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ABSTRACT
The ability of biomolecules to exert forces on their surroundings or resist compression from the environment is essential in a variety of
biologically relevant contexts. For filaments in the low-temperature limit and under a constant compressive force, Euler buckling theory
predicts a sudden transition from a compressed state to a bent state in these slender rods. In this paper, we use a mean-field theory to show
that if a semiflexible chain is compressed at a finite temperature with a fixed end-to-end distance (permitting fluctuations in the compressive
forces), it exhibits a continuous phase transition to a buckled state at a critical level of compression. We determine a quantitatively accurate
prediction of the transverse position distribution function of the midpoint of the chain that indicates this transition. We find that the mean
compressive forces are non-monotonic as the extension of the filament varies, consistent with the observation that strongly buckled filaments
are less able to bear an external load. We also find that for the fixed extension (isometric) ensemble, the buckling transition does not coincide
with the local minimum of the mean force (in contrast to Euler buckling). We also show that the theory is highly sensitive to fluctuations in
length in two dimensions and the buckling transition can still be accurately recovered by accounting for those fluctuations. These predictions
may be useful in understanding the behavior of filamentous biomolecules compressed by fluctuating forces, relevant in a variety of biological
contexts.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0104910

I. INTRODUCTION

Buckling is defined as the process by which a slender column
bends laterally under an axial compressive load. At the cellular level,
buckling instabilities have been observed1–6 to occur in biological
systems as well with cytoskeletal filaments, such as F-actin, which
buckle during cell deformation. The ability of a single or bundled
cytoskeletal filaments to exert forces, support an external load, or
deform membranes is essential for many biological processes,7–14

and it is important to relate the mechanical properties of the
filaments to their ability to perform these functions. Deformation
forces resulting from cell shape changes can also lead to internal
re-organization of cross-linked actin bundles15–19 and can induce
buckling in some cases. The ends of actin filaments inside a
cell can be mechanically coupled to other biomolecules forming
the cytoskeletal network,20–26 and these attachment conditions
can generate contractile forces inducing buckling. Other more
complex cases of buckling inside a cell arise from actomyosin

contractility27–31 involving ATP-dependent compression by
myosin-motors or even axial compression on the actin bundles by
cell membrane tension.32–34 Actomyosin contractility can also lead
to many interesting phenomena such as helical buckling35–37 or
development of sharp kinks38–45 that eventually cause sharply bent
filaments to sever.

In addition to experimental studies of buckling in vivo,
numerous in vitro studies have probed the responses of semiflexible
biomolecules to compressive forces using single-molecule force
experiments for single filaments,23,46–51 cross-linked bundles,52,53

and networks.17,44,54 Cross-linked actin networks exhibit
strain-stiffening55–58 a characteristic property of semiflexible
polymers that show greater resistance to elongation the more they
are stretched. At high strains, part of the network also experiences
compression, and actin filaments tend to buckle59 leading to sever-
ing. As amodel to explore the role of deformation forces on buckling
in the actomyosin cell cortex, artificially made giant unilamellar
vesicles (GUVs) are used5,6,44,60,61 to mimic the effects of forces
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exerted by cell membrane on the reconstituted cytoskeletal network.
Microfluidic experiments62–67 on semiflexible actin filaments
in extensional flows have also shown a stretch–coil transition, with
a competition between elasticity and tension causing the actin
filaments to buckle. Buckling has also been reported53,68–71 in ring
polymers under spherical confinement, which are found in many
naturally occurring systems, such as viral capsids or circular DNA
in bacteria. These non-equilibrium processes may play important
roles in many biologically relevant systems, but even the buckling
of a single filament in the presence of thermal fluctuations remains
poorly understood at equilibrium.

On a macroscopic scale, the buckling of columns and elas-
tic rods has been studied for centuries. According to the Euler
buckling theory,72 an elastic rod buckles when the compressive
force exceeds a critical value in a sharp transition in the absence
of thermal fluctuations. On a microscopic level, the buckling
of single biomolecules at finite temperatures has been observed
experimentally6,23,44 and theoretically.73,74 The buckling transition
depends strongly on the mechanical properties of the filament. For
example, F-actin has a persistence length (lp) that varies between
10 and 20 μm11,75 and the typical length (L) of the filaments found in
a filopodium is of the order of 1–10 μm.11 At finite temperatures, the
filament fluctuates, and the local orientation of the filament varies
on the length scale of the persistence length. The mechanical
properties of these thermally fluctuating F-actin filaments dictate
a cell’s response to environmental cues, and therefore, a good
understanding of the buckling process in the presence of thermal
fluctuations is essential.

To model the buckling process in filamentous biomolecules,
the responses to compressive forces are studied in two different
ensembles:76–79 isometric and isotensional. These ensembles are
equivalent to the Helmholtz (fixed volume) and Gibbs (fixed
pressure) ensembles of classical statistical mechanics, respectively.
An isometric ensemble is obtained by tethering the endpoints of
the polymer, where the applied force fluctuates. In the isotensional
ensemble, the fixed force stretches or compresses the chain and
the fluctuating end-to-end distance of a polymer is measured.
Classical Euler buckling is in the isotensional ensemble, with a con-
stant compressive force, but in the absence of thermal fluctuations.
The equivalence between these two ensembles has been explicitly
demonstrated77,78 for an unconfined polymer under an applied ten-
sion, but differences between the ensembles have been found in the
thermodynamic limit in some cases, including confined polymers
under tension.79 For finite length chains, the isometric ensemble will
have a fluctuating force at the endpoints, and equivalence between
the isometric and isotensional ensembles can only be realized in
the L→∞ limit.78 For finite length chains, we expect differences
between these two ensembles, including the critical compression
force (in the isotensional ensemble) or mean compression force (in
the isometric ensemble) at which buckling occurs. In this paper,
we will focus primarily on the statistics of isometric systems. It is
important to note that, while isotensional experiments are readily
performed using optical tweezers, the most appropriate ensemble in
vivomay depend on the system of interest. For example, the ends of
actin filaments inside of the cell can be found trapped between other
biomolecules.20–22,80 Stretching or compression of these filaments
may be primarily due to the endpoint constraints, rather than a
constant applied force. In addition to the pinning of the endpoints of

the chain, many authors81,82 have studied the effect of constraints on
the orientation of the bonds at the endpoints as well. These include
“clamped” (both bonds constrained to be aligned with the compres-
sive force), “cantilevered” (one bond constrained to be aligned with
the force axis), and “free” (no constraint on the endpoint bonds).
The critical compression at which buckling occurs will depend on
the specific endpoint ensemble chosen, but buckling is expected to
occur in all three ensembles at some compression. In this paper, we
focus only on the free bond ensemble but discuss the application of
the other endpoint constraints in Sec. IV.

The wormlike chain (WLC) theory83 is widely used to model
semiflexible polymers. The WLC is a continuum theory for slender
filaments, incorporating both inextensibility and a length scale, lp,
called the persistence length. Deriving statistical quantities from the
WLC model exactly involves solving the path integral of a quantum
particle84,85 on the surface of a sphere. A substantial number of
numerical studies have explored the process of buckling in single,48
bundled,86,87 and confined71,88,89 wormlike chains. While statistical
averages can usually be determined numerically using well-
established techniques for solving the Schrödinger equation with a
nonlinear potential, it is often the case that analytically tractable
results are not easily determined.73,81,82,90–92 To overcome this
limitation, approximate methods, such as mean-field (MF) the-
ories for wormlike chains,74,93–98 provide analytically tractable
quantitative predictions for a variety of equilibrium statistics that
can be more easily applied to experimental data. Previously, the
authors in Ref. 99 have taken a mean-field theoretical approach to
model filament buckling and they have found a weakly first-order
transition between unbuckled and buckled states in the isoten-
sional ensemble. Despite this theoretical effort, many details of
the buckling of a filament, such as the end-to-end distribution
functions, remain poorly predicted on a quantitative level. As
a result, more work is required to fill the gap in developing a
theory for the buckling process in wormlike chains that will have
both experimentally accessible predictions as well as biological
context.

In this paper, we use an analytically tractable mean-field the-
ory combined with Monte Carlo simulations to determine the
statistics of wormlike chains constrained to have fixed end-to-end
distance in two and three dimensions. In Sec. II, we describe the
mathematical and computational models. In Sec. III B, we derive
the end-to-end distribution for semiflexible chains, recovering a
well-known result100 in three dimensions but finding poor agree-
ment with simulations in two dimensions. We show, in Sec. III C,
that the distributions can be brought into agreement with simula-
tions by modifying a parameter in the mean-field approximation
and find that the distribution of the transverse position of the
midpoint of a chain can be accurately predicted using that modifi-
cation in Sec. III D. We find that the distribution transitions from
unimodal to bimodal (indicating a continuous phase transition)
and that the mean compressive force is nonmonotonic but that
the locations of local minima in the force do not coincide with
the buckling transition. Finally, in Sec. III E, we show that the
distribution functions predicted in Sec. III D are highly sensitive
to small fluctuations in length and the theory can be modified to
qualitatively reproduce the distribution of transverse positions. We
conclude with a summary of the applicability and limitations of the
model.
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II. METHODS
A. Theory

The wormlike chain model has been used to describe84,101–103

the statistics and dynamics of a wide range of biomolecules. This
continuum model incorporates two features relevant for a variety of
polymers: inextensibility (fixed length L) and a resistance to bending
through the Hamiltonian,

βHwlc =
lp
2 ∫

L

0
ds(∂sû)2, (1)

where r is the position on the polymer, û = ∣∂r/∂s∣ is the unit
vector describing the local direction of the polymer, and ∂/∂s indi-
cates the derivative with respect to the arc-length s. The imposition
of an inextensibility constraint makes the WLC model difficult
to deal with analytically in all but the simplest cases, and many
observables must typically be evaluated numerically.73,90,91 In many
cases,93–95,99 analytic progress can be made by relaxing the rigid
constraints of inextensibility by constraining the average length of
the polymer using a Lagrange multiplier [commonly referred to as a
Mean-Field (MF) model]. For an unconstrainedWLC, an often used
MF Hamiltonian is

H0[u(s)] = δ(u20 + u2L) +
l0
2 ∫

L

0
dsu̇ 2 + λ∫

L

0
dsu2, (2)

where l0 is a “mean-field persistence length” (l0 ≠ lp) for the uncon-
strained WLC, λ is a resistance to stretching along the backbone
of the chain, and u = ṙ is the local stretching of the chain in the
continuum limit. Note that Eq. (2) does not impose any constraints
on the direction of the bonds at the endpoints (only on the length
of the bonds at the endpoints through the Lagrange multiplier
δ). This model, thus, corresponds to a free endpoint ensemble, as
opposed to clamped or cantilevered ensembles (discussed further in
the conclusions). For the true WLC, the inextensibility constraint
is ∣u(s)∣ = 1. The MF approach chooses the parameters λ and δ
such that inextensibility is imposed on average, with ⟨∫ L

0 dsu
2⟩0 = L

and ⟨u20 + u2L⟩0 = 1 (with ⟨⋅ ⋅ ⋅⟩0 being a statistical average using the
MF Hamiltonian in 2). The Lagrange multiplier λ constrains the
length of the chain, while the Lagrange multiplier δ accounts for
the excess fluctuations at the endpoints of the chain.93,95,96 The
endpoint fluctuation termsmay appear unimportant for long chains,
but we will see that deriving an accurate end-to-end distance distri-
bution function requires δ to be included in the theory (discussed
further in Sec. III B). It is convenient to define the free energy for
a wormlike filament as F0 = − log[∫ D[u(s)]e−βH0] + λL + 2δ, with
the constraints imposed through ∂F0/∂λ = ∂F0/∂δ = 0. The MF
Hamiltonian is quadratic, making the calculation of a variety of
equilibrium averages straightforward (as discussed in more detail in
Sec. III A).

B. Simulation methodology
We simulate a coarse-grained bead-spring chain (as shown in

Figs. 1) consisting of N = 100 beads with positions indexed as ri
and (N − 1) bonds with normalized bond vectors given by ûi = (ri+1
− ri)/∣ri+1 − ri∣. The chain length is given by L = (N − 1)a, where a is

FIG. 1. Schematic diagram of the WLC model and the buckling process in our
simulations. (a) The bending and stretching contributions to the energy in the
simulations. (b) The initialization of the simulation: a chain of length L is com-
pressed uniformly along the backbone to Xee = 0.99L and allowed to equilibrate
as schematically diagrammed. The equilibrated configurations from x = 0.99 are
used as the initial conditions for x = 0.98 after each bond is uniformly compressed
by 1%, and the process is repeated. (c) A sample of 100 equilibrated configura-
tions for the two-dimensional simulation with x = 0.94. Configurations are colored
based on their total bending energy, with red indicating greater energy. The low
density in the center indicates that the system has buckled: the most probable
configurations have a nonzero value of YL/2 = yL.

the bond length. The Hamiltonian for the discretized WLC consists
of two energetic contributions: the bending energy and the stretch-
ing energy of the bead-spring chain. In our simulations, the bending
energy is Ubend = κ∑i(1 − ûi ⋅ ûi+1). To coarse-grain the system,
we have used the persistence length,104 lp/a = (κ − 1 + κ coth κ)/
2(κ + 1 − κ coth κ), with κ as the bending stiffness parameter. For
a stiff chain, κ is large (κ→∞) and so the relation reduces to
lp/a ≈ κ − 1/2 +O(e−2κ). We mapped our coarse-grained simula-
tions onto the typical parameters for actin filaments, with persistence
length being lp = 17 μm.105 In most of our simulations, we chose a
bending stiffness of κ = 99.5kBT so that lp ≈ L. These parameters give
a length of approximately a ≈ 172 nm between the monomers. The
stretching energy of the harmonic springs connecting the beads is
Us = (κs/2)∑i(∣ui∣ − a)2, where ∣ui∣ = ∣ri+1 − ri∣/a is the dimension-
less bond length and κsa2 = 490kBT is the stretching stiffness used in
our simulations.

We first perform Monte-Carlo simulations of a WLC in the
absence of endpoint pinning or compressive forces. We initialize
each chain as a rod of length L and generate trial configurations by
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moving a randomly chosen monomer in a random direction sam-
pled from a normal distribution with a mean zero and standard
deviation 0.25a. The energy difference (ΔE) between the modified
configuration and the previous configuration is calculated to check
if the trial move is accepted or rejected. The configurations are
accepted following the Metropolis criterion106 that says the proba-
bility of acceptance is directly proportional to the Boltzmann factor,
paccept = e

−βΔE with β = 1/kBT. There are 109 MC steps in between
the initially grown chain and the final equilibrated chain configura-
tions, which is the data used for plotting the end-to-end distance
probabilities. A total of 1600 configurations are produced after
equilibration.

To obtain the buckling statistics in the isometric ensemble,
we pin the chain at the end-points in the x-direction so that the
end-to-end distance is fixed (with Xee = xL). For Xee ≈ L, the mean
force applied to the filament is positive, stretching the filament in
the x−direction. For sufficiently low Xee, the mean force will become
negative, and the chain will be compressed (and we expect the
filament will buckle for some critical Xee). We use the unpinned
simulation method as described above to perform these simulations,
modified to keep the end-to-end distance fixed by never select-
ing the endpoints as the monomers that are moved (r0 and rN are
unchanged in all trial moves). We initialize the simulation with a
rod of length Xee = 0.99L by compressing each bond vector’s length
by 1%.We equilibrated 5×104 configurations in two dimensions and
≈8400 configurations in three dimensions by performing ≈109 MC
steps per simulation. After equilibration, these configurations are
compressed by 1% by reducing the length of each bond uniformly
and equilibrating again. This procedure was followed reducing x by
0.01 at every iteration to x = 0.94 for two dimensions and x = 0.87
for three dimensions.

III. RESULTS
A. The mean-field approach for wormlike chains

The MF method replaces rigid local constraints with averaged
global constraints (as described in Sec. II A). A difficulty with the
mean-field approach is determining the relationship between l0 [the
MF persistence length in Eq. (2)] and lp [the true persistence length
of the polymer in Eq. (1)]. With a priori knowledge of the exact
mean squared curvature of the WLC, it is straightforward to use l0
as an additional Lagrange multiplier,96 choosing the optimal value
of l0 by constraining ⟨∫ L

0 dsu̇
2⟩

0
to a known value. In this paper,

we will generally not have this knowledge a priori and must find
an approximate method for identifying a relationship between l0
and lp. In Ref. 100, the connection is made by recognizing that an
unconstrained WLC has ⟨u0 ⋅ uL⟩0 = e−3L/2l0 in three dimensions,
in comparison to the exact result ⟨u0 ⋅ uL⟩e,3 = e−L/lp (with ⟨⋅ ⋅ ⋅⟩e,3
the true statistical average in three dimensions). This suggests the
replacement l0 = 3lp/2 in three dimensions. A similar calculation
in two dimensions shows that ⟨u0 ⋅ uL⟩0 = e−L/l0 in comparison to
the exact ⟨u0 ⋅ uL⟩e,2 = e−L/2lp , suggesting the substitution l0 = 2lp in
two dimensions. This substitution l0 = 3lp/2 in three dimensions has
been used in multiple contexts;93–95,100 we are not aware of this MF
formalism utilized in two dimensions.

B. Distribution functions in two and three dimensions
An accurate derivation of the end-to-end distance distribution

for a WLC using the MF theory has been previously accomplished
in three dimensions. To our knowledge, an equivalent two-
dimensional distribution derived using this MF approach has not
been reported in the literature, and we will compute it in this section.
To determine the distribution function, we will find it convenient
to define the HamiltonianH1 = 1

2 l1∫
L
0 dsu̇

2 + λ∫ L
0 dsu

2 + δ(u20 + u2L),
which is identical to the definition of H0 in Eq. (2) but with a
mean-field persistence length l1 (with l1 ≠ l0 in general). The
distribution functions in two and three dimensions are determined
by computing the constrained free energy e−F (Ree) = ∫ D[u(s)]
e−H1+λL+2δδ(Ree −∫ L

0 dsu(s)) = ⟨e
λL+2δδ(Ree −∫ L

0 dsu(s))⟩1,with⟨⋅ ⋅ ⋅⟩1
being an average with respect to H1. The constraint of inexten-
sibility is imposed on average by requiring ∂ log[F(Ree)]/
∂λ = ∂ log[F(Ree)]/∂δ = 0. We can readily evaluate this via
e−F (Ree) = eλL+2δ ∫ ddqe−iq⋅Ree⟨exp(iq ⋅ ∫ L

0 dsu(s))⟩1. This calcu-
lation was performed in Ref. 100 in three dimensions and is
straightforward in two dimensions by completing the square in
the Hamiltonian, with λ∫ L

0 ds(u
2 − iq ⋅ u) = q2L/2λ + λ∫ L

0 dsv
2 for

v = u − iq/2λ. The path integrals can be evaluated using the prop-
agator for the quantum harmonic oscillator in d-dimensions, with
Z(u0,uL;L) = (l1Ω/2π sinh(ΩL))d/2 exp[− l1Ω

2 (u
2
0 + u2L) coth(ΩL)

+ l1Ωu0 ⋅ uLcsch(ΩL)] and with Ω =
√
2λ/l1. The free-energy

minimizing equations for δ and λ are unwieldy but are simplified
considerably if we assume L is large and R2

ee = r2L2. Retaining terms
of order L and replacing sinh(ΩL) ≈ cosh(ΩL) ≈ eΩL/2 yields

2d
2δ + l1Ω

= 2, Ωl1(1 − r2) =
d
2
, (3)

in d = 2 or 3 dimensions, with solutions Ω = d/2l1(1 − r2) and
δ = d(1 − 2r2)/4(1 − r2). These values are substituted into the

free energy F(r) = 1
d(

π1/2 l21Ω
3/2

Ld )
d
exp(− Ll1Ω2

2 (1 − r
2) + dLΩ

2 + 2δ).

We must normalize these distributions so that Ld∫ 1
0 d

dre−F (r) = 1.
The integrals are straightforward to evaluate with the substitution
u = 1/(1 − r2), and r = Ree/L we find to leading order in L/lp,

P2d(r) =
L2eL/2l1

2πl1L(L + 2l1)
e−L/2l1(1−∣r∣

2
)

(1 − ∣r∣2)3 , (4)

P3d(r) =
36L7/2e9L/8l1

29/2π3/2(27L2 + 72Ll1 + 80l21)
e9L/(8l1(1−∣r∣

2
)

(1 − ∣r∣2)9/2 . (5)

Here, we neglect higher order contributions in L/l1, but we will find
below that this leading order approximation is surprisingly accurate.
Note that Eqs. (4) and (5) are vector distributions; when comput-
ing the distribution of the magnitude of the end-to-end distance,
the volume elements 2πr or 4πr2 for two and three dimensions,
respectively, should be included. Terms in the three-dimensional
distribution differ from that in Ref. 100 because we have not replaced
the mean-field persistence length l1 in terms of the true persistence
length lp in Eq. (5) yet (discussed further below). The factor of δ
plays a critical role in computing the distribution function by sup-
pressing the excess fluctuations at the endpoints, as the end-to-end
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distribution function would be∝ (1 − ∣r∣2)d/2 with δ = 0 rather than
∝ (1 − ∣r∣2)3d/2 we have found here.

C. The mean-field persistence length
in two and three dimensions

As discussed in Sec. III A, the mean-field persistence length
l1 is not identical to the true persistence length of the chain,
and without knowing an exact ⟨∫ L

0 dsu̇
2⟩, we cannot variationally

determine l1 explicitly. In Ref. 100, it is argued that we should expect
l1 = l0 = 3lp/2 for d = 3, based on the correlation function ⟨u0 ⋅ uL⟩d=3
= e−3L/2l0 . End-to-end distributions for three-dimensional WLCs
have been accurately recovered using Eq. (5) using this approxima-
tion. In two dimensions, a similar argument would suggest that l1
should be replaced with l0 = 2lp for d = 2. Surprisingly, we find a
fairly poor agreement with the simulated end-to-end distance dis-
tribution functions of a two-dimensional WLC [the dashed lines in
Figs. 1(a)–1(c)]: neither the mean nor the most probable end-to-end
distances agree well with the simulated data with the substitution
l1 = 2lp. The mean squared end-to-end distance is significantly
underestimated in comparison to the simulations (see Table I). The
most probable value rmax is also underestimated, and the probabil-
ity of finding r = rmax is also low compared to the simulations. This
suggests that the distributions are not well predicted using the MF
method with the substitution l1 = 2lp.

In order to improve the agreement, we instead choose l1 such
that ⟨r2⟩e,d = ∫ ddrP(r), where ⟨r2⟩e,d is the exact mean squared
end-to-end distance for a WLC in d dimensions: ⟨R2

ee⟩e,3 = 2Llp
+ 2l2p(e−L/lp − 1) and ⟨R2

ee⟩e,2 = 4Llp + 2l2p(e−L/2lp − 1). These can be
compared to the mean-squared end-to-end distances predicted by
the MF theory in terms of l, with

⟨R2
ee⟩MF,2 = ∫

1

0
dr 2πr3P2d(r) =

2L2l1
L + 2l1

, (6)

⟨R2
ee⟩MF,3 = ∫

1

0
dr 4πr4P3d(r) =

4L2l1(9L + 20l1)
27L2 + 72Ll1 + 80l21

. (7)

In two dimensions, equating the exact and MF predictions for the
mean squared end-to-end distance yields

l1 = lp
2(1 − 2(1 − e−L/2lp) lpL )

1 − 4 lp
L + 8(1 − e−L/2lp)

l2p
L2

(2 dimensions). (8)

TABLE I. Comparison of the simulated and theoretical distributions using different
values of l1: either l1 = 2lp (equal to l0, predicted by the decay in the correlation
function as described in Sec. III B) or defining l1 using Eq. (8). We compute the ratio
of the simulated vs MF mean squared end-to-end distances and the Kullback–Leibler
divergence, D. Using Eq. (8) gives a much lower ratio of the simulated vs theoretical
end-to-end distances and reduces D.

⟨R2
ee⟩sim/⟨R2

ee⟩MF K-L divergence D

Quantity lp = L
2 lp = L lp = 2L lp = L

2 lp = L lp = 2L

Using l1 = 2lp 1.11 1.07 1.04 33.2 22.3 22.7
Using Eq. (8) 1.01 1.00 1.01 23.1 7.34 2.86

For flexible chains with L≫ lp, we find that Eq. (8) reduces to
l1 ≈ 2lp, recovering the substitution for the bending correlation func-
tions to recover their unconstrained expected values. However, in
the limit of lp ≫ L, Eq. (8) reduces to l1 ≈ 3lp − L/8 +O(l−1p ). This
change in the coefficient (from 2 to 3) suggests that l1/lp may vary
significantly with r for lp ≳ L, and the substitution l1 = 2lp would
only be applicable in the limit of lp → 0. In Fig. 1(d), the solid
line shows Eq. (8) as a function of lp/L, and we see that signifi-
cant deviations from l1/lp = 2 occur even for moderate stiffnesses.
Using l1 as defined in Eq. (8), we find that the mean of the the-
oretical distribution matches the exact value of ⟨R2

ee⟩, as given in
Table I. We also compare the Kullback–Leibler (KL) divergence,
D = ∑iPsim(ri) log[Psim(ri)/PMF(ri)], between the simulated and
theoretical distributions and find that D is significantly reduced
when Eq. (8) is used to relate l1 to lp in Table I.

In three dimensions, solving for ⟨R2
ee⟩MF,3 = ⟨R2

ee⟩e,3 leads to a
more complicated expression for the relationship between l1 and lp,
which is easily evaluated numerically. We find 1.35 ≤ l1/lp ≤ 1.5 in
three dimensions, as shown in Fig. 1(d). The numerical differences
for stiff and flexible chains are much smaller in three dimensions
than in two dimensions and suggest that using l1 ≈ 3lp/2 for the MF
persistence length may be approximately valid even for stiff chains
(consistent with Ref. 100). The agreement in three dimensions is
shown in Fig. 1(e) for lp/L = 1 and agrees well.

D. Buckling of a compressed filament
To estimate the end-to-end distance at which the chain will

buckle, we determine the distribution function for the transverse
position of a filament pinned at both endpoints, with the expectation
that the emergence of a bimodal distribution indicates a buckling
transition [sketched in Fig. 2(c)]. In two and three dimensions,
we assume the end-to-end distance to be in the x-direction with
magnitude Xee and wish to compute the y-position along the
backbone at s (Y s). In two dimensions, this distribution can be
determined by computing

P(Ys;Xee) = ⟨δ(Xee −∫
L

0
dsux)δ(∫

L

0
dsuy)

× δ(Ys −∫
s

0
ds′uy(s′))⟩

1
, (9)

where u = ṙ = (ux,uy) is the tangent vector. In three dimensions, a
similar expression can be developed including an additional term
δ(∫ L

0 dsuz(s)) in the average. Note that in two and three dimen-
sions, we do not impose a constraint on the direction of the pinned
bonds [that is, u(0) and u(L) are not constrained to be aligned
with the x axis]. This assumption is discussed in more detail in
the conclusions. This average is readily evaluated using the Fourier
transform,

P(Ys;Xee) = ∫
ddkdq
(2π)d+1 e

−ik⋅Ree−iqYs exp

× (ik ⋅ ∫
L

0
ds′u(s′) + iq∫

s

0
ds′uy(s′))e−βH1 , (10)

withRee = (Xee, 0) in two dimensions and (Xee, 0, 0) in three dimen-
sions. Because the MF Hamiltonian is quadratic, the integral can
be evaluated in a straightforward fashion. As was the case for the
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FIG. 2. (a)–(c) End-to-end distribution functions for two-dimensional WLCs at the indicated persistence length. The dashed lines correspond to Eq. (4), with the substitution
l1 = 2lp, while the solid lines correspond to the substitution in Eq. (8) [(a)–(c) l1 ≈ 2.78lp, l1 ≈ 2.92lp, and l1 ≈ 2.96lp]. A significant improvement in the agreement is
observed using Eq. (8), consistent with Table I. The filled points in plots (a)–(c) represent simulation data for the end-to-end distances for different stiffness parameters in
two dimensions. Note the change in the x axes in (a)–(c), which gives rise to greater noise in (a) than in (c). (d) The ratio l1/lp in two (black solid line) and three (black
dashed line) dimensions. In three dimensions, l1/lp is weakly varying between 1.35 and 1.50. In two dimensions, the change is more significant (varying between 2 and 3),
leading to the differences seen in the dashed lines in (a)–(c). (e) End-to-end distribution functions for lp = L in three dimensions. The dashed lines correspond to Eq. (5)
with the substitution l1 =

3
2

lp, while the solid lines correspond to the choice of l1 such that ⟨R2
ee⟩MF,3 = ⟨R2

ee⟩e,3. In three dimensions, the distributions are nearly identical
using either definition for l1, suggesting that the MF theory does not depend sensitively on the method by which l1 is chosen in three dimensions, consistent with (d). The
open points in the plot represent simulation data for the end-to-end distance in three dimensions.

end-to-end distribution function, it is extremely useful to take the
limit of L≫ 0 so that the hyperbolic trigonometric functions can be
replaced with exponentials. We further assume that esΩ/2 ≫ e−sΩ/2,
meaning the point s is far from the endpoints. In this limit, we find
after some algebra that, in d = 2 or 3 dimensions, the distribution
function is

P(Ys;Xee)∝
Ω3d/2e2δ−dLΩ/2+l1LΩ

2
/2

(2δ + l1Ω)dg1/2(Ω)

× exp(− l1X
2
eeΩ2

2L
+ Ll1Y2

s Ω2

g(Ω) ), (11)

with g(Ω) = 1 − 2s(1 − s
L)Ω. It is convenient to write Xee = xL,

Y s = yL, and s = σL. Taking the limit of L→∞ imposing the inex-
tensibility constraints on average using ∂ log(P)/∂δ = ∂ log(P)/
∂λ = 0 gives the mean-field solutions,

δ = d
2
− l1Ω

2
, Ω = d

2l1
(1 − x2 − y2

σ(1 − σ))
−1

. (12)

The substitution of Eq. (12) into Eq. (11) gives the distributions to
the leading order in L,
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P(y; x)∝ (1 − x2 − y2

σ(1 − σ))
−3d/2−1

× exp
⎡⎢⎢⎢⎢⎣

(2d − 3)L
2l1

(1 − x2 − y2

σ(1 − σ))
−1⎤⎥⎥⎥⎥⎦

. (13)

These distributions cannot be integrated analytically in terms of
elementary functions [unlike the case of the end-to-end distribu-
tion function in Eq. (4) or (5)], and we will numerically evaluate the
normalization factor.

The length of the chain fluctuates in the simulations with the
length of the kth simulated filament defined as Lk = ∑i∣r

(k)
i − r

(k)
i−1 ∣,

while Eq. (13) assumes that the filament has a fixed length L. In
order to compare the theory directly to simulations, in Fig. 3, we
show the distribution of y = YL/2/L for only data with 0.999 < Lk/L
< 1.001 (selecting only ≈10% of our simulated configurations with
an approximately fixed length; length fluctuations will be accounted
for in Sec. III E). We plot the distribution in Eq. (13) with l1 defined
in Eq. (8) and see that the distribution is well predicted by the the-
ory for (almost) constant L. When x = Xee/L ≈ 1, the distributions
are unimodal and peak around y = 0, while bimodal distributions
are observed when x is sufficiently small. These bimodal distri-
butions indicate that the filament has buckled: the most probable
location is not centered at YL/2 = 0 but instead at a finite value.
The distribution functions have critical points as a function of y at

y∗ = 0 or y∗ = ±( 1−x
2

4 −
cdL
4l1
)
1/2

with cd = 1/8 in two dimensions and
cd = 3/11 in three dimensions. The nonzero peaks become real when

x < x∗ = (1 − cdL
l1
)
1/2

with x∗ being the critical compressed distance
at which buckling occurs. Buckling is a continuous phase transition
as shown in Fig. 4(a), with y∗ = 0 when x ≥ x∗ , consistent with the
observations in Ref. 73. The phase diagram of the buckling is shown
in Fig. 4(b) for both two and three dimensions. The onset of buck-
ling occurs for larger x∗ in two dimensions than in three dimensions;
for our parameters of lp ≈ L, the buckling occurs at x∗ ≈ 0.978 in two
dimensions and x∗ = 3

√

11
≈ 0.905 in three dimensions. Note that we

also predict that the buckling will not occur for sufficiently flexible

FIG. 3. Transverse position distribution of the midpoint of a two-dimensional fil-
ament with lp = L. Points represent the y component of the midpoint of the
simulated data for which the length of the kth simulated chain is Lk ≈ (N − 1)a
(permitting variations of around 0.1%), and lines correspond to the predictions of
Eq. (13), replacing l1 with Eq. (8). Note that there are no free parameters in the
fitting. Blue refers to Xee/L = 0.99, red 0.97, and black 0.95.

FIG. 4. (a) The most probable value of the transverse position of the midpoint of the
polymer in two and three dimensions, with lp = L/2 (blue), L (red), and 2L (black).
Buckling occurs when the most probable value of the transverse position is non-
zero (when x = x∗ =

√

1 − cdL/l1). (b) Phase diagram of the transition between
unbuckled and buckled filaments. The transition occurs at an earlier compression
value (Xee/L) for more flexible chains in two dimensions than in three dimen-
sions, and in either dimensionality, there is a minimum persistence length required
for buckling to occur. In two and three dimensions, stiff chains will buckle at a crit-
ical compression and the value occurs earlier for two dimensions than for three
dimensions.

chains (when l1/L ≤ cd) since x∗ is imaginary for low l1. In terms
of the true persistence length, this corresponds to lp

L ≈ 0.056 = α2 in
two dimensions and lp

L =
2
11 ≈ 0.182 = α3 in three dimensions.

Pinning the endpoints of a wormlike chain fixes the end-to-end
distance, and thus, the compressive force fluctuates. This is distinct
from the problem of Euler buckling, which predicts a first-order
phase transition in the T → 0 limit. We can readily compute the
mean compressive force via Lβ⟨ f ⟩ = −∂ log[P(r)]/∂r and find

Lβ⟨ f (x)⟩ = − 8x
(1 − x2) +

Lx
l1(1 − x2)2

+ 1
x

2 dimensions (14)

= −(1 − 9x
2)

x(1 − x2) +
Lx

l1(1 − x2)2
+ 2
x

3 dimensions. (15)

J. Chem. Phys. 157, 104903 (2022); doi: 10.1063/5.0104910 157, 104903-7

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0104910/16551736/104903_1_online.pdf

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

These forces are shown in Fig. 5 with the substitution of Eq. (8)
for l1 in two dimensions [Fig. 5(a)] and l1 = 3lp/2 in three dimen-
sions [Fig. 5(b)]. As expected, for x ≈ 1, the mean forces are positive
and elongate the chain. The onset of the compressive forces is ear-
lier in two dimensions than in three, at a higher compression ratio
x [as in Fig. 4(b)]. The substitution of x = x∗ into Eqs. (14) and
(15) give a mean compressive force ⟨ f (x∗)⟩ = − 33kBTlp

8L2

√
1 − 2L

11lp
in three dimensions. The standard Euler buckling result at T = 0
predicts a critical force at73,99 f E = −π2 kBTlpL2 . Our theoretical pre-
diction, thus, gives the same scaling of the mean compressive force
with lp and L as has been used previously. The scaling coefficient,
⟨ f (x∗)⟩ ≈ − 33

8
kBTlp
L2 , is about 60% lower than the standard Euler

buckling coefficient in the limit of lp →∞. Reference 73 finds that
the critical buckling force on a wormlike chain falls somewhere
between 0.67 fE and 1.33 fE in the presence of thermal fluctuations
and a constant compressive force. This apparent inconsistency is
due to the fact that we use a fixed end-to-end distance (Helmholtz)
ensemble rather than a fixed force (Gibbs) ensemble. It is also worth
noting that the scaling coefficients in the mean-field approach are
expected to be correct within an order of magnitude. A surprising
result in two dimensions is that we find f (x∗) = kBT/L

√
1 − cdL/l1,

(b)

(a)

FIG. 5. Mean force on the filaments in two (a) and three (b) dimensions as a
function of the fixed extension x = Xee/L. Shown are lp/L = 1 (black) and 1/2
(red), as well as the stiffnesses αd at which the buckling does not occur (blue
dashed line). The insets for each show the extension at which the force becomes
compressive (xc), the extension at which the phase transition occurs (x∗), and
the location of the local minimum of the force (xmin) as a function of stiffness.
Buckling does not coincide with the minimum in the compressive forces, and in
two dimensions, the onset of buckling is very close to the onset of compression
even for fairly flexible chains.

with the scaling coefficient of the lp/L2 term vanishing. We, thus,
do not recover the scaling for the Euler buckling in two dimensions
but rather find that the onset of the buckling transition occurs when
the mean compressive force is ≈ − kBT/L for stiff chains (discussed
below). This again may be due to inaccuracies in the scaling coeffi-
cient; if c2 ≠ 1/8, the usual Euler buckling scaling re-emerges with a
different scaling coefficient.

In the insets in Fig. 5, we show the extension at which the forces
become compressive (xc, the compression at which 14 or 15 become
negative), the onset of buckling at x∗ , and the location of the local
minimum of the force (xmin). We see the buckling transition occurs
between the onset of compression and the local minimum, but for
stiff chains x∗ ≈ xc, this means that the chains of even moderate
stiffness buckle almost immediately in two dimensions when a mean
compressive force is applied. In three dimensions, the buckling
transition is between the onset of compression and the local mini-
mum, but x∗ ≉ xc unless the chains are very stiff. In both two and
three dimensions, the local minima in the compressive forces do
not coincide with the onset of the buckling transition. Much like
the absence of the buckling for sufficiently flexible chains, we see
these local minima in the compressive forces cease to exist for suffi-
ciently low lp/L. It is interesting to note that the scaling coefficient of
the Euler buckling solution is independent of the dimensionality73
( fE = −π2kBTlp/L2 in two and three dimensions) since the action-
minimizing T = 0 solution has a constant azimuthal angle. Here,
we see that the dimensionality does affect the scaling coefficient of
the compressive force at finite T with fixed endpoints (rather than
constant force).

E. Accounting for fluctuations in length
The distribution in Eq. (13) assumes a fixed L, but all

biomolecules have a finite stretch modulus, and many compu-
tational models (including our MC algorithm) permit length
fluctuations. For example, F-actin has a stretch modulus107
of ≈1.8 × 109 N/m2, which allows for around 1%–5% length
fluctuations. In Fig. 6, we show that the theoretical predic-
tion in Eq. (13) (dashed lines) in two and three dimensions
fails to capture the simulated distribution P(YL/2) for large
x (stretching) but appears to perform well for small x (com-
pression). The two-dimensional simulation includes 50 000
simulated configurations for each distribution, and for three
dimensions, there are ∼8400 simulated configurations for each
distribution. For both compression and stretching, we see
that the simulated length of the chain for the kth simulation,
Lk = ∑N−1

i=1 ∣rki+1 − rki ∣, varies by ≈2% (insets in Fig. 6) and the average
length is increased when stretched (because the locations of the
peaks of the length distributions increase with x) but not when
compressed. The length distributions are all well-fit by a normal
distribution, p(Lsim) = exp[(Lsim − L̄)2/2σ2L]/

√
2πσ2L (the solid

curves in the inset) with L̄ and σ2L being the mean and variance of
the simulated length, respectively. An exact calculation of L̄ and σL
is difficult analytically due to the constraint of fixed distance in the
x-direction, and we simply calculate them from the data directly.
In computing L̄ and σL, we exclude extensions that occur less than
0.1% of the data due to rare events of high compression of the bonds
when x is small.
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FIG. 6. Simulated distributions with κs/a2
= 10kBT (points) in comparison to the

fixed length distributions in Eq. (13) (dashed lines) and Eq. (16) (solid lines) in two
(a) and three (b) dimensions. Points represent the transverse component of the
midpoint of the simulated data (y axis in two dimensions and y and z axes in three
dimensions). The insets show the distributions of the simulated lengths, which are
well fit by a Gaussian. L0 = (N − 1)a is the length of the chain and L = Lk is
the length of the chain for the kth simulation. The transition between the buckled
and unbuckled states differs in two and three dimensions, and different values of
compression are shown: (a) x = 0.99 (blue), 0.98 (red), and 0.97 (black), and (b)
x = 0.98 (blue), 0.92 (red), and 0.86 (black). Note that, in (b), the peak of the blue
dashed line is cut off to improve visualization.

Initially, we tested to see if we could fit the simulated distribu-
tions using Eq. (13) with L and lp as fitting parameters but found
that the fitted distributions still did not agree well (data not shown).
To better match the simulations, we compute the total distribution
accounting for length fluctuations,

Ptot(y; x) = ∫
Lmax

Lmin

dLsim p(Lsim)
P(yLsim; xL0)
N (Lsim,L0)

, (16)

with the Gaussian prior P(L) in the insets in Fig. 6, L0 = (N − 1)a
being the length of the chain for κs →∞, and the normaliza-
tion N (Lsim,L0) = ∫ Ymax

Ymin
dYP(yLsim, xL0). This integral must be

evaluated numerically. The bound values of L, Lmin and Lmax,
are chosen such that ∫ Lmin

−∞
dLp(L) = ∫ ∞Lmax

dLp(L) = 10−5 (ignoring
low-probability lengths) and Ymax = −Ymin = (Lsim/2)

√
1 − x2. The

numerical integration uses a 25-point Gaussian quadrature, and the
resulting distributions are shown as the solid lines in Fig. 6. The
fixed length distribution functions in Fig. 6 badly fail to capture the

simulated distributions for x = 0.99 [two dimensions, blue dashed
lines in Fig. 6(a)] or 0.98 [three dimensions, blue dashed lines in
Fig. 6(b)], while the convolved distributions Ptot show improved
agreement. There is still some difference between the theory and
simulations for large x, which may be due to the failure of a Gaus-
sian theory to accurately describe a strongly stretched inextensible
chain.108 In two dimensions, the convolved distribution in Eq. (16)
agrees almost perfectly with the simulations while the fixed length
theory fails to capture the tails well. In three dimensions, the agree-
ment for the fixed length theory is nearly quantitative below the
buckling transition, suggesting that the theory can be reliably used
for high compression in three dimensions. The agreement between
the fixed-length theory in Eq. (13) and the convolved distribution
in Eq. (16) suggests that our predictions of the location of the buck-
ling transition will be accurate even for systems with finite stretching
modulus.

IV. DISCUSSION AND CONCLUSIONS
In this paper, we have studied the statistics of semiflexible

filaments compressed due to pinning at the endpoints (in the
Helmholtz ensemble) to better understand the buckling of stiff poly-
mers when compressed. We find that there is a continuous phase
transition for a pinned polymer in both two and three dimensions,
transitioning from configurations that thermally fluctuate around
the compression axis for high extensions (x = Xee/L ≳ x∗) to ther-
mal fluctuations about bent configurations for strong compression
(x < x∗). This transition does not precisely coincide with the change
in the sign of the mean force (although is very close in two dimen-
sions) nor does it coincide with the point at which the compressive
force experiences a local minimum. For rigid chains, all three of
these points nearly coincide, consistent with the observations in
Ref. 48 (with L/lp ≈ 117). We predict that even fairly flexible chains
may also buckle (with L/lp as low as 0.1 or 0.2 in two or three dimen-
sions, respectively), but the buckling transition will occur only for
Xee ≈ 0 for such a low lp.

We have shown that the buckling transition at a finite tempera-
ture is a continuous transition in the isometric ensemble. However,
first-order transitions are directly related to energy dissipation and
the phenomenon of hysteresis that has been observed in the buck-
ling of biopolymers.15,16,109 To better understand the predictions of
our model, we can draw an analogy between our system and the
Ising model. At a zero applied external field and below the crit-
ical temperature, the spins in a ferromagnetic material align and
show spontaneous magnetization to a positive or a negative value.
Above the critical temperature, thermal fluctuations are sufficiently
high to prevent global alignment in two and three dimensions. In
our system of a buckled semiflexible polymer under compression,
the analogous order parameter to temperature in an Ising model
is the level of compression, x = Xee/L, with the transverse position
Y s playing an analogous role to the magnetization. In Fig. 4(a), the
most probable value of the transverse position of the midpoint of
the polymer, Y s, is plotted with the order parameter, x. This figure
indicates that, above the critical compression, there is no buckling
and the chain fluctuates around a flat chain configuration but buck-
ling sets in below the critical compression and the chain fluctuates
around a laterally curved configuration, either in the positive or
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negative transverse direction. The distribution functions indicate
a continuous phase transition in Fig. 6, which transitions from
unimodal to bimodal, and in Fig. 5 where the mean compressive
force is non-monotonic.

In addition to the spontaneous magnetization below the critical
temperature, an applied field can provide a preferred direction for
the spins to point in the Ising model. If the external field changes
its direction abruptly, the sign of the magnetization in the spins
may also change abruptly. The discontinuous jump in the mag-
netization is a sign of a first-order transition. Energy dissipation
and the phenomenon of hysteresis17,110–112 in first-order transitions
are associated with the existence of meta-stable states113,114 resulting
from the past direction of the external field. Analogously, for the
case of buckling in semiflexible polymers and for a compression
level, x < x∗ , the polymer is already in a buckled state either in
the positive or the negative transverse direction. Introducing an
external field or deformation forces like shear,55,111,112,115 in the
transverse direction (y direction for two dimensions and y and z
directions for three dimensions) can lead to an abrupt jump and
change the direction of the most probable value of the transverse
position of the midpoint of the polymer. Thus, to observe a
discontinuous transition in our model for buckling, it is nec-
essary to introduce a transverse external field that may include
hydrodynamic interactions or cross-links between filaments in a
network.15,16

Hysteresis plays a pivotal role inmechanical buckling in biolog-
ical systems,17,109,112 and a time-varying transverse external field in
our model will result in meta-stable states where the polymer retains
the memory of its initial condition (buckling in the transverse direc-
tion to the compression axis). Recent work109 has also shown that
cross-linked actin networks found in the cytoskeleton can exhibit
mechanical hysteresis due to direction-dependent response to shear.
The degree of hysteresis in these semiflexible polymer networks can
exhibit adaptive behavior in the cytoskeleton. It was found that the
adaptivity of these networks can be tuned through the cross-linker
concentration and type. It will be interesting to explore the same
behavior for a simple model of cross-linked actin filaments under
compression, a planned avenue for future work.

The stiffness of many biopolymers plays an essential role
in the structure and dynamics of compressed filamentous
networks and bundles, as demonstrated both theoretically17,87

and experimentally.3,15,16,53,75,80,116 The persistence length of
these molecules is central to characterizing their behavior when
compressed. In this work, we have derived a relation between
the mean-field persistence length obtained from our theory,
and while we found that, in three dimensions, the very simple
relation l1 = 3lp/2 agrees well with simulated data, modeling a
two-dimensional buckled filament requires a nonlinear relation-
ship between l1 and lp. The novel two-dimensional end-to-end
distribution function predicted here may be relevant to studying
the statistics of surface-bound filaments or networks. We also
found that the distributions are quite sensitive to variations in
length for stretched filaments, and the theory does a relatively
poor job of capturing the distributions for the normalized extension
Xee ≈ (N − 1)a. In three dimensions, we find that the theory
and simulations agree well for smaller x (closer to the buckling
transition), and the inextensible theory is likely sufficient for
understanding the statistics of filaments with finite stretching

moduli, such as F-actin. In two dimensions, we found that the
inextensible theory only qualitatively captures the simulated
distributions and one must account for length fluctuations explicitly
to quantitatively describe the distributions. Despite this sensitivity
in the distributions, the compression at which buckling occurs
predicted by the inextensible theory (x∗ =

√
1 − cdL/l1) is expected

to be accurate in both two and three dimensions.
In this paper, we have pinned the endpoints of the filament

in one dimension and induced buckling by decreasing the end-to-
end distance along that axis. This imposes no constraint on the
direction of the bonds at the endpoints, but in many biologically
or experimentally relevant conditions, one might expect constraints
on the statistics of the endpoints.20–22,80 These may include rigid
constraints of clamped (both endpoints normal to a surface) or
cantilevered (one end normal to a surface and the other free) ensem-
bles, but other softer constraints might be appropriate depending
on the system. In this paper, we also showed that our finite-size
isometric system does not precisely coincide with the isotensional
system. With fc ≈ π2kBTlp/L2 being the critical force for buckling of
a stiff chain,81 we found that the mean buckling force ⟨ f ⟩ ≠ fc at the
critical compression x∗ in three dimensions. While we did find that
⟨ f ⟩MF,3 has the same scaling of fc ∝ lp/L2 in three dimensions, we
surprisingly found, in two dimensions, that at the critical compres-
sion x∗ , the scaling of ⟨ f ⟩MF,2 ∝/ lp/L2. We are not aware of an
explicit calculation of the buckling statistics of a wormlike filament
in two dimensions with a constant compression force, so it is not
clear whether the scaling of our isometric result is consistent with
the isotensional ensemble. More work is needed to fully understand
the equivalence of these two ensembles in the thermodynamic limit.
It is certainly possible to include rigid constraints at the endpoints
by computing averages as ⟨⋅ ⋅ ⋅ ⟩clamped = ⟨(⋅ ⋅ ⋅ )δ(u0 − x̂)δ(uL − x̂)⟩1,
and we readily find that Ωclamped = d/2lp(1 − x2 − y2/σ(1 − σ)) to
leading order in L, identical to the value of Ω found for free ends.
Unsurprisingly, the mean-field solution for the extensive contribu-
tion to the free energy is independent of the endpoint constraints in
the limit as L→∞ and suggests the buckling transition will occur at
the same value of x regardless of the endpoint conditions. However,
a weakness in themean-field approach when studying such endpoint
constraints is how to handle terms in the free energy involving δ,
which suppresses endpoint fluctuations. In the absence of fluctua-
tions at the endpoints, we expect δ →∞. Rigidly constraining the
endpoints and minimizing the resulting free energy yield an expres-
sion for δ that is an unwieldy function of x and y. We find that
δ ∝ L under clamped conditions (consistent with the expectation of
δ →∞ since L is assumed large) and also find that δ diverges whenΩ
diverges [when y =

√
(1 − x2)/σ(1 − σ)]. The extensive scaling of δ

significantly complicates the analysis on the mean-field level. While
an interesting direction for future work would compare the mean-
field predictions in the clamped case to simulations and develop
an analytically tractable functional form, significant numerical work
and simulations are required to better understand the effect of rigid
bond boundary constraints.
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