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A B S T R A C T

Recent cyberattacks targeting process control systems have demonstrated that reliance on information
technology-based approaches alone to address cybersecurity needs is insufficient and that operational
technology-based solutions are needed. An attack detection scheme that monitors process operation and
determines the presence of an attack represents an operational technology-based approach. Attack detection
schemes may be designed to monitor a process operated at or near its steady–state to account for the
typical operation of chemical processes. However, transient operation may occur; for example, during process
start-up and set–point changes. Detection schemes designed or tuned for steady-state operation may raise
false alarms during transient process operation. In this work, we present a reachable set-based cyberattack
detection scheme for monitoring processes during transient operation. Both additive and multiplicative false
data injection attacks (FDIAs) that alter data communicated over the sensor–controller and controller–actuator
communication links are considered. For the class of attacks considered, the detection scheme does not
raise false alarms during transient operations. Conditions for classifying attacks based on the ability of the
detection scheme to detect the attacks are presented. The application of the reachable set-based detection
scheme is demonstrated using two illustrative processes under different FDIAs. For the FDIAs considered, their
detectability with respect to the reachable set-based detection scheme is analyzed.

1. Introduction

Modern process control systems (PCSs) utilize networked commu-
nication between the sensors, the controller, and the control actuators
to operate chemical manufacturing processes. In recent years, cyber-
attacks that maliciously alter data communicated over the PCS com-
munication links have increased in frequency and severity (Duo et al.,
2022). Traditionally, information technology-based approaches have
been exclusively responsible for maintaining the cybersecurity of PCSs.
However, recent attacks have highlighted the need to augment these
cybersecurity approaches with operational technology-based solutions.
Efforts to enhance cybersecurity through operational technology have
focused on attack detection, identification, and mitigation (Duo et al.,
2022).

Several detection schemes and methods have been proposed to
monitor a process for cyberattacks. A common type of attack detection
involves monitoring a residual, defined as the difference between a
measured process variable and its estimate or prediction (Mo and
Sinopoli, 2009; Hashemi et al., 2019; Trapiello and Puig, 2020; Liu
et al., 2021; Oyama et al., 2021; Rangan et al., 2021; Ahmed et al.,
2022; Narasimhan et al., 2022a,b; Oyama et al., 2022; Renganathan
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et al., 2022; Umsonst et al., 2022). Residual-based detection approaches
include those using standard anomaly detection schemes (e.g., CUSUM
and 𝜒2 detection schemes) (Mo and Sinopoli, 2009; Hashemi et al.,
2019; Ahmed et al., 2022; Renganathan et al., 2022; Umsonst et al.,
2022). Such detection schemes are tuned based on attack-free opera-
tion, often considering when the process operates at or near its steady
state. Neural network-based detection schemes utilize a neural network
trained with operational data under attack-free and under various
cyberattacks to classify operation as either attack-free or not (Chen
et al., 2020, 2021; Wu and Christofides, 2021; Zedan and El-Farra,
2021).

For a process subject to bounded disturbances, the minimum robust
positively-invariant set is the neighborhood of the steady-state that the
process states asymptotically converge to. In a prior work, a detection
scheme was developed to monitor processes when the state evolves
within the minimum invariant set (Narasimhan et al., 2022, 2022a).
The detection scheme was tuned using the minimum invariant set of
the closed-loop process, since chemical processes are typically operated
at steady–state for long periods of time. An analysis of the closed-
loop process under a cyberattack revealed a relationship between the
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choice of PCS parameters and the ability to detect an attack, i.e., attack
detectability. Specifically, the analysis revealed that PCS parameters
can be selected to enable attack detection. However, operating the
process with such parameters may degrade the attack-free closed-loop
performance relative to the performance achieved with parameters cho-
sen based on conventional performance-based approaches. An active
PCS parameter switching-enabled detection method was proposed to
manage the potential tradeoff between attack detectability and closed-
loop performance (Narasimhan et al., 2022a). Switching the controller
parameters may induce transients during which the process states
evolve outside the minimum invariant set of the process operated under
the new parameters, potentially triggering false alarms in the detec-
tion scheme. A state-dependent switching condition was proposed to
minimize false alarms resulting from parameter switching (Narasimhan
et al., 2022b). A smooth transition between controller parameters oc-
curs when the switching condition is satisfied, meaning false alarms are
not raised. Switching to probe for the presence of cyberattacks may be
desirable to enable the detection of an attack, regardless of whether the
condition is satisfied. Therefore, developing an attack detection scheme
that can effectively monitor the process during transient operation is
important.

Some approaches for the detection of cyberattacks on chem-
ical processes during transient operation have been proposed
(Chen et al., 2020, 2021; Oyama et al., 2021; Rangan et al., 2021; Wu
and Christofides, 2021; Oyama et al., 2022). When extensive closed-
loop data for the attack-free and the attacked process during transient
operation is available, neural network-based detection schemes may
be utilized to detect and identify the attack during transient opera-
tion (Chen et al., 2020, 2021; Wu and Christofides, 2021). However,
extensive operational or simulation data for the closed-loop possible
attacks may not be available. For processes operated using Lyapunov-
based economic model predictive control (LEMPC), which may result
in dynamic process operation, several integrated cyberattack detection
and handling strategies have been proposed (Oyama et al., 2021;
Rangan et al., 2021; Oyama et al., 2022). The detection strategies
utilize a threshold approach for monitoring a residual in addition to
monitoring that the process state evolves within its expected region of
operation. However, selecting the detection threshold may be difficult,
potentially requiring extensive data.

Reachability analysis has been used for analyzing processes under
cyberattacks, and designing systems and methods that improve PCS
cyberattack resilience (Mo and Sinopoli, 2012; Murguia et al., 2017;
Kwon and Hwang, 2018; Trapiello and Puig, 2020). Specifically, the
state and estimation error reachable sets under a stealthy attack were
used as a measure of the system resilience (Mo and Sinopoli, 2012).
A linear matrix inequality-based approach for performance-based con-
troller parameter selection that minimizes the size of the reachable set
under attack was developed (Murguia et al., 2017). Reachable sets have
been used to compute all the possible states reached under stealthy
cyberattacks (Kwon and Hwang, 2018)). An approach to design an
input signal using reachable sets was proposed to ensure an attack is
detected (Trapiello and Puig, 2020). While reachability analysis may
be used to characterize the behavior of a process during transient
operation, the use of reachable sets for detecting and classifying attacks
targeting dynamic processes has not been previously explored.

In the present work, a reachable set-based detection scheme is
proposed to monitor transient process operations for false data injec-
tion attacks (FDIAs) that alter the variable value communicated over
the PCS communication links. Both sensor–controller and controller–
actuator link FDIAs are considered. The proposed detection scheme
verifies whether the value of a generalized monitoring variable at a
given time step is contained within its reachable set for the attack-
free process. The proposed detection scheme monitors the process
without requiring extensive closed-loop data. It also does not raise
false alarms during transient operation. Conditions that lead to an
attack being detectable or undetectable with respect to the proposed

detection scheme are characterized. The proposed detection scheme
and the classification approach are applied to two illustrative examples.
The detectability of different FDIAs is analyzed, and the applicability
of the reachable set-based detection scheme and attack classification to
a nonlinear chemical process is demonstrated.

2. Preliminaries

2.1. Notation

The set of non-negative integers is denoted by Z
+. Given  ⊆ R

𝑛

and  ⊆ R
𝑛, the Minkowski sum of  and  is given by  ⊕  ∶=

{𝑥 + 𝑦 ∣ 𝑥 ∈  , 𝑦 ∈ }. For the set  ⊆ R
𝑛 and matrix 𝐴 ∈ R

𝑚×𝑛,
𝐴 ∶= {𝐴𝑥 ∣ 𝑥 ∈ }. Given a matrix 𝐴 ∈ R

𝑚×𝑛 and a set  ⊆ R
𝑛,⨁𝑛−1

𝑖=0 𝐴𝑖 represents the Minkowski sum given by ⊕𝐴⊕⋯⊕𝐴𝑛−1 .
For a square matrix 𝐴, 𝜆𝑖(𝐴) represents the 𝑖th eigenvalue of 𝐴. The
identity matrix is denoted by 𝐼 .

2.2. Class of attack-free processes

We consider in this work discrete-time linear processes with the
following state–space dynamics:

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑢𝑘 + 𝐵𝑤𝑤𝑘 (1)

where 𝐴 ∈ R
𝑛𝑥×𝑛𝑥 , 𝐵𝑢 ∈ R

𝑛𝑥×𝑛𝑢 , 𝐵𝑤 ∈ R
𝑛𝑥×𝑛𝑤 , 𝑘 ∈ Z

+ is the time step,
𝑥𝑘 ∈ R

𝑛𝑥 is the state vector, 𝑢𝑘 ∈ R
𝑛𝑢 is the manipulated input vector,

and 𝑤𝑘 ∈  ⊂ R
𝑛𝑤 is the process disturbance vector. Without loss of

generality, the initial time step is assumed to be 𝑘 = 0. Measurements
from the process are available and are given by:

𝑦𝑘 = 𝐶𝑥𝑘 + 𝑣𝑘 (2)

where 𝑦𝑘 ∈ R
𝑛𝑦 is the measured output vector and 𝑣𝑘 ∈  ⊂ R

𝑛𝑦

is the measurement noise vector. The sets  and  are the sets of
admissible process disturbances and measurement noise, respectively,
and are assumed to be convex polytopes. A Luenberger observer is
synthesized to compute state estimates as follows:

𝑥̂𝑘+1 = 𝐴𝑥̂𝑘 + 𝐵𝑢𝑢𝑘 + 𝐿(𝑦𝑘 − 𝑦̂𝑘)

𝑦̂𝑘 = 𝐶𝑥̂𝑘
(3)

where 𝐿 ∈ R
𝑛𝑥×𝑛𝑦 is the observer gain, 𝑥̂𝑘 ∈ R

𝑛𝑥 is the estimated state,
and 𝑦̂𝑘 ∈ R

𝑛𝑦 is the estimated output. The estimation error, defined as
the difference between the process state and the estimate (𝑒𝑘 ∶= 𝑥𝑘−𝑥̂𝑘),
has the following dynamics:

𝑒𝑘+1 = (𝐴 − 𝐿𝐶)𝑒𝑘 + 𝐵𝑤𝑤𝑘 − 𝐿𝑣𝑘 (4)

The observer gain 𝐿 is selected such that all eigenvalues of the matrix
𝐴−𝐿𝐶 lie within the unit circle. The control objective is to stabilize the
closed-loop process around its steady-state, assumed to be the origin
of the unperturbed system. To achieve the control objective, a linear
control law of the following form is synthesized:

𝑢𝑘 = −𝐾𝑥̂𝑘 (5)

where 𝐾 ∈ R
𝑛𝑢×𝑛𝑥 is the controller gain. The controller gain 𝐾 is

selected to ensure that all eigenvalues of the matrix 𝐴 − 𝐵𝐾 lie within
the unit circle.

The dynamics of the process state and the estimation error collec-
tively capture the attack-free closed-loop process dynamics. An aug-
mented state vector is defined and denoted by 𝜉𝑘 ∶= [𝑥𝑇

𝑘
𝑒𝑇
𝑘
]𝑇 , with

dynamics:

𝜉𝑘+1 =

[
𝐴 − 𝐵𝑢𝐾 𝐵𝑢𝐾

0 𝐴 − 𝐿𝐶

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶𝐴𝜉

𝜉𝑘 +

[
𝐵𝑤 0

𝐵𝑤 −𝐿

]

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
=∶𝐵𝑑

𝑑𝑘 (6)

where 𝑑𝑘 ∈  ∶=  ×  is a concatenated vector that includes
the process disturbance and measurement noise vectors, i.e., 𝑑𝑘 ∶=
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Fig. 1. A block diagram illustrating a process control system under a false data injection attack that simultaneously alters the data over the sensor–controller and controller–actuator
communication links.

[𝑤𝑇
𝑘

𝑣𝑇
𝑘
]𝑇 . The input 𝑑𝑘 is called the disturbance for simplicity. The

augmented system described in Eq. (6) is referred to as the attack-free
closed-loop process. For the closed-loop process, its initial set𝜉

0
⊂ R

2𝑛𝑥

is defined as the region in state–space that contains the value of the
augmented state at time step 𝑘 = 0, i.e., 𝜉0 ∈ 

𝜉
0
⊂ R

2𝑛𝑥 . The initial set
is assumed to be a polytope. Provided a set of initial states 𝜉

0
⊂ R

2𝑛𝑥 ,
the 𝑘-step forward reachable set, denoted by 

𝜉
𝑘
(

𝜉
0
), for the closed-

loop process is the set consisting of all states that can be reached in 𝑘

time steps under any admissible disturbance, and is given by (e.g., the
unlabeled equation preceding Eq. (2) in Girard et al. (2006)):


𝜉
𝑘
(

𝜉
0
) = 𝐴𝜉𝑘

𝜉
0

𝑘−1⨁

𝑖=0

𝐴𝜉 𝑖𝐵𝑑 (7)

The 𝑘-step reachable set for the attack-free closed-loop process depends
on the controller and observer gains (𝐾,𝐿), the disturbance set , and
the initial set 𝜉

0
. As 𝑘 → ∞, the 𝑘-step forward reachable sets converge

to the minimum invariant set (𝜉
∞ ∶=

⨁∞
𝑖=0 𝐴

𝜉 𝑖𝐵𝑑), which is the limit
set for all trajectories of the process (Raković et al., 2005).

Remark 1. The initial set 𝜉
0
and the disturbance set  are assumed

to be polytopes. With this assumption, Eq. (7) can be computed by
recursively applying the following two properties: (1) for two polytopes
1 and 2, 1⊕2 can be computed by adding the vertices of 1 to the
vertices of 2 where the resulting vectors form the vertices of 1⊕2,
and (2) for a polytope , 𝐴𝜉 𝑖𝐵𝑑 is a polytope that can be computed by
pre-multiplying all vertices of  by 𝐴𝜉 𝑖𝐵𝑑 and taking the convex hull
of the resultant vectors. The assumption that 𝜉

0
and  are polytopes

enables the calculation of Eq. (7) with a finite number of computations.

2.3. False data injection attacks

False data injection attacks (FDIAs) refer to cyberattacks that alter
the output or input values communicated over a communication link
so that the receiver, i.e., the controller or the actuators, receives the
altered value. In the present work, both additive and multiplicative
FDIAs that alter data communicated over the sensor–controller and
controller–actuator communication links are considered. In the pres-
ence of an attack, the value of the variable altered by the attack is given
by:

𝜙𝑎
𝑘
= 𝛬𝜙𝜙𝑘 + 𝛿

𝜙
𝑘

(8)

where 𝜙𝑘 ∈ R
𝑛𝜙 is the unaltered value of the variable, 𝜙𝑎

𝑘
is the

altered value of the variable 𝜙𝑘, 𝛬𝜙 ∈ R
𝑛𝜙×𝑛𝜙 is a multiplicative

factor to represent multiplicative FDIAs, and 𝛿
𝜙
𝑘
∈ R

𝑛𝜙
𝑘
is the additive

bias to represent additive FDIAs. For sensor–controller link FDIAs, 𝜙𝑘

represents the sensor measurements (𝑦𝑘); for controller–actuator link
FDIAs, 𝜙𝑘 represents the controller output (𝑢𝑘). Fig. 1 illustrates the
block diagram of a process control system under a false data injection
attack that simultaneously alters the data over the sensor–controller
and controller–actuator links. In the presence of an attack, the values
of the measured output and the control input (𝑦𝑘 and 𝑢𝑘 shown in blue
text) are altered by the attacker and reported over the compromised
communication links as 𝑦𝑎

𝑘
= 𝛬𝑦𝑦𝑘 + 𝛿

𝑦
𝑘
and 𝑢𝑎

𝑘
= 𝛬𝑢𝑢𝑘 + 𝛿𝑢

𝑘
, respectively

(shown in red text).

FDIAs alter the closed-loop behavior of the process. The augmented
state dynamics of the closed-loop process subject to an additive and
multiplicative FDIA are given by:

𝜉𝑘+1 =

[
𝐴 − 𝐵𝑢𝛬𝑢𝐾 𝐵𝑢𝛬𝑢𝐾

𝐿(𝐼 − 𝛬𝑦)𝐶 𝐴 − 𝐿𝐶

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶𝐴𝜉𝑎

𝜉𝑘+

[
𝐵𝑤 0

𝐵𝑤 −𝐿𝛬𝑦

]

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
=∶𝐵𝑑𝑎

𝑑𝑘+

[
0 𝐵𝑢

−𝐿 0

]

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
=∶𝐵𝛿𝑎

𝛿𝑘 (9)

where 𝛿𝑘 =
[
(𝛿

𝑦
𝑘
)𝑇 (𝛿𝑢

𝑘
)𝑇
]𝑇
. The closed-loop process described by

Eq. (9) is referred to as the attacked closed-loop process. Similar to the
attack-free process, the 𝑘-step reachable set under an FDIA is given by:


𝜉𝑎
𝑘
(

𝜉
0
) = 𝐴𝜉𝑎

𝑘


𝜉
0

𝑘−1⨁

𝑖=0

𝐴𝜉𝑎
𝑖
𝑎

𝑘
(10)

where 𝑎
𝑘
= 𝐵𝑑𝑎⊕ 𝐵𝛿𝑎{𝛿𝑘}. The attack is generally unknown, so the

𝑘-step reachable sets of the attacked process may not be computable
for purposes of online attack detection. However, the 𝑘-step reachable
sets of the attacked process can be used for (offline) classification of
specific attacks as detectable or not (this point is discussed further in
Section 3.2).

3. Attack detection for processes during transient operation

In this section, a class of reachable set-based attack detection
schemes utilizing a generalized monitoring variable are presented to
monitor the closed-loop process during transient operation. A method
for classifying attacks as detectable, potentially detectable, or unde-
tectable under the proposed detection scheme is also presented.

3.1. Reachable set-based detection scheme

Cyberattack detection schemes often use the measured output, esti-
mated output, or the residual vector (𝑟𝑘 ∶= 𝑦𝑘 − 𝑦̂𝑘) as the monitoring
variable(s) to detect an attack (e.g., Na and Eun, 2018; Hashemi et al.,
2019; Cómbita et al., 2022; Narasimhan et al., 2022a; Renganathan
et al., 2022). Some attacks may evade detection by a scheme that uses
only one of the three variables, but may be detected using a detection
scheme based on another variable (Narasimhan et al., 2022b). In this
work, a generalized monitoring variable that may be expressed as a
linear combination of the measured output and its estimate generated
by the observer is considered:

𝜂𝑘 ∶= 𝐻𝑦𝑦𝑘 +𝐻 𝑦̂𝑦̂𝑘 (11)

where 𝜂𝑘 ∈ R
𝑛𝜂 is the generalized monitoring variable and the matrices

𝐻𝑦 and 𝐻 𝑦̂ are design parameters of the detection scheme. When 𝐻𝑦

and 𝐻 𝑦̂ are chosen such that 𝐻𝑦 = 𝐼 and 𝐻 𝑦̂ = −𝐼 , the monitoring
variable becomes the residual vector (𝜂𝑘 = 𝑟𝑘). A choice of 𝐻

𝑦 = 𝐼 and
𝐻 𝑦̂ = 0, on the other hand, results in the monitoring variable being the
measured output. Expressing the monitoring variable in terms of the
augmented state and the disturbance vector gives:

𝜂𝑘 =
[
(𝐻𝑦 −𝐻 𝑦̂)𝐶 𝐻 𝑦̂𝐶

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶𝐶𝜉

𝜉𝑘 +
[
0 𝐻𝑦

]

⏟⏞⏞⏟⏞⏞⏟
=∶𝐷𝑑

𝑑𝑘 (12)
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To address the problem of attack detection during transient oper-
ation, we consider in this work the reachable sets of the monitoring
variable for the attack-free closed-loop process. For the attack-free
closed-loop process and initial set 𝜉

0
, the augmented state is contained

within the 𝑘-step reachable set for all 𝑘 ∈ Z
+. From Eqs. (7) and

(12), the generalized monitoring variable of the attack-free process is
contained in the set:


𝜂
𝑘
(

𝜉
𝑘
) ∶= 𝐶𝜉

𝜉
𝑘
(

𝜉
0
)⊕𝐷𝑑 (13)

The containment of the monitoring variable within the 𝑘-step reachable
sets of the attack-free process may be verified to monitor the process
for attacks as follows:

ℎ(𝜂𝑘,
𝜉
𝑘
) =

{
1, 𝜂𝑘 ∉ 

𝜂
𝑘
(

𝜉
𝑘
)

0, 𝜂𝑘 ∈ 
𝜂
𝑘
(

𝜉
𝑘
)

(14)

where the mapping ℎ returns the output of the detection scheme. An
output of 1 indicates that an attack is detected, and the detection
scheme is said to raise an alarm. An output of 0 indicates that no attack
is detected. To implement the reachable set-based detection scheme,
knowledge of the initial set is required. For a process transitioning from
one steady-state to another, the minimum invariant set of the process
at the initial steady-state may be used as the initial set. The initial set
for process start-up may also be known.

The reachable set-based detection scheme in Eq. (14) is designed
to detect an attack if there is a discrepancy between the observed
value of the monitoring variable and its expected attack-free value,
i.e., the reachable sets are computed for the attack-free process. In
the absence of an attack, the values of the generalized monitoring
variable are contained within 𝑘-step reachable sets for the attack-free
process, and the detection scheme generates an output of 0 for all 𝑘 ∈

Z
+. Therefore, a necessary condition for attack-free operation is that
the monitoring variable must be contained within its 𝑘-step reachable
set, implying that no attacks are detected. This is formalized in the
following proposition.

Proposition 1. Consider the closed-loop process in Eq. (9) monitored
by the reachable set-based detection scheme in Eq. (14), with an initial set


𝜉
0
. The closed-loop process is attack-free only if the output of the detection

scheme in Eq. (14) is ℎ(𝜂𝑘,
𝜉
𝑘
) = 0 for all 𝑘 ∈ Z

+.

Proof. For the attack-free closed-loop process with 𝜉0 ∈ 
𝜉
0
, the

augmented state is contained within the 𝑘-step reachable set, i.e., 𝜉𝑘 ∈


𝜉
𝑘
(

𝜉
0
) for all 𝑘 ∈ Z

+. From Eq. (13), the generalized monitoring vari-
able of the attack-free process is contained within its 𝑘-step reachable
set, i.e., 𝜂𝑘 ∈ 

𝜂
𝑘
(

𝜉
𝑘
) for all 𝑘 ∈ Z

+. From Eq. (14), the output of the
detection scheme is ℎ(𝜂𝑘,

𝜉
𝑘
) = 0 for all 𝑘 ∈ Z

+. □

A direct implication of Proposition 1 is that the detection scheme
does not raise false alarms during transient operation. While the reach-
able set-based detection scheme is designed on the basis of attack-free
process behavior, an attack may be detected if the detection scheme
returns a value of 1 at some 𝑘 ∈ Z

+.

Corollary 1. Consider the closed-loop process in Eq. (9) monitored by the
reachable set-based detection scheme in Eq. (14), with an initial set 𝜉

0
. If

the output of the detection scheme is ℎ(𝜂𝑘𝑑 ,
𝜉
𝑘𝑑
) = 1 for some 𝑘𝑑 ∈ Z

+,
then the process cannot be attack-free.

3.2. Classification of attack detectability

Attacks can be classified based on the ability or inability of the
reachable set-based detection scheme to detect an attack. Defining
attack detectability requires certain considerations, including the de-
pendence of reachable sets on the initial set 𝜉

0
. An attack is detected

at time 𝑘𝑑 if ℎ(𝜂𝑘𝑑 ,
𝜉
𝑘𝑑
) = 1. An attack is detectable with respect to

Fig. 2. Illustrative example showing the reachable sets of the monitoring variable
for the attack-free (blue sets) and the attacked (red sets) process in the presence of
an undetectable attack, with two example trajectories (green lines) for the attacked
process.

the reachable set-based detection scheme and the initial set 𝜉
0
if the

attack is detected in finite time for all 𝜉0 ∈ 
𝜉
0
(and 𝑑𝑘 ∈ ). An attack is

undetectable with respect to the reachable set-based detection scheme
and the initial set 𝜉

0
if the attack is not detected in finite time for

all 𝜉0 ∈ 
𝜉
0
(and 𝑑𝑘 ∈ ). For simplicity of presentation, detectable

and undetectable attacks with respect to the detection scheme and
initial set 𝜉

0
are called detectable and undetectable attacks, respec-

tively. An attack is potentially detectable if it is neither detectable nor
undetectable.

With the definitions above, conditions based on the relationship
between the reachable sets of the attacked and the attack-free process
can be established and used for classifying attacks. In the propositions
below, an FDIA that begins at 𝑘 = 0 is considered. The results may
be extended to an attack occurring at any time. The first proposition
establishes that if all possible values of the monitoring variable of
the attacked process are contained within the reachable sets for the
attack-free process, then the attack is undetectable.

Proposition 2. Consider the closed-loop process in Eq. (9), with an initial
set 𝜉

0
, under an FDIA beginning at 𝑘 = 0. The attack is undetectable with

respect to the detection scheme in Eq. (14) and the initial set 𝜉
0
if and

only if the reachable sets of the monitoring variable for the attacked and
the attack-free process satisfy 

𝜂𝑎
𝑘
(

𝜉𝑎
𝑘
) ⊆ 

𝜂
𝑘
(

𝜉
𝑘
) for all 𝑘 ∈ Z

+.

Proof (Sufficiency). Consider the attacked closed-loop process and the
initial set 𝜉

0
. Let the reachable set of the monitoring variable for the

attacked process be a subset of, or equal to, the reachable set for the
attack-free process; i.e., 𝜂𝑎

𝑘
(

𝜉𝑎
𝑘
) ⊆ 

𝜂
𝑘
(

𝜉
𝑘
) for all 𝑘 ∈ Z

+. This implies
that the monitoring variable values are contained within the reachable
sets for the attack-free process (𝜂𝑘 ∈ 

𝜂𝑎
𝑘
(

𝜉𝑎
𝑘
) ⊆ 

𝜂
𝑘
(

𝜉
𝑘
)), and the

detection scheme generates an output of ℎ(𝜂𝑘,
𝜉
𝑘
) = 0 for all 𝑘 ∈ Z

+.
Therefore, the attack is undetectable.

Necessity : Consider the attacked closed-loop process with the initial
set 𝜉

0
. Let the FDIA begin at 𝑘 = 0 and be undetectable with respect

to the detection scheme in Eq. (14) and the initial set 𝜉
0
. By definition

of an undetectable attack, ℎ(𝜂𝑘,
𝜉
𝑘
) = 0 for all 𝑘 ∈ Z

+, 𝜉0 ∈ 
𝜉
0
, and

𝑑𝑘 ∈ . From Eq. (14), this implies that 𝜂𝑘 ∈ 
𝜂
𝑘
(

𝜉
𝑘
) for all 𝑘 ∈ Z

+.

However, the process is subjected to the FDIA, so 𝜂𝑘 ∈ 
𝜂𝑎
𝑘
(

𝜉𝑎
𝑘
) for all

𝑘 ∈ Z
+, implying that 𝜂𝑎

𝑘
(

𝜉𝑎
𝑘
) ⊆ 

𝜂
𝑘
(

𝜉
𝑘
) for all 𝑘 ∈ Z

+. □

The condition presented in Proposition 2 is a necessary and suffi-
cient condition for an undetectable attack. Fig. 2 provides a pictorial
interpretation of the result of Proposition 2. It illustrates the reachable
sets of the attacked process (sets in red) and the attack-free process (sets
in blue) over two time steps for a process under an undetectable attack.
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Fig. 3. Illustrative example showing the reachable sets of the monitoring variable
for the attack-free (blue sets) and the attacked (red sets) process in the presence of a
detectable attack, with two example trajectories for the attacked process.

The figure also illustrates two example trajectories of the monitoring
variable for the attacked process (green lines). As illustrated, the values
of the monitoring variable at the time steps 𝑘 and 𝑘 + 1 (shown
by the green circle markers) are contained within the intersection of
the reachable sets for the attack-free and attacked process, leading
to an output of 0 from the detection scheme. Therefore, the attack
is not detected by the detection scheme. While only two time steps
are illustrated in Fig. 2, the reachable sets of the process under an
undetectable attack must be contained within the attack-free reachable
sets for all time steps 𝑘 ∈ Z

+.
If the reachable set of the monitoring variable for the attacked

process does not intersect the reachable set of the attack-free process
at some time 𝑘 ∈ Z

+, the attack will be detected at time 𝑘, and is
detectable. This is formally stated in the following proposition.

Proposition 3. Consider the closed-loop process in Eq. (9), with an initial
set 𝜉

0
, under an FDIA beginning at 𝑘 = 0. The attack is detectable if the

reachable sets of the monitoring variable for the attacked and the attack-free
process satisfy 

𝜂𝑎
𝑘
(

𝜉𝑎
𝑘
) ∩

𝜂
𝑘
(

𝜉
𝑘
) = ∅ for some 𝑘 ∈ Z

+.

Proof. If the reachable sets of the generalized monitoring variable
for the attacked and the attack-free process do not intersect at some
𝑘 ∈ Z

+, i.e., 𝜂𝑎
𝑘
(

𝜉𝑎
𝑘
)∩

𝜂
𝑘
(

𝜉
𝑘
) = ∅, no value of the monitoring variable

that is contained within the attacked reachable set is contained within
the attack-free reachable set, i.e., 𝜂𝑘 ∉ 

𝜂
𝑘
(

𝜉
𝑘
). The output of the

detection scheme in this case is ℎ(𝜂𝑘,
𝜉
𝑘
) = 1, and the attack is detected.

Hence, the attack is detectable. □

Fig. 3 provides an illustration of the idea behind Proposition 3.
The figure shows the reachable sets of the monitoring variable for
the attack-free process (blue sets) and those of the process under a
detectable attack (red sets) over two time steps. At time step 𝑘, the
reachable set for the attacked process is contained entirely within the
reachable set for the attack-free process. At time step 𝑘+1, the reachable
set of the attacked process does not intersect the reachable set of the
attack-free process. For all initial values, no value of the monitoring
variable of the attacked process is contained in the reachable set of the
attack-free process (illustrated by the black circle markers in Fig. 3).
As a result, the attack is detected at time step 𝑘 + 1 with the detection
scheme generating an output of 1, i.e., ℎ(𝜂𝑘+1,

𝜉
𝑘+1

) = 1 for all 𝜉0 ∈ 
𝜉
0
.

Attacks that do not satisfy the conditions in Proposition 2 or Propo-
sition 3 are also possible. For such attacks, the reachable sets of the
attacked process intersect with the reachable sets of the attack-free
process for all time steps, and the reachable sets of the attacked process
are not contained in the corresponding reachable sets of the attack-
free process for at least one time step, i.e., 𝜂

𝑘
(

𝜉
𝑘
) ∩ 

𝜂𝑎
𝑘
(

𝜉𝑎
𝑘
) ≠ ∅

for all 𝑘 ∈ Z
+ and 

𝜂𝑎
𝑘
(

𝜉𝑎
𝑘
) ⊈ 

𝜂
𝑘
(

𝜉
𝑘
) for some 𝑘 ∈ Z

+. While the
attack cannot be undetectable by Proposition 2, the attack may be
detectable or potentially detectable. For example, consider an attack on
the process such that the monitoring variable of all possible trajectories
leaves its attack-free reachable set. In this case, the attack is detectable.
This is illustrated by the following example:

𝑥𝑘+1 = 0.9𝑥𝑘 + 𝛿𝑢
𝑘

𝑦𝑘 = 𝑥𝑘
(15)

where 𝑥𝑘 ∈ R is the state, 𝑦𝑘 ∈ R is the measurement, and 𝛿𝑢
𝑘
∈ R is an

additive controller–actuator link FDIA. Consider the initial set of {0}
and let the measured output be the monitoring variable, i.e., 𝜂𝑘 = 𝑦𝑘.
For the attack-free process, the monitoring variable takes a value of
0 for all 𝑘, and the reachable sets of the monitoring variable are {0}

for all 𝑘 ∈ Z
+. Let the attack 𝛿𝑢

𝑘
be a bounded random variable such

that |𝛿𝑢
𝑘
| ≤ 𝛿 for all 𝑘 ∈ Z

+, where 𝛿 > 0. Moreover, let 𝛿𝑢
𝑘
take a

non-zero value for at least one time step. The reachable sets of the
attacked process contain the origin, so they intersect with the attack-
free reachable sets for all 𝑘 ∈ Z

+. When 𝛿𝑢
𝑘
takes a non-zero value, the

state and monitoring variable will move away from 0, so the attack is
detected. Thus, the attack is detectable.

An attack that does not satisfy the conditions in Proposition 2 or
Proposition 3 may be potentially detectable if there are some trajec-
tories where the attack is detected and others where the attack is not
detected. For example, consider the following process:

𝑥𝑘+1 = 0.9𝑥𝑘 + 𝑑𝑘

𝑦𝑘 = 𝛬𝑦𝑥𝑘
(16)

where 𝑑𝑘 is the process disturbance taking values in the set [−1, 1] and
𝛬𝑦 = 1.1 is a multiplicative FDIA altering the data over the sensor–
controller link. For the attack-free process with 𝐴𝜉 = 0.9, 𝐵𝑑 = 1,
and disturbances bounded as  = [−1, 1], the minimum invariant set
(computed based on the method presented in Raković et al. (2005))
is [−10, 10], meaning that for any 𝑑𝑘 ∈ , 𝑥𝑘+1 ∈ [−10, 10] if 𝑥𝑘 ∈

[−10, 10]. Let the initial set be equal to the minimum invariant set of
the attack-free process, i.e., [−10, 10], and let the monitoring variable
be the measured output. For a process evolving from an initial set


𝜉
0

∈ [−10, 10], the 𝑘-step forward reachable set of the process is
the minimum invariant set itself. Therefore, the reachable sets of the
monitoring variable are [−10, 10] for all 𝑘 ∈ Z

+. If the initial state of
the attacked process is 𝑥0 = 0 and the disturbance takes a value of zero
for all time, i.e., 𝑑𝑘 = 0 for all 𝑘 ∈ Z

+, the monitoring variable of the
attacked process takes a value of 0 for all time, and the attack will not
be detected. For some other initial states and disturbances, the attack
will be detected. If 𝑥0 = 10 and 𝑑0 = 1, for example, the value of the
monitoring variable is not contained within the reachable set at 𝑘 = 1,
since 𝜂1 = 11 ∉ [−10, 10]. In this case, the attack is detected. The attack
is potentially detectable because there are some trajectories for which
the attack will be detected and other trajectories for which the attack
is not detected.

Remark 2. From Eq. (10), the reachable sets of the attacked process
depend on the initial state and the matrices 𝐴𝜉𝑎 , 𝐵𝑑𝑎 , and 𝐵𝛿𝑎 , which
depend on the controller and observer gains. Therefore, the detectabil-
ity of an attack is influenced by the controller and observer gains and
the initial set. This dependence may be exploited to design methods
that help attack detection.

Remark 3. With respect to the reachable set-based detection scheme,
the detectability of an attack depends on how the reachable sets of
the monitoring variable for the attacked process evolve with respect to
the evolution of the reachable sets of the monitoring variable for the
attack-free process. The detectability of an attack may vary with the
monitoring variable (i.e., the choice of 𝐻𝑦 and 𝐻 𝑦̂). From Eq. (14), the
parameters 𝐻𝑦 and 𝐻 𝑦̂ influence the reachable sets of the monitoring
variable for the attack-free process. For the attacked process evolving
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from an initial set 
𝜉
0

⊂ R
2𝑛𝑥 , the reachable sets of the monitoring

variable are also influenced by the parameters 𝐻𝑦 and 𝐻 𝑦̂:


𝜂𝑎
𝑘
(

𝜉𝑎
𝑘
) = 𝐶𝜉𝑎

𝜉
𝑘
⊕𝜂𝑎 (17)

where 𝐶𝜉𝑎 =
[
(𝐻𝑦𝛬𝑦 +𝐻 𝑦̂)𝐶 −𝐻 𝑦̂𝐶

]
, 𝜂𝑎 =

[
0 𝐻𝑦𝛬𝑦

]
𝑑𝑘⊕

[
𝐻𝑦 0

]

{𝛿𝑘}. Based on Eqs. (14) and (17), the parameters 𝐻
𝑦 and 𝐻 𝑦̂ influence

the evolution of the reachable sets of the monitoring variable for the
attacked and the attack-free process. Therefore, 𝐻𝑦 and 𝐻 𝑦̂ influence
attack detectability.

Remark 4. An additional factor that may influence attack detectability
is the closed-loop stability of the attacked process. Specifically, when
the magnitudes of the multiplicative components of an attack (𝛬𝑦 and
𝛬𝑢) are such that max𝑖|𝜆𝑖(𝐴𝜉𝑎 )| ≥ 1, the attack destabilizes the process
and may cause an unbounded growth in the norm of the augmented
state. If an additional observability condition is satisfied (Narasimhan
et al., 2022a), the attack may be detected because the generalized
monitoring variable may not be contained within its 𝑘-step reachable
set for the attack-free process at some time step 𝑘 ∈ Z

+.

Remark 5. For the attacked closed-loop process, the computation of
the 𝑘-step reachable sets requires knowledge of the attack, which is
unknown in general. Therefore, the detectability-based classification of
attacks may be performed (offline) for various attacks.

4. Numerical results: Scalar process example

In this section, the proposed reachable set-based detection scheme,
as well as the detectability-based classification of attacks, are applied to
a scalar process during transient operation. All polytope computations
are performed using the MPT 3.0 toolbox (Herceg et al., 2013). A scalar
process with the following process dynamics, measurement output, and
control action is considered:

𝑥𝑘+1 = 𝑥𝑘 + 𝑢𝑘 +𝑤𝑘

𝑢𝑘 = −𝛬𝑢𝐾𝑥̂𝑘 + 𝛿𝑢
𝑘

𝑦𝑘 = 𝛬𝑦(𝑥𝑘 + 𝑣𝑘) + 𝛿
𝑦
𝑘

where 𝑥𝑘 ∈ R is the state, 𝑢𝑘 ∈ R is the control action received by
the actuator, 𝑤𝑘 ∈  ∶= {𝑤′ ∣ |𝑤′| ≤ 1} is the process disturbance,
𝑦𝑘 ∈ R is the measurement output received by the controller, and 𝑣𝑘 ∈

 ∶= {𝑣′ ∣ |𝑣′| ≤ 1} is the measurement noise. The process disturbance
and measurement noise are modeled as random variables following a
uniform distribution bounded between −1 and 1. The process may be
subject to an FDIA that simultaneously alters the data communicated
over the controller–actuator and the sensor–controller links. To monitor
the process for attacks, a monitoring variable that is a concatenation
of the measured output and the residual vector is chosen, i.e., 𝜂𝑘 =

[𝑦𝑘 𝑟𝑘]
𝑇 . The monitoring variable fits the model for the generalized

monitoring variable in Eq. (11) with 𝐻𝑦 = [1 1]𝑇 and 𝐻 𝑦̂ = [0 − 1]𝑇 .
The process evolving from an initial set to the minimum invariant

set is considered. A detection scheme tuned for steady-state operation
(e.g., the detection scheme presented in Narasimhan et al. (2022a)) is
not applicable to monitor the process because it may raise alarms as the
process evolves from its initial condition to the minimum invariant set
during attack-free operation. Instead, the reachable set-based detection
scheme in Eq. (14) is utilized. Three case studies are presented in
this section. Each case study considers the process under a different
attack. In the first case study, the application of the reachable set-based
detection scheme is demonstrated. Additionally, the detectability-based
classification of a simultaneous additive and multiplicative FDIA, which
alters the data over the sensor–controller and controller–actuator links,
is presented. In the second and third case studies, an additive FDIA and
a multiplicative FDIA are considered, respectively. In all cases below,
the polytope representing the initial set considered is the attack-free
minimum invariant set by shifted a vector (i.e., 𝜉

0
= 

𝜉
∞ ⊕ {𝜉′} where

𝜉′ is the shifting vector).

4.1. Application of the reachable set-based detection scheme and detectability-
based classification of attacks

The process evolving from an initial set that is the attack-free
minimum invariant set shifted by 𝜉′ = [100 − 50]𝑇 (𝜉

0
in Fig. 4(a)) is

considered. The attack-free process (first simulation set) and attacked
process (second simulation set) are considered to demonstrate the
reachable set-based detection scheme. Each simulation set consists of
1000 simulations of the process evolving from 𝜉0 = [103 − 48]𝑇 ∈ 

𝜉
0

to the minimum invariant set. The total length of each simulation
is 5000 time steps. For the attacked process, the cyberattack begins
at 𝑘 = 0, and is an FDIA with multiplicative factors 𝛬𝑦 = 0.9 and
𝛬𝑢 = 1.05 and additive biases, which are random variables drawn from
a uniform distribution, where 𝛿

𝑦
𝑘
∈ [−0.1, 0.1] and 𝛿𝑢

𝑘
∈ [−0.1, 0.1] for

all 𝑘 ∈ Z
+. For demonstration purposes, the controller and observer

gains are chosen as 𝐾 = 0.5 and 𝐿 = 1.5 because the attack on the
process operated with 𝐾 = 0.5 and 𝐿 = 1.5 is found to be detectable, as
described below.

In the first simulation set, the attack-free process is considered.
In every simulation, the values of the state and the estimation error
are contained within the reachable sets of the attack-free process.
Similarly, the values of the monitoring variable are always contained
within their reachable sets. Therefore, the output of the reachable set-
based detection scheme is equal to 0 in all simulations, indicating a
lack of attack detection. Fig. 4(a) illustrates the values of the state
and estimation error over one simulation of the attack-free process,
and Fig. 4(b) illustrates the values of the output and estimation error
over the same simulation. The values of all variables are contained
within their corresponding reachable sets over the simulation, and no
alarms are raised. The result demonstrates that the reachable set-based
detection scheme does not raise false alarms during dynamic operation.

The second simulation set considers the attacked process. The attack
is classified based on its detectability. Applying Proposition 3, the
attack is detectable because 

𝜂𝑎
𝑘
(

𝜉𝑎
𝑘
) and 

𝜂
𝑘
(

𝜉
𝑘
) do not intersect at

𝑘 = 0 and 𝑘 = 1, as depicted in Fig. 5(a). Several closed-loop simulations
are performed to verify that the attack is detected in all simulations.
The detection scheme raises an alarm in all simulations at 𝑘 = 0 and 𝑘 =

1. For some simulations, an alarm is raised over subsequent time steps,
but the attack is no longer detected over time once the augmented state
converges to the minimum invariant set, i.e., the alarm goes away over
time. This behavior occurs because 

𝜂
∞ ⊂ 

𝜂𝑎
∞ (albeit this is difficult

to see from Fig. 5(a)), but the non-intersecting area between the two
sets is small. Fig. 5(b) illustrates the values of the monitoring variable
over one simulation of the attacked process. Over this simulation, the
attack is detected at all 𝑘 ∈ [0, 4]. For 𝑘 ∈ [5, 5000], the monitoring
variable evolves within the reachable sets of the attack-free process,
and no alarms are raised.

4.2. Factors influencing the detectability of a multiplicative FDIA

In this case study, a multiplicative attack that alters the data com-
municated over the sensor–controller and controller–actuator links with
pre-multiplication factors 𝛬𝑦 = 1.1 and 𝛬𝑢 = 0.9 and biases 𝛿𝑦

𝑘
= 𝛿𝑢

𝑘
= 0

for all 𝑘 ∈ Z
+ is considered. The impact of the initial set and controller

and observer gains on the detectability of this attack is explored. The
process evolving from two different initial sets is considered to explore
the impact of the initial set on the attack detectability. The first initial
set is the attack-free minimum invariant set shifted by 𝜉′ = [10 − 5]𝑇 ,
and the second is the attack-free minimum invariant set shifted by
𝜉′ = [50 − 20]𝑇 . The process is operated with controller and observer
gains of 𝐾 = 1 and 𝐿 = 0.9. Fig. 6(a) and Fig. 6(b) illustrate the
reachable sets of the monitoring variable for the attack-free and the
attacked processes for a few time steps starting from the first and
second initial set, respectively. For the given controller and observer
gains, the attack is potentially detectable or detectable with respect to
the first initial set because the two sets intersect for all time, and the
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Fig. 4. (a) The state and estimation error values, (b) the monitoring variable values, used in the reachable set-based scheme, and (a)–(b) their corresponding reachable sets for
the attack-free process over five time steps.

Fig. 5. (a) Evolution of the reachable sets of the monitoring variable for the attack-free and the attacked process over a few time steps. At 𝑘 = 0 and 𝑘 = 1, 𝜂
𝑘
∩

𝜂𝑎
𝑘

= ∅, indicating
the attack is detectable. The localized zoom in the figure illustrates that the reachable sets at 𝑘 = 0 do not intersect. (b) The values of the monitoring variable of the attacked
process and the reachable sets used in the detection scheme over a few time steps.

Fig. 6. Evolution of the reachable sets over a few time steps of the attack-free process and process under a multiplicative FDIA. Two initial sets are considered: (a) an initial set
that is the attack-free minimum invariant set shifted by 𝜉′ = [10 − 5]𝑇 and (b) an initial set that is the attack-free minimum invariant set shifted by 𝜉′ = [50 − 20]𝑇 .

attacked reachable set is not a subset of the attack-free reachable set

(Fig. 6(a)). The attack, however, is detectable with respect to the second

initial set because the reachable sets do not intersect at 𝑘 = 1 and 𝑘 = 2

(Fig. 6(b)).
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Fig. 7. The monitoring variable values and reachable sets used in the detection scheme over a few time steps for the process under a multiplicative FDIA. Two initial sets are
considered: (a) an initial set that is the attack-free minimum invariant set shifted by 𝜉′ = [10 − 5]𝑇 and (b) an initial set that is the attack-free minimum invariant set shifted by
𝜉′ = [50 − 20]𝑇 .

To further confirm these findings, two sets of simulations of the
attacked process are performed. In the first simulation set, the process
evolving from the initial condition 𝜉0 = [10 − 5]𝑇 , contained in
the first initial set, is considered. In the second simulation set, the
process evolving from the initial condition 𝜉0 = [50 − 20]𝑇 , contained
in the second initial set, is considered. Each simulation set consists
of 1000 simulations of the attacked process. In the first simulation
set, the attack is detected over 474 of the 1000 simulations. For the
simulations where the attack is detected, the first detection time ranged
from 𝑘 = 1 to 𝑘 = 4970, indicating a range of detection times. The
monitoring variable values and reachable sets used in the detection
scheme are shown in Fig. 7(a) for one simulation. Over this simulation,
the monitoring variable values over the time steps shown are contained
within the reachable sets used in the detection scheme, and the attack
is not detected. In the second simulation set, the attack is detected in
all simulations at 𝑘 = 1 and 𝑘 = 2. The monitoring variable values and
reachable sets used in the detection scheme over a few time steps are
shown in Fig. 7(b) for one simulation where the attack is detected at
𝑘 = 0, 𝑘 = 1, and 𝑘 = 2. These results demonstrate the dependence of
the attack detectability on the initial set.

The impact of the controller and observer gains on attack detectabil-
ity is also analyzed by considering process operation for two choices of
the controller and observer gains: (𝐾,𝐿) = (1, 0.9) and (𝐾,𝐿) = (0.2, 1.5).
The process evolving from an initial set that is the attack-free minimum
invariant set shifted by 𝜉′ = [50 − 20]𝑇 is considered. As described
above, the attack is detectable when the process is operated with
(𝐾,𝐿) = (1, 0.9). Applying the attack classification scheme, the attack
is detectable or potentially detectable when the process is operated
with (𝐾,𝐿) = (0.2, 1.5). An additional 1000 simulations of the attacked
process under the second choice of gains are performed. The attack
is detected in 638 of the 1000 simulations. However, the attack is
detected in all 1000 simulations when the process is operated with the
first choice of gains. These results indicate that the choice of controller
and observer gains can also influence the ability to detect attacks.

4.3. Factors influencing the detectability of an additive FDIA

In this case study, additive FDIAs (i.e., attacks with 𝛬𝑦 = 1 and 𝛬𝑢 =

1) are considered. First, the detectability of two additive attacks with
respect to the reachable set-based detection scheme is analyzed. Next,
the impact of the initial set on attack detectability is analyzed. Finally,
the influence of the controller and observer gains on the detectability
of an additive attack is analyzed.

The detectability of two additive FDIAs that alter the variable values
over the sensor–controller and controller–actuator links is analyzed.
Both attacks involve randomly varying 𝛿𝑢

𝑘
and 𝛿

𝑦
𝑘
where both values

are drawn from a uniform distribution at every time step. For the first
attack, both numbers are drawn from the interval [0, 1], and for the
second attack, both numbers are drawn from the interval [5, 7]. The
process is operated with 𝐾 = 1 and 𝐿 = 0.9 and an initial set that
is the attack-free minimum invariant set shifted by 𝜉′ = [50 − 20]𝑇 .
The reachable sets of the attack-free process converge to its minimum
invariant set at the time step 𝑘 = 7. Fig. 8(a) and Fig. 8(b) illustrate
the reachable sets of the monitoring variable for the attack-free process
with respect to the reachable sets of the process under the first attack
and the second attack, respectively. As illustrated in Fig. 8(a), the
first attack is either detectable or potentially detectable because the
attacked reachable sets intersect, but are not contained within the
attack-free reachable sets at all time steps. However, the second attack
is detectable because the attacked and the attack-free reachable sets do
not intersect at 𝑘 = 1 (Fig. 8(b)).

To investigate attack detectability further, two sets of closed-loop
simulations of the process under an attack are performed. In the first
simulation set, the process under the first attack is considered. In
the second simulation set, the process under the second attack is
considered. Each simulation set consists of 1000 simulations of the
process. All simulations are initialized at 𝜉0 = [50 − 20]𝑇 , which is
within the initial set. The first attack is detected in all simulations,
with the detection time ranging from 𝑘 = 2 to 𝑘 = 1402. Fig. 9(a)
illustrates the attack-free reachable sets for a few time steps, and the
monitoring variable values over one simulation. Over this simulation,
the monitoring variable values are contained within the reachable sets
from 𝑘 = 0 to 𝑘 = 7. The attack is detected at time step 𝑘 = 8. On
the other hand, the second attack is detected at time step 𝑘 = 1 in all
simulations. Fig. 9(b) illustrates the attack-free reachable sets and the
monitoring variable values over one simulation. Over this simulation,
the attack is detected at all time steps shown (i.e, from 𝑘 = 0 to 𝑘 = 7).
The results demonstrate that an additive attack of this nature, where the
attack bias is treated as a random number within a compact interval,
may be detectable or potentially detectable.

Next, the impact of the initial set on the detectability of an additive
attack is analyzed by considering the process operated with 𝐾 = 1

and 𝐿 = 0.9. The process evolving from three different initial sets is
considered: first from an initial set that is the attack-free minimum
invariant set shifted by 𝜉′

1
= [10 − 10]𝑇 , second from an initial set that

is the attack-free minimum invariant set shifted by 𝜉′
2
= [100 − 50]𝑇 ,
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Fig. 8. Evolution of the reachable sets over a few time steps for the attack-free process with respect to the reachable sets for the process under (a) the first additive attack and
(b) the second additive attack.

Fig. 9. The monitoring variable values and reachable sets used in the detection scheme over a few time steps for the attacked process. The monitoring variable values shown are
observed over one simulation of the process under: (a) the first additive attack and (b) the second additive attack.

and third from an initial set that is the attack-free minimum invariant
set shifted by 𝜉′

3
= [50 − 20]𝑇 . For each initial set, the detectability of

the two additive attacks considered previously is analyzed. For all three
initial sets considered, the first attack where the random attack biases
are bounded in [0, 1] is found to be either potentially detectable or
detectable. For all three initial sets considered, the second attack where
the random attack biases are bounded in [5, 7] is detectable, because
the reachable sets of the attacked and the attack-free process do not
intersect at time step 𝑘 = 1. The results demonstrate that for the process
evolving from any of the initial sets considered, the detectability of the
two additive attacks is consistent.

Finally, the impact of the controller and observer gains on the de-
tectability of an attack is explored by considering the process evolving
from the initial set that is the attack-free minimum invariant set shifted
by 𝜉′ = [50 − 20]𝑇 and operated with two controller and observer
gains: first with 𝐾 = 0.2 and 𝐿 = 1.5 and second with 𝐾 = 1 and
𝐿 = 0.9. For the process operated with each choice of controller and
observer gains, the detectability of the additive attack where the attack
biases are bounded in [5, 7] is analyzed. For the process operated with
𝐾 = 0.2 and 𝐿 = 1.5, the attack may either be detectable or potentially
detectable. However, the attack on the process operated with 𝐾 = 1

and 𝐿 = 0.9 is detectable with the reachable sets of the attacked and
the attack-free process having zero intersection at time step 𝑘 = 1. The
results demonstrate that the controller and observer gains influence the
detectability of an additive FDIA.

5. Numerical results: Chemical process example

In this section, the proposed reachable set-based detection scheme,
as well as the detectability-based classification of attacks, are applied
to a chemical process example during transient operation. All poly-
tope computations are performed using the MPT 3.0 toolbox (Herceg
et al., 2013). We consider a chemical process example consisting of a
well-mixed continuously stirred-tank reactor (CSTR) where a second-
order exothermic reaction 𝐴 → 𝐵 occurs. Under standard modeling
assumptions, the process dynamics are described by its mass and energy
balances:

𝑑𝐶𝐴

𝑑𝑡
=

𝐹

𝑉
(𝐶𝐴0 + 𝛥𝐶𝐴0 − 𝐶𝐴) − 𝑘0𝑒

−𝐸
𝑅𝑇 𝐶2

𝐴

𝑑𝑇

𝑑𝑡
=

𝐹

𝑉
(𝑇0 + 𝛥𝑇0 − 𝑇 ) −

𝛥𝐻𝑘0
𝜌𝐶𝑝

𝑒
−𝐸
𝑅𝑇 𝐶2

𝐴 +
𝑄

𝜌𝐶𝑝𝑉

(18)

where 𝐶𝐴0 and 𝑇0 are the reactant feed concentration and feed temper-
ature, respectively; and 𝐶𝐴 and 𝑇 are the concentration of the reactant
in the reactor and the temperature of the reactor, respectively. The
manipulated input is the heat supplied to or removed from the reactor
𝑄. The process is subject to bounded disturbances modeled as the
variation in the concentration of the reactant 𝐴 in the feed 𝛥𝐶𝐴0, and
the variation of the temperature of the feed to the reactor 𝛥𝑇0. The
measured variables available to the controller are the concentration of
the reactant 𝐶𝐴 and the temperature of the reactant 𝑇 . The process
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Table 1
Process parameters of the CSTR (Alanqar et al., 2015).

Volumetric flow rate (𝐹 ) 5.0m3 h−1

Reactor volume (𝑉 ) 1.0m3

Feed concentration of 𝐴 (𝐶𝐴0) 4.0 kmolm−3

Activation energy (𝐸) 5.0 × 104 kJ kmol−1

Pre-exponential factor (𝑘0) 8.46 × 106 m3 h−1 kmol−1

Gas constant (𝑅) 8.314 kJ kmol−1 K

Feed temperature (𝑇0) 300K

Density of reactor liquid hold-up (𝜌) 1000 kgm−3

Heat of reaction (𝛥𝐻) −1.15 × 104 kJ kmol−1

Heat capacity (𝐶𝑝) 0.231 kJ kgK−1

Steady-state heat rate added/removed from the reactor (𝑄𝑠) 0 kJ h−1

Steady-state reactant concentration (𝐶𝐴𝑠) 1.22 kmolm3

Steady-state temperature (𝑇𝑠) 438.2K

is subject to bounded measurement noise acting on all sensors. The
process disturbances are bounded such that |𝛥𝐶𝐴0| ≤ 0.01 kmolm−3

and |𝛥𝑇0| ≤ 0.2K. Similarly, the measurement noise acting on the
concentration sensor (𝑣1) is bounded as |𝑣1| ≤ 0.01 kmolm−3, and the
measurement noise on the temperature sensor (𝑣2) is bounded as |𝑣2| ≤
0.2K. The definitions and values of the other process parameters are
listed in Table 1.

The control objective is to stabilize the closed-loop process at its
open-loop stable steady–state given by 𝐶𝐴𝑠 = 1.22 kmolm−3, 𝑇𝑠 = 438K,
and 𝑄𝑠 = 0 kW. A continuous-time linear time-invariant state–space
model is obtained via linearization around the desired operating steady-
state of the CSTR, and defining the deviation variables 𝑥1 = 𝐶𝐴 − 𝐶𝐴𝑠,
𝑥2 = 𝑇 −𝑇𝑠, and 𝑢 = 𝑄−𝑄𝑠. Using a sampling interval of 𝛥 = 1 × 10−2 h,
a discrete-time state–space model of the form in Eq. (1) is obtained. A
monitoring variable that is the concatenation of the measured output
and the residual vectors is considered, i.e., 𝜂𝑘 ∶= [𝑦𝑇

𝑘
𝑟𝑇
𝑘
]𝑇 . In the

case studies that follow, the process is simulated using its continuous-
time nonlinear model in Eq. (18) with the control input applied in a
sample-and-hold fashion. Euler’s method with an integration step size
of 1 × 10−4 h is used to integrate the ordinary differential equations.
Two case studies are performed. In the first case study, the reachable
set-based detection scheme is applied to monitor the CSTR during
a transient phase induced by switching the controller and observer
gains during operation. In the second case study, the detectability of
a simultaneous additive and multiplicative FDIA is analyzed using the
reachable set-based attack detectability classification scheme. For both
case studies, the linearized process model is used to design the control
law and compute the reachable sets. However, the CSTR is simulated
using its nonlinear model. Therefore, the case studies presented in this
section consider the application of the attack classification and the
detection scheme to a nonlinear process.

5.1. Application of the reachable set-based detection scheme

In a prior work (Narasimhan et al., 2022b), controller and observer
gain switching between (𝐾𝑖, 𝐿𝑖), with controller poles at [−0.2 − 0.3]

and observer poles at [−0.2 − 0.3], to (𝐾𝑓 , 𝐿𝑓 ), with controller poles at
[0.2 − 0.1] and observer poles at [0.2 0.3], was considered as a way to
enhance attack detection capabilities of a detection scheme monitoring
the process. In this case study, gain switching occurs on the process
operating initially with its states bounded in the minimum invariant
set of the attack-free process under (𝐾𝑖, 𝐿𝑖). The controller switch
may induce a transient operation, so the reachable set-based detection
scheme is applied to monitor the process. The forward reachable sets of
the attack-free process from the minimum invariant set of the attack-
free process under (𝐾𝑖, 𝐿𝑖), which is taken to be the initial set 

𝜉
0
, are

computed, and the reachable sets converge to the minimum invariant
set of the attack-free process under (𝐾𝑓 , 𝐿𝑓 ), which is denoted by 

𝜉
∞.

To design the reachable set-based detection scheme, the reachable sets
of the monitoring variable for the attack-free process are computed
from the initial set 𝜂

0
(

𝜉
0
) to its terminal set 𝜂

∞(
𝜉
∞). Two sets of sim-

ulations are considered. The first set considers the attack-free process,

and the second set considers the process under a multiplicative sensor–
controller link attack of magnitude 𝛬𝑦 = diag(1, 0.85). Each simulation
set consists of 1000 simulations of the process, and each simulation
has a total length of 5 h, spanning 500 time steps. All simulations are
initialized with 𝜉0 = [0.005 5 − 0.01 0.2]𝑇 ∈ 

𝜉
0
⧵

𝜉
∞.

No attacks are detected using the detection scheme when moni-
toring the attack-free process. Fig. 10(a) and Fig. 10(b) illustrate the
output and the residual values over a few time steps for one of the
simulations of the attack-free process. The monitoring variable values
are contained within their corresponding reachable sets for all time. At
0.02 h (𝑘 = 2), the monitoring variable values converge to the terminal
set for the attack-free process, where they remain. As a result, the
reachable set-based detection scheme generates an output of 0 for all
time steps in the simulation.

Considering the process under a multiplicative attack, the attack is
detected in 854 out of the 1000 simulations. The detection times ranged
from 0.01 h (𝑘 = 1) to 4.59 h (𝑘 = 459) for the simulations where the
attack is detected. Fig. 11(a) and Fig. 11(b) illustrate the output and
residual values over a few time steps over a simulation of the attacked
process. From Fig. 11(b), the attack is detected at 0.01 h (𝑘 = 1). These
simulations demonstrate that the reachable set-based detection scheme
can monitor the nonlinear process during transient operation without
raising false alarms for the attack-free process, and can successfully
detect attacks on a nonlinear process.

Remark 6. In a prior work (Narasimhan et al., 2022b), a controller and
observer gain switching was utilized to enable attack detection on the
nonlinear CSTR process monitored by a terminal set-based detection
scheme. However, the attack detection method presented previously
has a non-zero false alarm rate because the terminal set-based detection
scheme is not designed to account for transient operation. Based on
the results in this section, the reachable set-based detection scheme
proposed in this work may be used to eliminate false alarms in the
controller and observer gain switching-based attack detection method.

5.2. Application of detectability-based classification of an attack

In this case study, the ability to classify attacks using the reacha-
bility analysis is demonstrated for the nonlinear CSTR. Specifically, the
detectability of a simultaneous multiplicative and additive FDIA that
alters the data over both the sensor–controller and controller–actuator
links is analyzed. The attack parameters are 𝛬𝑦 = diag(1, 0.85), 𝛬𝑢 = 0.9,
𝛿
𝑦𝐶𝐴
𝑘

∈ [0.1, 0.2] kmolm−3, and 𝛿
𝑦𝑇
𝑘

∈ [0.1, 0.2] K. The parameters

𝛿
𝑦𝐶𝐴
𝑘

and 𝛿
𝑦𝑇
𝑘

are the attack biases added to the concentration and
temperature measurements, respectively, and are modeled as random
variables drawn from a uniform distribution. The process is operated
with controller and observer gains selected via pole placement using
the linearized process model and by placing the poles at [−0.2 − 0.3]

to determine 𝐾 and [−0.2 − 0.3] to determine 𝐿. For the attack-free
process, the minimum invariant set of the closed-loop system is the
initial set, so the terminal set of the monitoring variable is the 𝑘-step
forward reachable set for all time steps 𝑘 ∈ Z

+.
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Fig. 10. The monitoring variable values, including (a) the output values and (b) the residual values, and reachable sets used in the detection scheme over a few time steps for
the attack-free process. In this case, there are no false alarms. The brown central region represents the intersection of all reachable sets shown.

Fig. 11. The monitoring variable values, including (a) the output values and (b) the residual values, and reachable sets used in the detection scheme over a few time steps for
the attacked process. In this case, the attack is detected at 𝑘 = 1. The brown central region represents the intersection of all reachable sets shown.

Fig. 12. The reachable sets for (a) the measured output and (b) the residual for the CSTR under an attack.

The closed-loop process under the FDIA is unstable (max𝑖|𝜆𝑖(𝐴𝜉𝑎 )| =
1.1371 > 1). The reachable sets of the attacked process are compared
to the terminal set of the attack-free process to classify the attack.
Fig. 12(a) illustrates the reachable sets of the measured output for the

attacked process for a few time steps and the measured output terminal
set for the attack-free process. Fig. 12(b) illustrates the reachable sets
of the residual for the attacked process and the residual terminal set
for the attack-free process. As illustrated, the attack is detectable with



Digital Chemical Engineering 7 (2023) 100100

12

S. Narasimhan et al.

Fig. 13. The values of (a) the measured output and (b) the residual and their corresponding terminal sets over one simulation of the CSTR process under an attack.

respect to the initial set because the reachable set of the attacked
process and the terminal set of the attack-free process do not intersect
at time step 𝑘 = 0.

Two simulation sets are performed to confirm that the reachability
analysis correctly classified the attack. The attack-free process is con-
sidered in the first set, and the attacked process is considered in the
second set. Each set consists of 1000 simulations of the process, and
each simulation simulates the CSTR over a 5 h period (total of 500 time
steps). All simulations are initialized with the augmented state at the
origin. The detection scheme in Eq. (14) is designed to monitor the
process with respect to the reachable sets, which are the terminal set
of the attack-free process (𝜂

𝑘
(

𝜉
𝑘
) = 

𝜂
∞(

𝜉
∞) for all time steps 𝑘 ∈ Z

+).
For the attack-free simulations, the detection scheme does not raise

any alarms. For the simulations of the attacked process, the attack is
detected at 𝑘 = 0 in all simulations, as expected from the reachability
analysis. The measured output and the residual (monitoring variable)
values for the attacked process over one simulation are shown in
Figs. 13(a) and 13(b), respectively. Over this simulation, the monitor-
ing variable values evolve outside the terminal set of the attack-free
process but stay within the attacked process reachable sets. The attack
is detected at the first three time steps. The results demonstrate that
the detectability classification based on reachable sets can be applied
to classify attacks for the nonlinear CSTR.

Remark 7. For the attack-free process, the terminal set of the moni-
toring variable is the forward reachable set for all time steps 𝑘 ∈ Z

+.
Therefore, the terminal set-based detection scheme is a special case of
the reachable set-based detection scheme with 

𝜂
𝑘
(

𝜉
𝑘
) = 

𝜂
∞(

𝜉
∞) (for

all 𝑘 ∈ Z
+) in Eq. (14), and the reachable set-based classification of at-

tacks presented in Section 3 can be used to analyze attack detectability
for a process monitored by the terminal set-based detection scheme.

6. Conclusions

A reachable set-based detection scheme was proposed to mon-
itor dynamic processes under false data injection attacks targeting
the sensor–controller and controller–actuator communication links. A
rigorous characterization of the conditions that render an attack to
be undetectable or detectable with respect to the proposed detection
scheme was presented. An approach for classifying attacks based on
their detectability with respect to the reachable set-based detection
scheme was presented. The proposed detection scheme was applied to
two illustrative examples. The detectability of various attacks was an-
alyzed, and the applicability of the detection scheme and classification
method to monitor and classify attacks on a nonlinear chemical process
was demonstrated.
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