensable for studying evolution but the effort
has been biased toward vertebrates and arthropods with a particular focus on insects. Onychophora or velvet worms are an
ancient group of cryptic, soil dwelling worms noted for their unique mode of prey capture, biogeographic patterns, and di-
versity of reproductive strategies. They constitute a poorly understood phylum of exclusively terrestrial animals that is sister
group to arthropods. Due to this phylogenetic position, they are crucial in understanding the origin of the largest phylum of
animals. Despite their significance, there is a paucity of genomic resources for the phylum with only one highly fragmented
and incomplete genome publicly available. Initial attempts at sequencing an onychophoran genome proved difficult due to its
large genome size and high repeat content. However, leveraging recent advances in long-read sequencing technology, we
present here the first annotated draft genome for the phylum. With a total size of 5.6Gb, the gigantism of the Epiperipatus
broadwayi genome arises from having high repeat content, intron size inflation, and extensive gene family expansion.
Additionally, we report a previously unknown diversity of onychophoran hemocyanins that suggests the diversification of
copper-mediated oxygen carriers occurred independently in Onychophora after its split from Arthropoda, parallel to the in-
dependent diversification of hemocyanins in each of the main arthropod lineages.
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Significance

Onychophora or velvet worms are of interest for understanding the evolution of reproductive biology, biogeography,
and the evolution of its sister group Arthropoda, the most diverse lineage of animals. Despite their significance, there
are no published genomes for the phylum and only one highly fragmented and incomplete genome is available on
GenBank. Here we report the first annotated onychophoran genome, a case of genome gigantism, and a note on
the evolution of hemocyanins.

Introduction moist microhabitats. The phylum is divided into two fam-
Onychophora, otherwise known as “velvet worms” or ilies: the circumtropical Peripatidae, and the temperate
“peripatus,” are unique among the Metazoa as being the Gondwanan Peripatopsidae (Oliveira et al. 2012; Giribet
only exclusively terrestrial animal phylum. They are soft- and Edgecombe 2020) that diversified before the breakup
bodied, many-legged, animals that inhabit permanently of Gondwana and display strong biogeographic affinities
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(Monge-Najera 1995; Murienne et al. 2014; Giribet et al.
2018). Onychophora is particularly notable for their dis-
tinctive prey capture mechanism in which they secrete a
glue from two modified, anterior appendages to entangle
prey (Benkendorff et al. 1999; Haritos et al. 2010; Baer
et al. 2017; Baer et al. 2019). Additionally, despite their
highly conserved morphology, they are noted for their re-
markable diversity of reproductive strategies ranging from
oviparity, through ovoviviparity, to placental viviparity
which has been implicated in their dispersal capabilities
and subsequent radiation (Anderson 1973; Mayer et al.
2015; Baker et al. 2021).

In a broader context, Onychophora hold a pivotal place
in metazoan phylogenetics as the sister group to
Arthropoda (Dunn et al. 2008; Rota-Stabelli 2010;
Laumer et al. 2019) and are traditionally grouped into the
clade Panarthropoda along with Tardigrada. The discrep-
ancy in diversity and disparity between Onychophora,
with around 200 species, and Arthropoda, the most diverse
animal phylum comprising 80% of described living species
of animals, raises important questions regarding broad
macroevolutionary patterns such as morphological evolu-
tion and diversification. Panarthropods have contributed
heavily to the field of genomics but taxon representation
has been extremely uneven with most of this effort focused
on arthropods, and in particular insects, with hundreds of
genomes publicly available for this group. Tardigrade
genomics has developed into an emerging field and the
group is now represented by four genomes on National
Center for Biotechnology Information (NCBI) including a
chromosome-level assembly (Hoencamp et al. 2021).
Exhaustive studies have been conducted on tardigrade gen-
omes including intense debate on horizontal gene transfer
(Arakawa 2022 for review). However, there is a near com-
plete lack of data on Onychophora, with no published gen-
omes and only one highly fragmented draft assembly
publicly available in NCBI (GenBank: GCA_003024985.2).
There have been several dozen onychophoran transcrip-
tomes generated to date but of only modest quality.
Benchmarking Universal Single-copy Orthologs (BUSCO)
scores for these transcriptomes range from 6.65% to
82.62% with a mean of 46%. To rectify the lack of
genomic resources for this phylum, we present here the
first high-quality, annotated onychophoran genome from
Epiperipatus broadwayi.

Results and Discussion

Sequencing and Assembly

In line with estimates predicted with flow cytometry and
Feulgen image analysis densitometry (Mora et al. 1996;
Jeffery et al. 2012), we estimated the genome size to be
5.6Gb with kmer frequencies. Using long-read sequence data

from Oxford Nanopore Technologies (ONT) (supplementary
Table S1, Supplementary Material online) and long-range
information from Hi-C, we were able to assemble the most
contiguous and complete genome for the phylum to
date. These data produced a final scaffolded assembly
with a total length of 5.6Gb and a scaffold N50 of 5.3Mb
(Table 1). Using the Arthropoda OrthoDB (Kriventseva
et al. 2019), BUSCO analysis found 89.5% completeness
(Table 1). In comparison, the publicly available genome of
Euperipatoides rowelli is only 40.5% complete.

Genome Gigantism

The genomes of Onychophora are known examples of gen-
ome gigantism (Mora et al. 1996; Jeffery et al. 2012) and
this phenomenon seems to be correlated with several key
features of their genome organization. We identified
70.92% (3.97Gb) of the Epiperipatus broadwayi genome
as repetitive (fig. 1) which is some of the highest propor-
tions of repeats in an assembled invertebrate genome.
The average intron length of Epiperipatus broadwayi is 5X
higher than those of most arthropods and exceeds
those of many vertebrates (supplementary Table S2,
Supplementary Material online). Both repeat content and
intron size inflation are correlated with genome size and re-
sponsible for giant genomes within Panarthropoda (Wang
2014; Verlinden 2020) and among Metazoa (Nowoshilow
2018; Meyer 2021). These large introns and extensive re-
petitive elements likely contribute to the large estimated
genome size in all Onychophora studied to date (Mora
et al. 1996; Jeffery et al. 2012).

Gene Expansion

The annotation pipeline predicted a total of 46,891 genes
(57,420 transcripts). Orthofinder found a large fraction of
genes (n=27,304), in the genome of Epiperipatus broad-
wayi with no orthologs in other lineages. Only 1,506 of
these genes were identified as putatively TE or TE-derived.
Additionally, we were able to find expression of around
21% of these transcripts (>5 transcripts per million) but
at a lower expression compared to transcripts with ortho-
logs found in other species (supplementary fig. ST,
Supplementary Material online). Additionally, half of the
unmatched orthogroups were represented by at least one
contig in either the genomes of two peripatopsids:
Euperipatoides rowelli or Peripatoides sp. The incomplete
nature of the transcriptome and two additional genomes
(BUSCO scores of 67.7%, 40.5%, and 37%, respectively)
and the Devonian divergence between peripatids and peri-
patopsids (Baker et al. 2021) could account for the missing
orthogroups. It is unclear whether these genes are truly
specific to Onychophora or were undetectable with current
methods. It is possible that high divergence rates in these
genes could confound the deep divergence between this
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Table 1

Genome summary statistics from QUAST and BUSCO results of the scaffold level assembly of Epiperipatus broadwayi. Scaffold level assembly statistics for
Euperipatoides rowelli (GenBank: GCA_003024985.2), the only publicly available onychophoran genome, are shown for comparison

Species Coverage and Assembly Total Length Number of Scaffold N50 BUSCO
Sequencing Technology Algorithm (bp) Scaffolds (bp)

Euperipatoides 140x Illumina AllPathsLG 2,681,849,960 311,309 14,341 40.5% C:410 [$:383, D:27],
rowelli F:336, M:267, n:1013
Epiperipatus 26x ONT 100x Illumina FLYE + SALSA2 5,601,407,943 18,588 5,322,020 89.5% C:907 [S:880, D:27],

broadwayi 60x Hi-C F:69, M:37, n:1013

lineage and its sister group, making the identification of
homologs in other phyla difficult. As this is the only high-
quality onychophoran genome sequenced to date, the se-
guencing and assembly of more onychophoran species
across both families will help elucidate the true gene con-
tent of these genomes.

Onychophoran Hemocyanins

The increase in body size of metazoans during the
Cambrian, along with later terrestrialization events necessi-
tated the evolution of an efficient circulatory system to
transport oxygen through large bodies. One key molecule
implicated in the growth of body size and in the coloniza-
tion of land in two of the most successful phyla of animals
is the oxygen carrier hemocyanin. To test the utility of our
new genome, we searched for putative hemocyanins using
standard gene mining methods. Phylogenetic reconstruc-
tion of hemocyanins revealed a clade of onychophoran se-
quences sister group to crustacean hemocyanins
(supplementary fig. S2a, Supplementary Material online).
The three arthropod classes represented in the analysis
were found to be monophyletic but the relationships
among the classes were spurious, a result expected from
single gene phylogenies of Cambrian divergences. We re-
covered eight full transcripts with the presence of key
amino acid residues involved in the oxygen-transporting
mechanism of hemocyanin (supplementary fig. S2b,
Supplementary Material online) (Hazes et al. 1993;
Kusche et al. 2002). The presence of a single clade of ony-
chophoran hemocyanins implies radiation of hemocyanin
subunits in Onychophora independent from that in arthro-
pods. This suggests an ancestral hemocyanin in the ances-
tor of onychophorans and arthropods that subsequently
diversified in each of those lineages possibly driven by in-
creased body size (Burmester 2002; Kusche et al. 2002),
or improvements to hemocyanin stability, cooperativity,
and regulation (Rehm et al. 2012)

Conclusion

The genomes of Onychophora had previously proved diffi-
cult to assemble due to their large sizes and high repeat
content. Leveraging long-read sequencing technology,

high coverage short-read sequencing, and chromosome
conformation capture sequencing, we present the first an-
notated draft genome for the phylum. The discovery of a
previously unknown diversity of putative hemocyanins in
this new genome has already demonstrated its utility in un-
derstanding the evolution of key characteristics in panar-
thropods. Holding a key phylogenetic position as a sister
group to Arthropoda, sequencing the onychophoran gen-
ome is an important step in understanding the radiation
of the largest phylum of animals. Additionally, unresolved
guestions regarding the biogeography, reproduction, and
phylogenetics of this little understood group of animals
can be tackled with the help of new genomic resources.
The genome of Epiperipatus broadwayi is exceptionally re-
peat dense, which, along with intron elongation, contri-
butes to its large size. This is the first step in generating
genomic resources for this phylum, the last among the pa-
narthropods to enter the genomic era.

Materials and Methods
DNA Extraction and Sequencing

Genomic DNA (gDNA) was extracted from the trunk tissue of
a single individual (https:/mczbase.mcz.harvard.edu/guid/
MCZ:1Z:143930) using a high salt protocol and repaired
with PreCR Repair Mix (New England Biolabs) followed by
a chloroform cleanup. DNA quality was assessed by using a
Nanodrop spectrophotometer (Thermo Fisher Scientific),
Qubit  fluorometer (Thermo Fisher Scientific), and
Tapestation gDNA Screen tape (Agilent).

Two libraries were prepared for separate sequencing runs
on the MinlON (Oxford Nanopore Technologies). One was
sheared by pipetting and cleaned using the Circulomics
short-read eliminator kit (Circulomics) and the other was
directly cleaned using the Circulomics short-read eliminator
XL kit (Circulomics). Libraries were prepped using the
SQK-LSK109 kit (Oxford Nanopore Technologies). Flow cells
were cleaned using the Flow Cell Wash Kit (Oxford
Nanopore Technologies) and reloaded for a total of three
loads per library. A larger sequencing runs on DNA from
the same individual, sheared to 29 kb using Covaris g-tube
(Covaris), was prepped and conducted on the PromethlON
(Oxford Nanopore Technologies) at the Bauer Core Facility
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Total Interspersed
Repeats: 68.13%

Repeats: 70.92%

Genome: 100%

—== Rolling-circles: 0.02%

Unclassified: 36.46%

B DNA Transposons: 2.87%

LINEs: 17.8%

Retroelements: |
28.78%

J LR Elements: 5.3%
Penelope: 4.24%

m Simple Repeats: 1.63%

== Small RNA: 0.87%

= Low Complexity Repeats: 0.23%
— Satellites: 0.05%

Non-repetitive Sequence: 29.08%

Fic. 1.—Repetitive element composition in the genome of Epiperipatus broadwayi. Class percentages can be higher than the sum of subclasses due to
uncertainty in classification and excluded subclasses. Other discrepancies among the percentages are due to short, unmasked regions between adjacent simple

repeats which are annotated as a single stretch.

at Harvard University. Whole-genome shotgun and Hi-C
libraries were prepared using the same individual using the
Kapa Hyper-Plus library preparation kit (Roche) and Arima
Hi-C kit (Arima Genomics) combined with the Kapa
Hyper-Prep kit (Roche) respectively. Both libraries sequenced
for 150 bp paired-end reads in an lllumina NovaSeq 54 flow
cell at the Bauer Core Facility at Harvard University.

Assembly

Unigue 21mers were counted in raw lllumina reads using
Jellyfish (Marcais and Kingsford 2011) to estimate genome
size. Nanopore data were base called using Guppy v.4.5.2.
Raw Nanopore reads were assembled using Flye with de-
fault settings (Kolmogorov et al. 2019). Both Nanopore
and lllumina read were used to polish the assembly using
medaka and HyPo as a final polish (Kundu et al. 2019).
After processing with TrimGalore (Krueger 2021), Hi-C
reads were used for scaffolding with SALSA2 (Ghurye
et al. 2019) following mapping with the Arima-Hi-C map-
ping pipeline. Scaffolds were screened for contaminants
using Blobtools (Laetsch and Blaxter 2017) and scaffolds

of dubious origin were manually checked using BLAST
(Altschul et al. 1990). Haplotigs were removed using Purge
Haplotigs (Roach et al. 2018). The genome assembly work-
flow can be viewed in supplementary figure S3a,
Supplementary Material online. Completeness was assessed
using BUSCO (Simao et al. 2015; Waterhouse 2018) and the
Arthropoda OrthoDB v10 (Kriventseva et al. 2019).

Annotation

Transposable elements (TEs) were identified and masked using
RepeatModeler (Flynn et al. 2020) and RepeatMasker (Smit
et al. 2021). The masked assembly was then annotated with
BRAKER2 (Bruna et al. 2021) using three databases: a custom
Onychophora peptide database from the translated transcrip-
tomes (supplementary Table S3, Supplementary Material on-
line), the Arthropoda OrthoDB v10 (Kriventseva et al. 2019),
and the untranslated transcriptome of Epiperipatus broadwayi
(GenBank: SRX10007847). The three predictions were com-
bined using TSEBRA (Gabriel et al. 2021). Functional annota-
tions were added to the final protein predictions using the
online Orthologous Matrix (OMA) browser (Altenhoff et al.
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2015) and eggNOG (Cantalapiedra et al. 2021). The full anno-
tation workflow can be viewed in supplementary figure S3b,
Supplementary Material online.

Gene Expansion Analysis

Gene family expansion analysis was conducted with
Orthofinder (Emms and Kelly 2019) using genomes of major
panarthropod phyla (supplementary Table S3, Supplementary
Material online). Due to the extensive expansion of several
gene families, the predicted proteins were compared to the
Pfam database (Mistry 2021) using Hmmer v.3.2.1 (Eddy
2011) to check for TEs or transposable-element-associated
proteins. Orthogroups with at least 25% of transcripts hitting
known TE-associated domains were considered a TE-derived
orthogroup. Kallisto v0.46.1 (Bray et al. 2016) was used to
quantify transcript abundances using RNA (GenBank:
SRX10007847). To check for the presence of the putative
onychophoran-specific orthogroups in other available gen-
omes, DIAMOND blastx (Buchfink et al. 2021) was run with
the Euperipatoides rowelli genome from NCBI (GenBank:
GCA_003024985.2) and a newly sequenced genome of
Peripatoides sp. (unpublished, https:/mczbase.mcz.harvard.
edu/quid/MCZ:1Z:144603) using Epiperipatus broadwayi as a
database.

Onychophoran Hemocyanins

Representative arthropod hemocyanin protein fasta files
from GenBank (supplementary Table S3, Supplementary
Material online) were used to identify putative hemocya-
nins in the genome with blastp v2.12.0 (Altschul et al.
1990) and Hmmer v.3.2.1 (Eddy 2011). The resulting
transcripts were then used for reciprocal BLAST searches
against the NCBI nr database. Additional sequences of
arthropod phenoloxidases were added as outgroups to
the analysis (supplementary Table S3, Supplementary
Material online) (Burmester 2001; Kusche et al. 2002). All
sequences were combined and the resulting matrix was
aligned using MAFFT (Katoh and Standley 2013). Gaps, di-
vergent sequences, and short sequences were removed
using ClAlign v1.0.17 (Tumescheit et al. 2022). Model test-
ing, phylogenetic tree reconstruction, and branch support
assessment were conducted using IQ-TREE (Nguyen et al.
2015; Hoang et al. 2017; Kalyaanamoorthy et al. 2017).

Supplementary Material

Supplementary data are available at Genome Biology and
Evolution online (http:/www.gbe.oxfordjournals.org/).
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