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Abstract

In this work, multiplicative cyberattacks targeting the sensor-controller communication
link of a process control system are considered. The interdependence of detectability of
an attack with respect to a general class of residual-based detection schemes and the
control parameters is characterized. Exploiting this dependence, a controller screening
methodology that may be used to incorporate cyberattack detectability into the standard
controller design criteria is presented. Using a chemical process example, the application
of the controller design screening to a nonlinear process is demonstrated.
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1. Introduction

Increased reliance on networked communication has rendered process control systems
(PCSs) vulnerable to increasingly complex and frequent cyberattacks (Miller et al., 2018)
in the past couple of decades. This has motivated an increasing body of research dedicated
to the development of controller-based approaches to attack resilient controller design,
cyberattack detection, identification, and mitigation schemes (Giraldo et al., 2018, and
Tan et al., 2020 and references therein, Oyama et al., 2020, and Chen et al., 2021).
Broadly, cyberattacks may target the PCS by compromising the data integrity of process
data in the communication links or by altering the PCS logic. In this work, multiplicative
zero-alarm cyberattacks compromising the data integrity of the sensor-controller
communication link are considered. These attacks are modeled by a factor multiplied to
the measured variable and are particularly threatening as they may be designed to evade
detection by keeping the alarms in the detection scheme monitoring the process at zero,
with minimal process knowledge.

The detectability of the measured states of a process may be viewed as a systems-theoretic
property. In practice, the detectability of a cyberattack on the measured states of a process
is dependent on the control parameters (e.g., controller gain and observer gain), and the
detection scheme monitoring the process. This interdependence of the detectability of an
attack and the controller design has not received much attention in the literature. In a
previous work (Narasimhan et al., 2021), an approach to characterizing the
interdependence of the attack detectability in terms of terminal set of residuals (a small
set containing the origin within which the residual is ultimately bounded) for the attacked
and the attack-free process was presented. Based on the characterization, a controller
screening methodology that may be used identify and discard control parameters that
mask an attack was presented for processes modeled by discrete-time linear time invariant



1454 S. Narasimhan et al.

(LTI) dynamics. This screening may be used to incorporate cyberattack detectability into
existing controller design criteria (e.g., closed loop-stability and robustness to
uncertainty). The present work explores the application of the controller screening
methodology to a nonlinear chemical process. To make the paper self-contained, an
abridged version of the screening methodology is presented herein. Interested readers are
directed to Narasimhan et al. (2021) for more information.

2. Controller Screening Methodology

Processes modeled by discrete-time linear time invariant (LTI) dynamics, and subject to
bounded measurement noise and process disturbances are considered:

x(t+1) = Ax(t) + Bu(t) + Gw(t)

()
y(©) = A(Cx(t) + v (D))

where x(t) € R" is the state of the process, u(t) € R™ is the control input, y(t) € R™ is
the output from the process, w(t) € W ¢ R™ and v(t) € V ¢ R™ are the bounded process
disturbances and measurement noise. The sets W and V are compact and contain the origin
in their interior. Multiplicative sensor-controller link attacks are modeled by the diagonal
matrix A = diag(ay, ay, ..., ay) Where a; # 1 represents attack on the i*" sensor-controller
communication link. To generate an estimate of the state (denoted by %(t) € R"), a
Luenberger observer with gain L is used. A linear controller with gain K is used to steer
the state to the origin. The eigenvalues of A — LC and A — BK are assumed to lie within
the unit circle. For analysis, the augmented state vector is defined as &(t) =
[xT(t) eT()]T, where e(t) = x(t) — £(¢) is the estimation error (the dynamic model is
defined in Eq. (5) of Narasimhan et al., 2021). The dynamics of the augmented state is
E(t+1) = A;(A K, L)E(E) + B (A, L)d(t), where d(t) =[w'(®) vT(O]" €F:={*)]
w e W,v €V}) (A (A K, L) and B¢ (A, K, L) are given in Eq. (6) of Narasimhan et al., 2021).

Due to the presence of bounded noise in the measurement, and process disturbances, when
the process is at steady state, its augmented state converges to a small set containing the
origin, which is the minimum invariant set. When the closed-loop process is stable with

max |2:(A: (A K L)| <1 (4 (A;(A, K, L)) is the i'" eigenvalue of A;(AK,L)), the
minimum invariant set of the process depends upon the attack magnitude and the control
parameters. It is given by the infinite Minkowski sum D¢(A,K,L) = B:F @ A:B:F @
A%B;F @ ... (Kuntsevichetal., 1996). The residual vector is defined as r(¢t) = y(¢) — $(t).
Writing the residual in terms of the augmented state and the disturbance gives r(t) =
[(A—=DC CIJé@)+[0 Ald@®) = A-(A)E(t) + B.(A)d(t). Thus, the terminal set of
residuals for the process may be computed as D,.(4,K, L) = A.(A)D¢ (A K, L) @ B.(AF .

A general class of residual-based detection schemes using the 2-norm of the residual
vector as the detection metric is considered. Elaborate discussion on these detection
schemes may be found in Section 2.3-2.4 of Narasimhan et al., 2021. With respect to the
class of detection schemes considered, a closed-loop stability preserving attack of
magnitude A # I is defined as undetectable if the radius of the 2-norm ball enclosing the
terminal residual set of the process under an attack is less than or equal to the radius of
the 2-norm ball enclosing the terminal residual set of the attack-free process, i.e,

R(AK,L) <R(,K,L), where R(AK,L) == ,eén(a}\xKL)Hr’H. Similarly, any closed-loop
r (ALK
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stability preserving attack of magnitude A # I on the process is defined as a potentially
detectable attack if the radius of the 2-norm ball enclosing the terminal set of the attack-
free process is less than the radius of the 2-norm ball enclosing the terminal set of the
process under an attack, i.e., R(I,K,L) < R(A,K,L). Finally, an attack of magnitude A # I
is said to be detectable if it renders the closed-loop system in Eq.(1) unstable. Interested
readers are directed to Section 3.1 of Narasimhan et al., 2021, for more discussions.

To derive numerically verifiable conditions for characterizing attack detectability,
invariant outer polytopic approximation of the minimum invariant set of the augmented
states of the stable processis computed as DE*‘(A,K,L) (see Rakovi¢ et al., 2005 for
method), such that Dg(4,K,L) € DE&‘(A,K,L) € D¢(AK,L) ® BZ () (BE'(e) =
{&€e€R™| 1€ llow<e€}), where € is the error bound. Then, the inner polytopic
approximations of the terminal residual sets for the attack-free and the attacked process
are computed as DZ*(I,K, L) and DE*E(A, K, L), respectively. These inner approximations

satisfy Dﬁ}.“(/l, K,L) = DFt(AK, L) © A,.(A)BZ(e) € D,.(A,K,L) (j = e or j = a, e), where,
DEt(A, K, L) is the outer polytopic approximation of D.(4, K, L).

With the disturbance set F, the attack magnitude of interest A, the controller gain K, and

the observer gain L as the input, the controller screening algorithm is as follows. First, it

is checked if max |A;(A:(4,K,L)| = 1. If this is true, the choice of K and L under a
L

multiplicative attack with attack matrix A will render the closed-loop process unstable

and the attack is detectable. The screening algorithm is terminated in this case. However,

if max |1;(A:(4,K,L)| < 1, then the outer polytopic approximations of the residual sets
L

are computed using the method described in Section 3.2 of Narasimhan et al., 2021. From
the outer approximations, the inner approximations of the residual sets are computed.
Then, the radii of the 2-norm balls enclosing the sets (R®t(I,K,L), R®!(A,K,L),
RESY(A, K, L), and RESE(A, K, L)) are computed. If R®*(A, K, L) < RES'(I,K, L), the attack is
classified as an undetectable attack, else, if RESE (A, K, L) > R®* (I, K, L), then the attack is
classified as a potentially detectable. However, if it is found that R®'(A,K,L) >
RESY(I,K, L) or REE(A,K, L) > R®Y(I, K, L), the test is inconclusive. This may occur when
the numerical approximations of the terminal sets satisfy |RESE (4, K, L) — R (1K, L)| < B
or |RE&Y(AK,L) —R®t(I,K,L)| < B where f >0 is a small number, implying that the
radius estimates are close to each other.

3. Application to a Nonlinear Chemical Process

A chemical process example consisting of a continuously stirred tank reactor (CSTR)
with a second-order reaction occurring is considered. The process is subject to bounded
process disturbances and measurement noise. In the real-time control of chemical
processes, the control actions are usually applied to the nonlinear continuous-time process
at discrete time instances. To simulate this, the nonlinear ordinary differential equation
model describing the CSTR process is integrated with the linear controller generating a
new control action at every 1072 h. To apply the screening methodology, a discrete-time
LTI process model is needed. To generate the model, a continuous-time LTI model is first
obtained by linearizing the nonlinear model about its open-loop stable steady state. The
discrete-time LTI process model is then obtained by applying a zero-order hold
discretization. The process models, and process parameter values are given in
Narasimhan et al., 2021.
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In this study, the control parameters are to be
chosen such that they do not mask multiplicative
attacks of magnitude in this range [1.1,2] on the
concentration sensor-controller link. Since there
are infinitely many attack magnitudes in the range,
the screening algorithm is carried out with ten

=1 —1i (K)

values from the range, i.e., with values A; =
diag(a;, 1) where a;=114+01(G(—-1), i=
1,2, ...,10. Using pole placement, the controller and
observer gains are selected with the controller poles
at [0.5 — 0.1] and observer poles at [—0.3 0.4]. The
screening algorithm is applied to the chosen
controller design over all A;. The attacked closed-

loop process is stable with max |7\]- (Afa (ALK, L))| <
approximations of the terminal sets for the J

attacked process (Dﬁfi (Ai' K, L)) 1 for all i=1,2,..10. The pOlytOplC

approximations of the minimum invariant sets of
the attacked process over all attack magnitudes, and for the attack-free process are
computed with an error bound of € = 5 x 1075 . Then, the polytopic approximations of
terminal residual sets are computed (Figure 1). The size of the terminal residual set for
the attacked process increases with a;. For all cases, R®!(I,K,L) < RE:(A, K, L), i =
12,..10, with R**(1,K,L) = 0.0207, min RE¥(A;, K, L) = 0.0222 for A, = diag(ay, 1) =

diag(1.1,1) and max RE%f (A, K, L) = 0.0375 for Ay = diag(2,1) . Thus, all the attacks in the
L

range of interest are potentially detectable. To verify the potential detectability of each
attack magnitude, two sets of simulations of the process are performed, using the (1)
discrete-time LTI process model and (2) nonlinear continuous-time process model. One
thousand closed-loop simulation pairs of the attacked process are performed with various
realizations of the measurement noise and the process disturbance. For each simulation
pair, the same realization was applied. For both sets of simulations, the state is estimated
using a Luenberger observer designed based on the discrete-time LTI process model. To
monitor the process, a CUSUM detection scheme described by Eq. (12) in Narasimhan et
al., 2021 is used. The detection scheme is tuned with the choice of b = R®!(I,K,L) =
0.0207 and an alarm threshold of T = 0.01 to guarantee a zero-false alarm rate in the
absence of an attack.

™

o y
IS 0 /
s/
<\
\.\4_:

-0.05
-5 0

rr =1y — Y (kmol m 3y =108

Figure 1. Outer approximation of the
terminal residual set for the attack-free
process (D#St(1, K, L)), and the inner

Threshold
< S(t)

For attacks with «a; € [1.6,2], the attack is
detected over most simulations with the LTI and
the nonlinear models. Results from simulating
an attack of magnitude A;, = diag(2,1) on the
nonlinear process model are presented in Figure
2. The attack is detected in 969 out of 1000
simulations with the nonlinear continuous-time
process model. Of these 969 simulations, the
attack is not detected in the corresponding linear
model simulation in 4 simulations. Similarly, 0 2 3 |
during the simulations with the discrete-time Fioure 2. The CUSI};\‘/‘[“;tQt‘i]SﬁC 5(6) over
LTI process model, th§ attack is detected in 970 | 0‘%0 simulations of the closed-loop process
out of 1000 simulations. For 5 of the 970

under an attack of magnitude A, =
simulations, the attack is not detected for the diag(2,1).

S(t)
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corresponding nonlinear model simulation. In ‘g:;?">'lt'l'l

most of the simulation pairs where a discrepancy
between attack detection is observed, the
difference in the maximum CUSUM statistic
value between the two cases was small, meaning
that in one case, the value exceeded the threshold
by a small amount and in the other, the statistic
value was close to the other, but did not exceed the
threshold. For example, an attack is detected in the
linear case with a CUSUM statistic value of 0 I 2 3
0.0101, and for the corresponding nonlinear case, time (h)
the statistic value at the same time is 0.0095, and Figure 3. The CUSUM statistic S(t) over

. . 1000 simulations of the closed-loop process
the attack is not detected. Finally, for the same ;der an attack of magnitude A, =
realization of random variables applied to the diag(1.4,1).
nonlinear case and linear case, except for 174
simulations, the time at which the attack is first detected is the same for both process
models. Over most of these 174 simulations, the attack detection time for the two process
models differed by a single time step.

S(t)

0.01

For attacks with magnitude in range «; € [1.2,1.5], while the CUSUM statistic never
breaches the threshold, it is found to be a non-zero value over most simulations for both
the nonlinear case and the linear case. The CUSUM statistic resulting from simulating an
attack of magnitude A, = diag(1.4, 1) (with RESf(A4, K, L) = 0.027) on the nonlinear model
are given in Figure 3. It is also found that the maximum realization of the CUSUM
statistic over each simulation of the nonlinear model is of the same order of magnitude as
the maximum realization of the statistic over the corresponding simulation of the linear
model. In one case, the maximum CUSUM statistic in simulations with the nonlinear case
is 0, however, the maximum statistic for corresponding simulations with the linear case
is 3.1 x 1075. The mean of the 2-norm of the residual vector over 1000 simulations is
0.0081 with a variance of 2.4563 x 107> for the nonlinear case. The mean of the 2-norm
of the residual vector over 1000 simulations with the linear case is 0.0081 (same as that
for the nonlinear case) and the variance is 2.4553 x 1075, While not shown here, statistical
distribution of the 2-norm of the residual indicates that tuning the CUSUM detection
scheme with a lower alarm threshold may enable the detection of this attack. Note that
with the tuning approach adopted in this work, the CUSUM statistic remains at zero for
the attack-free process, and any non-zero CUSUM statistic value would indicate an
attack. Furthermore, with a decrease in a;, the total number of simulations with non-zero
realizations of the CUSUM statistic decrease, indicating that the attack becomes more
difficult to detect.

During closed-loop simulations with an attack of magnitude A; = diag(1.1,1), the
CUSUM statistic remains at zero over all the 1000 simulations for both the linear case
and the nonlinear case. Thus, the attack goes undetected, despite the control parameters
satisfying R®*(I,K, L) < R&f (A4, K, L). This does not contradict the screening algorithm,
as the attack is only potentially detectable. The fact that the attack went undetected may
be because R®'(Ay,K,L) — R®'(I,K,L) = 0.0015 is small. While further analysis is
required, for this attack magnitude, a different set of control parameters with a larger
separation between the sets D#S¢(I,K, L) and DEt(A,,K, L) may enable attack detection.
Moreover, for this case, the performance degradation resulting from this attack is small.
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The applicability of the controller screening algorithm to the nonlinear case is verified for
other control designs and attacks. For example, when the controller screening algorithm
predicts that (1) an attack A = diag(0.5,1) with control and observer gains selected by
placing the poles at [0.3 0.1] and [—0.4 0.3], respectively, and (2) an attack A = diag(1,0.9)
for control and observer gains selected by placing poles at [0.5—0.1] and [0.4 0.4],
respectively, are undetectable. During the closed-loop simulations with the nonlinear case
and the linear case, the CUSUM statistic remains at zero, and the attacks are not detected.
When the controller screening predicts that an attack A = diag(1,1.2) is potentially
detectable for control and observer gains with poles placed at [0.5 — 0.1] and [0.2 0.2],
respectively, the CUSUM statistic has non-zero realizations over most simulations.
However, it never breaches the threshold (similar to Figure 3). Thus, the controller
screening algorithm based on the discrete-time LTI model of the process is applicable to
the continuous-time nonlinear model of the process. This may be because the linear
process model adequately represents the dynamics of the nonlinear process near the
operating steady-state.

4. Conclusions

In this work, the application of a detectability-based controller design screening
methodology for a multiplicative sensor-controller link cyberattacks to a nonlinear
chemical process example was demonstrated. Future work will focus on controller-based
approaches that enable the detection of a multiplicative sensor-controller link attack.
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