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Abstract

Genome assemblies are growing at an exponential rate and have proved indispensable for studying evolution but the effort 
has been biased toward vertebrates and arthropods with a particular focus on insects. Onychophora or velvet worms are an 
ancient group of cryptic, soil dwelling worms noted for their unique mode of prey capture, biogeographic patterns, and di-
versity of reproductive strategies. They constitute a poorly understood phylum of exclusively terrestrial animals that is sister 
group to arthropods. Due to this phylogenetic position, they are crucial in understanding the origin of the largest phylum of 
animals. Despite their significance, there is a paucity of genomic resources for the phylum with only one highly fragmented 
and incomplete genome publicly available. Initial attempts at sequencing an onychophoran genome proved difficult due to its 
large genome size and high repeat content. However, leveraging recent advances in long-read sequencing technology, we 
present here the first annotated draft genome for the phylum. With a total size of 5.6Gb, the gigantism of the Epiperipatus 
broadwayi genome arises from having high repeat content, intron size inflation, and extensive gene family expansion. 
Additionally, we report a previously unknown diversity of onychophoran hemocyanins that suggests the diversification of 
copper-mediated oxygen carriers occurred independently in Onychophora after its split from Arthropoda, parallel to the in-
dependent diversification of hemocyanins in each of the main arthropod lineages.

Key words: velvet worm, Panarthropoda, hemocyanin, Peripatidae.

Significance
Onychophora or velvet worms are of interest for understanding the evolution of reproductive biology, biogeography, 
and the evolution of its sister group Arthropoda, the most diverse lineage of animals. Despite their significance, there 
are no published genomes for the phylum and only one highly fragmented and incomplete genome is available on 
GenBank. Here we report the first annotated onychophoran genome, a case of genome gigantism, and a note on 
the evolution of hemocyanins.

© The Author(s) 2023. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits 
non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

Introduction
Onychophora, otherwise known as “velvet worms” or 
“peripatus,” are unique among the Metazoa as being the 
only exclusively terrestrial animal phylum. They are soft- 
bodied, many-legged, animals that inhabit permanently 

moist microhabitats. The phylum is divided into two fam-
ilies: the circumtropical Peripatidae, and the temperate 
Gondwanan Peripatopsidae (Oliveira et al. 2012; Giribet 
and Edgecombe 2020) that diversified before the breakup 
of Gondwana and display strong biogeographic affinities 
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(Monge-Nájera 1995; Murienne et al. 2014; Giribet et al. 
2018). Onychophora is particularly notable for their dis-
tinctive prey capture mechanism in which they secrete a 
glue from two modified, anterior appendages to entangle 
prey (Benkendorff et al. 1999; Haritos et al. 2010; Baer 
et al. 2017; Baer et al. 2019). Additionally, despite their 
highly conserved morphology, they are noted for their re-
markable diversity of reproductive strategies ranging from 
oviparity, through ovoviviparity, to placental viviparity 
which has been implicated in their dispersal capabilities 
and subsequent radiation (Anderson 1973; Mayer et al. 
2015; Baker et al. 2021).

In a broader context, Onychophora hold a pivotal place 
in metazoan phylogenetics as the sister group to 
Arthropoda (Dunn et al. 2008; Rota-Stabelli 2010; 
Laumer et al. 2019) and are traditionally grouped into the 
clade Panarthropoda along with Tardigrada. The discrep-
ancy in diversity and disparity between Onychophora, 
with around 200 species, and Arthropoda, the most diverse 
animal phylum comprising 80% of described living species 
of animals, raises important questions regarding broad 
macroevolutionary patterns such as morphological evolu-
tion and diversification. Panarthropods have contributed 
heavily to the field of genomics but taxon representation 
has been extremely uneven with most of this effort focused 
on arthropods, and in particular insects, with hundreds of 
genomes publicly available for this group. Tardigrade 
genomics has developed into an emerging field and the 
group is now represented by four genomes on National 
Center for Biotechnology Information (NCBI) including a 
chromosome-level assembly (Hoencamp et al. 2021). 
Exhaustive studies have been conducted on tardigrade gen-
omes including intense debate on horizontal gene transfer 
(Arakawa 2022 for review). However, there is a near com-
plete lack of data on Onychophora, with no published gen-
omes and only one highly fragmented draft assembly 
publicly available in NCBI (GenBank: GCA_003024985.2). 
There have been several dozen onychophoran transcrip-
tomes generated to date but of only modest quality. 
Benchmarking Universal Single-copy Orthologs (BUSCO) 
scores for these transcriptomes range from 6.65% to 
82.62% with a mean of 46%. To rectify the lack of 
genomic resources for this phylum, we present here the 
first high-quality, annotated onychophoran genome from 
Epiperipatus broadwayi.

Results and Discussion

Sequencing and Assembly

In line with estimates predicted with flow cytometry and 
Feulgen image analysis densitometry (Mora et al. 1996; 
Jeffery et al. 2012), we estimated the genome size to be 
5.6Gb with kmer frequencies. Using long-read sequence data 

from Oxford Nanopore Technologies (ONT) (supplementary 
Table S1, Supplementary Material online) and long-range 
information from Hi-C, we were able to assemble the most 
contiguous and complete genome for the phylum to 
date. These data produced a final scaffolded assembly 
with a total length of 5.6Gb and a scaffold N50 of 5.3Mb 
(Table 1). Using the Arthropoda OrthoDB (Kriventseva 
et al. 2019), BUSCO analysis found 89.5% completeness 
(Table 1). In comparison, the publicly available genome of 
Euperipatoides rowelli is only 40.5% complete.

Genome Gigantism

The genomes of Onychophora are known examples of gen-
ome gigantism (Mora et al. 1996; Jeffery et al. 2012) and 
this phenomenon seems to be correlated with several key 
features of their genome organization. We identified 
70.92% (3.97Gb) of the Epiperipatus broadwayi genome 
as repetitive (fig. 1) which is some of the highest propor-
tions of repeats in an assembled invertebrate genome. 
The average intron length of Epiperipatus broadwayi is 5X 
higher than those of most arthropods and exceeds 
those of many vertebrates (supplementary Table S2, 
Supplementary Material online). Both repeat content and 
intron size inflation are correlated with genome size and re-
sponsible for giant genomes within Panarthropoda (Wang 
2014; Verlinden 2020) and among Metazoa (Nowoshilow 
2018; Meyer 2021). These large introns and extensive re-
petitive elements likely contribute to the large estimated 
genome size in all Onychophora studied to date (Mora 
et al. 1996; Jeffery et al. 2012).

Gene Expansion

The annotation pipeline predicted a total of 46,891 genes 
(57,420 transcripts). Orthofinder found a large fraction of 
genes (n = 27,304), in the genome of Epiperipatus broad-
wayi with no orthologs in other lineages. Only 1,506 of 
these genes were identified as putatively TE or TE-derived. 
Additionally, we were able to find expression of around 
21% of these transcripts (>5 transcripts per million) but 
at a lower expression compared to transcripts with ortho-
logs found in other species (supplementary fig. S1, 
Supplementary Material online). Additionally, half of the 
unmatched orthogroups were represented by at least one 
contig in either the genomes of two peripatopsids: 
Euperipatoides rowelli or Peripatoides sp. The incomplete 
nature of the transcriptome and two additional genomes 
(BUSCO scores of 67.7%, 40.5%, and 37%, respectively) 
and the Devonian divergence between peripatids and peri-
patopsids (Baker et al. 2021) could account for the missing 
orthogroups. It is unclear whether these genes are truly 
specific to Onychophora or were undetectable with current 
methods. It is possible that high divergence rates in these 
genes could confound the deep divergence between this 
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lineage and its sister group, making the identification of 
homologs in other phyla difficult. As this is the only high- 
quality onychophoran genome sequenced to date, the se-
quencing and assembly of more onychophoran species 
across both families will help elucidate the true gene con-
tent of these genomes.

Onychophoran Hemocyanins

The increase in body size of metazoans during the 
Cambrian, along with later terrestrialization events necessi-
tated the evolution of an efficient circulatory system to 
transport oxygen through large bodies. One key molecule 
implicated in the growth of body size and in the coloniza-
tion of land in two of the most successful phyla of animals 
is the oxygen carrier hemocyanin. To test the utility of our 
new genome, we searched for putative hemocyanins using 
standard gene mining methods. Phylogenetic reconstruc-
tion of hemocyanins revealed a clade of onychophoran se-
quences sister group to crustacean hemocyanins 
(supplementary fig. S2a, Supplementary Material online). 
The three arthropod classes represented in the analysis 
were found to be monophyletic but the relationships 
among the classes were spurious, a result expected from 
single gene phylogenies of Cambrian divergences. We re-
covered eight full transcripts with the presence of key 
amino acid residues involved in the oxygen-transporting 
mechanism of hemocyanin (supplementary fig. S2b, 
Supplementary Material online) (Hazes et al. 1993; 
Kusche et al. 2002). The presence of a single clade of ony-
chophoran hemocyanins implies radiation of hemocyanin 
subunits in Onychophora independent from that in arthro-
pods. This suggests an ancestral hemocyanin in the ances-
tor of onychophorans and arthropods that subsequently 
diversified in each of those lineages possibly driven by in-
creased body size (Burmester 2002; Kusche et al. 2002), 
or improvements to hemocyanin stability, cooperativity, 
and regulation (Rehm et al. 2012)

Conclusion
The genomes of Onychophora had previously proved diffi-
cult to assemble due to their large sizes and high repeat 
content. Leveraging long-read sequencing technology, 

high coverage short-read sequencing, and chromosome 
conformation capture sequencing, we present the first an-
notated draft genome for the phylum. The discovery of a 
previously unknown diversity of putative hemocyanins in 
this new genome has already demonstrated its utility in un-
derstanding the evolution of key characteristics in panar-
thropods. Holding a key phylogenetic position as a sister 
group to Arthropoda, sequencing the onychophoran gen-
ome is an important step in understanding the radiation 
of the largest phylum of animals. Additionally, unresolved 
questions regarding the biogeography, reproduction, and 
phylogenetics of this little understood group of animals 
can be tackled with the help of new genomic resources. 
The genome of Epiperipatus broadwayi is exceptionally re-
peat dense, which, along with intron elongation, contri-
butes to its large size. This is the first step in generating 
genomic resources for this phylum, the last among the pa-
narthropods to enter the genomic era.

Materials and Methods

DNA Extraction and Sequencing

Genomic DNA (gDNA) was extracted from the trunk tissue of 
a single individual (https://mczbase.mcz.harvard.edu/guid/ 
MCZ:IZ:143930) using a high salt protocol and repaired 
with PreCR Repair Mix (New England Biolabs) followed by 
a chloroform cleanup. DNA quality was assessed by using a 
Nanodrop spectrophotometer (Thermo Fisher Scientific), 
Qubit fluorometer (Thermo Fisher Scientific), and 
Tapestation gDNA Screen tape (Agilent).

Two libraries were prepared for separate sequencing runs 
on the MinION (Oxford Nanopore Technologies). One was 
sheared by pipetting and cleaned using the Circulomics 
short-read eliminator kit (Circulomics) and the other was 
directly cleaned using the Circulomics short-read eliminator 
XL kit (Circulomics). Libraries were prepped using the 
SQK-LSK109 kit (Oxford Nanopore Technologies). Flow cells 
were cleaned using the Flow Cell Wash Kit (Oxford 
Nanopore Technologies) and reloaded for a total of three 
loads per library. A larger sequencing runs on DNA from 
the same individual, sheared to 29 kb using Covaris g-tube 
(Covaris), was prepped and conducted on the PromethION 
(Oxford Nanopore Technologies) at the Bauer Core Facility 

Table 1 
Genome summary statistics from QUAST and BUSCO results of the scaffold level assembly of Epiperipatus broadwayi. Scaffold level assembly statistics for 
Euperipatoides rowelli (GenBank: GCA_003024985.2), the only publicly available onychophoran genome, are shown for comparison

Species Coverage and 
Sequencing Technology

Assembly 
Algorithm

Total Length 
(bp)

Number of 
Scaffolds

Scaffold N50 
(bp)

BUSCO

Euperipatoides 
rowelli

140× Illumina AllPathsLG 2,681,849,960 311,309 14,341 40.5% C:410 [S:383, D:27], 
F:336, M:267, n:1013

Epiperipatus 
broadwayi

26× ONT 100× Illumina 
60× Hi-C

FLYE + SALSA2 5,601,407,943 18,588 5,322,020 89.5% C:907 [S:880, D:27], 
F:69, M:37, n:1013
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at Harvard University. Whole-genome shotgun and Hi-C 
libraries were prepared using the same individual using the 
Kapa Hyper-Plus library preparation kit (Roche) and Arima 
Hi-C kit (Arima Genomics) combined with the Kapa 
Hyper-Prep kit (Roche) respectively. Both libraries sequenced 
for 150 bp paired-end reads in an Illumina NovaSeq S4 flow 
cell at the Bauer Core Facility at Harvard University.

Assembly

Unique 21mers were counted in raw Illumina reads using 
Jellyfish (Marcais and Kingsford 2011) to estimate genome 
size. Nanopore data were base called using Guppy v.4.5.2. 
Raw Nanopore reads were assembled using Flye with de-
fault settings (Kolmogorov et al. 2019). Both Nanopore 
and Illumina read were used to polish the assembly using 
medaka and HyPo as a final polish (Kundu et al. 2019). 
After processing with TrimGalore (Krueger 2021), Hi-C 
reads were used for scaffolding with SALSA2 (Ghurye 
et al. 2019) following mapping with the Arima-Hi-C map-
ping pipeline. Scaffolds were screened for contaminants 
using Blobtools (Laetsch and Blaxter 2017) and scaffolds 

of dubious origin were manually checked using BLAST 
(Altschul et al. 1990). Haplotigs were removed using Purge 
Haplotigs (Roach et al. 2018). The genome assembly work-
flow can be viewed in supplementary figure S3a, 
Supplementary Material online. Completeness was assessed 
using BUSCO (Simão et al. 2015; Waterhouse 2018) and the 
Arthropoda OrthoDB v10 (Kriventseva et al. 2019).

Annotation

Transposable elements (TEs) were identified and masked using 
RepeatModeler (Flynn et al. 2020) and RepeatMasker (Smit 
et al. 2021). The masked assembly was then annotated with 
BRAKER2 (Bruna et al. 2021) using three databases: a custom 
Onychophora peptide database from the translated transcrip-
tomes (supplementary Table S3, Supplementary Material on-
line), the Arthropoda OrthoDB v10 (Kriventseva et al. 2019), 
and the untranslated transcriptome of Epiperipatus broadwayi 
(GenBank: SRX10007847). The three predictions were com-
bined using TSEBRA (Gabriel et al. 2021). Functional annota-
tions were added to the final protein predictions using the 
online Orthologous Matrix (OMA) browser (Altenhoff et al. 

FIG. 1.—Repetitive element composition in the genome of Epiperipatus broadwayi. Class percentages can be higher than the sum of subclasses due to 
uncertainty in classification and excluded subclasses. Other discrepancies among the percentages are due to short, unmasked regions between adjacent simple 
repeats which are annotated as a single stretch.
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2015) and eggNOG (Cantalapiedra et al. 2021). The full anno-
tation workflow can be viewed in supplementary figure S3b, 
Supplementary Material online.

Gene Expansion Analysis

Gene family expansion analysis was conducted with 
Orthofinder (Emms and Kelly 2019) using genomes of major 
panarthropod phyla (supplementary Table S3, Supplementary 
Material online). Due to the extensive expansion of several 
gene families, the predicted proteins were compared to the 
Pfam database (Mistry 2021) using Hmmer v.3.2.1 (Eddy 
2011) to check for TEs or transposable-element-associated 
proteins. Orthogroups with at least 25% of transcripts hitting 
known TE-associated domains were considered a TE-derived 
orthogroup. Kallisto v0.46.1 (Bray et al. 2016) was used to 
quantify transcript abundances using RNA (GenBank: 
SRX10007847). To check for the presence of the putative 
onychophoran-specific orthogroups in other available gen-
omes, DIAMOND blastx (Buchfink et al. 2021) was run with 
the Euperipatoides rowelli genome from NCBI (GenBank: 
GCA_003024985.2) and a newly sequenced genome of 
Peripatoides sp. (unpublished, https://mczbase.mcz.harvard. 
edu/guid/MCZ:IZ:144603) using Epiperipatus broadwayi as a 
database.

Onychophoran Hemocyanins

Representative arthropod hemocyanin protein fasta files 
from GenBank (supplementary Table S3, Supplementary 
Material online) were used to identify putative hemocya-
nins in the genome with blastp v2.12.0 (Altschul et al. 
1990) and Hmmer v.3.2.1 (Eddy 2011). The resulting 
transcripts were then used for reciprocal BLAST searches 
against the NCBI nr database. Additional sequences of 
arthropod phenoloxidases were added as outgroups to 
the analysis (supplementary Table S3, Supplementary 
Material online) (Burmester 2001; Kusche et al. 2002). All 
sequences were combined and the resulting matrix was 
aligned using MAFFT (Katoh and Standley 2013). Gaps, di-
vergent sequences, and short sequences were removed 
using CIAlign v1.0.17 (Tumescheit et al. 2022). Model test-
ing, phylogenetic tree reconstruction, and branch support 
assessment were conducted using IQ-TREE (Nguyen et al. 
2015; Hoang et al. 2017; Kalyaanamoorthy et al. 2017).

Supplementary Material
Supplementary data are available at Genome Biology and 
Evolution online (http://www.gbe.oxfordjournals.org/).
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