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Abstract 

In this work, multiplicative cyberattacks targeting the sensor-controller communication 
link of a process control system are considered. The interdependence of detectability of 
an attack with respect to a general class of residual-based detection schemes and the 
control parameters is characterized. Exploiting this dependence, a controller screening 
methodology that may be used to incorporate cyberattack detectability into the standard 
controller design criteria is presented. Using a chemical process example, the application 
of the controller design screening to a nonlinear process is demonstrated. 

Keywords: Multiplicative cyberattack, zero-alarm attack, controller design, cyberattack 
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1. Introduction 

Increased reliance on networked communication has rendered process control systems 
(PCSs) vulnerable to increasingly complex and frequent cyberattacks (Miller et al., 2018) 
in the past couple of decades. This has motivated an increasing body of research dedicated 
to the development of controller-based approaches to attack resilient controller design, 
cyberattack detection, identification, and mitigation schemes (Giraldo et al., 2018, and 
Tan et al., 2020 and references therein, Oyama et al., 2020, and Chen et al., 2021). 
Broadly, cyberattacks may target the PCS by compromising the data integrity of process 
data in the communication links or by altering the PCS logic. In this work, multiplicative 
zero-alarm cyberattacks compromising the data integrity of the sensor-controller 
communication link are considered. These attacks are modeled by a factor multiplied to 
the measured variable and are particularly threatening as they may be designed to evade 
detection by keeping the alarms in the detection scheme monitoring the process at zero, 
with minimal process knowledge.  
 
The detectability of the measured states of a process may be viewed as a systems-theoretic 
property. In practice, the detectability of a cyberattack on the measured states of a process 
is dependent on the control parameters (e.g., controller gain and observer gain), and the 
detection scheme monitoring the process. This interdependence of the detectability of an 
attack and the controller design has not received much attention in the literature. In a 
previous work (Narasimhan et al., 2021), an approach to characterizing the 
interdependence of the attack detectability in terms of terminal set of residuals (a small 
set containing the origin within which the residual is ultimately bounded) for the attacked 
and the attack-free process was presented. Based on the characterization, a controller 
screening methodology that may be used identify and discard control parameters that 
mask an attack was presented for processes modeled by discrete-time linear time invariant 
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(LTI) dynamics. This screening may be used to incorporate cyberattack detectability into 
existing controller design criteria (e.g., closed loop-stability and robustness to 
uncertainty). The present work explores the application of the controller screening 
methodology to a nonlinear chemical process. To make the paper self-contained, an 
abridged version of the screening methodology is presented herein. Interested readers are 
directed to Narasimhan et al. (2021) for more information. 

2. Controller Screening Methodology

Processes modeled by discrete-time linear time invariant (LTI) dynamics, and subject to 
bounded measurement noise and process disturbances are considered: 𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵 𝑢(𝑡) + 𝐺𝑤(𝑡) 

 𝑦(𝑡) = Λ(𝐶𝑥(𝑡) + 𝑣(𝑡)) 

 
(1) 

 
where 𝑥(𝑡) ∈ ℝ𝑛 is the state of the process, 𝑢(𝑡) ∈ ℝ𝑛𝑢 is the control input, 𝑦(𝑡) ∈ ℝ𝑚 is 
the output from the process, 𝑤(𝑡) ∈ 𝑊 ⊂ ℝ𝑛𝑤 and 𝑣(𝑡) ∈ 𝑉 ⊂ ℝ𝑚 are the bounded process 
disturbances and measurement noise. The sets 𝑊 and 𝑉 are compact and contain the origin 
in their interior. Multiplicative sensor-controller link attacks are modeled by the diagonal 
matrix Λ = diag(α1,α2, … ,αm) where 𝛼𝑖 ≠ 1 represents attack on the 𝑖𝑡ℎ sensor-controller 
communication link. To generate an estimate of the state (denoted by 𝑥(𝑡) ∈ ℝ𝑛), a 
Luenberger observer with gain 𝐿 is used. A linear controller with gain 𝐾 is used to steer 
the state to the origin. The eigenvalues of 𝐴 − 𝐿𝐶 and 𝐴 − 𝐵𝐾 are assumed to lie within 
the unit circle. For analysis, the augmented state vector is defined as 𝜉(𝑡) =

[𝑥𝑇(𝑡) 𝑒𝑇(𝑡)]𝑇, where 𝑒(𝑡) = 𝑥(𝑡)−  𝑥(𝑡) is the estimation error (the dynamic model is 
defined in Eq. (5) of Narasimhan et al., 2021).  The dynamics of the augmented state is 𝜉(𝑡 + 1) =  𝐴𝜉(Λ,𝐾, 𝐿)𝜉(𝑡) + 𝐵𝜉(Λ,𝐿)𝑑(𝑡), where 𝑑(𝑡) = [𝑤𝑇(𝑡) 𝑣𝑇(𝑡)]𝑇 ∈ 𝐹 ∶= {(𝑤𝑣) ∣𝑤 ∈ 𝑊,𝑣 ∈ 𝑉}) (𝐴𝜉(Λ,𝐾, 𝐿) and 𝐵𝜉(Λ,𝐾, 𝐿) are given in Eq. (6) of Narasimhan et al., 2021).  
 
Due to the presence of bounded noise in the measurement, and process disturbances, when 
the process is at steady state, its augmented state converges to a small set containing the 
origin, which is the minimum invariant set. When the closed-loop process is stable with max𝑖 |𝜆𝑖(𝐴𝜉(Λ, K, L)| < 1 (𝜆𝑖 (𝐴𝜉(Λ,𝐾, 𝐿)) is the 𝑖𝑡ℎ  eigenvalue of  𝐴𝜉(Λ,𝐾,𝐿) ),  the 

minimum invariant set of the process depends upon the attack magnitude and the control 
parameters. It is given by the infinite Minkowski sum 𝐷𝜉(Λ,𝐾,𝐿) =  𝐵𝜉𝐹 ⊕ 𝐴𝜉𝐵𝜉𝐹 ⊕𝐴𝜉2𝐵𝜉𝐹 ⊕…  (Kuntsevich et al., 1996). The residual vector is defined as 𝑟(𝑡) = 𝑦(𝑡)−  𝑦̂(𝑡). 

Writing the residual in terms of the augmented state and the disturbance gives 𝑟(𝑡) =

[(Λ− 𝐼)𝐶 𝐶]𝜉(𝑡) + [0 Λ]𝑑(𝑡) = 𝐴𝑟(Λ)𝜉(𝑡) + 𝐵𝑟(Λ)𝑑(𝑡). Thus, the terminal set of 
residuals for the process may be computed as 𝐷𝑟(𝛬,𝐾,𝐿) = 𝐴𝑟(Λ)𝐷𝜉(Λ,𝐾,𝐿)  ⊕𝐵𝑟(Λ)𝐹 . 
 
A general class of residual-based detection schemes using the 2-norm of the residual 
vector as the detection metric is considered. Elaborate discussion on these detection 
schemes may be found in Section 2.3-2.4 of Narasimhan et al., 2021.  With respect to the 
class of detection schemes considered, a closed-loop stability preserving attack of 
magnitude Λ ≠ 𝐼 is defined as undetectable if the radius of the 2-norm ball enclosing the 
terminal residual set of the process under an attack is less than or equal to the radius of 
the 2-norm ball enclosing the terminal residual set of the attack-free process, i.e, 𝑅(Λ,𝐾, 𝐿) ≤ 𝑅(𝐼,𝐾,𝐿), where 𝑅(Λ,𝐾,𝐿) ≔ max𝑟′∈𝐷𝑟(Λ,𝐾,𝐿)

||𝑟′||. Similarly, any closed-loop 
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stability preserving attack of magnitude Λ ≠ 𝐼 on the process is defined as a potentially 
detectable attack if the radius of the 2-norm ball enclosing the terminal set of the attack-
free process is less than the radius of the 2-norm ball enclosing the terminal set of the 
process under an attack, i.e., 𝑅(𝐼,𝐾, 𝐿) < 𝑅(Λ,𝐾,𝐿).  Finally, an attack of magnitude Λ ≠ 𝐼 
is said to be detectable if it renders the closed-loop system in Eq.(1) unstable. Interested 
readers are directed to Section 3.1 of Narasimhan et al., 2021, for more discussions. 

To derive numerically verifiable conditions for characterizing attack detectability, 
invariant outer polytopic approximation of the minimum invariant set of the augmented 
states of the stable process is computed as 𝐷𝜉𝑒𝑠𝑡(Λ,𝐾,𝐿) (see Raković et al., 2005 for 
method), such that 𝐷𝜉(𝛬,𝐾,𝐿) ⊆ 𝐷𝜉𝑒𝑠𝑡(𝛬,𝐾, 𝐿) ⊆ 𝐷𝜉(𝛬,𝐾,𝐿)⊕𝐵∞2𝑛(𝜖) (𝐵∞2𝑛(𝜖) ≔
{ 𝜉′ ∈  ℝ2𝑛 ∣∣  ∥ 𝜉′ ∥∞ ≤ 𝜖 }), where 𝜖 is the error bound. Then, the inner polytopic 
approximations of the terminal residual sets for the attack-free and the attacked process 
are computed as 𝐷𝑟𝑒𝑒𝑠𝑡(𝐼,𝐾,𝐿) and 𝐷𝑟𝑎,𝑒𝑒𝑠𝑡(Λ,𝐾, 𝐿), respectively. These inner approximations 
satisfy 𝐷𝑟𝑗𝑒𝑠𝑡(𝛬,𝐾,𝐿) = 𝐷𝑟𝑒𝑠𝑡(𝛬,𝐾,𝐿)⊖𝐴𝑟(𝛬)𝐵∞2𝑛(𝜖) ⊆ 𝐷𝑟(𝛬,𝐾,𝐿) (𝑗 = 𝑒 or 𝑗 = 𝑎, 𝑒), where, 𝐷𝑟𝑒𝑠𝑡(𝛬,𝐾,𝐿) is the outer polytopic approximation of 𝐷𝑟(𝛬,𝐾, 𝐿).   

With the disturbance set 𝐹, the attack magnitude of interest Λ,  the controller gain 𝐾, and 
the observer gain 𝐿 as the input, the controller screening algorithm is as follows. First, it 
is checked if 𝑚𝑎𝑥𝑖 |𝜆𝑖(𝐴𝜉(𝛬,𝐾, 𝐿)| ≥ 1. If this is true, the choice of K and L under a 

multiplicative attack with attack matrix 𝛬 will render the closed-loop process unstable 
and the attack is detectable. The screening algorithm is terminated in this case. However, 
if 𝑚𝑎𝑥𝑖 |𝜆𝑖(𝐴𝜉(𝛬,𝐾,𝐿)| < 1, then the outer polytopic approximations of the residual sets 

are computed using the method described in Section 3.2 of Narasimhan et al., 2021. From 
the outer approximations, the inner approximations of the residual sets are computed.  
Then, the radii of the 2-norm balls enclosing the sets (𝑅𝑒𝑠𝑡(𝐼,𝐾,𝐿), 𝑅𝑒𝑠𝑡(𝛬,𝐾, 𝐿), 𝑅𝑒𝑒𝑠𝑡(𝛬,𝐾,𝐿), and 𝑅𝑎,𝑒𝑒𝑠𝑡(𝛬,𝐾, 𝐿)) are computed. If 𝑅𝑒𝑠𝑡(𝛬,𝐾,𝐿) < 𝑅𝑒𝑒𝑠𝑡(𝐼,𝐾, 𝐿), the attack is 
classified as an undetectable attack, else, if 𝑅𝑎 ,𝑒𝑒𝑠𝑡(𝛬,𝐾, 𝐿) > 𝑅𝑒𝑠𝑡(𝐼,𝐾, 𝐿), then the attack is 
classified as a potentially detectable. However, if it is found that 𝑅𝑒𝑠𝑡(𝛬,𝐾,𝐿) >𝑅𝑒𝑒𝑠𝑡(𝐼,𝐾,𝐿) or 𝑅𝑎,𝑒𝑒𝑠𝑡(𝛬,𝐾, 𝐿) > 𝑅𝑒𝑠𝑡(𝐼,𝐾,𝐿), the test is inconclusive. This may occur when 
the numerical approximations of the terminal sets satisfy |𝑅𝑎 ,𝑒𝑒𝑠𝑡(𝛬,𝐾,𝐿)− 𝑅𝑒𝑠𝑡(𝐼,𝐾, 𝐿)| ≤ 𝛽 
or |𝑅𝑒𝑒𝑠𝑡(𝛬,𝐾, 𝐿)−𝑅𝑒𝑠𝑡(𝐼,𝐾,𝐿)| ≤ 𝛽 where 𝛽 > 0 is a small number, implying that the 
radius estimates are close to each other. 

3. Application to a Nonlinear Chemical Process 

A chemical process example consisting of a continuously stirred tank reactor (CSTR) 
with a second-order reaction occurring is considered. The process is subject to bounded 
process disturbances and measurement noise. In the real-time control of chemical 
processes, the control actions are usually applied to the nonlinear continuous-time process 
at discrete time instances. To simulate this, the nonlinear ordinary differential equation 
model describing the CSTR process is integrated with the linear controller generating a 
new control action at every 10−2 ℎ. To apply the screening methodology, a discrete-time 
LTI process model is needed. To generate the model, a continuous-time LTI model is first 
obtained by linearizing the nonlinear model about its open-loop stable steady state. The 
discrete-time LTI process model is then obtained by applying a zero-order hold 
discretization. The process models, and process parameter values are given in 
Narasimhan et al., 2021. 
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In this study, the control parameters are to be 
chosen such that they do not mask multiplicative 
attacks of magnitude in this range [1.1,2] on the 
concentration sensor-controller link. Since there 
are infinitely many attack magnitudes in the range, 
the screening algorithm is carried out with ten 
values from the range, i.e., with values Λ𝑖 =

diag(𝛼𝑖, 1) where 𝛼𝑖 = 1.1 + 0.1(𝑖 − 1), 𝑖 =

1,2, … ,10. Using pole placement, the controller and 
observer gains are selected with the controller poles 
at [0.5− 0.1] and observer poles at [−0.3 0.4]. The 
screening algorithm is applied to the chosen 
controller design over all Λ𝑖. The attacked closed-
loop process is stable with max𝑗 |λj (𝐴𝜉𝑎(Λ𝑖,𝐾, 𝐿))| <

1 for all 𝑖 = 1,2, … 10. The polytopic 
approximations of the minimum invariant sets of 

the attacked process over all attack magnitudes, and for the attack-free process are 
computed with an error bound of 𝜖 = 5 × 10−5 . Then, the polytopic approximations of 
terminal residual sets are computed (Figure 1). The size of the terminal residual set for 
the attacked process increases with 𝛼𝑖. For all cases,  𝑅𝑒𝑠𝑡(𝐼,𝐾, 𝐿) < 𝑅𝑎,𝑒𝑒𝑠𝑡(𝛬𝑖,𝐾,𝐿), 𝑖 =

1,2, … 10, with 𝑅𝑒𝑠𝑡(𝐼,𝐾,𝐿) =  0.0207, min𝑖 𝑅𝑎,𝑒𝑒𝑠𝑡(Λ𝑖,𝐾,𝐿) = 0.0222 for Λ1 = diag(𝛼1, 1) =

diag(1.1,1) and max𝑖 𝑅𝑎 ,𝑒𝑒𝑠𝑡(Λ𝑖,𝐾,𝐿) = 0.0375 for Λ10 = diag(2,1) . Thus, all the attacks in the 

range of interest are potentially detectable. To verify the potential detectability of each 
attack magnitude, two sets of simulations of the process are performed, using the (1) 
discrete-time LTI process model and (2) nonlinear continuous-time process model. One 
thousand closed-loop simulation pairs of the attacked process are performed with various 
realizations of the measurement noise and the process disturbance. For each simulation 
pair, the same realization was applied. For both sets of simulations, the state is estimated 
using a Luenberger observer designed based on the discrete-time LTI process model. To 
monitor the process, a CUSUM detection scheme described by Eq. (12) in Narasimhan et 
al., 2021 is used. The detection scheme is tuned with the choice of 𝑏 = 𝑅𝑒𝑠𝑡(𝐼,𝐾,𝐿) =

 0.0207 and an alarm threshold of 𝜏 = 0.01 to guarantee a zero-false alarm rate in the 
absence of an attack.  
 
For attacks with 𝛼𝑖 ∈ [1.6,2], the attack is 
detected over most simulations with the LTI and 
the nonlinear models. Results from simulating 
an attack of magnitude Λ10 = diag(2,1) on the 
nonlinear process model are presented in Figure 
2. The attack is detected in 969 out of 1000 
simulations with the nonlinear continuous-time 
process model. Of these 969 simulations, the 
attack is not detected in the corresponding linear 
model simulation in 4 simulations. Similarly, 
during the simulations with the discrete-time 
LTI process model, the attack is detected in 970 
out of 1000 simulations. For 5 of the 970 
simulations, the attack is not detected for the 

Figure 1.  Outer approximation of the 
terminal residual set for the attack-free 
process (𝐷𝑟𝑒𝑠𝑡(𝐼,𝐾,𝐿)), and the inner 
approximations of the terminal sets for the 
attacked process (𝐷𝑟𝑎,𝑒𝑒𝑠𝑡(Λ𝑖 ,𝐾, 𝐿)). 

Figure 2. The CUSUM statistic 𝑆(𝑡) over 
1000 simulations of the closed-loop process 
under an attack of magnitude Λ10 =

diag(2,1). 



corresponding nonlinear model simulation. In 
most of the simulation pairs where a discrepancy 
between attack detection is observed, the 
difference in the maximum CUSUM statistic 
value between the two cases was small, meaning 
that in one case, the value exceeded the threshold 
by a small amount and in the other, the statistic 
value was close to the other, but did not exceed the 
threshold. For example, an attack is detected in the 
linear case with a CUSUM statistic value of 
0.0101, and for the corresponding nonlinear case, 
the statistic value at the same time is 0.0095, and 
the attack is not detected. Finally, for the same 
realization of random variables applied to the 
nonlinear case and linear case, except for 174 
simulations, the time at which the attack is first detected is the same for both process 
models. Over most of these 174 simulations, the attack detection time for the two process 
models differed by a single time step.  
 
For attacks with magnitude in range 𝛼𝑖 ∈ [1.2, 1.5], while the CUSUM statistic never 
breaches the threshold, it is found to be a non-zero value over most simulations for both 
the nonlinear case and the linear case. The CUSUM statistic resulting from simulating an 
attack of magnitude Λ4 = diag(1.4, 1) (with 𝑅𝑎,𝑒𝑒𝑠𝑡(Λ4,𝐾, 𝐿) = 0.027) on the nonlinear model 
are given in Figure 3. It is also found that the maximum realization of the CUSUM 
statistic over each simulation of the nonlinear model is of the same order of magnitude as 
the maximum realization of the statistic over the corresponding simulation of the linear 
model. In one case, the maximum CUSUM statistic in simulations with the nonlinear case 
is 0, however, the maximum statistic for corresponding simulations with the linear case 
is  3.1 × 10−5. The mean of the 2-norm of the residual vector over 1000 simulations is 
0.0081 with a variance of  2.4563 × 10−5 for the nonlinear case. The mean of the 2-norm 
of the residual vector over 1000 simulations with the linear case is 0.0081 (same as that 
for the nonlinear case) and the variance is 2.4553 × 10−5. While not shown here, statistical 
distribution of the 2-norm of the residual indicates that tuning the CUSUM detection 
scheme with a lower alarm threshold may enable the detection of this attack. Note that 
with the tuning approach adopted in this work, the CUSUM statistic remains at zero for 
the attack-free process, and any non-zero CUSUM statistic value would indicate an 
attack. Furthermore, with a decrease in 𝛼𝑖, the total number of simulations with non-zero 
realizations of the CUSUM statistic decrease, indicating that the attack becomes more 
difficult to detect. 
 
During closed-loop simulations with an attack of magnitude Λ1 = diag(1.1,1), the 
CUSUM statistic remains at zero over all the 1000 simulations for both the linear case 
and the nonlinear case. Thus, the attack goes undetected, despite the control parameters 
satisfying 𝑅𝑒𝑠𝑡(𝐼,𝐾, 𝐿) < 𝑅𝑎 ,𝑒𝑒𝑠𝑡(𝛬1,𝐾, 𝐿). This does not contradict the screening algorithm, 
as the attack is only potentially detectable. The fact that the attack went undetected may 
be because 𝑅𝑒𝑠𝑡(𝛬1,𝐾, 𝐿)− 𝑅𝑒𝑠𝑡(𝐼,𝐾, 𝐿) = 0.0015 is small. While further analysis is 
required, for this attack magnitude, a different set of control parameters with a larger 
separation between the sets 𝐷𝑟𝑒𝑠𝑡(𝐼,𝐾, 𝐿) and 𝐷𝑟𝑒𝑠𝑡(𝛬1,𝐾, 𝐿) may enable attack detection. 
Moreover, for this case, the performance degradation resulting from this attack is small. 

Figure 3. The CUSUM statistic 𝑆(𝑡) over 
1000 simulations of the closed-loop process 
under an attack of magnitude Λ4 =

diag(1.4,1). 
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The applicability of the controller screening algorithm to the nonlinear case is verified for 
other control designs and attacks. For example, when the controller screening algorithm 
predicts that (1) an attack Λ = diag(0.5,1) with control and observer gains selected by 
placing the poles at [0.3 0.1] and [−0.4 0.3], respectively, and (2) an attack Λ = diag(1,0.9) 
for control and observer gains selected by placing poles at [0.5 − 0.1] and [0.4 0.4], 
respectively, are undetectable. During the closed-loop simulations with the nonlinear case 
and the linear case, the CUSUM statistic remains at zero, and the attacks are not detected. 
When the controller screening predicts that an attack Λ = diag(1,1.2) is potentially 
detectable for control and observer gains with poles placed at [0.5 − 0.1] and [0.2 0.2], 
respectively, the CUSUM statistic has non-zero realizations over most simulations. 
However, it never breaches the threshold (similar to Figure 3).  Thus, the controller 
screening algorithm based on the discrete-time LTI model of the process is applicable to 
the continuous-time nonlinear model of the process. This may be because the linear 
process model adequately represents the dynamics of the nonlinear process near the 
operating steady-state.  

4. Conclusions 

In this work, the application of a detectability-based controller design screening 
methodology for a multiplicative sensor-controller link cyberattacks to a nonlinear 
chemical process example was demonstrated. Future work will focus on controller-based 
approaches that enable the detection of a multiplicative sensor-controller link attack. 
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